/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de) * */ #include #include "aco_ir.h" #include "aco_builder.h" #include "util/u_math.h" #include "sid.h" #include "vulkan/radv_shader.h" namespace aco { struct lower_context { Program *program; std::vector> instructions; }; aco_opcode get_reduce_opcode(chip_class chip, ReduceOp op) { switch (op) { case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32; case imul32: return aco_opcode::v_mul_lo_u32; case fadd32: return aco_opcode::v_add_f32; case fmul32: return aco_opcode::v_mul_f32; case imax32: return aco_opcode::v_max_i32; case imin32: return aco_opcode::v_min_i32; case umin32: return aco_opcode::v_min_u32; case umax32: return aco_opcode::v_max_u32; case fmin32: return aco_opcode::v_min_f32; case fmax32: return aco_opcode::v_max_f32; case iand32: return aco_opcode::v_and_b32; case ixor32: return aco_opcode::v_xor_b32; case ior32: return aco_opcode::v_or_b32; case iadd64: return aco_opcode::num_opcodes; case imul64: return aco_opcode::num_opcodes; case fadd64: return aco_opcode::v_add_f64; case fmul64: return aco_opcode::v_mul_f64; case imin64: return aco_opcode::num_opcodes; case imax64: return aco_opcode::num_opcodes; case umin64: return aco_opcode::num_opcodes; case umax64: return aco_opcode::num_opcodes; case fmin64: return aco_opcode::v_min_f64; case fmax64: return aco_opcode::v_max_f64; case iand64: return aco_opcode::num_opcodes; case ior64: return aco_opcode::num_opcodes; case ixor64: return aco_opcode::num_opcodes; default: return aco_opcode::num_opcodes; } } void emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1) { Instruction *instr = bld.vadd32(def, src0, src1, false, Operand(s2), true); if (instr->definitions.size() >= 2) { assert(instr->definitions[1].regClass() == bld.lm); instr->definitions[1].setFixed(vcc); } } void emit_int64_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp_reg, ReduceOp op, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl, Operand *identity=NULL) { Builder bld(ctx->program, &ctx->instructions); Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)}; Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg+1}, v1)}; Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg+1}, v1)}; Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)}; Operand src1_64 = Operand(src1_reg, v2); Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg+1}, v1)}; Operand vtmp_op64 = Operand(vtmp_reg, v2); if (op == iadd64) { if (ctx->program->chip_class >= GFX10) { if (identity) bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]); } else { bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); } bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm), dpp_ctrl, row_mask, bank_mask, bound_ctrl); } else if (op == iand64) { bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, bound_ctrl); } else if (op == ior64) { bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, bound_ctrl); } else if (op == ixor64) { bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask, bound_ctrl); } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) { aco_opcode cmp = aco_opcode::num_opcodes; switch (op) { case umin64: cmp = aco_opcode::v_cmp_gt_u64; break; case umax64: cmp = aco_opcode::v_cmp_lt_u64; break; case imin64: cmp = aco_opcode::v_cmp_gt_i64; break; case imax64: cmp = aco_opcode::v_cmp_lt_i64; break; default: break; } if (identity) { bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]); } bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64); bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm)); bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm)); } else if (op == imul64) { /* t4 = dpp(x_hi) * t1 = umul_lo(t4, y_lo) * t3 = dpp(x_lo) * t0 = umul_lo(t3, y_hi) * t2 = iadd(t0, t1) * t5 = umul_hi(t3, y_lo) * res_hi = iadd(t2, t5) * res_lo = umul_lo(t3, y_lo) * Requires that res_hi != src0[0] and res_hi != src1[0] * and that vtmp[0] != res_hi. */ if (identity) bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]); if (identity) bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]); emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]); if (identity) bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]); emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]); if (identity) bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]); bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]); } } void emit_int64_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op) { Builder bld(ctx->program, &ctx->instructions); Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg+1}, v1)}; RegClass src0_rc = src0_reg.reg >= 256 ? v1 : s1; Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg+1}, src0_rc)}; Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg+1}, v1)}; Operand src0_64 = Operand(src0_reg, src0_reg.reg >= 256 ? v2 : s2); Operand src1_64 = Operand(src1_reg, v2); if (src0_rc == s1 && (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) { assert(vtmp.reg != 0); bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]); bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]); src0_reg = vtmp; src0[0] = Operand(vtmp, v1); src0[1] = Operand(PhysReg{vtmp+1}, v1); src0_64 = Operand(vtmp, v2); } else if (src0_rc == s1 && op == iadd64) { assert(vtmp.reg != 0); bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), src0[1]); src0[1] = Operand(PhysReg{vtmp+1}, v1); } if (op == iadd64) { if (ctx->program->chip_class >= GFX10) { bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]); } else { bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]); } bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1], Operand(vcc, bld.lm)); } else if (op == iand64) { bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]); bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]); } else if (op == ior64) { bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]); bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]); } else if (op == ixor64) { bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]); bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]); } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) { aco_opcode cmp = aco_opcode::num_opcodes; switch (op) { case umin64: cmp = aco_opcode::v_cmp_gt_u64; break; case umax64: cmp = aco_opcode::v_cmp_lt_u64; break; case imin64: cmp = aco_opcode::v_cmp_gt_i64; break; case imax64: cmp = aco_opcode::v_cmp_lt_i64; break; default: break; } bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64); bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm)); bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm)); } else if (op == imul64) { if (src1_reg == dst_reg) { /* it's fine if src0==dst but not if src1==dst */ std::swap(src0_reg, src1_reg); std::swap(src0[0], src1[0]); std::swap(src0[1], src1[1]); std::swap(src0_64, src1_64); } assert(!(src0_reg == src1_reg)); /* t1 = umul_lo(x_hi, y_lo) * t0 = umul_lo(x_lo, y_hi) * t2 = iadd(t0, t1) * t5 = umul_hi(x_lo, y_lo) * res_hi = iadd(t2, t5) * res_lo = umul_lo(x_lo, y_lo) * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp */ Definition tmp0_def(PhysReg{src0_reg+1}, v1); Definition tmp1_def(PhysReg{src1_reg+1}, v1); Operand tmp0_op = src0[1]; Operand tmp1_op = src1[1]; bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]); bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]); emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op); bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]); emit_vadd32(bld, dst[1], tmp0_op, tmp1_op); bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]); } } void emit_dpp_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op, unsigned size, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl, Operand *identity=NULL) /* for VOP3 with sparse writes */ { Builder bld(ctx->program, &ctx->instructions); RegClass rc = RegClass(RegType::vgpr, size); Definition dst(dst_reg, rc); Operand src0(src0_reg, rc); Operand src1(src1_reg, rc); aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op); bool vop3 = op == imul32 || size == 2; if (!vop3) { if (opcode == aco_opcode::v_add_co_u32) bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl); else bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl); return; } if (opcode == aco_opcode::num_opcodes) { emit_int64_dpp_op(ctx, dst_reg ,src0_reg, src1_reg, vtmp, op, dpp_ctrl, row_mask, bank_mask, bound_ctrl, identity); return; } if (identity) bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]); if (identity && size >= 2) bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]); for (unsigned i = 0; i < size; i++) bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0_reg+i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl); bld.vop3(opcode, dst, Operand(vtmp, rc), src1); } void emit_op(lower_context *ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp, ReduceOp op, unsigned size) { Builder bld(ctx->program, &ctx->instructions); RegClass rc = RegClass(RegType::vgpr, size); Definition dst(dst_reg, rc); Operand src0(src0_reg, RegClass(src0_reg.reg >= 256 ? RegType::vgpr : RegType::sgpr, size)); Operand src1(src1_reg, rc); aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op); bool vop3 = op == imul32 || size == 2; if (opcode == aco_opcode::num_opcodes) { emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op); return; } if (vop3) { bld.vop3(opcode, dst, src0, src1); } else if (opcode == aco_opcode::v_add_co_u32) { bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1); } else { bld.vop2(opcode, dst, src0, src1); } } void emit_dpp_mov(lower_context *ctx, PhysReg dst, PhysReg src0, unsigned size, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl) { Builder bld(ctx->program, &ctx->instructions); for (unsigned i = 0; i < size; i++) { bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src0+i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl); } } uint32_t get_reduction_identity(ReduceOp op, unsigned idx) { switch (op) { case iadd32: case iadd64: case fadd32: case fadd64: case ior32: case ior64: case ixor32: case ixor64: case umax32: case umax64: return 0; case imul32: case imul64: return idx ? 0 : 1; case fmul32: return 0x3f800000u; /* 1.0 */ case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */ case imin32: return INT32_MAX; case imin64: return idx ? 0x7fffffffu : 0xffffffffu; case imax32: return INT32_MIN; case imax64: return idx ? 0x80000000u : 0; case umin32: case umin64: case iand32: case iand64: return 0xffffffffu; case fmin32: return 0x7f800000u; /* infinity */ case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */ case fmax32: return 0xff800000u; /* negative infinity */ case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */ default: unreachable("Invalid reduction operation"); break; } return 0; } void emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern) { for (unsigned i = 0; i < size; i++) { bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst+i}, v1), Operand(PhysReg{src+i}, v1), ds_pattern); } } void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp, PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst) { assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce); assert(cluster_size <= ctx->program->wave_size); Builder bld(ctx->program, &ctx->instructions); Operand identity[2]; identity[0] = Operand(get_reduction_identity(reduce_op, 0)); identity[1] = Operand(get_reduction_identity(reduce_op, 1)); Operand vcndmask_identity[2] = {identity[0], identity[1]}; /* First, copy the source to tmp and set inactive lanes to the identity */ bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1), Definition(exec, bld.lm), Operand(UINT64_MAX), Operand(exec, bld.lm)); for (unsigned i = 0; i < src.size(); i++) { /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32 * except on GFX10, where v_writelane_b32 can take a literal. */ if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan && ctx->program->chip_class < GFX10) { bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]); identity[i] = Operand(PhysReg{sitmp+i}, s1); bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]); vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1); } else if (identity[i].isLiteral()) { bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]); vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1); } } for (unsigned i = 0; i < src.size(); i++) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1), vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1), Operand(stmp, bld.lm)); } bool reduction_needs_last_op = false; switch (op) { case aco_opcode::p_reduce: if (cluster_size == 1) break; if (ctx->program->chip_class <= GFX7) { reduction_needs_last_op = true; emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2)); if (cluster_size == 2) break; emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1)); if (cluster_size == 4) break; emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04)); if (cluster_size == 8) break; emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08)); if (cluster_size == 16) break; emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10)); if (cluster_size == 32) break; emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); for (unsigned i = 0; i < src.size(); i++) bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1), Operand(0u)); // TODO: it would be more effective to do the last reduction step on SALU emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size()); reduction_needs_last_op = false; break; } emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false); if (cluster_size == 2) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false); if (cluster_size == 4) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf, false); if (cluster_size == 8) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false); if (cluster_size == 16) break; if (ctx->program->chip_class >= GFX10) { /* GFX10+ doesn't support row_bcast15 and row_bcast31 */ for (unsigned i = 0; i < src.size(); i++) bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0u), Operand(0u)); if (cluster_size == 32) { reduction_needs_last_op = true; break; } emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); for (unsigned i = 0; i < src.size(); i++) bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u)); // TODO: it would be more effective to do the last reduction step on SALU emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size()); break; } if (cluster_size == 32) { emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10)); reduction_needs_last_op = true; break; } assert(cluster_size == 64); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false); break; case aco_opcode::p_exclusive_scan: if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */ /* shift rows right */ emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true); /* fill in the gaps in rows 1 and 3 */ bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10000u)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(0x10000u)); for (unsigned i = 0; i < src.size(); i++) { Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0xffffffffu), Operand(0xffffffffu)).instr; static_cast(perm)->opsel[0] = true; /* FI (Fetch Inactive) */ } bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(UINT64_MAX)); if (ctx->program->wave_size == 64) { /* fill in the gap in row 2 */ for (unsigned i = 0; i < src.size(); i++) { bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u)); bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1)); } } std::swap(tmp, vtmp); } else if (ctx->program->chip_class >= GFX8) { emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true); } else { // TODO: use LDS on CS with a single write and shifted read /* wavefront shift_right by 1 on SI/CI */ emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2)); emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */ bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x10101010u)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); for (unsigned i = 0; i < src.size(); i++) bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1)); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */ bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0x01000100u)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); for (unsigned i = 0; i < src.size(); i++) bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1)); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, tmp, tmp, src.size(), ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */ bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(1u), Operand(16u)); bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(1u), Operand(16u)); for (unsigned i = 0; i < src.size(); i++) bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1)); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); for (unsigned i = 0; i < src.size(); i++) { bld.writelane(Definition(PhysReg{vtmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{vtmp+i}, v1)); bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(0u)); bld.writelane(Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{sitmp+i}, s1), Operand(32u), Operand(PhysReg{vtmp+i}, v1)); identity[i] = Operand(0u); /* prevent further uses of identity */ } std::swap(tmp, vtmp); } for (unsigned i = 0; i < src.size(); i++) { if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */ if (ctx->program->chip_class < GFX10) assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i}); bld.writelane(Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u), Operand(PhysReg{tmp+i}, v1)); } } /* fall through */ case aco_opcode::p_inclusive_scan: assert(cluster_size == ctx->program->wave_size); if (ctx->program->chip_class <= GFX7) { emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xAAAAAAAAu)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xCCCCCCCCu)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xF0F0F0F0u)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand(0xFF00FF00u)); bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1)); emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(UINT64_MAX)); emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00)); bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u)); bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u)); emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); for (unsigned i = 0; i < src.size(); i++) bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u)); bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u)); emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size()); break; } emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(1), 0xf, 0xf, false, identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(2), 0xf, 0xf, false, identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(4), 0xf, 0xf, false, identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(8), 0xf, 0xf, false, identity); if (ctx->program->chip_class >= GFX10) { bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand(16u), Operand(16u)); bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand(16u), Operand(16u)); for (unsigned i = 0; i < src.size(); i++) { Instruction *perm = bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, v1), Operand(0xffffffffu), Operand(0xffffffffu)).instr; static_cast(perm)->opsel[0] = true; /* FI (Fetch Inactive) */ } emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size()); if (ctx->program->wave_size == 64) { bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand(32u), Operand(32u)); for (unsigned i = 0; i < src.size(); i++) bld.readlane(Definition(PhysReg{sitmp+i}, s1), Operand(PhysReg{tmp+i}, v1), Operand(31u)); emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size()); } } else { emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf, false, identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf, false, identity); } break; default: unreachable("Invalid reduction mode"); } if (op == aco_opcode::p_reduce) { if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) { bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm)); emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size()); return; } if (reduction_needs_last_op) emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size()); } /* restore exec */ bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm)); if (dst.regClass().type() == RegType::sgpr) { for (unsigned k = 0; k < src.size(); k++) { bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1), Operand(PhysReg{tmp + k}, v1), Operand(ctx->program->wave_size - 1)); } } else if (dst.physReg() != tmp) { for (unsigned k = 0; k < src.size(); k++) { bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1), Operand(PhysReg{tmp + k}, v1)); } } } struct copy_operation { Operand op; Definition def; unsigned uses; unsigned size; }; void handle_operands(std::map& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi) { Builder bld(ctx->program, &ctx->instructions); aco_ptr mov; std::map::iterator it = copy_map.begin(); std::map::iterator target; bool writes_scc = false; /* count the number of uses for each dst reg */ while (it != copy_map.end()) { if (it->second.op.isConstant()) { ++it; continue; } if (it->second.def.physReg() == scc) writes_scc = true; assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr)); /* if src and dst reg are the same, remove operation */ if (it->first == it->second.op.physReg()) { it = copy_map.erase(it); continue; } /* check if the operand reg may be overwritten by another copy operation */ target = copy_map.find(it->second.op.physReg()); if (target != copy_map.end()) { target->second.uses++; } ++it; } /* first, handle paths in the location transfer graph */ bool preserve_scc = pi->tmp_in_scc && !writes_scc; it = copy_map.begin(); while (it != copy_map.end()) { /* the target reg is not used as operand for any other copy */ if (it->second.uses == 0) { /* try to coalesce 32-bit sgpr copies to 64-bit copies */ if (it->second.def.getTemp().type() == RegType::sgpr && it->second.size == 1 && !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) { PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1}; PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1}; std::map::iterator other = copy_map.find(other_def_reg); if (other != copy_map.end() && !other->second.uses && other->second.size == 1 && other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) { std::map::iterator to_erase = it->first % 2 ? it : other; it = it->first % 2 ? other : it; copy_map.erase(to_erase); it->second.size = 2; } } if (it->second.def.physReg() == scc) { bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u)); preserve_scc = true; } else if (it->second.size == 2 && it->second.def.getTemp().type() == RegType::sgpr) { bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2)); } else { bld.copy(it->second.def, it->second.op); } /* reduce the number of uses of the operand reg by one */ if (!it->second.op.isConstant()) { for (unsigned i = 0; i < it->second.size; i++) { target = copy_map.find(PhysReg{it->second.op.physReg() + i}); if (target != copy_map.end()) target->second.uses--; } } copy_map.erase(it); it = copy_map.begin(); continue; } else { /* the target reg is used as operand, check the next entry */ ++it; } } if (copy_map.empty()) return; /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */ bool constants = false; for (it = copy_map.begin(); it != copy_map.end(); ++it) { assert(it->second.op.isFixed()); if (it->first == it->second.op.physReg()) continue; /* do constants later */ if (it->second.op.isConstant()) { constants = true; continue; } if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr) assert(!(it->second.def.physReg() == pi->scratch_sgpr)); /* to resolve the cycle, we have to swap the src reg with the dst reg */ copy_operation swap = it->second; assert(swap.op.regClass() == swap.def.regClass()); Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass()); Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass()); if (chip_class >= GFX9 && swap.def.getTemp().type() == RegType::vgpr) { bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op); } else if (swap.op.physReg() == scc || swap.def.physReg() == scc) { /* we need to swap scc and another sgpr */ assert(!preserve_scc); PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg(); bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1)); bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u)); bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1)); } else if (swap.def.getTemp().type() == RegType::sgpr) { if (preserve_scc) { bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op); bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op); bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1)); } else { bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op); bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op); bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op); } } else { bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op); bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op); bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op); } /* change the operand reg of the target's use */ assert(swap.uses == 1); target = it; for (++target; target != copy_map.end(); ++target) { if (target->second.op.physReg() == it->first) { target->second.op.setFixed(swap.op.physReg()); break; } } } /* copy constants into a registers which were operands */ if (constants) { for (it = copy_map.begin(); it != copy_map.end(); ++it) { if (!it->second.op.isConstant()) continue; if (it->second.def.physReg() == scc) { bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(0u), Operand(it->second.op.constantValue() ? 1u : 0u)); } else { bld.copy(it->second.def, it->second.op); } } } } void lower_to_hw_instr(Program* program) { Block *discard_block = NULL; for (size_t i = 0; i < program->blocks.size(); i++) { Block *block = &program->blocks[i]; lower_context ctx; ctx.program = program; Builder bld(program, &ctx.instructions); bool set_mode = i == 0 && block->fp_mode.val != program->config->float_mode; for (unsigned pred : block->linear_preds) { if (program->blocks[pred].fp_mode.val != block->fp_mode.val) { set_mode = true; break; } } if (set_mode) { /* only allow changing modes at top-level blocks so this doesn't break * the "jump over empty blocks" optimization */ assert(block->kind & block_kind_top_level); uint32_t mode = block->fp_mode.val; /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */ bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand(mode), (7 << 11) | 1); } for (size_t j = 0; j < block->instructions.size(); j++) { aco_ptr& instr = block->instructions[j]; aco_ptr mov; if (instr->format == Format::PSEUDO) { Pseudo_instruction *pi = (Pseudo_instruction*)instr.get(); switch (instr->opcode) { case aco_opcode::p_extract_vector: { unsigned reg = instr->operands[0].physReg() + instr->operands[1].constantValue() * instr->definitions[0].size(); RegClass rc = RegClass(instr->operands[0].getTemp().type(), 1); RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1); if (reg == instr->definitions[0].physReg()) break; std::map copy_operations; for (unsigned i = 0; i < instr->definitions[0].size(); i++) { Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, rc_def); copy_operations[def.physReg()] = {Operand(PhysReg{reg + i}, rc), def, 0, 1}; } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_create_vector: { std::map copy_operations; RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1); unsigned reg_idx = 0; for (const Operand& op : instr->operands) { if (op.isConstant()) { const PhysReg reg = PhysReg{instr->definitions[0].physReg() + reg_idx}; const Definition def = Definition(reg, rc_def); copy_operations[reg] = {op, def, 0, 1}; reg_idx++; continue; } RegClass rc_op = RegClass(op.getTemp().type(), 1); for (unsigned j = 0; j < op.size(); j++) { const Operand copy_op = Operand(PhysReg{op.physReg() + j}, rc_op); const Definition def = Definition(PhysReg{instr->definitions[0].physReg() + reg_idx}, rc_def); copy_operations[def.physReg()] = {copy_op, def, 0, 1}; reg_idx++; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_split_vector: { std::map copy_operations; RegClass rc_op = instr->operands[0].isConstant() ? s1 : RegClass(instr->operands[0].regClass().type(), 1); for (unsigned i = 0; i < instr->definitions.size(); i++) { unsigned k = instr->definitions[i].size(); RegClass rc_def = RegClass(instr->definitions[i].getTemp().type(), 1); for (unsigned j = 0; j < k; j++) { Operand op = Operand(PhysReg{instr->operands[0].physReg() + (i*k+j)}, rc_op); Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, rc_def); copy_operations[def.physReg()] = {op, def, 0, 1}; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_parallelcopy: case aco_opcode::p_wqm: { std::map copy_operations; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand operand = instr->operands[i]; if (operand.isConstant() || operand.size() == 1) { assert(instr->definitions[i].size() == 1); copy_operations[instr->definitions[i].physReg()] = {operand, instr->definitions[i], 0, 1}; } else { RegClass def_rc = RegClass(instr->definitions[i].regClass().type(), 1); RegClass op_rc = RegClass(operand.getTemp().type(), 1); for (unsigned j = 0; j < operand.size(); j++) { Operand op = Operand(PhysReg{instr->operands[i].physReg() + j}, op_rc); Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, def_rc); copy_operations[def.physReg()] = {op, def, 0, 1}; } } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_exit_early_if: { /* don't bother with an early exit at the end of the program */ if (block->instructions[j + 1]->opcode == aco_opcode::p_logical_end && block->instructions[j + 2]->opcode == aco_opcode::s_endpgm) { break; } if (!discard_block) { discard_block = program->create_and_insert_block(); block = &program->blocks[i]; bld.reset(discard_block); bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), 0, V_008DFC_SQ_EXP_NULL, false, true, true); if (program->wb_smem_l1_on_end) bld.smem(aco_opcode::s_dcache_wb); bld.sopp(aco_opcode::s_endpgm); bld.reset(&ctx.instructions); } //TODO: exec can be zero here with block_kind_discard assert(instr->operands[0].physReg() == scc); bld.sopp(aco_opcode::s_cbranch_scc0, instr->operands[0], discard_block->index); discard_block->linear_preds.push_back(block->index); block->linear_succs.push_back(discard_block->index); break; } case aco_opcode::p_spill: { assert(instr->operands[0].regClass() == v1.as_linear()); for (unsigned i = 0; i < instr->operands[2].size(); i++) bld.writelane(bld.def(v1, instr->operands[0].physReg()), Operand(PhysReg{instr->operands[2].physReg() + i}, s1), Operand(instr->operands[1].constantValue() + i), instr->operands[0]); break; } case aco_opcode::p_reload: { assert(instr->operands[0].regClass() == v1.as_linear()); for (unsigned i = 0; i < instr->definitions[0].size(); i++) bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}), instr->operands[0], Operand(instr->operands[1].constantValue() + i)); break; } case aco_opcode::p_as_uniform: { if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) { std::map copy_operations; Operand operand = instr->operands[0]; if (operand.isConstant() || operand.size() == 1) { assert(instr->definitions[0].size() == 1); copy_operations[instr->definitions[0].physReg()] = {operand, instr->definitions[0], 0, 1}; } else { for (unsigned i = 0; i < operand.size(); i++) { Operand op = Operand(PhysReg{operand.physReg() + i}, s1); Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, s1); copy_operations[def.physReg()] = {op, def, 0, 1}; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); } else { assert(instr->operands[0].regClass().type() == RegType::vgpr); assert(instr->definitions[0].regClass().type() == RegType::sgpr); assert(instr->operands[0].size() == instr->definitions[0].size()); for (unsigned i = 0; i < instr->definitions[0].size(); i++) { bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}), Operand(PhysReg{instr->operands[0].physReg() + i}, v1)); } } break; } default: break; } } else if (instr->format == Format::PSEUDO_BRANCH) { Pseudo_branch_instruction* branch = static_cast(instr.get()); /* check if all blocks from current to target are empty */ bool can_remove = block->index < branch->target[0]; for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) { if (program->blocks[i].instructions.size()) can_remove = false; } if (can_remove) continue; switch (instr->opcode) { case aco_opcode::p_branch: assert(block->linear_succs[0] == branch->target[0]); bld.sopp(aco_opcode::s_branch, branch->target[0]); break; case aco_opcode::p_cbranch_nz: assert(block->linear_succs[1] == branch->target[0]); if (branch->operands[0].physReg() == exec) bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]); else if (branch->operands[0].physReg() == vcc) bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]); else { assert(branch->operands[0].physReg() == scc); bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]); } break; case aco_opcode::p_cbranch_z: assert(block->linear_succs[1] == branch->target[0]); if (branch->operands[0].physReg() == exec) bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]); else if (branch->operands[0].physReg() == vcc) bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]); else { assert(branch->operands[0].physReg() == scc); bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]); } break; default: unreachable("Unknown Pseudo branch instruction!"); } } else if (instr->format == Format::PSEUDO_REDUCTION) { Pseudo_reduction_instruction* reduce = static_cast(instr.get()); if (reduce->reduce_op == gfx10_wave64_bpermute) { /* Only makes sense on GFX10 wave64 */ assert(program->chip_class >= GFX10); assert(program->info->wave_size == 64); assert(instr->definitions[0].regClass() == v1); /* Destination */ assert(instr->definitions[1].regClass() == s2); /* Temp EXEC */ assert(instr->definitions[1].physReg() != vcc); assert(instr->definitions[2].physReg() == scc); /* SCC clobber */ assert(instr->operands[0].physReg() == vcc); /* Compare */ assert(instr->operands[1].regClass() == v2.as_linear()); /* Temp VGPR pair */ assert(instr->operands[2].regClass() == v1); /* Indices x4 */ assert(instr->operands[3].regClass() == v1); /* Input data */ PhysReg shared_vgpr_reg_lo = PhysReg(align(program->config->num_vgprs, 4) + 256); PhysReg shared_vgpr_reg_hi = PhysReg(shared_vgpr_reg_lo + 1); Operand compare = instr->operands[0]; Operand tmp1(instr->operands[1].physReg(), v1); Operand tmp2(PhysReg(instr->operands[1].physReg() + 1), v1); Operand index_x4 = instr->operands[2]; Operand input_data = instr->operands[3]; Definition shared_vgpr_lo(shared_vgpr_reg_lo, v1); Definition shared_vgpr_hi(shared_vgpr_reg_hi, v1); Definition def_temp1(tmp1.physReg(), v1); Definition def_temp2(tmp2.physReg(), v1); /* Save EXEC and set it for all lanes */ bld.sop1(aco_opcode::s_or_saveexec_b64, instr->definitions[1], instr->definitions[2], Definition(exec, s2), Operand((uint64_t)-1), Operand(exec, s2)); /* HI: Copy data from high lanes 32-63 to shared vgpr */ bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_hi, input_data, dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false); /* LO: Copy data from low lanes 0-31 to shared vgpr */ bld.vop1_dpp(aco_opcode::v_mov_b32, shared_vgpr_lo, input_data, dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false); /* LO: Copy shared vgpr (high lanes' data) to output vgpr */ bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_hi, v1), dpp_quad_perm(0, 1, 2, 3), 0x3, 0xf, false); /* HI: Copy shared vgpr (low lanes' data) to output vgpr */ bld.vop1_dpp(aco_opcode::v_mov_b32, def_temp1, Operand(shared_vgpr_reg_lo, v1), dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false); /* Permute the original input */ bld.ds(aco_opcode::ds_bpermute_b32, def_temp2, index_x4, input_data); /* Permute the swapped input */ bld.ds(aco_opcode::ds_bpermute_b32, def_temp1, index_x4, tmp1); /* Restore saved EXEC */ bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(instr->definitions[1].physReg(), s2)); /* Choose whether to use the original or swapped */ bld.vop2(aco_opcode::v_cndmask_b32, instr->definitions[0], tmp1, tmp2, compare); } else { emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size, reduce->operands[1].physReg(), // tmp reduce->definitions[1].physReg(), // stmp reduce->operands[2].physReg(), // vtmp reduce->definitions[2].physReg(), // sitmp reduce->operands[0], reduce->definitions[0]); } } else { ctx.instructions.emplace_back(std::move(instr)); } } block->instructions.swap(ctx.instructions); } } }