/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include #include namespace aco { #ifndef NDEBUG void perfwarn(bool cond, const char *msg, Instruction *instr) { if (cond) { fprintf(stderr, "ACO performance warning: %s\n", msg); if (instr) { fprintf(stderr, "instruction: "); aco_print_instr(instr, stderr); fprintf(stderr, "\n"); } if (debug_flags & DEBUG_PERFWARN) exit(1); } } #endif void validate(Program* program, FILE * output) { if (!(debug_flags & DEBUG_VALIDATE)) return; bool is_valid = true; auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void { if (!check) { fprintf(output, "%s: ", msg); aco_print_instr(instr, output); fprintf(output, "\n"); is_valid = false; } }; auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void { if (!check) { fprintf(output, "%s: BB%u\n", msg, block->index); is_valid = false; } }; for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) { /* check base format */ Format base_format = instr->format; base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA); base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP); if ((uint32_t)base_format & (uint32_t)Format::VOP1) base_format = Format::VOP1; else if ((uint32_t)base_format & (uint32_t)Format::VOP2) base_format = Format::VOP2; else if ((uint32_t)base_format & (uint32_t)Format::VOPC) base_format = Format::VOPC; else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) { if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p2_f16) { /* v_interp_*_fp16 are considered VINTRP by the compiler but * they are emitted as VOP3. */ base_format = Format::VOP3; } else { base_format = Format::VINTRP; } } check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get()); /* check VOP3 modifiers */ if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC || base_format == Format::VINTRP, "Format cannot have VOP3A/VOP3B applied", instr.get()); } /* check SDWA */ if (instr->isSDWA()) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC, "Format cannot have SDWA applied", instr.get()); check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get()); SDWA_instruction *sdwa = static_cast(instr.get()); check(sdwa->omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get()); if (base_format == Format::VOPC) { check(sdwa->clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get()); check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) || program->chip_class >= GFX9, "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get()); } if (instr->operands.size() >= 3) { check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc, "3rd operand must be fixed to vcc with SDWA", instr.get()); } if (instr->definitions.size() >= 2) { check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc, "2nd definition must be fixed to vcc with SDWA", instr.get()); } check(instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32, "SDWA can't be used with this opcode", instr.get()); if (program->chip_class != GFX8) { check(instr->opcode != aco_opcode::v_mac_f32 && instr->opcode != aco_opcode::v_mac_f16 && instr->opcode != aco_opcode::v_fmac_f32 && instr->opcode != aco_opcode::v_fmac_f16, "SDWA can't be used with this opcode", instr.get()); } } /* check opsel */ if (instr->isVOP3()) { VOP3A_instruction *vop3 = static_cast(instr.get()); check(vop3->opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get()); check((vop3->opsel & ~(0x10 | ((1 << instr->operands.size()) - 1))) == 0, "Unused bits in opsel must be zeroed out", instr.get()); } /* check for undefs */ for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isUndefined()) { bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL; bool can_be_undef = is_phi(instr) || instr->format == Format::EXP || instr->format == Format::PSEUDO_REDUCTION || instr->opcode == aco_opcode::p_create_vector || (flat && i == 1) || (instr->format == Format::MIMG && i == 1) || ((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 1); check(can_be_undef, "Undefs can only be used in certain operands", instr.get()); } else { check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get()); } } /* check subdword definitions */ for (unsigned i = 0; i < instr->definitions.size(); i++) { if (instr->definitions[i].regClass().is_subdword()) check(instr->format == Format::PSEUDO || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get()); } if (instr->isSALU() || instr->isVALU()) { /* check literals */ Operand literal(s1); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (!op.isLiteral()) continue; check(instr->format == Format::SOP1 || instr->format == Format::SOP2 || instr->format == Format::SOPC || instr->format == Format::VOP1 || instr->format == Format::VOP2 || instr->format == Format::VOPC || (instr->isVOP3() && program->chip_class >= GFX10), "Literal applied on wrong instruction format", instr.get()); check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get()); literal = op; check(!instr->isVALU() || instr->isVOP3() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get()); } /* check num sgprs for VALU */ if (instr->isVALU()) { bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; unsigned const_bus_limit = 1; if (program->chip_class >= GFX10 && !is_shift64) const_bus_limit = 2; uint32_t scalar_mask = instr->isVOP3() ? 0x7 : 0x5; if (instr->isSDWA()) scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4; check(instr->definitions[0].getTemp().type() == RegType::vgpr || (int) instr->format & (int) Format::VOPC || instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64, "Wrong Definition type for VALU instruction", instr.get()); unsigned num_sgprs = 0; unsigned sgpr[] = {0, 0}; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 || instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) { check(!op.isLiteral(), "No literal allowed on VALU instruction", instr.get()); check(i == 1 || (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get()); continue; } if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) { check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get()); if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { if (num_sgprs < 2) sgpr[num_sgprs++] = op.tempId(); } } if (op.isConstant() && !op.isLiteral()) check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get()); } check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get()); } if (instr->format == Format::SOP1 || instr->format == Format::SOP2) { check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get()); for (const Operand& op : instr->operands) { check(op.isConstant() || op.regClass().type() <= RegType::sgpr, "Wrong Operand type for SALU instruction", instr.get()); } } } switch (instr->format) { case Format::PSEUDO: { if (instr->opcode == aco_opcode::p_create_vector) { unsigned size = 0; for (const Operand& op : instr->operands) { size += op.bytes(); } check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get()); if (instr->definitions[0].getTemp().type() == RegType::sgpr) { for (const Operand& op : instr->operands) { check(op.isConstant() || op.regClass().type() == RegType::sgpr, "Wrong Operand type for scalar vector", instr.get()); } } } else if (instr->opcode == aco_opcode::p_extract_vector) { check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get()); check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get()); check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr, "Cannot extract SGPR value from VGPR vector", instr.get()); } else if (instr->opcode == aco_opcode::p_parallelcopy) { check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get()); for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isTemp()) check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) || (instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr), "Operand and Definition types do not match", instr.get()); } } else if (instr->opcode == aco_opcode::p_phi) { check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->definitions[0].getTemp().regClass() == program->lane_mask, "Logical Phi Definition must be vgpr or divergent boolean", instr.get()); } else if (instr->opcode == aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get()); check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); } break; } case Format::SMEM: { if (instr->operands.size() >= 1) check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get()); if (instr->operands.size() >= 2) check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr), "SMEM offset must be constant or sgpr", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get()); break; } case Format::MTBUF: case Format::MUBUF: { check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get()); check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr, "VADDR must be in vgpr for VMEM instructions", instr.get()); check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get()); check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get()); break; } case Format::MIMG: { check(instr->operands.size() == 3, "MIMG instructions must have exactly 3 operands", instr.get()); check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8), "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get()); if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr) check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get()); else if (instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr) check((instr->definitions.empty() || instr->definitions[0].regClass() == instr->operands[1].regClass() || instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap), "MIMG operands[1] (VDATA) must be the same as definitions[0] for atomics", instr.get()); check(instr->operands[2].hasRegClass() && instr->operands[2].regClass().type() == RegType::vgpr, "MIMG operands[2] (VADDR) must be VGPR", instr.get()); check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr), "MIMG definitions[0] (VDATA) must be VGPR", instr.get()); break; } case Format::DS: { for (const Operand& op : instr->operands) { check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0, "Only VGPRs are valid DS instruction operands", instr.get()); } if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get()); break; } case Format::EXP: { for (unsigned i = 0; i < 4; i++) check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr, "Only VGPRs are valid Export arguments", instr.get()); break; } case Format::FLAT: check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get()); /* fallthrough */ case Format::GLOBAL: case Format::SCRATCH: { check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get()); check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr, "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get()); else check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get()); break; } default: break; } } } /* validate CFG */ for (unsigned i = 0; i < program->blocks.size(); i++) { Block& block = program->blocks[i]; check_block(block.index == i, "block.index must match actual index", &block); /* predecessors/successors should be sorted */ for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++) check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++) check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++) check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++) check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block); /* critical edges are not allowed */ if (block.linear_preds.size() > 1) { for (unsigned pred : block.linear_preds) check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]); for (unsigned pred : block.logical_preds) check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]); } } assert(is_valid); } /* RA validation */ namespace { struct Location { Location() : block(NULL), instr(NULL) {} Block *block; Instruction *instr; //NULL if it's the block's live-in }; struct Assignment { Location defloc; Location firstloc; PhysReg reg; }; bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) { va_list args; va_start(args, fmt); char msg[1024]; vsprintf(msg, fmt, args); va_end(args); fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index); if (loc.instr) { aco_print_instr(loc.instr, stderr); fprintf(stderr, "\n%s", msg); } else { fprintf(stderr, "%s", msg); } if (loc2.block) { fprintf(stderr, " in BB%d:\n", loc2.block->index); aco_print_instr(loc2.instr, stderr); } fprintf(stderr, "\n\n"); return true; } bool instr_can_access_subdword(Program* program, aco_ptr& instr) { if (program->chip_class < GFX8) return false; return instr->isSDWA() || instr->format == Format::PSEUDO; } } /* end namespace */ bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) { if (!(debug_flags & DEBUG_VALIDATE_RA)) return false; bool err = false; aco::live live_vars = aco::live_var_analysis(program, options); std::vector> phi_sgpr_ops(program->blocks.size()); std::map assignments; for (Block& block : program->blocks) { Location loc; loc.block = █ for (aco_ptr& instr : block.instructions) { if (instr->opcode == aco_opcode::p_phi) { for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isTemp() && instr->operands[i].getTemp().type() == RegType::sgpr && instr->operands[i].isFirstKill()) phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp()); } } loc.instr = instr.get(); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand& op = instr->operands[i]; if (!op.isTemp()) continue; if (!op.isFixed()) err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i); if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg()) err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i); if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) || (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit)) err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i); if (op.physReg() == vcc && !program->needs_vcc) err |= ra_fail(output, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i); if (!instr_can_access_subdword(program, instr) && op.regClass().is_subdword() && op.physReg().byte()) err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d must be aligned to a full register", i); if (!assignments[op.tempId()].firstloc.block) assignments[op.tempId()].firstloc = loc; if (!assignments[op.tempId()].defloc.block) assignments[op.tempId()].reg = op.physReg(); } for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; if (!def.isFixed()) err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i); if (assignments[def.tempId()].defloc.block) err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId()); if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) || (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit)) err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i); if (def.physReg() == vcc && !program->needs_vcc) err |= ra_fail(output, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i); if (!instr_can_access_subdword(program, instr) && def.regClass().is_subdword() && def.physReg().byte()) err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d must be aligned to a full register", i); if (!assignments[def.tempId()].firstloc.block) assignments[def.tempId()].firstloc = loc; assignments[def.tempId()].defloc = loc; assignments[def.tempId()].reg = def.physReg(); } } } for (Block& block : program->blocks) { Location loc; loc.block = █ std::array regs; /* register file in bytes */ regs.fill(0); std::set live; live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end()); /* remove killed p_phi sgpr operands */ for (Temp tmp : phi_sgpr_ops[block.index]) live.erase(tmp); /* check live out */ for (Temp tmp : live) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) { if (regs[reg.reg_b + i]) { err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]); } regs[reg.reg_b + i] = tmp.id(); } } regs.fill(0); for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) { aco_ptr& instr = *it; /* check killed p_phi sgpr operands */ if (instr->opcode == aco_opcode::p_logical_end) { for (Temp tmp : phi_sgpr_ops[block.index]) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) { if (regs[reg.reg_b + i]) err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]); } live.emplace(tmp); } } for (const Definition& def : instr->definitions) { if (!def.isTemp()) continue; live.erase(def.getTemp()); } /* don't count phi operands as live-in, since they are actually * killed when they are copied at the predecessor */ if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; live.insert(op.getTemp()); } } } for (Temp tmp : live) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) regs[reg.reg_b + i] = tmp.id(); } for (aco_ptr& instr : block.instructions) { loc.instr = instr.get(); /* remove killed p_phi operands from regs */ if (instr->opcode == aco_opcode::p_logical_end) { for (Temp tmp : phi_sgpr_ops[block.index]) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) regs[reg.reg_b + i] = 0; } } if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isFirstKillBeforeDef()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; Temp tmp = def.getTemp(); PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned j = 0; j < tmp.bytes(); j++) { if (regs[reg.reg_b + j]) err |= ra_fail(output, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]); regs[reg.reg_b + j] = tmp.id(); } if (def.regClass().is_subdword() && !instr_can_access_subdword(program, instr)) { for (unsigned j = tmp.bytes(); j < 4; j++) if (regs[reg.reg_b + j]) err |= ra_fail(output, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d overwrites the full register taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]); } } for (const Definition& def : instr->definitions) { if (!def.isTemp()) continue; if (def.isKill()) { for (unsigned j = 0; j < def.getTemp().bytes(); j++) regs[def.physReg().reg_b + j] = 0; } } if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isLateKill() && op.isFirstKill()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } } } return err; } }