/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include "aco_builder.h" #include #include #include "vulkan/radv_shader.h" // for radv_nir_compiler_options #include "amdgfxregs.h" #define SMEM_WINDOW_SIZE (350 - ctx.num_waves * 35) #define VMEM_WINDOW_SIZE (1024 - ctx.num_waves * 64) #define POS_EXP_WINDOW_SIZE 512 #define SMEM_MAX_MOVES (64 - ctx.num_waves * 4) #define VMEM_MAX_MOVES (128 - ctx.num_waves * 8) /* creating clauses decreases def-use distances, so make it less aggressive the lower num_waves is */ #define VMEM_CLAUSE_MAX_GRAB_DIST ((ctx.num_waves - 1) * 8) #define POS_EXP_MAX_MOVES 512 namespace aco { enum MoveResult { move_success, move_fail_ssa, move_fail_rar, move_fail_pressure, }; struct MoveState { RegisterDemand max_registers; Block *block; Instruction *current; RegisterDemand *register_demand; bool improved_rar; std::vector depends_on; /* Two are needed because, for downwards VMEM scheduling, one needs to * exclude the instructions in the clause, since new instructions in the * clause are not moved past any other instructions in the clause. */ std::vector RAR_dependencies; std::vector RAR_dependencies_clause; int source_idx; int insert_idx, insert_idx_clause; RegisterDemand total_demand, total_demand_clause; /* for moving instructions before the current instruction to after it */ void downwards_init(int current_idx, bool improved_rar, bool may_form_clauses); MoveResult downwards_move(bool clause); void downwards_skip(); /* for moving instructions after the first use of the current instruction upwards */ void upwards_init(int source_idx, bool improved_rar); bool upwards_check_deps(); void upwards_set_insert_idx(int before); MoveResult upwards_move(); void upwards_skip(); private: void downwards_advance_helper(); }; struct sched_ctx { int16_t num_waves; int16_t last_SMEM_stall; int last_SMEM_dep_idx; MoveState mv; }; /* This scheduler is a simple bottom-up pass based on ideas from * "A Novel Lightweight Instruction Scheduling Algorithm for Just-In-Time Compiler" * from Xiaohua Shi and Peng Guo. * The basic approach is to iterate over all instructions. When a memory instruction * is encountered it tries to move independent instructions from above and below * between the memory instruction and it's first user. * The novelty is that this scheduler cares for the current register pressure: * Instructions will only be moved if the register pressure won't exceed a certain bound. */ template void move_element(T begin_it, size_t idx, size_t before) { if (idx < before) { auto begin = std::next(begin_it, idx); auto end = std::next(begin_it, before); std::rotate(begin, begin + 1, end); } else if (idx > before) { auto begin = std::next(begin_it, before); auto end = std::next(begin_it, idx + 1); std::rotate(begin, end - 1, end); } } void MoveState::downwards_advance_helper() { source_idx--; total_demand.update(register_demand[source_idx]); } void MoveState::downwards_init(int current_idx, bool improved_rar_, bool may_form_clauses) { improved_rar = improved_rar_; source_idx = current_idx; insert_idx = current_idx + 1; insert_idx_clause = current_idx; total_demand = total_demand_clause = register_demand[current_idx]; std::fill(depends_on.begin(), depends_on.end(), false); if (improved_rar) { std::fill(RAR_dependencies.begin(), RAR_dependencies.end(), false); if (may_form_clauses) std::fill(RAR_dependencies_clause.begin(), RAR_dependencies_clause.end(), false); } for (const Operand& op : current->operands) { if (op.isTemp()) { depends_on[op.tempId()] = true; if (improved_rar && op.isFirstKill()) RAR_dependencies[op.tempId()] = true; } } /* update total_demand/source_idx */ downwards_advance_helper(); } MoveResult MoveState::downwards_move(bool clause) { aco_ptr& instr = block->instructions[source_idx]; for (const Definition& def : instr->definitions) if (def.isTemp() && depends_on[def.tempId()]) return move_fail_ssa; /* check if one of candidate's operands is killed by depending instruction */ std::vector& RAR_deps = improved_rar ? (clause ? RAR_dependencies_clause : RAR_dependencies) : depends_on; for (const Operand& op : instr->operands) { if (op.isTemp() && RAR_deps[op.tempId()]) { // FIXME: account for difference in register pressure return move_fail_rar; } } if (clause) { for (const Operand& op : instr->operands) { if (op.isTemp()) { depends_on[op.tempId()] = true; if (op.isFirstKill()) RAR_dependencies[op.tempId()] = true; } } } int dest_insert_idx = clause ? insert_idx_clause : insert_idx; RegisterDemand register_pressure = clause ? total_demand_clause : total_demand; const RegisterDemand candidate_diff = get_live_changes(instr); const RegisterDemand temp = get_temp_registers(instr); if (RegisterDemand(register_pressure - candidate_diff).exceeds(max_registers)) return move_fail_pressure; const RegisterDemand temp2 = get_temp_registers(block->instructions[dest_insert_idx - 1]); const RegisterDemand new_demand = register_demand[dest_insert_idx - 1] - temp2 + temp; if (new_demand.exceeds(max_registers)) return move_fail_pressure; /* move the candidate below the memory load */ move_element(block->instructions.begin(), source_idx, dest_insert_idx); /* update register pressure */ move_element(register_demand, source_idx, dest_insert_idx); for (int i = source_idx; i < dest_insert_idx - 1; i++) register_demand[i] -= candidate_diff; register_demand[dest_insert_idx - 1] = new_demand; total_demand_clause -= candidate_diff; insert_idx_clause--; if (!clause) { total_demand -= candidate_diff; insert_idx--; } downwards_advance_helper(); return move_success; } void MoveState::downwards_skip() { aco_ptr& instr = block->instructions[source_idx]; for (const Operand& op : instr->operands) { if (op.isTemp()) { depends_on[op.tempId()] = true; if (improved_rar && op.isFirstKill()) { RAR_dependencies[op.tempId()] = true; RAR_dependencies_clause[op.tempId()] = true; } } } total_demand_clause.update(register_demand[source_idx]); downwards_advance_helper(); } void MoveState::upwards_init(int source_idx_, bool improved_rar_) { source_idx = source_idx_; improved_rar = improved_rar_; insert_idx = -1; std::fill(depends_on.begin(), depends_on.end(), false); std::fill(RAR_dependencies.begin(), RAR_dependencies.end(), false); for (const Definition& def : current->definitions) { if (def.isTemp()) depends_on[def.tempId()] = true; } } bool MoveState::upwards_check_deps() { aco_ptr& instr = block->instructions[source_idx]; for (const Operand& op : instr->operands) { if (op.isTemp() && depends_on[op.tempId()]) return false; } return true; } void MoveState::upwards_set_insert_idx(int before) { insert_idx = before; total_demand = register_demand[before - 1]; } MoveResult MoveState::upwards_move() { assert(insert_idx >= 0); aco_ptr& instr = block->instructions[source_idx]; for (const Operand& op : instr->operands) { if (op.isTemp() && depends_on[op.tempId()]) return move_fail_ssa; } /* check if candidate uses/kills an operand which is used by a dependency */ for (const Operand& op : instr->operands) { if (op.isTemp() && (!improved_rar || op.isFirstKill()) && RAR_dependencies[op.tempId()]) return move_fail_rar; } /* check if register pressure is low enough: the diff is negative if register pressure is decreased */ const RegisterDemand candidate_diff = get_live_changes(instr); const RegisterDemand temp = get_temp_registers(instr); if (RegisterDemand(total_demand + candidate_diff).exceeds(max_registers)) return move_fail_pressure; const RegisterDemand temp2 = get_temp_registers(block->instructions[insert_idx - 1]); const RegisterDemand new_demand = register_demand[insert_idx - 1] - temp2 + candidate_diff + temp; if (new_demand.exceeds(max_registers)) return move_fail_pressure; /* move the candidate above the insert_idx */ move_element(block->instructions.begin(), source_idx, insert_idx); /* update register pressure */ move_element(register_demand, source_idx, insert_idx); for (int i = insert_idx + 1; i <= source_idx; i++) register_demand[i] += candidate_diff; register_demand[insert_idx] = new_demand; total_demand += candidate_diff; insert_idx++; total_demand.update(register_demand[source_idx]); source_idx++; return move_success; } void MoveState::upwards_skip() { if (insert_idx >= 0) { aco_ptr& instr = block->instructions[source_idx]; for (const Definition& def : instr->definitions) { if (def.isTemp()) depends_on[def.tempId()] = true; } for (const Operand& op : instr->operands) { if (op.isTemp()) RAR_dependencies[op.tempId()] = true; } total_demand.update(register_demand[source_idx]); } source_idx++; } bool can_reorder(Instruction* candidate) { switch (candidate->format) { case Format::SMEM: return static_cast(candidate)->can_reorder; case Format::MUBUF: return static_cast(candidate)->can_reorder; case Format::MIMG: return static_cast(candidate)->can_reorder; case Format::MTBUF: return static_cast(candidate)->can_reorder; case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: return static_cast(candidate)->can_reorder; default: return true; } } bool is_gs_or_done_sendmsg(const Instruction *instr) { if (instr->opcode == aco_opcode::s_sendmsg) { uint16_t imm = static_cast(instr)->imm; return (imm & sendmsg_id_mask) == _sendmsg_gs || (imm & sendmsg_id_mask) == _sendmsg_gs_done; } return false; } bool is_done_sendmsg(const Instruction *instr) { if (instr->opcode == aco_opcode::s_sendmsg) { uint16_t imm = static_cast(instr)->imm; return (imm & sendmsg_id_mask) == _sendmsg_gs_done; } return false; } barrier_interaction get_barrier_interaction(const Instruction* instr) { switch (instr->format) { case Format::SMEM: return static_cast(instr)->barrier; case Format::MUBUF: return static_cast(instr)->barrier; case Format::MIMG: return static_cast(instr)->barrier; case Format::MTBUF: return static_cast(instr)->barrier; case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: return static_cast(instr)->barrier; case Format::DS: return barrier_shared; case Format::SOPP: if (is_done_sendmsg(instr)) return (barrier_interaction)(barrier_gs_data | barrier_gs_sendmsg); else if (is_gs_or_done_sendmsg(instr)) return barrier_gs_sendmsg; else return barrier_none; case Format::PSEUDO_BARRIER: return barrier_barrier; default: return barrier_none; } } barrier_interaction parse_barrier(Instruction *instr) { if (instr->format == Format::PSEUDO_BARRIER) { switch (instr->opcode) { case aco_opcode::p_memory_barrier_atomic: return barrier_atomic; /* For now, buffer and image barriers are treated the same. this is because of * dEQP-VK.memory_model.message_passing.core11.u32.coherent.fence_fence.atomicwrite.device.payload_nonlocal.buffer.guard_nonlocal.image.comp * which seems to use an image load to determine if the result of a buffer load is valid. So the ordering of the two loads is important. * I /think/ we should probably eventually expand the meaning of a buffer barrier so that all buffer operations before it, must stay before it * and that both image and buffer operations after it, must stay after it. We should also do the same for image barriers. * Or perhaps the problem is that we don't have a combined barrier instruction for both buffers and images, but the CTS test expects us to? * Either way, this solution should work. */ case aco_opcode::p_memory_barrier_buffer: case aco_opcode::p_memory_barrier_image: return (barrier_interaction)(barrier_image | barrier_buffer); case aco_opcode::p_memory_barrier_shared: return barrier_shared; case aco_opcode::p_memory_barrier_common: return (barrier_interaction)(barrier_image | barrier_buffer | barrier_shared | barrier_atomic); case aco_opcode::p_memory_barrier_gs_data: return barrier_gs_data; case aco_opcode::p_memory_barrier_gs_sendmsg: return barrier_gs_sendmsg; default: break; } } else if (instr->opcode == aco_opcode::s_barrier) { return (barrier_interaction)(barrier_barrier | barrier_image | barrier_buffer | barrier_shared | barrier_atomic); } return barrier_none; } struct hazard_query { bool contains_spill; int barriers; int barrier_interaction; bool can_reorder_vmem; bool can_reorder_smem; }; void init_hazard_query(hazard_query *query) { query->contains_spill = false; query->barriers = 0; query->barrier_interaction = 0; query->can_reorder_vmem = true; query->can_reorder_smem = true; } void add_to_hazard_query(hazard_query *query, Instruction *instr) { query->barriers |= parse_barrier(instr); query->barrier_interaction |= get_barrier_interaction(instr); if (instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload) query->contains_spill = true; bool can_reorder_instr = can_reorder(instr); query->can_reorder_smem &= instr->format != Format::SMEM || can_reorder_instr; query->can_reorder_vmem &= !(instr->isVMEM() || instr->isFlatOrGlobal()) || can_reorder_instr; } enum HazardResult { hazard_success, hazard_fail_reorder_vmem_smem, hazard_fail_reorder_ds, hazard_fail_reorder_sendmsg, hazard_fail_spill, hazard_fail_export, hazard_fail_barrier, /* Must stop at these failures. The hazard query code doesn't consider them * when added. */ hazard_fail_exec, hazard_fail_unreorderable, }; HazardResult perform_hazard_query(hazard_query *query, Instruction *instr) { bool can_reorder_candidate = can_reorder(instr); if (instr->opcode == aco_opcode::p_exit_early_if) return hazard_fail_exec; for (const Definition& def : instr->definitions) { if (def.isFixed() && def.physReg() == exec) return hazard_fail_exec; } /* don't move exports so that they stay closer together */ if (instr->format == Format::EXP) return hazard_fail_export; /* don't move non-reorderable instructions */ if (instr->opcode == aco_opcode::s_memtime || instr->opcode == aco_opcode::s_memrealtime || instr->opcode == aco_opcode::s_setprio) return hazard_fail_unreorderable; if (query->barrier_interaction && (query->barrier_interaction & parse_barrier(instr))) return hazard_fail_barrier; if (query->barriers && (query->barriers & get_barrier_interaction(instr))) return hazard_fail_barrier; if (!query->can_reorder_smem && instr->format == Format::SMEM && !can_reorder_candidate) return hazard_fail_reorder_vmem_smem; if (!query->can_reorder_vmem && (instr->isVMEM() || instr->isFlatOrGlobal()) && !can_reorder_candidate) return hazard_fail_reorder_vmem_smem; if ((query->barrier_interaction & barrier_shared) && instr->format == Format::DS) return hazard_fail_reorder_ds; if (is_gs_or_done_sendmsg(instr) && (query->barrier_interaction & get_barrier_interaction(instr))) return hazard_fail_reorder_sendmsg; if ((instr->opcode == aco_opcode::p_spill || instr->opcode == aco_opcode::p_reload) && query->contains_spill) return hazard_fail_spill; return hazard_success; } void schedule_SMEM(sched_ctx& ctx, Block* block, std::vector& register_demand, Instruction* current, int idx) { assert(idx != 0); int window_size = SMEM_WINDOW_SIZE; int max_moves = SMEM_MAX_MOVES; int16_t k = 0; /* don't move s_memtime/s_memrealtime */ if (current->opcode == aco_opcode::s_memtime || current->opcode == aco_opcode::s_memrealtime) return; /* first, check if we have instructions before current to move down */ hazard_query hq; init_hazard_query(&hq); add_to_hazard_query(&hq, current); ctx.mv.downwards_init(idx, false, false); for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) { assert(candidate_idx >= 0); assert(candidate_idx == ctx.mv.source_idx); aco_ptr& candidate = block->instructions[candidate_idx]; /* break if we'd make the previous SMEM instruction stall */ bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx; if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0) break; /* break when encountering another MEM instruction, logical_start or barriers */ if (candidate->opcode == aco_opcode::p_logical_start) break; if (candidate->isVMEM()) break; bool can_move_down = true; HazardResult haz = perform_hazard_query(&hq, candidate.get()); if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier || haz == hazard_fail_export) can_move_down = false; else if (haz != hazard_success) break; /* don't use LDS/GDS instructions to hide latency since it can * significanly worsen LDS scheduling */ if (candidate->format == Format::DS || !can_move_down) { add_to_hazard_query(&hq, candidate.get()); ctx.mv.downwards_skip(); continue; } MoveResult res = ctx.mv.downwards_move(false); if (res == move_fail_ssa || res == move_fail_rar) { add_to_hazard_query(&hq, candidate.get()); ctx.mv.downwards_skip(); continue; } else if (res == move_fail_pressure) { break; } if (candidate_idx < ctx.last_SMEM_dep_idx) ctx.last_SMEM_stall++; k++; } /* find the first instruction depending on current or find another MEM */ ctx.mv.upwards_init(idx + 1, false); bool found_dependency = false; /* second, check if we have instructions after current to move up */ for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) { assert(candidate_idx == ctx.mv.source_idx); assert(candidate_idx < (int) block->instructions.size()); aco_ptr& candidate = block->instructions[candidate_idx]; if (candidate->opcode == aco_opcode::p_logical_end) break; /* check if candidate depends on current */ bool is_dependency = !found_dependency && !ctx.mv.upwards_check_deps(); /* no need to steal from following VMEM instructions */ if (is_dependency && candidate->isVMEM()) break; if (found_dependency) { HazardResult haz = perform_hazard_query(&hq, candidate.get()); if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier || haz == hazard_fail_export) is_dependency = true; else if (haz != hazard_success) break; } if (is_dependency) { if (!found_dependency) { ctx.mv.upwards_set_insert_idx(candidate_idx); init_hazard_query(&hq); found_dependency = true; } } if (is_dependency || !found_dependency) { if (found_dependency) add_to_hazard_query(&hq, candidate.get()); else k++; ctx.mv.upwards_skip(); continue; } MoveResult res = ctx.mv.upwards_move(); if (res == move_fail_ssa || res == move_fail_rar) { /* no need to steal from following VMEM instructions */ if (res == move_fail_ssa && candidate->isVMEM()) break; add_to_hazard_query(&hq, candidate.get()); ctx.mv.upwards_skip(); continue; } else if (res == move_fail_pressure) { break; } k++; } ctx.last_SMEM_dep_idx = found_dependency ? ctx.mv.insert_idx : 0; ctx.last_SMEM_stall = 10 - ctx.num_waves - k; } void schedule_VMEM(sched_ctx& ctx, Block* block, std::vector& register_demand, Instruction* current, int idx) { assert(idx != 0); int window_size = VMEM_WINDOW_SIZE; int max_moves = VMEM_MAX_MOVES; int clause_max_grab_dist = VMEM_CLAUSE_MAX_GRAB_DIST; int16_t k = 0; /* first, check if we have instructions before current to move down */ hazard_query indep_hq; hazard_query clause_hq; init_hazard_query(&indep_hq); init_hazard_query(&clause_hq); add_to_hazard_query(&indep_hq, current); ctx.mv.downwards_init(idx, true, true); for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) { assert(candidate_idx == ctx.mv.source_idx); assert(candidate_idx >= 0); aco_ptr& candidate = block->instructions[candidate_idx]; bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal(); /* break when encountering another VMEM instruction, logical_start or barriers */ if (candidate->opcode == aco_opcode::p_logical_start) break; /* break if we'd make the previous SMEM instruction stall */ bool can_stall_prev_smem = idx <= ctx.last_SMEM_dep_idx && candidate_idx < ctx.last_SMEM_dep_idx; if (can_stall_prev_smem && ctx.last_SMEM_stall >= 0) break; bool part_of_clause = false; if (current->isVMEM() == candidate->isVMEM()) { bool same_resource = true; if (current->isVMEM()) same_resource = candidate->operands[0].tempId() == current->operands[0].tempId(); int grab_dist = ctx.mv.insert_idx_clause - candidate_idx; /* We can't easily tell how much this will decrease the def-to-use * distances, so just use how far it will be moved as a heuristic. */ part_of_clause = same_resource && grab_dist < clause_max_grab_dist; } /* if current depends on candidate, add additional dependencies and continue */ bool can_move_down = !is_vmem || part_of_clause; HazardResult haz = perform_hazard_query(part_of_clause ? &clause_hq : &indep_hq, candidate.get()); if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier || haz == hazard_fail_export) can_move_down = false; else if (haz != hazard_success) break; if (!can_move_down) { add_to_hazard_query(&indep_hq, candidate.get()); add_to_hazard_query(&clause_hq, candidate.get()); ctx.mv.downwards_skip(); continue; } MoveResult res = ctx.mv.downwards_move(part_of_clause); if (res == move_fail_ssa || res == move_fail_rar) { add_to_hazard_query(&indep_hq, candidate.get()); add_to_hazard_query(&clause_hq, candidate.get()); ctx.mv.downwards_skip(); continue; } else if (res == move_fail_pressure) { break; } k++; if (candidate_idx < ctx.last_SMEM_dep_idx) ctx.last_SMEM_stall++; } /* find the first instruction depending on current or find another VMEM */ ctx.mv.upwards_init(idx + 1, true); bool found_dependency = false; /* second, check if we have instructions after current to move up */ for (int candidate_idx = idx + 1; k < max_moves && candidate_idx < (int) idx + window_size; candidate_idx++) { assert(candidate_idx == ctx.mv.source_idx); assert(candidate_idx < (int) block->instructions.size()); aco_ptr& candidate = block->instructions[candidate_idx]; bool is_vmem = candidate->isVMEM() || candidate->isFlatOrGlobal(); if (candidate->opcode == aco_opcode::p_logical_end) break; /* check if candidate depends on current */ bool is_dependency = false; if (found_dependency) { HazardResult haz = perform_hazard_query(&indep_hq, candidate.get()); if (haz == hazard_fail_reorder_ds || haz == hazard_fail_spill || haz == hazard_fail_reorder_vmem_smem || haz == hazard_fail_reorder_sendmsg || haz == hazard_fail_barrier || haz == hazard_fail_export) is_dependency = true; else if (haz != hazard_success) break; } is_dependency |= !found_dependency && !ctx.mv.upwards_check_deps(); if (is_dependency) { if (!found_dependency) { ctx.mv.upwards_set_insert_idx(candidate_idx); init_hazard_query(&indep_hq); found_dependency = true; } } else if (is_vmem) { /* don't move up dependencies of other VMEM instructions */ for (const Definition& def : candidate->definitions) { if (def.isTemp()) ctx.mv.depends_on[def.tempId()] = true; } } if (is_dependency || !found_dependency) { if (found_dependency) add_to_hazard_query(&indep_hq, candidate.get()); ctx.mv.upwards_skip(); continue; } MoveResult res = ctx.mv.upwards_move(); if (res == move_fail_ssa || res == move_fail_rar) { add_to_hazard_query(&indep_hq, candidate.get()); ctx.mv.upwards_skip(); continue; } else if (res == move_fail_pressure) { break; } k++; } } void schedule_position_export(sched_ctx& ctx, Block* block, std::vector& register_demand, Instruction* current, int idx) { assert(idx != 0); int window_size = POS_EXP_WINDOW_SIZE; int max_moves = POS_EXP_MAX_MOVES; int16_t k = 0; ctx.mv.downwards_init(idx, true, false); hazard_query hq; init_hazard_query(&hq); add_to_hazard_query(&hq, current); for (int candidate_idx = idx - 1; k < max_moves && candidate_idx > (int) idx - window_size; candidate_idx--) { assert(candidate_idx >= 0); aco_ptr& candidate = block->instructions[candidate_idx]; if (candidate->opcode == aco_opcode::p_logical_start) break; if (candidate->isVMEM() || candidate->format == Format::SMEM || candidate->isFlatOrGlobal()) break; HazardResult haz = perform_hazard_query(&hq, candidate.get()); if (haz == hazard_fail_exec || haz == hazard_fail_unreorderable) break; if (haz != hazard_success) { add_to_hazard_query(&hq, candidate.get()); ctx.mv.downwards_skip(); continue; } MoveResult res = ctx.mv.downwards_move(false); if (res == move_fail_ssa || res == move_fail_rar) { add_to_hazard_query(&hq, candidate.get()); ctx.mv.downwards_skip(); continue; } else if (res == move_fail_pressure) { break; } k++; } } void schedule_block(sched_ctx& ctx, Program *program, Block* block, live& live_vars) { ctx.last_SMEM_dep_idx = 0; ctx.last_SMEM_stall = INT16_MIN; ctx.mv.block = block; ctx.mv.register_demand = live_vars.register_demand[block->index].data(); /* go through all instructions and find memory loads */ for (unsigned idx = 0; idx < block->instructions.size(); idx++) { Instruction* current = block->instructions[idx].get(); if (current->definitions.empty()) continue; if (current->isVMEM() || current->isFlatOrGlobal()) { ctx.mv.current = current; schedule_VMEM(ctx, block, live_vars.register_demand[block->index], current, idx); } if (current->format == Format::SMEM) { ctx.mv.current = current; schedule_SMEM(ctx, block, live_vars.register_demand[block->index], current, idx); } } if ((program->stage & (hw_vs | hw_ngg_gs)) && (block->kind & block_kind_export_end)) { /* Try to move position exports as far up as possible, to reduce register * usage and because ISA reference guides say so. */ for (unsigned idx = 0; idx < block->instructions.size(); idx++) { Instruction* current = block->instructions[idx].get(); if (current->format == Format::EXP) { unsigned target = static_cast(current)->dest; if (target >= V_008DFC_SQ_EXP_POS && target < V_008DFC_SQ_EXP_PARAM) { ctx.mv.current = current; schedule_position_export(ctx, block, live_vars.register_demand[block->index], current, idx); } } } } /* resummarize the block's register demand */ block->register_demand = RegisterDemand(); for (unsigned idx = 0; idx < block->instructions.size(); idx++) { block->register_demand.update(live_vars.register_demand[block->index][idx]); } } void schedule_program(Program *program, live& live_vars) { sched_ctx ctx; ctx.mv.depends_on.resize(program->peekAllocationId()); ctx.mv.RAR_dependencies.resize(program->peekAllocationId()); ctx.mv.RAR_dependencies_clause.resize(program->peekAllocationId()); /* Allowing the scheduler to reduce the number of waves to as low as 5 * improves performance of Thrones of Britannia significantly and doesn't * seem to hurt anything else. */ if (program->num_waves <= 5) ctx.num_waves = program->num_waves; else if (program->max_reg_demand.vgpr >= 32) ctx.num_waves = 5; else if (program->max_reg_demand.vgpr >= 28) ctx.num_waves = 6; else if (program->max_reg_demand.vgpr >= 24) ctx.num_waves = 7; else ctx.num_waves = 8; ctx.num_waves = std::max(ctx.num_waves, program->min_waves); assert(ctx.num_waves > 0 && ctx.num_waves <= program->num_waves); ctx.mv.max_registers = { int16_t(get_addr_vgpr_from_waves(program, ctx.num_waves) - 2), int16_t(get_addr_sgpr_from_waves(program, ctx.num_waves))}; for (Block& block : program->blocks) schedule_block(ctx, program, &block, live_vars); /* update max_reg_demand and num_waves */ RegisterDemand new_demand; for (Block& block : program->blocks) { new_demand.update(block.register_demand); } update_vgpr_sgpr_demand(program, new_demand); /* if enabled, this code asserts that register_demand is updated correctly */ #if 0 int prev_num_waves = program->num_waves; const RegisterDemand prev_max_demand = program->max_reg_demand; std::vector demands(program->blocks.size()); for (unsigned j = 0; j < program->blocks.size(); j++) { demands[j] = program->blocks[j].register_demand; } struct radv_nir_compiler_options options; options.chip_class = program->chip_class; live live_vars2 = aco::live_var_analysis(program, &options); for (unsigned j = 0; j < program->blocks.size(); j++) { Block &b = program->blocks[j]; for (unsigned i = 0; i < b.instructions.size(); i++) assert(live_vars.register_demand[b.index][i] == live_vars2.register_demand[b.index][i]); assert(b.register_demand == demands[j]); } assert(program->max_reg_demand == prev_max_demand); assert(program->num_waves == prev_num_waves); #endif } }