/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de) * */ #include #include #include "aco_ir.h" #include "util/half_float.h" #include "util/u_math.h" namespace aco { /** * The optimizer works in 4 phases: * (1) The first pass collects information for each ssa-def, * propagates reg->reg operands of the same type, inline constants * and neg/abs input modifiers. * (2) The second pass combines instructions like mad, omod, clamp and * propagates sgpr's on VALU instructions. * This pass depends on information collected in the first pass. * (3) The third pass goes backwards, and selects instructions, * i.e. decides if a mad instruction is profitable and eliminates dead code. * (4) The fourth pass cleans up the sequence: literals get applied and dead * instructions are removed from the sequence. */ struct mad_info { aco_ptr add_instr; uint32_t mul_temp_id; uint32_t literal_idx; bool needs_vop3; bool check_literal; mad_info(aco_ptr instr, uint32_t id, bool vop3) : add_instr(std::move(instr)), mul_temp_id(id), needs_vop3(vop3), check_literal(false) {} }; enum Label { label_vec = 1 << 0, label_constant = 1 << 1, label_abs = 1 << 2, label_neg = 1 << 3, label_mul = 1 << 4, label_temp = 1 << 5, label_literal = 1 << 6, label_mad = 1 << 7, label_omod2 = 1 << 8, label_omod4 = 1 << 9, label_omod5 = 1 << 10, label_omod_success = 1 << 11, label_clamp = 1 << 12, label_clamp_success = 1 << 13, label_undefined = 1 << 14, label_vcc = 1 << 15, label_b2f = 1 << 16, label_add_sub = 1 << 17, label_bitwise = 1 << 18, label_minmax = 1 << 19, label_fcmp = 1 << 20, label_uniform_bool = 1 << 21, }; static constexpr uint32_t instr_labels = label_vec | label_mul | label_mad | label_omod_success | label_clamp_success | label_add_sub | label_bitwise | label_minmax | label_fcmp; static constexpr uint32_t temp_labels = label_abs | label_neg | label_temp | label_vcc | label_b2f | label_uniform_bool; static constexpr uint32_t val_labels = label_constant | label_literal | label_mad; struct ssa_info { uint32_t val; union { Temp temp; Instruction* instr; }; uint32_t label; void add_label(Label new_label) { /* Since all labels which use "instr" use it for the same thing * (indicating the defining instruction), there is no need to clear * any other instr labels. */ if (new_label & instr_labels) label &= ~temp_labels; /* instr and temp alias */ if (new_label & temp_labels) { label &= ~temp_labels; label &= ~instr_labels; /* instr and temp alias */ } if (new_label & val_labels) label &= ~val_labels; label |= new_label; } void set_vec(Instruction* vec) { add_label(label_vec); instr = vec; } bool is_vec() { return label & label_vec; } void set_constant(uint32_t constant) { add_label(label_constant); val = constant; } bool is_constant() { return label & label_constant; } void set_abs(Temp abs_temp) { add_label(label_abs); temp = abs_temp; } bool is_abs() { return label & label_abs; } void set_neg(Temp neg_temp) { add_label(label_neg); temp = neg_temp; } bool is_neg() { return label & label_neg; } void set_neg_abs(Temp neg_abs_temp) { add_label((Label)((uint32_t)label_abs | (uint32_t)label_neg)); temp = neg_abs_temp; } void set_mul(Instruction* mul) { add_label(label_mul); instr = mul; } bool is_mul() { return label & label_mul; } void set_temp(Temp tmp) { add_label(label_temp); temp = tmp; } bool is_temp() { return label & label_temp; } void set_literal(uint32_t lit) { add_label(label_literal); val = lit; } bool is_literal() { return label & label_literal; } void set_mad(Instruction* mad, uint32_t mad_info_idx) { add_label(label_mad); val = mad_info_idx; instr = mad; } bool is_mad() { return label & label_mad; } void set_omod2() { add_label(label_omod2); } bool is_omod2() { return label & label_omod2; } void set_omod4() { add_label(label_omod4); } bool is_omod4() { return label & label_omod4; } void set_omod5() { add_label(label_omod5); } bool is_omod5() { return label & label_omod5; } void set_omod_success(Instruction* omod_instr) { add_label(label_omod_success); instr = omod_instr; } bool is_omod_success() { return label & label_omod_success; } void set_clamp() { add_label(label_clamp); } bool is_clamp() { return label & label_clamp; } void set_clamp_success(Instruction* clamp_instr) { add_label(label_clamp_success); instr = clamp_instr; } bool is_clamp_success() { return label & label_clamp_success; } void set_undefined() { add_label(label_undefined); } bool is_undefined() { return label & label_undefined; } void set_vcc(Temp vcc) { add_label(label_vcc); temp = vcc; } bool is_vcc() { return label & label_vcc; } bool is_constant_or_literal() { return is_constant() || is_literal(); } void set_b2f(Temp val) { add_label(label_b2f); temp = val; } bool is_b2f() { return label & label_b2f; } void set_add_sub(Instruction *add_sub_instr) { add_label(label_add_sub); instr = add_sub_instr; } bool is_add_sub() { return label & label_add_sub; } void set_bitwise(Instruction *bitwise_instr) { add_label(label_bitwise); instr = bitwise_instr; } bool is_bitwise() { return label & label_bitwise; } void set_minmax(Instruction *minmax_instr) { add_label(label_minmax); instr = minmax_instr; } bool is_minmax() { return label & label_minmax; } void set_fcmp(Instruction *fcmp_instr) { add_label(label_fcmp); instr = fcmp_instr; } bool is_fcmp() { return label & label_fcmp; } void set_uniform_bool(Temp uniform_bool) { add_label(label_uniform_bool); temp = uniform_bool; } bool is_uniform_bool() { return label & label_uniform_bool; } }; struct opt_ctx { Program* program; std::vector> instructions; ssa_info* info; std::pair last_literal; std::vector mad_infos; std::vector uses; }; bool can_swap_operands(aco_ptr& instr) { if (instr->operands[0].isConstant() || (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr)) return false; switch (instr->opcode) { case aco_opcode::v_add_f32: case aco_opcode::v_mul_f32: case aco_opcode::v_or_b32: case aco_opcode::v_and_b32: case aco_opcode::v_xor_b32: case aco_opcode::v_max_f32: case aco_opcode::v_min_f32: case aco_opcode::v_cmp_eq_f32: case aco_opcode::v_cmp_lg_f32: return true; case aco_opcode::v_sub_f32: instr->opcode = aco_opcode::v_subrev_f32; return true; case aco_opcode::v_cmp_lt_f32: instr->opcode = aco_opcode::v_cmp_gt_f32; return true; case aco_opcode::v_cmp_ge_f32: instr->opcode = aco_opcode::v_cmp_le_f32; return true; case aco_opcode::v_cmp_lt_i32: instr->opcode = aco_opcode::v_cmp_gt_i32; return true; default: return false; } } bool can_use_VOP3(aco_ptr& instr) { if (instr->operands.size() && instr->operands[0].isLiteral()) return false; if (instr->isDPP() || instr->isSDWA()) return false; return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16; } bool can_apply_sgprs(aco_ptr& instr) { return instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_writelane_b32; } void to_VOP3(opt_ctx& ctx, aco_ptr& instr) { if (instr->isVOP3()) return; assert(!instr->operands[0].isLiteral()); aco_ptr tmp = std::move(instr); Format format = asVOP3(tmp->format); instr.reset(create_instruction(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size())); std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin()); for (unsigned i = 0; i < instr->definitions.size(); i++) { instr->definitions[i] = tmp->definitions[i]; if (instr->definitions[i].isTemp()) { ssa_info& info = ctx.info[instr->definitions[i].tempId()]; if (info.label & instr_labels && info.instr == tmp.get()) info.instr = instr.get(); } } } /* only covers special cases */ bool can_accept_constant(aco_ptr& instr, unsigned operand) { switch (instr->opcode) { case aco_opcode::v_interp_p2_f32: case aco_opcode::v_mac_f32: case aco_opcode::v_writelane_b32: case aco_opcode::v_cndmask_b32: return operand != 2; case aco_opcode::s_addk_i32: case aco_opcode::s_mulk_i32: case aco_opcode::p_wqm: case aco_opcode::p_extract_vector: case aco_opcode::p_split_vector: case aco_opcode::v_readlane_b32: case aco_opcode::v_readfirstlane_b32: return operand != 0; default: if ((instr->format == Format::MUBUF || instr->format == Format::MIMG) && instr->definitions.size() == 1 && instr->operands.size() == 4) { return operand != 3; } return true; } } bool valu_can_accept_literal(opt_ctx& ctx, aco_ptr& instr, unsigned operand) { /* instructions like v_cndmask_b32 can't take a literal because they always * read SGPRs */ if (instr->operands.size() >= 3 && instr->operands[2].isTemp() && instr->operands[2].regClass().type() == RegType::sgpr) return false; // TODO: VOP3 can take a literal on GFX10 return !instr->isSDWA() && !instr->isDPP() && !instr->isVOP3() && operand == 0 && can_accept_constant(instr, operand); } bool valu_can_accept_vgpr(aco_ptr& instr, unsigned operand) { if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) return operand != 1; return true; } bool parse_base_offset(opt_ctx &ctx, Instruction* instr, unsigned op_index, Temp *base, uint32_t *offset) { Operand op = instr->operands[op_index]; if (!op.isTemp()) return false; Temp tmp = op.getTemp(); if (!ctx.info[tmp.id()].is_add_sub()) return false; Instruction *add_instr = ctx.info[tmp.id()].instr; switch (add_instr->opcode) { case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: break; default: return false; } if (add_instr->usesModifiers()) return false; for (unsigned i = 0; i < 2; i++) { if (add_instr->operands[i].isConstant()) { *offset = add_instr->operands[i].constantValue(); } else if (add_instr->operands[i].isTemp() && ctx.info[add_instr->operands[i].tempId()].is_constant_or_literal()) { *offset = ctx.info[add_instr->operands[i].tempId()].val; } else { continue; } if (!add_instr->operands[!i].isTemp()) continue; uint32_t offset2 = 0; if (parse_base_offset(ctx, add_instr, !i, base, &offset2)) { *offset += offset2; } else { *base = add_instr->operands[!i].getTemp(); } return true; } return false; } void label_instruction(opt_ctx &ctx, Block& block, aco_ptr& instr) { if (instr->isSALU() || instr->isVALU() || instr->format == Format::PSEUDO) { ASSERTED bool all_const = false; for (Operand& op : instr->operands) all_const = all_const && (!op.isTemp() || ctx.info[op.tempId()].is_constant_or_literal()); perfwarn(all_const, "All instruction operands are constant", instr.get()); } for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; ssa_info info = ctx.info[instr->operands[i].tempId()]; /* propagate undef */ if (info.is_undefined() && is_phi(instr)) instr->operands[i] = Operand(instr->operands[i].regClass()); /* propagate reg->reg of same type */ if (info.is_temp() && info.temp.regClass() == instr->operands[i].getTemp().regClass()) { instr->operands[i].setTemp(ctx.info[instr->operands[i].tempId()].temp); info = ctx.info[info.temp.id()]; } /* SALU / PSEUDO: propagate inline constants */ if (instr->isSALU() || instr->format == Format::PSEUDO) { if (info.is_temp() && info.temp.type() == RegType::sgpr) { instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } else if (info.is_temp() && info.temp.type() == RegType::vgpr) { /* propagate vgpr if it can take it */ switch (instr->opcode) { case aco_opcode::p_create_vector: case aco_opcode::p_split_vector: case aco_opcode::p_extract_vector: case aco_opcode::p_phi: { const bool all_vgpr = std::none_of(instr->definitions.begin(), instr->definitions.end(), [] (const Definition& def) { return def.getTemp().type() != RegType::vgpr;}); if (all_vgpr) { instr->operands[i] = Operand(info.temp); info = ctx.info[info.temp.id()]; } break; } default: break; } } if ((info.is_constant() || (info.is_literal() && instr->format == Format::PSEUDO)) && !instr->operands[i].isFixed() && can_accept_constant(instr, i)) { instr->operands[i] = Operand(info.val); continue; } } /* VALU: propagate neg, abs & inline constants */ else if (instr->isVALU()) { if (info.is_temp() && info.temp.type() == RegType::vgpr && valu_can_accept_vgpr(instr, i)) { instr->operands[i].setTemp(info.temp); info = ctx.info[info.temp.id()]; } if (info.is_abs() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) { if (!instr->isDPP()) to_VOP3(ctx, instr); instr->operands[i] = Operand(info.temp); if (instr->isDPP()) static_cast(instr.get())->abs[i] = true; else static_cast(instr.get())->abs[i] = true; } if (info.is_neg() && instr->opcode == aco_opcode::v_add_f32) { instr->opcode = i ? aco_opcode::v_sub_f32 : aco_opcode::v_subrev_f32; instr->operands[i].setTemp(info.temp); continue; } else if (info.is_neg() && (can_use_VOP3(instr) || instr->isDPP()) && instr_info.can_use_input_modifiers[(int)instr->opcode]) { if (!instr->isDPP()) to_VOP3(ctx, instr); instr->operands[i].setTemp(info.temp); if (instr->isDPP()) static_cast(instr.get())->neg[i] = true; else static_cast(instr.get())->neg[i] = true; continue; } if (info.is_constant() && can_accept_constant(instr, i)) { perfwarn(instr->opcode == aco_opcode::v_cndmask_b32 && i == 2, "v_cndmask_b32 with a constant selector", instr.get()); if (i == 0) { instr->operands[i] = Operand(info.val); continue; } else if (!instr->isVOP3() && can_swap_operands(instr)) { instr->operands[i] = instr->operands[0]; instr->operands[0] = Operand(info.val); continue; } else if (can_use_VOP3(instr)) { to_VOP3(ctx, instr); instr->operands[i] = Operand(info.val); continue; } } } /* MUBUF: propagate constants and combine additions */ else if (instr->format == Format::MUBUF) { MUBUF_instruction *mubuf = static_cast(instr.get()); Temp base; uint32_t offset; while (info.is_temp()) info = ctx.info[info.temp.id()]; if (mubuf->offen && i == 0 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) { assert(!mubuf->idxen); instr->operands[i] = Operand(v1); mubuf->offset += info.val; mubuf->offen = false; continue; } else if (i == 2 && info.is_constant_or_literal() && mubuf->offset + info.val < 4096) { instr->operands[2] = Operand((uint32_t) 0); mubuf->offset += info.val; continue; } else if (mubuf->offen && i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == v1 && mubuf->offset + offset < 4096) { assert(!mubuf->idxen); instr->operands[i].setTemp(base); mubuf->offset += offset; continue; } else if (i == 2 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && mubuf->offset + offset < 4096) { instr->operands[i].setTemp(base); mubuf->offset += offset; continue; } } /* DS: combine additions */ else if (instr->format == Format::DS) { DS_instruction *ds = static_cast(instr.get()); Temp base; uint32_t offset; if (i == 0 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == instr->operands[i].regClass()) { if (instr->opcode == aco_opcode::ds_write2_b32 || instr->opcode == aco_opcode::ds_read2_b32 || instr->opcode == aco_opcode::ds_write2_b64 || instr->opcode == aco_opcode::ds_read2_b64) { if (offset % 4 == 0 && ds->offset0 + (offset >> 2) <= 255 && ds->offset1 + (offset >> 2) <= 255) { instr->operands[i].setTemp(base); ds->offset0 += offset >> 2; ds->offset1 += offset >> 2; } } else { if (ds->offset0 + offset <= 65535) { instr->operands[i].setTemp(base); ds->offset0 += offset; } } } } /* SMEM: propagate constants and combine additions */ else if (instr->format == Format::SMEM) { SMEM_instruction *smem = static_cast(instr.get()); Temp base; uint32_t offset; if (i == 1 && info.is_constant_or_literal() && info.val <= 0xFFFFF) { instr->operands[i] = Operand(info.val); continue; } else if (i == 1 && parse_base_offset(ctx, instr.get(), i, &base, &offset) && base.regClass() == s1 && offset <= 0xFFFFF && ctx.program->chip_class >= GFX9) { bool soe = smem->operands.size() >= (!smem->definitions.empty() ? 3 : 4); if (soe && (!ctx.info[smem->operands.back().tempId()].is_constant_or_literal() || ctx.info[smem->operands.back().tempId()].val != 0)) { continue; } if (soe) { smem->operands[1] = Operand(offset); smem->operands.back() = Operand(base); } else { SMEM_instruction *new_instr = create_instruction(smem->opcode, Format::SMEM, smem->operands.size() + 1, smem->definitions.size()); new_instr->operands[0] = smem->operands[0]; new_instr->operands[1] = Operand(offset); if (smem->definitions.empty()) new_instr->operands[2] = smem->operands[2]; new_instr->operands.back() = Operand(base); if (!smem->definitions.empty()) new_instr->definitions[0] = smem->definitions[0]; new_instr->can_reorder = smem->can_reorder; new_instr->barrier = smem->barrier; instr.reset(new_instr); smem = static_cast(instr.get()); } continue; } } } /* if this instruction doesn't define anything, return */ if (instr->definitions.empty()) return; switch (instr->opcode) { case aco_opcode::p_create_vector: { unsigned num_ops = instr->operands.size(); for (const Operand& op : instr->operands) { if (op.isTemp() && ctx.info[op.tempId()].is_vec()) num_ops += ctx.info[op.tempId()].instr->operands.size() - 1; } if (num_ops != instr->operands.size()) { aco_ptr old_vec = std::move(instr); instr.reset(create_instruction(aco_opcode::p_create_vector, Format::PSEUDO, num_ops, 1)); instr->definitions[0] = old_vec->definitions[0]; unsigned k = 0; for (Operand& old_op : old_vec->operands) { if (old_op.isTemp() && ctx.info[old_op.tempId()].is_vec()) { for (unsigned j = 0; j < ctx.info[old_op.tempId()].instr->operands.size(); j++) instr->operands[k++] = ctx.info[old_op.tempId()].instr->operands[j]; } else { instr->operands[k++] = old_op; } } assert(k == num_ops); } if (instr->operands.size() == 1 && instr->operands[0].isTemp()) ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); else if (instr->definitions[0].getTemp().size() == instr->operands.size()) ctx.info[instr->definitions[0].tempId()].set_vec(instr.get()); break; } case aco_opcode::p_split_vector: { if (!ctx.info[instr->operands[0].tempId()].is_vec()) break; Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; assert(instr->definitions.size() == vec->operands.size()); for (unsigned i = 0; i < instr->definitions.size(); i++) { Operand vec_op = vec->operands[i]; if (vec_op.isConstant()) { if (vec_op.isLiteral()) ctx.info[instr->definitions[i].tempId()].set_literal(vec_op.constantValue()); else if (vec_op.size() == 1) ctx.info[instr->definitions[i].tempId()].set_constant(vec_op.constantValue()); } else { assert(vec_op.isTemp()); ctx.info[instr->definitions[i].tempId()].set_temp(vec_op.getTemp()); } } break; } case aco_opcode::p_extract_vector: { /* mov */ if (!ctx.info[instr->operands[0].tempId()].is_vec()) break; Instruction* vec = ctx.info[instr->operands[0].tempId()].instr; if (vec->definitions[0].getTemp().size() == vec->operands.size() && /* TODO: what about 64bit or other combinations? */ vec->operands[0].size() == instr->definitions[0].size()) { /* convert this extract into a mov instruction */ Operand vec_op = vec->operands[instr->operands[1].constantValue()]; bool is_vgpr = instr->definitions[0].getTemp().type() == RegType::vgpr; aco_opcode opcode = is_vgpr ? aco_opcode::v_mov_b32 : aco_opcode::s_mov_b32; Format format = is_vgpr ? Format::VOP1 : Format::SOP1; instr->opcode = opcode; instr->format = format; instr->operands = {instr->operands.begin(), 1 }; instr->operands[0] = vec_op; if (vec_op.isConstant()) { if (vec_op.isLiteral()) ctx.info[instr->definitions[0].tempId()].set_literal(vec_op.constantValue()); else if (vec_op.size() == 1) ctx.info[instr->definitions[0].tempId()].set_constant(vec_op.constantValue()); } else { assert(vec_op.isTemp()); ctx.info[instr->definitions[0].tempId()].set_temp(vec_op.getTemp()); } } break; } case aco_opcode::s_mov_b32: /* propagate */ case aco_opcode::s_mov_b64: case aco_opcode::v_mov_b32: case aco_opcode::p_as_uniform: if (instr->definitions[0].isFixed()) { /* don't copy-propagate copies into fixed registers */ } else if (instr->usesModifiers()) { // TODO } else if (instr->operands[0].isConstant()) { if (instr->operands[0].isLiteral()) ctx.info[instr->definitions[0].tempId()].set_literal(instr->operands[0].constantValue()); else if (instr->operands[0].size() == 1) ctx.info[instr->definitions[0].tempId()].set_constant(instr->operands[0].constantValue()); } else if (instr->operands[0].isTemp()) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); } else { assert(instr->operands[0].isFixed()); } break; case aco_opcode::p_is_helper: if (!ctx.program->needs_wqm) ctx.info[instr->definitions[0].tempId()].set_constant(0u); break; case aco_opcode::s_movk_i32: { uint32_t v = static_cast(instr.get())->imm; v = v & 0x8000 ? (v | 0xffff0000) : v; if (v <= 64 || v >= 0xfffffff0) ctx.info[instr->definitions[0].tempId()].set_constant(v); else ctx.info[instr->definitions[0].tempId()].set_literal(v); break; } case aco_opcode::v_bfrev_b32: case aco_opcode::s_brev_b32: { if (instr->operands[0].isConstant()) { uint32_t v = util_bitreverse(instr->operands[0].constantValue()); if (v <= 64 || v >= 0xfffffff0) ctx.info[instr->definitions[0].tempId()].set_constant(v); else ctx.info[instr->definitions[0].tempId()].set_literal(v); } break; } case aco_opcode::s_bfm_b32: { if (instr->operands[0].isConstant() && instr->operands[1].isConstant()) { unsigned size = instr->operands[0].constantValue() & 0x1f; unsigned start = instr->operands[1].constantValue() & 0x1f; uint32_t v = ((1u << size) - 1u) << start; if (v <= 64 || v >= 0xfffffff0) ctx.info[instr->definitions[0].tempId()].set_constant(v); else ctx.info[instr->definitions[0].tempId()].set_literal(v); } } case aco_opcode::v_mul_f32: { /* omod */ /* TODO: try to move the negate/abs modifier to the consumer instead */ if (instr->usesModifiers()) break; for (unsigned i = 0; i < 2; i++) { if (instr->operands[!i].isConstant() && instr->operands[i].isTemp()) { if (instr->operands[!i].constantValue() == 0x40000000) { /* 2.0 */ ctx.info[instr->operands[i].tempId()].set_omod2(); } else if (instr->operands[!i].constantValue() == 0x40800000) { /* 4.0 */ ctx.info[instr->operands[i].tempId()].set_omod4(); } else if (instr->operands[!i].constantValue() == 0x3f000000) { /* 0.5 */ ctx.info[instr->operands[i].tempId()].set_omod5(); } else if (instr->operands[!i].constantValue() == 0x3f800000 && !block.fp_mode.must_flush_denorms32) { /* 1.0 */ ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[i].getTemp()); } else { continue; } break; } } break; } case aco_opcode::v_and_b32: /* abs */ if (instr->operands[0].constantEquals(0x7FFFFFFF) && instr->operands[1].isTemp()) ctx.info[instr->definitions[0].tempId()].set_abs(instr->operands[1].getTemp()); else ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::v_xor_b32: { /* neg */ if (instr->operands[0].constantEquals(0x80000000u) && instr->operands[1].isTemp()) { if (ctx.info[instr->operands[1].tempId()].is_neg()) { ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp); } else { if (ctx.info[instr->operands[1].tempId()].is_abs()) { /* neg(abs(x)) */ instr->operands[1].setTemp(ctx.info[instr->operands[1].tempId()].temp); instr->opcode = aco_opcode::v_or_b32; ctx.info[instr->definitions[0].tempId()].set_neg_abs(instr->operands[1].getTemp()); } else { ctx.info[instr->definitions[0].tempId()].set_neg(instr->operands[1].getTemp()); } } } else { ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); } break; } case aco_opcode::v_med3_f32: { /* clamp */ VOP3A_instruction* vop3 = static_cast(instr.get()); if (vop3->abs[0] || vop3->neg[0] || vop3->opsel[0] || vop3->abs[1] || vop3->neg[1] || vop3->opsel[1] || vop3->abs[2] || vop3->neg[2] || vop3->opsel[2] || vop3->omod != 0) break; unsigned idx = 0; bool found_zero = false, found_one = false; for (unsigned i = 0; i < 3; i++) { if (instr->operands[i].constantEquals(0)) found_zero = true; else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */ found_one = true; else idx = i; } if (found_zero && found_one && instr->operands[idx].isTemp()) { ctx.info[instr->operands[idx].tempId()].set_clamp(); } break; } case aco_opcode::v_cndmask_b32: if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0xFFFFFFFF) && instr->operands[2].isTemp()) ctx.info[instr->definitions[0].tempId()].set_vcc(instr->operands[2].getTemp()); else if (instr->operands[0].constantEquals(0) && instr->operands[1].constantEquals(0x3f800000u) && instr->operands[2].isTemp()) ctx.info[instr->definitions[0].tempId()].set_b2f(instr->operands[2].getTemp()); break; case aco_opcode::v_cmp_lg_u32: if (instr->format == Format::VOPC && /* don't optimize VOP3 / SDWA / DPP */ instr->operands[0].constantEquals(0) && instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_vcc()) ctx.info[instr->definitions[0].tempId()].set_temp(ctx.info[instr->operands[1].tempId()].temp); break; case aco_opcode::p_phi: case aco_opcode::p_linear_phi: { /* lower_bool_phis() can create phis like this */ bool all_same_temp = instr->operands[0].isTemp(); /* this check is needed when moving uniform loop counters out of a divergent loop */ if (all_same_temp) all_same_temp = instr->definitions[0].regClass() == instr->operands[0].regClass(); for (unsigned i = 1; all_same_temp && (i < instr->operands.size()); i++) { if (!instr->operands[i].isTemp() || instr->operands[i].tempId() != instr->operands[0].tempId()) all_same_temp = false; } if (all_same_temp) { ctx.info[instr->definitions[0].tempId()].set_temp(instr->operands[0].getTemp()); } else { bool all_undef = instr->operands[0].isUndefined(); for (unsigned i = 1; all_undef && (i < instr->operands.size()); i++) { if (!instr->operands[i].isUndefined()) all_undef = false; } if (all_undef) ctx.info[instr->definitions[0].tempId()].set_undefined(); } break; } case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::s_add_i32: case aco_opcode::s_add_u32: ctx.info[instr->definitions[0].tempId()].set_add_sub(instr.get()); break; case aco_opcode::s_and_b64: if (instr->operands[1].isFixed() && instr->operands[1].physReg() == exec && instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_uniform_bool()) { ctx.info[instr->definitions[1].tempId()].set_temp(ctx.info[instr->operands[0].tempId()].temp); } /* fallthrough */ case aco_opcode::s_and_b32: case aco_opcode::s_not_b32: case aco_opcode::s_not_b64: case aco_opcode::s_or_b32: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b32: case aco_opcode::s_xor_b64: case aco_opcode::s_lshl_b32: case aco_opcode::v_or_b32: case aco_opcode::v_lshlrev_b32: ctx.info[instr->definitions[0].tempId()].set_bitwise(instr.get()); break; case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: case aco_opcode::v_min_u32: case aco_opcode::v_min_i32: case aco_opcode::v_min_u16: case aco_opcode::v_min_i16: case aco_opcode::v_max_f32: case aco_opcode::v_max_f16: case aco_opcode::v_max_u32: case aco_opcode::v_max_i32: case aco_opcode::v_max_u16: case aco_opcode::v_max_i16: ctx.info[instr->definitions[0].tempId()].set_minmax(instr.get()); break; case aco_opcode::v_cmp_lt_f32: case aco_opcode::v_cmp_eq_f32: case aco_opcode::v_cmp_le_f32: case aco_opcode::v_cmp_gt_f32: case aco_opcode::v_cmp_lg_f32: case aco_opcode::v_cmp_ge_f32: case aco_opcode::v_cmp_o_f32: case aco_opcode::v_cmp_u_f32: case aco_opcode::v_cmp_nge_f32: case aco_opcode::v_cmp_nlg_f32: case aco_opcode::v_cmp_ngt_f32: case aco_opcode::v_cmp_nle_f32: case aco_opcode::v_cmp_neq_f32: case aco_opcode::v_cmp_nlt_f32: ctx.info[instr->definitions[0].tempId()].set_fcmp(instr.get()); break; case aco_opcode::s_cselect_b64: if (instr->operands[0].constantEquals((unsigned) -1) && instr->operands[1].constantEquals(0)) { /* Found a cselect that operates on a uniform bool that comes from eg. s_cmp */ ctx.info[instr->definitions[0].tempId()].set_uniform_bool(instr->operands[2].getTemp()); } break; default: break; } } ALWAYS_INLINE bool get_cmp_info(aco_opcode op, aco_opcode *ordered, aco_opcode *unordered, aco_opcode *inverse) { *ordered = *unordered = op; switch (op) { #define CMP(ord, unord) \ case aco_opcode::v_cmp_##ord##_f32:\ case aco_opcode::v_cmp_n##unord##_f32:\ *ordered = aco_opcode::v_cmp_##ord##_f32;\ *unordered = aco_opcode::v_cmp_n##unord##_f32;\ *inverse = op == aco_opcode::v_cmp_n##unord##_f32 ? aco_opcode::v_cmp_##unord##_f32 : aco_opcode::v_cmp_n##ord##_f32;\ return true; CMP(lt, /*n*/ge) CMP(eq, /*n*/lg) CMP(le, /*n*/gt) CMP(gt, /*n*/le) CMP(lg, /*n*/eq) CMP(ge, /*n*/lt) #undef CMP default: return false; } } aco_opcode get_ordered(aco_opcode op) { aco_opcode ordered, unordered, inverse; return get_cmp_info(op, &ordered, &unordered, &inverse) ? ordered : aco_opcode::last_opcode; } aco_opcode get_unordered(aco_opcode op) { aco_opcode ordered, unordered, inverse; return get_cmp_info(op, &ordered, &unordered, &inverse) ? unordered : aco_opcode::last_opcode; } aco_opcode get_inverse(aco_opcode op) { aco_opcode ordered, unordered, inverse; return get_cmp_info(op, &ordered, &unordered, &inverse) ? inverse : aco_opcode::last_opcode; } bool is_cmp(aco_opcode op) { aco_opcode ordered, unordered, inverse; return get_cmp_info(op, &ordered, &unordered, &inverse); } unsigned original_temp_id(opt_ctx &ctx, Temp tmp) { if (ctx.info[tmp.id()].is_temp()) return ctx.info[tmp.id()].temp.id(); else return tmp.id(); } void decrease_uses(opt_ctx &ctx, Instruction* instr) { if (!--ctx.uses[instr->definitions[0].tempId()]) { for (const Operand& op : instr->operands) { if (op.isTemp()) ctx.uses[op.tempId()]--; } } } Instruction *follow_operand(opt_ctx &ctx, Operand op, bool ignore_uses=false) { if (!op.isTemp() || !(ctx.info[op.tempId()].label & instr_labels)) return nullptr; if (!ignore_uses && ctx.uses[op.tempId()] > 1) return nullptr; Instruction *instr = ctx.info[op.tempId()].instr; if (instr->definitions.size() == 2) { assert(instr->definitions[0].isTemp() && instr->definitions[0].tempId() == op.tempId()); if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return nullptr; } return instr; } /* s_or_b64(neq(a, a), neq(b, b)) -> v_cmp_u_f32(a, b) * s_and_b64(eq(a, a), eq(b, b)) -> v_cmp_o_f32(a, b) */ bool combine_ordering_test(opt_ctx &ctx, aco_ptr& instr) { if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; bool neg[2] = {false, false}; bool abs[2] = {false, false}; bool opsel[2] = {false, false}; Instruction *op_instr[2]; Temp op[2]; for (unsigned i = 0; i < 2; i++) { op_instr[i] = follow_operand(ctx, instr->operands[i], true); if (!op_instr[i]) return false; aco_opcode expected_cmp = instr->opcode == aco_opcode::s_or_b64 ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32; if (op_instr[i]->opcode != expected_cmp) return false; if (!op_instr[i]->operands[0].isTemp() || !op_instr[i]->operands[1].isTemp()) return false; if (op_instr[i]->isVOP3()) { VOP3A_instruction *vop3 = static_cast(op_instr[i]); if (vop3->neg[0] != vop3->neg[1] || vop3->abs[0] != vop3->abs[1] || vop3->opsel[0] != vop3->opsel[1]) return false; neg[i] = vop3->neg[0]; abs[i] = vop3->abs[0]; opsel[i] = vop3->opsel[0]; } Temp op0 = op_instr[i]->operands[0].getTemp(); Temp op1 = op_instr[i]->operands[1].getTemp(); if (original_temp_id(ctx, op0) != original_temp_id(ctx, op1)) return false; /* shouldn't happen yet, but best to be safe */ if (op1.type() != RegType::vgpr) return false; op[i] = op1; } ctx.uses[op[0].id()]++; ctx.uses[op[1].id()]++; decrease_uses(ctx, op_instr[0]); decrease_uses(ctx, op_instr[1]); aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32; Instruction *new_instr; if (neg[0] || neg[1] || abs[0] || abs[1] || opsel[0] || opsel[1]) { VOP3A_instruction *vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); for (unsigned i = 0; i < 2; i++) { vop3->neg[i] = neg[i]; vop3->abs[i] = abs[i]; vop3->opsel[i] = opsel[i]; } new_instr = static_cast(vop3); } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = Operand(op[0]); new_instr->operands[1] = Operand(op[1]); new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr); instr.reset(new_instr); return true; } /* s_or_b64(v_cmp_u_f32(a, b), cmp(a, b)) -> get_unordered(cmp)(a, b) * s_and_b64(v_cmp_o_f32(a, b), cmp(a, b)) -> get_ordered(cmp)(a, b) */ bool combine_comparison_ordering(opt_ctx &ctx, aco_ptr& instr) { if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ? aco_opcode::v_cmp_u_f32 : aco_opcode::v_cmp_o_f32; Instruction *nan_test = follow_operand(ctx, instr->operands[0], true); Instruction *cmp = follow_operand(ctx, instr->operands[1], true); if (!nan_test || !cmp) return false; if (cmp->opcode == expected_nan_test) std::swap(nan_test, cmp); else if (nan_test->opcode != expected_nan_test) return false; if (!is_cmp(cmp->opcode)) return false; if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp()) return false; if (!cmp->operands[0].isTemp() || !cmp->operands[1].isTemp()) return false; unsigned prop_cmp0 = original_temp_id(ctx, cmp->operands[0].getTemp()); unsigned prop_cmp1 = original_temp_id(ctx, cmp->operands[1].getTemp()); unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp()); unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp()); if (prop_cmp0 != prop_nan0 && prop_cmp0 != prop_nan1) return false; if (prop_cmp1 != prop_nan0 && prop_cmp1 != prop_nan1) return false; ctx.uses[cmp->operands[0].tempId()]++; ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, nan_test); decrease_uses(ctx, cmp); aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_instr = new_vop3; } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr); instr.reset(new_instr); return true; } /* s_or_b64(v_cmp_neq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_unordered(cmp)(a, b) * s_and_b64(v_cmp_eq_f32(a, a), cmp(a, #b)) and b is not NaN -> get_ordered(cmp)(a, b) */ bool combine_constant_comparison_ordering(opt_ctx &ctx, aco_ptr& instr) { if (instr->opcode != aco_opcode::s_or_b64 && instr->opcode != aco_opcode::s_and_b64) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; Instruction *nan_test = follow_operand(ctx, instr->operands[0], true); Instruction *cmp = follow_operand(ctx, instr->operands[1], true); if (!nan_test || !cmp) return false; aco_opcode expected_nan_test = instr->opcode == aco_opcode::s_or_b64 ? aco_opcode::v_cmp_neq_f32 : aco_opcode::v_cmp_eq_f32; if (cmp->opcode == expected_nan_test) std::swap(nan_test, cmp); else if (nan_test->opcode != expected_nan_test) return false; if (!is_cmp(cmp->opcode)) return false; if (!nan_test->operands[0].isTemp() || !nan_test->operands[1].isTemp()) return false; if (!cmp->operands[0].isTemp() && !cmp->operands[1].isTemp()) return false; unsigned prop_nan0 = original_temp_id(ctx, nan_test->operands[0].getTemp()); unsigned prop_nan1 = original_temp_id(ctx, nan_test->operands[1].getTemp()); if (prop_nan0 != prop_nan1) return false; int constant_operand = -1; for (unsigned i = 0; i < 2; i++) { if (cmp->operands[i].isTemp() && original_temp_id(ctx, cmp->operands[i].getTemp()) == prop_nan0) { constant_operand = !i; break; } } if (constant_operand == -1) return false; uint32_t constant; if (cmp->operands[constant_operand].isConstant()) { constant = cmp->operands[constant_operand].constantValue(); } else if (cmp->operands[constant_operand].isTemp()) { unsigned id = cmp->operands[constant_operand].tempId(); if (!ctx.info[id].is_constant() && !ctx.info[id].is_literal()) return false; constant = ctx.info[id].val; } else { return false; } float constantf; memcpy(&constantf, &constant, 4); if (isnan(constantf)) return false; if (cmp->operands[0].isTemp()) ctx.uses[cmp->operands[0].tempId()]++; if (cmp->operands[1].isTemp()) ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, nan_test); decrease_uses(ctx, cmp); aco_opcode new_op = instr->opcode == aco_opcode::s_or_b64 ? get_unordered(cmp->opcode) : get_ordered(cmp->opcode); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_op, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_instr = new_vop3; } else { new_instr = create_instruction(new_op, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr); instr.reset(new_instr); return true; } /* s_not_b64(cmp(a, b) -> get_inverse(cmp)(a, b) */ bool combine_inverse_comparison(opt_ctx &ctx, aco_ptr& instr) { if (instr->opcode != aco_opcode::s_not_b64) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; if (!instr->operands[0].isTemp()) return false; Instruction *cmp = follow_operand(ctx, instr->operands[0]); if (!cmp) return false; aco_opcode new_opcode = get_inverse(cmp->opcode); if (new_opcode == aco_opcode::last_opcode) return false; if (cmp->operands[0].isTemp()) ctx.uses[cmp->operands[0].tempId()]++; if (cmp->operands[1].isTemp()) ctx.uses[cmp->operands[1].tempId()]++; decrease_uses(ctx, cmp); Instruction *new_instr; if (cmp->isVOP3()) { VOP3A_instruction *new_vop3 = create_instruction(new_opcode, asVOP3(Format::VOPC), 2, 1); VOP3A_instruction *cmp_vop3 = static_cast(cmp); memcpy(new_vop3->abs, cmp_vop3->abs, sizeof(new_vop3->abs)); memcpy(new_vop3->opsel, cmp_vop3->opsel, sizeof(new_vop3->opsel)); memcpy(new_vop3->neg, cmp_vop3->neg, sizeof(new_vop3->neg)); new_vop3->clamp = cmp_vop3->clamp; new_vop3->omod = cmp_vop3->omod; new_instr = new_vop3; } else { new_instr = create_instruction(new_opcode, Format::VOPC, 2, 1); } new_instr->operands[0] = cmp->operands[0]; new_instr->operands[1] = cmp->operands[1]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; ctx.info[instr->definitions[0].tempId()].set_fcmp(new_instr); instr.reset(new_instr); return true; } /* op1(op2(1, 2), 0) if swap = false * op1(0, op2(1, 2)) if swap = true */ bool match_op3_for_vop3(opt_ctx &ctx, aco_opcode op1, aco_opcode op2, Instruction* op1_instr, bool swap, const char *shuffle_str, Operand operands[3], bool neg[3], bool abs[3], bool opsel[3], bool *op1_clamp, unsigned *op1_omod, bool *inbetween_neg, bool *inbetween_abs, bool *inbetween_opsel) { /* checks */ if (op1_instr->opcode != op1) return false; Instruction *op2_instr = follow_operand(ctx, op1_instr->operands[swap]); if (!op2_instr || op2_instr->opcode != op2) return false; VOP3A_instruction *op1_vop3 = op1_instr->isVOP3() ? static_cast(op1_instr) : NULL; VOP3A_instruction *op2_vop3 = op2_instr->isVOP3() ? static_cast(op2_instr) : NULL; /* don't support inbetween clamp/omod */ if (op2_vop3 && (op2_vop3->clamp || op2_vop3->omod)) return false; /* get operands and modifiers and check inbetween modifiers */ *op1_clamp = op1_vop3 ? op1_vop3->clamp : false; *op1_omod = op1_vop3 ? op1_vop3->omod : 0u; if (inbetween_neg) *inbetween_neg = op1_vop3 ? op1_vop3->neg[swap] : false; else if (op1_vop3 && op1_vop3->neg[swap]) return false; if (inbetween_abs) *inbetween_abs = op1_vop3 ? op1_vop3->abs[swap] : false; else if (op1_vop3 && op1_vop3->abs[swap]) return false; if (inbetween_opsel) *inbetween_opsel = op1_vop3 ? op1_vop3->opsel[swap] : false; else if (op1_vop3 && op1_vop3->opsel[swap]) return false; int shuffle[3]; shuffle[shuffle_str[0] - '0'] = 0; shuffle[shuffle_str[1] - '0'] = 1; shuffle[shuffle_str[2] - '0'] = 2; operands[shuffle[0]] = op1_instr->operands[!swap]; neg[shuffle[0]] = op1_vop3 ? op1_vop3->neg[!swap] : false; abs[shuffle[0]] = op1_vop3 ? op1_vop3->abs[!swap] : false; opsel[shuffle[0]] = op1_vop3 ? op1_vop3->opsel[!swap] : false; for (unsigned i = 0; i < 2; i++) { operands[shuffle[i + 1]] = op2_instr->operands[i]; neg[shuffle[i + 1]] = op2_vop3 ? op2_vop3->neg[i] : false; abs[shuffle[i + 1]] = op2_vop3 ? op2_vop3->abs[i] : false; opsel[shuffle[i + 1]] = op2_vop3 ? op2_vop3->opsel[i] : false; } /* check operands */ unsigned sgpr_id = 0; for (unsigned i = 0; i < 3; i++) { Operand op = operands[i]; if (op.isLiteral()) { return false; } else if (op.isTemp() && op.getTemp().type() == RegType::sgpr) { if (sgpr_id && sgpr_id != op.tempId()) return false; sgpr_id = op.tempId(); } } return true; } void create_vop3_for_op3(opt_ctx& ctx, aco_opcode opcode, aco_ptr& instr, Operand operands[3], bool neg[3], bool abs[3], bool opsel[3], bool clamp, unsigned omod) { VOP3A_instruction *new_instr = create_instruction(opcode, Format::VOP3A, 3, 1); memcpy(new_instr->abs, abs, sizeof(bool[3])); memcpy(new_instr->opsel, opsel, sizeof(bool[3])); memcpy(new_instr->neg, neg, sizeof(bool[3])); new_instr->clamp = clamp; new_instr->omod = omod; new_instr->operands[0] = operands[0]; new_instr->operands[1] = operands[1]; new_instr->operands[2] = operands[2]; new_instr->definitions[0] = instr->definitions[0]; ctx.info[instr->definitions[0].tempId()].label = 0; instr.reset(new_instr); } bool combine_three_valu_op(opt_ctx& ctx, aco_ptr& instr, aco_opcode op2, aco_opcode new_op, const char *shuffle, uint8_t ops) { uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label & (label_omod_success | label_clamp_success); for (unsigned swap = 0; swap < 2; swap++) { if (!((1 << swap) & ops)) continue; Operand operands[3]; bool neg[3], abs[3], opsel[3], clamp; unsigned omod; if (match_op3_for_vop3(ctx, instr->opcode, op2, instr.get(), swap, shuffle, operands, neg, abs, opsel, &clamp, &omod, NULL, NULL, NULL)) { ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, new_op, instr, operands, neg, abs, opsel, clamp, omod); if (omod_clamp & label_omod_success) ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); if (omod_clamp & label_clamp_success) ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); return true; } } return false; } /* s_not_b32(s_and_b32(a, b)) -> s_nand_b32(a, b) * s_not_b32(s_or_b32(a, b)) -> s_nor_b32(a, b) * s_not_b32(s_xor_b32(a, b)) -> s_xnor_b32(a, b) * s_not_b64(s_and_b64(a, b)) -> s_nand_b64(a, b) * s_not_b64(s_or_b64(a, b)) -> s_nor_b64(a, b) * s_not_b64(s_xor_b64(a, b)) -> s_xnor_b64(a, b) */ bool combine_salu_not_bitwise(opt_ctx& ctx, aco_ptr& instr) { /* checks */ if (!instr->operands[0].isTemp()) return false; if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; Instruction *op2_instr = follow_operand(ctx, instr->operands[0]); if (!op2_instr) return false; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: case aco_opcode::s_or_b32: case aco_opcode::s_xor_b32: case aco_opcode::s_and_b64: case aco_opcode::s_or_b64: case aco_opcode::s_xor_b64: break; default: return false; } /* create instruction */ std::swap(instr->definitions[0], op2_instr->definitions[0]); ctx.uses[instr->operands[0].tempId()]--; ctx.info[op2_instr->definitions[0].tempId()].label = 0; switch (op2_instr->opcode) { case aco_opcode::s_and_b32: op2_instr->opcode = aco_opcode::s_nand_b32; break; case aco_opcode::s_or_b32: op2_instr->opcode = aco_opcode::s_nor_b32; break; case aco_opcode::s_xor_b32: op2_instr->opcode = aco_opcode::s_xnor_b32; break; case aco_opcode::s_and_b64: op2_instr->opcode = aco_opcode::s_nand_b64; break; case aco_opcode::s_or_b64: op2_instr->opcode = aco_opcode::s_nor_b64; break; case aco_opcode::s_xor_b64: op2_instr->opcode = aco_opcode::s_xnor_b64; break; default: break; } return true; } /* s_and_b32(a, s_not_b32(b)) -> s_andn2_b32(a, b) * s_or_b32(a, s_not_b32(b)) -> s_orn2_b32(a, b) * s_and_b64(a, s_not_b64(b)) -> s_andn2_b64(a, b) * s_or_b64(a, s_not_b64(b)) -> s_orn2_b64(a, b) */ bool combine_salu_n2(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; for (unsigned i = 0; i < 2; i++) { Instruction *op2_instr = follow_operand(ctx, instr->operands[i]); if (!op2_instr || (op2_instr->opcode != aco_opcode::s_not_b32 && op2_instr->opcode != aco_opcode::s_not_b64)) continue; ctx.uses[instr->operands[i].tempId()]--; instr->operands[0] = instr->operands[!i]; instr->operands[1] = op2_instr->operands[0]; ctx.info[instr->definitions[0].tempId()].label = 0; switch (instr->opcode) { case aco_opcode::s_and_b32: instr->opcode = aco_opcode::s_andn2_b32; break; case aco_opcode::s_or_b32: instr->opcode = aco_opcode::s_orn2_b32; break; case aco_opcode::s_and_b64: instr->opcode = aco_opcode::s_andn2_b64; break; case aco_opcode::s_or_b64: instr->opcode = aco_opcode::s_orn2_b64; break; default: break; } return true; } return false; } /* s_add_{i32,u32}(a, s_lshl_b32(b, )) -> s_lshl_add_u32(a, b) */ bool combine_salu_lshl_add(opt_ctx& ctx, aco_ptr& instr) { if (instr->definitions[1].isTemp() && ctx.uses[instr->definitions[1].tempId()]) return false; for (unsigned i = 0; i < 2; i++) { Instruction *op2_instr = follow_operand(ctx, instr->operands[i]); if (!op2_instr || op2_instr->opcode != aco_opcode::s_lshl_b32 || !op2_instr->operands[1].isConstant()) continue; uint32_t shift = op2_instr->operands[1].constantValue(); if (shift < 1 || shift > 4) continue; ctx.uses[instr->operands[i].tempId()]--; instr->operands[1] = instr->operands[!i]; instr->operands[0] = op2_instr->operands[0]; ctx.info[instr->definitions[0].tempId()].label = 0; instr->opcode = ((aco_opcode[]){aco_opcode::s_lshl1_add_u32, aco_opcode::s_lshl2_add_u32, aco_opcode::s_lshl3_add_u32, aco_opcode::s_lshl4_add_u32})[shift - 1]; return true; } return false; } bool get_minmax_info(aco_opcode op, aco_opcode *min, aco_opcode *max, aco_opcode *min3, aco_opcode *max3, aco_opcode *med3, bool *some_gfx9_only) { switch (op) { #define MINMAX(type, gfx9) \ case aco_opcode::v_min_##type:\ case aco_opcode::v_max_##type:\ case aco_opcode::v_med3_##type:\ *min = aco_opcode::v_min_##type;\ *max = aco_opcode::v_max_##type;\ *med3 = aco_opcode::v_med3_##type;\ *min3 = aco_opcode::v_min3_##type;\ *max3 = aco_opcode::v_max3_##type;\ *some_gfx9_only = gfx9;\ return true; MINMAX(f32, false) MINMAX(u32, false) MINMAX(i32, false) MINMAX(f16, true) MINMAX(u16, true) MINMAX(i16, true) #undef MINMAX default: return false; } } /* v_min_{f,u,i}{16,32}(v_max_{f,u,i}{16,32}(a, lb), ub) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb * v_max_{f,u,i}{16,32}(v_min_{f,u,i}{16,32}(a, ub), lb) -> v_med3_{f,u,i}{16,32}(a, lb, ub) when ub > lb */ bool combine_clamp(opt_ctx& ctx, aco_ptr& instr, aco_opcode min, aco_opcode max, aco_opcode med) { aco_opcode other_op; if (instr->opcode == min) other_op = max; else if (instr->opcode == max) other_op = min; else return false; uint32_t omod_clamp = ctx.info[instr->definitions[0].tempId()].label & (label_omod_success | label_clamp_success); for (unsigned swap = 0; swap < 2; swap++) { Operand operands[3]; bool neg[3], abs[3], opsel[3], clamp, inbetween_neg, inbetween_abs; unsigned omod; if (match_op3_for_vop3(ctx, instr->opcode, other_op, instr.get(), swap, "012", operands, neg, abs, opsel, &clamp, &omod, &inbetween_neg, &inbetween_abs, NULL)) { int const0_idx = -1, const1_idx = -1; uint32_t const0 = 0, const1 = 0; for (int i = 0; i < 3; i++) { uint32_t val; if (operands[i].isConstant()) { val = operands[i].constantValue(); } else if (operands[i].isTemp() && ctx.uses[operands[i].tempId()] == 1 && ctx.info[operands[i].tempId()].is_constant_or_literal()) { val = ctx.info[operands[i].tempId()].val; } else { continue; } if (const0_idx >= 0) { const1_idx = i; const1 = val; } else { const0_idx = i; const0 = val; } } if (const0_idx < 0 || const1_idx < 0) continue; if (opsel[const0_idx]) const0 >>= 16; if (opsel[const1_idx]) const1 >>= 16; int lower_idx = const0_idx; switch (min) { case aco_opcode::v_min_f32: case aco_opcode::v_min_f16: { float const0_f, const1_f; if (min == aco_opcode::v_min_f32) { memcpy(&const0_f, &const0, 4); memcpy(&const1_f, &const1, 4); } else { const0_f = _mesa_half_to_float(const0); const1_f = _mesa_half_to_float(const1); } if (abs[const0_idx]) const0_f = fabsf(const0_f); if (abs[const1_idx]) const1_f = fabsf(const1_f); if (neg[const0_idx]) const0_f = -const0_f; if (neg[const1_idx]) const1_f = -const1_f; lower_idx = const0_f < const1_f ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u32: { lower_idx = const0 < const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_u16: { lower_idx = (uint16_t)const0 < (uint16_t)const1 ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i32: { int32_t const0_i = const0 & 0x80000000u ? -2147483648 + (int32_t)(const0 & 0x7fffffffu) : const0; int32_t const1_i = const1 & 0x80000000u ? -2147483648 + (int32_t)(const1 & 0x7fffffffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } case aco_opcode::v_min_i16: { int16_t const0_i = const0 & 0x8000u ? -32768 + (int16_t)(const0 & 0x7fffu) : const0; int16_t const1_i = const1 & 0x8000u ? -32768 + (int16_t)(const1 & 0x7fffu) : const1; lower_idx = const0_i < const1_i ? const0_idx : const1_idx; break; } default: break; } int upper_idx = lower_idx == const0_idx ? const1_idx : const0_idx; if (instr->opcode == min) { if (upper_idx != 0 || lower_idx == 0) return false; } else { if (upper_idx == 0 || lower_idx != 0) return false; } neg[1] ^= inbetween_neg; neg[2] ^= inbetween_neg; abs[1] |= inbetween_abs; abs[2] |= inbetween_abs; ctx.uses[instr->operands[swap].tempId()]--; create_vop3_for_op3(ctx, med, instr, operands, neg, abs, opsel, clamp, omod); if (omod_clamp & label_omod_success) ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); if (omod_clamp & label_clamp_success) ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); return true; } } return false; } void apply_sgprs(opt_ctx &ctx, aco_ptr& instr) { /* apply sgprs */ uint32_t sgpr_idx = 0; uint32_t sgpr_info_id = 0; bool has_sgpr = false; uint32_t sgpr_ssa_id = 0; /* find 'best' possible sgpr */ for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) { has_sgpr = true; break; } if (!instr->operands[i].isTemp()) continue; if (instr->operands[i].getTemp().type() == RegType::sgpr) { has_sgpr = true; sgpr_ssa_id = instr->operands[i].tempId(); continue; } ssa_info& info = ctx.info[instr->operands[i].tempId()]; if (info.is_temp() && info.temp.type() == RegType::sgpr) { uint16_t uses = ctx.uses[instr->operands[i].tempId()]; if (sgpr_info_id == 0 || uses < ctx.uses[sgpr_info_id]) { sgpr_idx = i; sgpr_info_id = instr->operands[i].tempId(); } } } if (!has_sgpr && sgpr_info_id != 0) { ssa_info& info = ctx.info[sgpr_info_id]; if (sgpr_idx == 0 || instr->isVOP3()) { instr->operands[sgpr_idx] = Operand(info.temp); ctx.uses[sgpr_info_id]--; ctx.uses[info.temp.id()]++; } else if (can_swap_operands(instr)) { instr->operands[sgpr_idx] = instr->operands[0]; instr->operands[0] = Operand(info.temp); ctx.uses[sgpr_info_id]--; ctx.uses[info.temp.id()]++; } else if (can_use_VOP3(instr)) { to_VOP3(ctx, instr); instr->operands[sgpr_idx] = Operand(info.temp); ctx.uses[sgpr_info_id]--; ctx.uses[info.temp.id()]++; } /* we can have two sgprs on one instruction if it is the same sgpr! */ } else if (sgpr_info_id != 0 && sgpr_ssa_id == sgpr_info_id && ctx.uses[sgpr_info_id] == 1 && can_use_VOP3(instr)) { to_VOP3(ctx, instr); instr->operands[sgpr_idx] = Operand(ctx.info[sgpr_info_id].temp); ctx.uses[sgpr_info_id]--; ctx.uses[ctx.info[sgpr_info_id].temp.id()]++; } } bool apply_omod_clamp(opt_ctx &ctx, Block& block, aco_ptr& instr) { /* check if we could apply omod on predecessor */ if (instr->opcode == aco_opcode::v_mul_f32) { if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_omod_success()) { /* omod was successfully applied */ /* if the omod instruction is v_mad, we also have to change the original add */ if (ctx.info[instr->operands[1].tempId()].is_mad()) { Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[1].tempId()].val].add_instr.get(); if (ctx.info[instr->definitions[0].tempId()].is_clamp()) static_cast(add_instr)->clamp = true; add_instr->definitions[0] = instr->definitions[0]; } Instruction* omod_instr = ctx.info[instr->operands[1].tempId()].instr; /* check if we have an additional clamp modifier */ if (ctx.info[instr->definitions[0].tempId()].is_clamp() && ctx.uses[instr->definitions[0].tempId()] == 1) { static_cast(omod_instr)->clamp = true; ctx.info[instr->definitions[0].tempId()].set_clamp_success(omod_instr); } /* change definition ssa-id of modified instruction */ omod_instr->definitions[0] = instr->definitions[0]; /* change the definition of instr to something unused, e.g. the original omod def */ instr->definitions[0] = Definition(instr->operands[1].getTemp()); ctx.uses[instr->definitions[0].tempId()] = 0; return true; } if (!ctx.info[instr->definitions[0].tempId()].label) { /* in all other cases, label this instruction as option for multiply-add */ ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); } } /* check if we could apply clamp on predecessor */ if (instr->opcode == aco_opcode::v_med3_f32) { unsigned idx = 0; bool found_zero = false, found_one = false; for (unsigned i = 0; i < 3; i++) { if (instr->operands[i].constantEquals(0)) found_zero = true; else if (instr->operands[i].constantEquals(0x3f800000)) /* 1.0 */ found_one = true; else idx = i; } if (found_zero && found_one && instr->operands[idx].isTemp() && ctx.info[instr->operands[idx].tempId()].is_clamp_success()) { /* clamp was successfully applied */ /* if the clamp instruction is v_mad, we also have to change the original add */ if (ctx.info[instr->operands[idx].tempId()].is_mad()) { Instruction* add_instr = ctx.mad_infos[ctx.info[instr->operands[idx].tempId()].val].add_instr.get(); add_instr->definitions[0] = instr->definitions[0]; } Instruction* clamp_instr = ctx.info[instr->operands[idx].tempId()].instr; /* change definition ssa-id of modified instruction */ clamp_instr->definitions[0] = instr->definitions[0]; /* change the definition of instr to something unused, e.g. the original omod def */ instr->definitions[0] = Definition(instr->operands[idx].getTemp()); ctx.uses[instr->definitions[0].tempId()] = 0; return true; } } /* omod has no effect if denormals are enabled */ bool can_use_omod = block.fp_mode.denorm32 == 0; /* apply omod / clamp modifiers if the def is used only once and the instruction can have modifiers */ if (!instr->definitions.empty() && ctx.uses[instr->definitions[0].tempId()] == 1 && can_use_VOP3(instr) && instr_info.can_use_output_modifiers[(int)instr->opcode]) { if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod2()) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 1; ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod4()) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 2; ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); } else if (can_use_omod && ctx.info[instr->definitions[0].tempId()].is_omod5()) { to_VOP3(ctx, instr); static_cast(instr.get())->omod = 3; ctx.info[instr->definitions[0].tempId()].set_omod_success(instr.get()); } else if (ctx.info[instr->definitions[0].tempId()].is_clamp()) { to_VOP3(ctx, instr); static_cast(instr.get())->clamp = true; ctx.info[instr->definitions[0].tempId()].set_clamp_success(instr.get()); } } return false; } // TODO: we could possibly move the whole label_instruction pass to combine_instruction: // this would mean that we'd have to fix the instruction uses while value propagation void combine_instruction(opt_ctx &ctx, Block& block, aco_ptr& instr) { if (instr->definitions.empty() || !ctx.uses[instr->definitions[0].tempId()]) return; if (instr->isVALU()) { if (can_apply_sgprs(instr)) apply_sgprs(ctx, instr); if (apply_omod_clamp(ctx, block, instr)) return; } /* TODO: There are still some peephole optimizations that could be done: * - abs(a - b) -> s_absdiff_i32 * - various patterns for s_bitcmp{0,1}_b32 and s_bitset{0,1}_b32 * - patterns for v_alignbit_b32 and v_alignbyte_b32 * These aren't probably too interesting though. * There are also patterns for v_cmp_class_f{16,32,64}. This is difficult but * probably more useful than the previously mentioned optimizations. * The various comparison optimizations also currently only work with 32-bit * floats. */ /* neg(mul(a, b)) -> mul(neg(a), b) */ if (ctx.info[instr->definitions[0].tempId()].is_neg() && ctx.uses[instr->operands[1].tempId()] == 1) { Temp val = ctx.info[instr->definitions[0].tempId()].temp; if (!ctx.info[val.id()].is_mul()) return; Instruction* mul_instr = ctx.info[val.id()].instr; if (mul_instr->operands[0].isLiteral()) return; if (mul_instr->isVOP3() && static_cast(mul_instr)->clamp) return; /* convert to mul(neg(a), b) */ ctx.uses[mul_instr->definitions[0].tempId()]--; Definition def = instr->definitions[0]; /* neg(abs(mul(a, b))) -> mul(neg(abs(a)), abs(b)) */ bool is_abs = ctx.info[instr->definitions[0].tempId()].is_abs(); instr.reset(create_instruction(aco_opcode::v_mul_f32, asVOP3(Format::VOP2), 2, 1)); instr->operands[0] = mul_instr->operands[0]; instr->operands[1] = mul_instr->operands[1]; instr->definitions[0] = def; VOP3A_instruction* new_mul = static_cast(instr.get()); if (mul_instr->isVOP3()) { VOP3A_instruction* mul = static_cast(mul_instr); new_mul->neg[0] = mul->neg[0] && !is_abs; new_mul->neg[1] = mul->neg[1] && !is_abs; new_mul->abs[0] = mul->abs[0] || is_abs; new_mul->abs[1] = mul->abs[1] || is_abs; new_mul->omod = mul->omod; } new_mul->neg[0] ^= true; new_mul->clamp = false; ctx.info[instr->definitions[0].tempId()].set_mul(instr.get()); return; } /* combine mul+add -> mad */ else if ((instr->opcode == aco_opcode::v_add_f32 || instr->opcode == aco_opcode::v_sub_f32 || instr->opcode == aco_opcode::v_subrev_f32) && block.fp_mode.denorm32 == 0 && !block.fp_mode.preserve_signed_zero_inf_nan32) { //TODO: we could use fma instead when denormals are enabled if the NIR isn't marked as precise uint32_t uses_src0 = UINT32_MAX; uint32_t uses_src1 = UINT32_MAX; Instruction* mul_instr = nullptr; unsigned add_op_idx; /* check if any of the operands is a multiplication */ if (instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_mul()) uses_src0 = ctx.uses[instr->operands[0].tempId()]; if (instr->operands[1].isTemp() && ctx.info[instr->operands[1].tempId()].is_mul()) uses_src1 = ctx.uses[instr->operands[1].tempId()]; /* find the 'best' mul instruction to combine with the add */ if (uses_src0 < uses_src1) { mul_instr = ctx.info[instr->operands[0].tempId()].instr; add_op_idx = 1; } else if (uses_src1 < uses_src0) { mul_instr = ctx.info[instr->operands[1].tempId()].instr; add_op_idx = 0; } else if (uses_src0 != UINT32_MAX) { /* tiebreaker: quite random what to pick */ if (ctx.info[instr->operands[0].tempId()].instr->operands[0].isLiteral()) { mul_instr = ctx.info[instr->operands[1].tempId()].instr; add_op_idx = 0; } else { mul_instr = ctx.info[instr->operands[0].tempId()].instr; add_op_idx = 1; } } if (mul_instr) { Operand op[3] = {Operand(v1), Operand(v1), Operand(v1)}; bool neg[3] = {false, false, false}; bool abs[3] = {false, false, false}; unsigned omod = 0; bool clamp = false; bool need_vop3 = false; int num_sgpr = 0; op[0] = mul_instr->operands[0]; op[1] = mul_instr->operands[1]; op[2] = instr->operands[add_op_idx]; for (unsigned i = 0; i < 3; i++) { if (op[i].isLiteral()) return; if (op[i].isTemp() && op[i].getTemp().type() == RegType::sgpr) num_sgpr++; if (!(i == 0 || (op[i].isTemp() && op[i].getTemp().type() == RegType::vgpr))) need_vop3 = true; } // TODO: would be better to check this before selecting a mul instr? if (num_sgpr > 1) return; if (mul_instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast (mul_instr); neg[0] = vop3->neg[0]; neg[1] = vop3->neg[1]; abs[0] = vop3->abs[0]; abs[1] = vop3->abs[1]; need_vop3 = true; /* we cannot use these modifiers between mul and add */ if (vop3->clamp || vop3->omod) return; } /* convert to mad */ ctx.uses[mul_instr->definitions[0].tempId()]--; if (ctx.uses[mul_instr->definitions[0].tempId()]) { if (op[0].isTemp()) ctx.uses[op[0].tempId()]++; if (op[1].isTemp()) ctx.uses[op[1].tempId()]++; } if (instr->isVOP3()) { VOP3A_instruction* vop3 = static_cast (instr.get()); neg[2] = vop3->neg[add_op_idx]; abs[2] = vop3->abs[add_op_idx]; omod = vop3->omod; clamp = vop3->clamp; /* abs of the multiplication result */ if (vop3->abs[1 - add_op_idx]) { neg[0] = false; neg[1] = false; abs[0] = true; abs[1] = true; } /* neg of the multiplication result */ neg[1] = neg[1] ^ vop3->neg[1 - add_op_idx]; need_vop3 = true; } if (instr->opcode == aco_opcode::v_sub_f32) { neg[1 + add_op_idx] = neg[1 + add_op_idx] ^ true; need_vop3 = true; } else if (instr->opcode == aco_opcode::v_subrev_f32) { neg[2 - add_op_idx] = neg[2 - add_op_idx] ^ true; need_vop3 = true; } aco_ptr mad{create_instruction(aco_opcode::v_mad_f32, Format::VOP3A, 3, 1)}; for (unsigned i = 0; i < 3; i++) { mad->operands[i] = op[i]; mad->neg[i] = neg[i]; mad->abs[i] = abs[i]; } mad->omod = omod; mad->clamp = clamp; mad->definitions[0] = instr->definitions[0]; /* mark this ssa_def to be re-checked for profitability and literals */ ctx.mad_infos.emplace_back(std::move(instr), mul_instr->definitions[0].tempId(), need_vop3); ctx.info[mad->definitions[0].tempId()].set_mad(mad.get(), ctx.mad_infos.size() - 1); instr.reset(mad.release()); return; } } /* v_mul_f32(v_cndmask_b32(0, 1.0, cond), a) -> v_cndmask_b32(0, a, cond) */ else if (instr->opcode == aco_opcode::v_mul_f32 && !instr->isVOP3()) { for (unsigned i = 0; i < 2; i++) { if (instr->operands[i].isTemp() && ctx.info[instr->operands[i].tempId()].is_b2f() && ctx.uses[instr->operands[i].tempId()] == 1 && instr->operands[!i].isTemp() && instr->operands[!i].getTemp().type() == RegType::vgpr) { ctx.uses[instr->operands[i].tempId()]--; ctx.uses[ctx.info[instr->operands[i].tempId()].temp.id()]++; aco_ptr new_instr{create_instruction(aco_opcode::v_cndmask_b32, Format::VOP2, 3, 1)}; new_instr->operands[0] = Operand(0u); new_instr->operands[1] = instr->operands[!i]; new_instr->operands[2] = Operand(ctx.info[instr->operands[i].tempId()].temp); new_instr->definitions[0] = instr->definitions[0]; instr.reset(new_instr.release()); ctx.info[instr->definitions[0].tempId()].label = 0; return; } } } else if (instr->opcode == aco_opcode::v_or_b32 && ctx.program->chip_class >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::v_or_b32, aco_opcode::v_or3_b32, "012", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_and_b32, aco_opcode::v_and_or_b32, "120", 1 | 2)) ; else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_or_b32, "210", 1 | 2); } else if (instr->opcode == aco_opcode::v_add_u32 && ctx.program->chip_class >= GFX9) { if (combine_three_valu_op(ctx, instr, aco_opcode::v_xor_b32, aco_opcode::v_xad_u32, "120", 1 | 2)) ; else if (combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add3_u32, "012", 1 | 2)) ; else combine_three_valu_op(ctx, instr, aco_opcode::v_lshlrev_b32, aco_opcode::v_lshl_add_u32, "210", 1 | 2); } else if (instr->opcode == aco_opcode::v_lshlrev_b32 && ctx.program->chip_class >= GFX9) { combine_three_valu_op(ctx, instr, aco_opcode::v_add_u32, aco_opcode::v_add_lshl_u32, "120", 2); } else if ((instr->opcode == aco_opcode::s_add_u32 || instr->opcode == aco_opcode::s_add_i32) && ctx.program->chip_class >= GFX9) { combine_salu_lshl_add(ctx, instr); } else if (instr->opcode == aco_opcode::s_not_b32) { combine_salu_not_bitwise(ctx, instr); } else if (instr->opcode == aco_opcode::s_not_b64) { if (combine_inverse_comparison(ctx, instr)) ; else combine_salu_not_bitwise(ctx, instr); } else if (instr->opcode == aco_opcode::s_and_b32 || instr->opcode == aco_opcode::s_or_b32) { combine_salu_n2(ctx, instr); } else if (instr->opcode == aco_opcode::s_and_b64 || instr->opcode == aco_opcode::s_or_b64) { if (combine_ordering_test(ctx, instr)) ; else if (combine_comparison_ordering(ctx, instr)) ; else if (combine_constant_comparison_ordering(ctx, instr)) ; else combine_salu_n2(ctx, instr); } else { aco_opcode min, max, min3, max3, med3; bool some_gfx9_only; if (get_minmax_info(instr->opcode, &min, &max, &min3, &max3, &med3, &some_gfx9_only) && (!some_gfx9_only || ctx.program->chip_class >= GFX9)) { if (combine_three_valu_op(ctx, instr, instr->opcode, instr->opcode == min ? min3 : max3, "012", 1 | 2)); else combine_clamp(ctx, instr, min, max, med3); } } } void select_instruction(opt_ctx &ctx, aco_ptr& instr) { const uint32_t threshold = 4; /* Dead Code Elimination: * We remove instructions if they define temporaries which all are unused */ const bool is_used = instr->definitions.empty() || std::any_of(instr->definitions.begin(), instr->definitions.end(), [&ctx](const Definition& def) { return ctx.uses[def.tempId()]; }); if (!is_used) { instr.reset(); return; } /* convert split_vector into extract_vector if only one definition is ever used */ if (instr->opcode == aco_opcode::p_split_vector) { unsigned num_used = 0; unsigned idx = 0; for (unsigned i = 0; i < instr->definitions.size(); i++) { if (ctx.uses[instr->definitions[i].tempId()]) { num_used++; idx = i; } } if (num_used == 1) { aco_ptr extract{create_instruction(aco_opcode::p_extract_vector, Format::PSEUDO, 2, 1)}; extract->operands[0] = instr->operands[0]; extract->operands[1] = Operand((uint32_t) idx); extract->definitions[0] = instr->definitions[idx]; instr.reset(extract.release()); } } /* re-check mad instructions */ if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; /* first, check profitability */ if (ctx.uses[info->mul_temp_id]) { ctx.uses[info->mul_temp_id]++; instr.swap(info->add_instr); /* second, check possible literals */ } else if (!info->needs_vop3) { uint32_t literal_idx = 0; uint32_t literal_uses = UINT32_MAX; for (unsigned i = 0; i < instr->operands.size(); i++) { if (!instr->operands[i].isTemp()) continue; /* if one of the operands is sgpr, we cannot add a literal somewhere else */ if (instr->operands[i].getTemp().type() == RegType::sgpr) { if (ctx.info[instr->operands[i].tempId()].is_literal()) { literal_uses = ctx.uses[instr->operands[i].tempId()]; literal_idx = i; } else { literal_uses = UINT32_MAX; } break; } else if (ctx.info[instr->operands[i].tempId()].is_literal() && ctx.uses[instr->operands[i].tempId()] < literal_uses) { literal_uses = ctx.uses[instr->operands[i].tempId()]; literal_idx = i; } } if (literal_uses < threshold) { ctx.uses[instr->operands[literal_idx].tempId()]--; info->check_literal = true; info->literal_idx = literal_idx; } } return; } /* check for literals */ /* we do not apply the literals yet as we don't know if it is profitable */ if (instr->isSALU()) { uint32_t literal_idx = 0; uint32_t literal_uses = UINT32_MAX; bool has_literal = false; for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) { has_literal = true; break; } if (!instr->operands[i].isTemp()) continue; if (ctx.info[instr->operands[i].tempId()].is_literal() && ctx.uses[instr->operands[i].tempId()] < literal_uses) { literal_uses = ctx.uses[instr->operands[i].tempId()]; literal_idx = i; } } if (!has_literal && literal_uses < threshold) { ctx.uses[instr->operands[literal_idx].tempId()]--; if (ctx.uses[instr->operands[literal_idx].tempId()] == 0) instr->operands[literal_idx] = Operand(ctx.info[instr->operands[literal_idx].tempId()].val); } } else if (instr->isVALU() && valu_can_accept_literal(ctx, instr, 0) && instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_literal() && ctx.uses[instr->operands[0].tempId()] < threshold) { ctx.uses[instr->operands[0].tempId()]--; if (ctx.uses[instr->operands[0].tempId()] == 0) instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val); } } void apply_literals(opt_ctx &ctx, aco_ptr& instr) { /* Cleanup Dead Instructions */ if (!instr) return; /* apply literals on SALU */ if (instr->isSALU()) { for (Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isLiteral()) break; if (ctx.info[op.tempId()].is_literal() && ctx.uses[op.tempId()] == 0) op = Operand(ctx.info[op.tempId()].val); } } /* apply literals on VALU */ else if (instr->isVALU() && !instr->isVOP3() && instr->operands[0].isTemp() && ctx.info[instr->operands[0].tempId()].is_literal() && ctx.uses[instr->operands[0].tempId()] == 0) { instr->operands[0] = Operand(ctx.info[instr->operands[0].tempId()].val); } /* apply literals on MAD */ else if (instr->opcode == aco_opcode::v_mad_f32 && ctx.info[instr->definitions[0].tempId()].is_mad()) { mad_info* info = &ctx.mad_infos[ctx.info[instr->definitions[0].tempId()].val]; aco_ptr new_mad; if (info->check_literal && ctx.uses[instr->operands[info->literal_idx].tempId()] == 0) { if (info->literal_idx == 2) { /* add literal -> madak */ new_mad.reset(create_instruction(aco_opcode::v_madak_f32, Format::VOP2, 3, 1)); new_mad->operands[0] = instr->operands[0]; new_mad->operands[1] = instr->operands[1]; } else { /* mul literal -> madmk */ new_mad.reset(create_instruction(aco_opcode::v_madmk_f32, Format::VOP2, 3, 1)); new_mad->operands[0] = instr->operands[1 - info->literal_idx]; new_mad->operands[1] = instr->operands[2]; } new_mad->operands[2] = Operand(ctx.info[instr->operands[info->literal_idx].tempId()].val); new_mad->definitions[0] = instr->definitions[0]; instr.swap(new_mad); } } ctx.instructions.emplace_back(std::move(instr)); } void optimize(Program* program) { opt_ctx ctx; ctx.program = program; std::vector info(program->peekAllocationId()); ctx.info = info.data(); /* 1. Bottom-Up DAG pass (forward) to label all ssa-defs */ for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) label_instruction(ctx, block, instr); } ctx.uses = std::move(dead_code_analysis(program)); /* 2. Combine v_mad, omod, clamp and propagate sgpr on VALU instructions */ for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) combine_instruction(ctx, block, instr); } /* 3. Top-Down DAG pass (backward) to select instructions (includes DCE) */ for (std::vector::reverse_iterator it = program->blocks.rbegin(); it != program->blocks.rend(); ++it) { Block* block = &(*it); for (std::vector>::reverse_iterator it = block->instructions.rbegin(); it != block->instructions.rend(); ++it) select_instruction(ctx, *it); } /* 4. Add literals to instructions */ for (Block& block : program->blocks) { ctx.instructions.clear(); for (aco_ptr& instr : block.instructions) apply_literals(ctx, instr); block.instructions.swap(ctx.instructions); } } }