#include "aco_ir.h" #include "aco_builder.h" #include "sid.h" #include "ac_shader_util.h" namespace aco { static const char *reduce_ops[] = { [iadd32] = "iadd32", [iadd64] = "iadd64", [imul32] = "imul32", [imul64] = "imul64", [fadd32] = "fadd32", [fadd64] = "fadd64", [fmul32] = "fmul32", [fmul64] = "fmul64", [imin32] = "imin32", [imin64] = "imin64", [imax32] = "imax32", [imax64] = "imax64", [umin32] = "umin32", [umin64] = "umin64", [umax32] = "umax32", [umax64] = "umax64", [fmin32] = "fmin32", [fmin64] = "fmin64", [fmax32] = "fmax32", [fmax64] = "fmax64", [iand32] = "iand32", [iand64] = "iand64", [ior32] = "ior32", [ior64] = "ior64", [ixor32] = "ixor32", [ixor64] = "ixor64", }; static void print_reg_class(const RegClass rc, FILE *output) { switch (rc) { case RegClass::s1: fprintf(output, " s1: "); return; case RegClass::s2: fprintf(output, " s2: "); return; case RegClass::s3: fprintf(output, " s3: "); return; case RegClass::s4: fprintf(output, " s4: "); return; case RegClass::s6: fprintf(output, " s6: "); return; case RegClass::s8: fprintf(output, " s8: "); return; case RegClass::s16: fprintf(output, "s16: "); return; case RegClass::v1: fprintf(output, " v1: "); return; case RegClass::v2: fprintf(output, " v2: "); return; case RegClass::v3: fprintf(output, " v3: "); return; case RegClass::v4: fprintf(output, " v4: "); return; case RegClass::v5: fprintf(output, " v5: "); return; case RegClass::v6: fprintf(output, " v6: "); return; case RegClass::v7: fprintf(output, " v7: "); return; case RegClass::v8: fprintf(output, " v8: "); return; case RegClass::v1_linear: fprintf(output, " v1: "); return; case RegClass::v2_linear: fprintf(output, " v2: "); return; } } void print_physReg(unsigned reg, unsigned size, FILE *output) { if (reg == 124) { fprintf(output, ":m0"); } else if (reg == 106) { fprintf(output, ":vcc"); } else if (reg == 253) { fprintf(output, ":scc"); } else if (reg == 126) { fprintf(output, ":exec"); } else { bool is_vgpr = reg / 256; reg = reg % 256; fprintf(output, ":%c[%d", is_vgpr ? 'v' : 's', reg); if (size > 1) fprintf(output, "-%d]", reg + size -1); else fprintf(output, "]"); } } static void print_constant(uint8_t reg, FILE *output) { if (reg >= 128 && reg <= 192) { fprintf(output, "%d", reg - 128); return; } else if (reg >= 192 && reg <= 208) { fprintf(output, "%d", 192 - reg); return; } switch (reg) { case 240: fprintf(output, "0.5"); break; case 241: fprintf(output, "-0.5"); break; case 242: fprintf(output, "1.0"); break; case 243: fprintf(output, "-1.0"); break; case 244: fprintf(output, "2.0"); break; case 245: fprintf(output, "-2.0"); break; case 246: fprintf(output, "4.0"); break; case 247: fprintf(output, "-4.0"); break; case 248: fprintf(output, "1/(2*PI)"); break; } } static void print_operand(const Operand *operand, FILE *output) { if (operand->isLiteral()) { fprintf(output, "0x%x", operand->constantValue()); } else if (operand->isConstant()) { print_constant(operand->physReg().reg, output); } else if (operand->isUndefined()) { print_reg_class(operand->regClass(), output); fprintf(output, "undef"); } else { fprintf(output, "%%%d", operand->tempId()); if (operand->isFixed()) print_physReg(operand->physReg(), operand->size(), output); } } static void print_definition(const Definition *definition, FILE *output) { print_reg_class(definition->regClass(), output); fprintf(output, "%%%d", definition->tempId()); if (definition->isFixed()) print_physReg(definition->physReg(), definition->size(), output); } static void print_barrier_reorder(bool can_reorder, barrier_interaction barrier, FILE *output) { if (can_reorder) fprintf(output, " reorder"); if (barrier & barrier_buffer) fprintf(output, " buffer"); if (barrier & barrier_image) fprintf(output, " image"); if (barrier & barrier_atomic) fprintf(output, " atomic"); if (barrier & barrier_shared) fprintf(output, " shared"); } static void print_instr_format_specific(struct Instruction *instr, FILE *output) { switch (instr->format) { case Format::SOPK: { SOPK_instruction* sopk = static_cast(instr); fprintf(output, " imm:%d", sopk->imm & 0x8000 ? (sopk->imm - 65536) : sopk->imm); break; } case Format::SOPP: { SOPP_instruction* sopp = static_cast(instr); uint16_t imm = sopp->imm; switch (instr->opcode) { case aco_opcode::s_waitcnt: { /* we usually should check the chip class for vmcnt/lgkm, but * insert_waitcnt() should fill it in regardless. */ unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10); if (vmcnt != 63) fprintf(output, " vmcnt(%d)", vmcnt); if (((imm >> 4) & 0x7) < 0x7) fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7); if (((imm >> 8) & 0x3F) < 0x3F) fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F); break; } case aco_opcode::s_endpgm: case aco_opcode::s_endpgm_saved: case aco_opcode::s_endpgm_ordered_ps_done: case aco_opcode::s_wakeup: case aco_opcode::s_barrier: case aco_opcode::s_icache_inv: case aco_opcode::s_ttracedata: case aco_opcode::s_set_gpr_idx_off: { break; } default: { if (imm) fprintf(output, " imm:%u", imm); break; } } if (sopp->block != -1) fprintf(output, " block:BB%d", sopp->block); break; } case Format::SMEM: { SMEM_instruction* smem = static_cast(instr); if (smem->glc) fprintf(output, " glc"); if (smem->dlc) fprintf(output, " dlc"); if (smem->nv) fprintf(output, " nv"); print_barrier_reorder(smem->can_reorder, smem->barrier, output); break; } case Format::VINTRP: { Interp_instruction* vintrp = static_cast(instr); fprintf(output, " attr%d.%c", vintrp->attribute, "xyzw"[vintrp->component]); break; } case Format::DS: { DS_instruction* ds = static_cast(instr); if (ds->offset0) fprintf(output, " offset0:%u", ds->offset0); if (ds->offset1) fprintf(output, " offset1:%u", ds->offset1); if (ds->gds) fprintf(output, " gds"); break; } case Format::MUBUF: { MUBUF_instruction* mubuf = static_cast(instr); if (mubuf->offset) fprintf(output, " offset:%u", mubuf->offset); if (mubuf->offen) fprintf(output, " offen"); if (mubuf->idxen) fprintf(output, " idxen"); if (mubuf->glc) fprintf(output, " glc"); if (mubuf->dlc) fprintf(output, " dlc"); if (mubuf->slc) fprintf(output, " slc"); if (mubuf->tfe) fprintf(output, " tfe"); if (mubuf->lds) fprintf(output, " lds"); if (mubuf->disable_wqm) fprintf(output, " disable_wqm"); print_barrier_reorder(mubuf->can_reorder, mubuf->barrier, output); break; } case Format::MIMG: { MIMG_instruction* mimg = static_cast(instr); unsigned identity_dmask = !instr->definitions.empty() ? (1 << instr->definitions[0].size()) - 1 : 0xf; if ((mimg->dmask & identity_dmask) != identity_dmask) fprintf(output, " dmask:%s%s%s%s", mimg->dmask & 0x1 ? "x" : "", mimg->dmask & 0x2 ? "y" : "", mimg->dmask & 0x4 ? "z" : "", mimg->dmask & 0x8 ? "w" : ""); switch (mimg->dim) { case ac_image_1d: fprintf(output, " 1d"); break; case ac_image_2d: fprintf(output, " 2d"); break; case ac_image_3d: fprintf(output, " 3d"); break; case ac_image_cube: fprintf(output, " cube"); break; case ac_image_1darray: fprintf(output, " 1darray"); break; case ac_image_2darray: fprintf(output, " 2darray"); break; case ac_image_2dmsaa: fprintf(output, " 2dmsaa"); break; case ac_image_2darraymsaa: fprintf(output, " 2darraymsaa"); break; } if (mimg->unrm) fprintf(output, " unrm"); if (mimg->glc) fprintf(output, " glc"); if (mimg->dlc) fprintf(output, " dlc"); if (mimg->slc) fprintf(output, " slc"); if (mimg->tfe) fprintf(output, " tfe"); if (mimg->da) fprintf(output, " da"); if (mimg->lwe) fprintf(output, " lwe"); if (mimg->r128 || mimg->a16) fprintf(output, " r128/a16"); if (mimg->d16) fprintf(output, " d16"); if (mimg->disable_wqm) fprintf(output, " disable_wqm"); print_barrier_reorder(mimg->can_reorder, mimg->barrier, output); break; } case Format::EXP: { Export_instruction* exp = static_cast(instr); unsigned identity_mask = exp->compressed ? 0x5 : 0xf; if ((exp->enabled_mask & identity_mask) != identity_mask) fprintf(output, " en:%c%c%c%c", exp->enabled_mask & 0x1 ? 'r' : '*', exp->enabled_mask & 0x2 ? 'g' : '*', exp->enabled_mask & 0x4 ? 'b' : '*', exp->enabled_mask & 0x8 ? 'a' : '*'); if (exp->compressed) fprintf(output, " compr"); if (exp->done) fprintf(output, " done"); if (exp->valid_mask) fprintf(output, " vm"); if (exp->dest <= V_008DFC_SQ_EXP_MRT + 7) fprintf(output, " mrt%d", exp->dest - V_008DFC_SQ_EXP_MRT); else if (exp->dest == V_008DFC_SQ_EXP_MRTZ) fprintf(output, " mrtz"); else if (exp->dest == V_008DFC_SQ_EXP_NULL) fprintf(output, " null"); else if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= V_008DFC_SQ_EXP_POS + 3) fprintf(output, " pos%d", exp->dest - V_008DFC_SQ_EXP_POS); else if (exp->dest >= V_008DFC_SQ_EXP_PARAM && exp->dest <= V_008DFC_SQ_EXP_PARAM + 31) fprintf(output, " param%d", exp->dest - V_008DFC_SQ_EXP_PARAM); break; } case Format::PSEUDO_BRANCH: { Pseudo_branch_instruction* branch = static_cast(instr); /* Note: BB0 cannot be a branch target */ if (branch->target[0] != 0) fprintf(output, " BB%d", branch->target[0]); if (branch->target[1] != 0) fprintf(output, ", BB%d", branch->target[1]); break; } case Format::PSEUDO_REDUCTION: { Pseudo_reduction_instruction* reduce = static_cast(instr); fprintf(output, " op:%s", reduce_ops[reduce->reduce_op]); if (reduce->cluster_size) fprintf(output, " cluster_size:%u", reduce->cluster_size); break; } case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: { FLAT_instruction* flat = static_cast(instr); if (flat->offset) fprintf(output, " offset:%u", flat->offset); if (flat->glc) fprintf(output, " glc"); if (flat->dlc) fprintf(output, " dlc"); if (flat->slc) fprintf(output, " slc"); if (flat->lds) fprintf(output, " lds"); if (flat->nv) fprintf(output, " nv"); break; } case Format::MTBUF: { MTBUF_instruction* mtbuf = static_cast(instr); fprintf(output, " dfmt:"); switch (mtbuf->dfmt) { case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break; case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break; case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break; case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break; case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break; case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break; case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break; case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break; } fprintf(output, " nfmt:"); switch (mtbuf->nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break; case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break; case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break; case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break; } if (mtbuf->offset) fprintf(output, " offset:%u", mtbuf->offset); if (mtbuf->offen) fprintf(output, " offen"); if (mtbuf->idxen) fprintf(output, " idxen"); if (mtbuf->glc) fprintf(output, " glc"); if (mtbuf->dlc) fprintf(output, " dlc"); if (mtbuf->slc) fprintf(output, " slc"); if (mtbuf->tfe) fprintf(output, " tfe"); if (mtbuf->disable_wqm) fprintf(output, " disable_wqm"); print_barrier_reorder(mtbuf->can_reorder, mtbuf->barrier, output); break; } default: { break; } } if (instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast(instr); switch (vop3->omod) { case 1: fprintf(output, " *2"); break; case 2: fprintf(output, " *4"); break; case 3: fprintf(output, " *0.5"); break; } if (vop3->clamp) fprintf(output, " clamp"); } else if (instr->isDPP()) { DPP_instruction* dpp = static_cast(instr); if (dpp->dpp_ctrl <= 0xff) { fprintf(output, " quad_perm:[%d,%d,%d,%d]", dpp->dpp_ctrl & 0x3, (dpp->dpp_ctrl >> 2) & 0x3, (dpp->dpp_ctrl >> 4) & 0x3, (dpp->dpp_ctrl >> 6) & 0x3); } else if (dpp->dpp_ctrl >= 0x101 && dpp->dpp_ctrl <= 0x10f) { fprintf(output, " row_shl:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl >= 0x111 && dpp->dpp_ctrl <= 0x11f) { fprintf(output, " row_shr:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl >= 0x121 && dpp->dpp_ctrl <= 0x12f) { fprintf(output, " row_ror:%d", dpp->dpp_ctrl & 0xf); } else if (dpp->dpp_ctrl == dpp_wf_sl1) { fprintf(output, " wave_shl:1"); } else if (dpp->dpp_ctrl == dpp_wf_rl1) { fprintf(output, " wave_rol:1"); } else if (dpp->dpp_ctrl == dpp_wf_sr1) { fprintf(output, " wave_shr:1"); } else if (dpp->dpp_ctrl == dpp_wf_rr1) { fprintf(output, " wave_ror:1"); } else if (dpp->dpp_ctrl == dpp_row_mirror) { fprintf(output, " row_mirror"); } else if (dpp->dpp_ctrl == dpp_row_half_mirror) { fprintf(output, " row_half_mirror"); } else if (dpp->dpp_ctrl == dpp_row_bcast15) { fprintf(output, " row_bcast:15"); } else if (dpp->dpp_ctrl == dpp_row_bcast31) { fprintf(output, " row_bcast:31"); } else { fprintf(output, " dpp_ctrl:0x%.3x", dpp->dpp_ctrl); } if (dpp->row_mask != 0xf) fprintf(output, " row_mask:0x%.1x", dpp->row_mask); if (dpp->bank_mask != 0xf) fprintf(output, " bank_mask:0x%.1x", dpp->bank_mask); if (dpp->bound_ctrl) fprintf(output, " bound_ctrl:1"); } else if ((int)instr->format & (int)Format::SDWA) { fprintf(output, " (printing unimplemented)"); } } void aco_print_instr(struct Instruction *instr, FILE *output) { if (!instr->definitions.empty()) { for (unsigned i = 0; i < instr->definitions.size(); ++i) { print_definition(&instr->definitions[i], output); if (i + 1 != instr->definitions.size()) fprintf(output, ", "); } fprintf(output, " = "); } fprintf(output, "%s", instr_info.name[(int)instr->opcode]); if (instr->operands.size()) { bool abs[instr->operands.size()]; bool neg[instr->operands.size()]; if ((int)instr->format & (int)Format::VOP3A) { VOP3A_instruction* vop3 = static_cast(instr); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = vop3->abs[i]; neg[i] = vop3->neg[i]; } } else if (instr->isDPP()) { DPP_instruction* dpp = static_cast(instr); assert(instr->operands.size() <= 2); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = dpp->abs[i]; neg[i] = dpp->neg[i]; } } else { for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = false; neg[i] = false; } } for (unsigned i = 0; i < instr->operands.size(); ++i) { if (i) fprintf(output, ", "); else fprintf(output, " "); if (neg[i]) fprintf(output, "-"); if (abs[i]) fprintf(output, "|"); print_operand(&instr->operands[i], output); if (abs[i]) fprintf(output, "|"); } } print_instr_format_specific(instr, output); } static void print_block_kind(uint16_t kind, FILE *output) { if (kind & block_kind_uniform) fprintf(output, "uniform, "); if (kind & block_kind_top_level) fprintf(output, "top-level, "); if (kind & block_kind_loop_preheader) fprintf(output, "loop-preheader, "); if (kind & block_kind_loop_header) fprintf(output, "loop-header, "); if (kind & block_kind_loop_exit) fprintf(output, "loop-exit, "); if (kind & block_kind_continue) fprintf(output, "continue, "); if (kind & block_kind_break) fprintf(output, "break, "); if (kind & block_kind_continue_or_break) fprintf(output, "continue_or_break, "); if (kind & block_kind_discard) fprintf(output, "discard, "); if (kind & block_kind_branch) fprintf(output, "branch, "); if (kind & block_kind_merge) fprintf(output, "merge, "); if (kind & block_kind_invert) fprintf(output, "invert, "); if (kind & block_kind_uses_discard_if) fprintf(output, "discard_if, "); if (kind & block_kind_needs_lowering) fprintf(output, "needs_lowering, "); if (kind & block_kind_uses_demote) fprintf(output, "uses_demote, "); } void aco_print_block(const struct Block* block, FILE *output) { fprintf(output, "BB%d\n", block->index); fprintf(output, "/* logical preds: "); for (unsigned pred : block->logical_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ linear preds: "); for (unsigned pred : block->linear_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ kind: "); print_block_kind(block->kind, output); fprintf(output, "*/\n"); for (auto const& instr : block->instructions) { fprintf(output, "\t"); aco_print_instr(instr.get(), output); fprintf(output, "\n"); } } void aco_print_program(Program *program, FILE *output) { for (Block const& block : program->blocks) aco_print_block(&block, output); if (program->constant_data.size()) { fprintf(output, "\n/* constant data */\n"); for (unsigned i = 0; i < program->constant_data.size(); i += 32) { fprintf(output, "[%06d] ", i); unsigned line_size = std::min(program->constant_data.size() - i, 32); for (unsigned j = 0; j < line_size; j += 4) { unsigned size = std::min(program->constant_data.size() - (i + j), 4); uint32_t v = 0; memcpy(&v, &program->constant_data[i + j], size); fprintf(output, " %08x", v); } fprintf(output, "\n"); } } fprintf(output, "\n"); } }