/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "aco_ir.h" #include "nir.h" #include "nir_control_flow.h" #include "vulkan/radv_shader.h" #include "vulkan/radv_descriptor_set.h" #include "vulkan/radv_shader_args.h" #include "sid.h" #include "ac_exp_param.h" #include "ac_shader_util.h" #include "util/u_math.h" #define MAX_INLINE_PUSH_CONSTS 8 namespace aco { struct shader_io_state { uint8_t mask[VARYING_SLOT_MAX]; Temp temps[VARYING_SLOT_MAX * 4u]; shader_io_state() { memset(mask, 0, sizeof(mask)); std::fill_n(temps, VARYING_SLOT_MAX * 4u, Temp(0, RegClass::v1)); } }; struct isel_context { const struct radv_nir_compiler_options *options; struct radv_shader_args *args; Program *program; nir_shader *shader; uint32_t constant_data_offset; Block *block; std::unique_ptr allocated; std::unordered_map> allocated_vec; Stage stage; /* Stage */ bool has_gfx10_wave64_bpermute = false; struct { bool has_branch; uint16_t loop_nest_depth = 0; struct { unsigned header_idx; Block* exit; bool has_divergent_continue = false; bool has_divergent_branch = false; } parent_loop; struct { bool is_divergent = false; } parent_if; bool exec_potentially_empty_discard = false; /* set to false when loop_nest_depth==0 && parent_if.is_divergent==false */ uint16_t exec_potentially_empty_break_depth = UINT16_MAX; /* Set to false when loop_nest_depth==exec_potentially_empty_break_depth * and parent_if.is_divergent==false. Called _break but it's also used for * loop continues. */ bool exec_potentially_empty_break = false; std::unique_ptr nir_to_aco; /* NIR block index to ACO block index */ } cf_info; Temp arg_temps[AC_MAX_ARGS]; /* FS inputs */ Temp persp_centroid, linear_centroid; /* GS inputs */ Temp gs_wave_id; /* VS output information */ bool export_clip_dists; unsigned num_clip_distances; unsigned num_cull_distances; /* tessellation information */ unsigned tcs_tess_lvl_out_loc; unsigned tcs_tess_lvl_in_loc; uint64_t tcs_temp_only_inputs; uint32_t tcs_num_inputs; uint32_t tcs_num_outputs; uint32_t tcs_num_patch_outputs; uint32_t tcs_num_patches; bool tcs_in_out_eq = false; /* I/O information */ shader_io_state inputs; shader_io_state outputs; uint8_t output_drv_loc_to_var_slot[MESA_SHADER_COMPUTE][VARYING_SLOT_MAX]; uint8_t output_tcs_patch_drv_loc_to_var_slot[VARYING_SLOT_MAX]; }; Temp get_arg(isel_context *ctx, struct ac_arg arg) { assert(arg.used); return ctx->arg_temps[arg.arg_index]; } unsigned get_interp_input(nir_intrinsic_op intrin, enum glsl_interp_mode interp) { switch (interp) { case INTERP_MODE_SMOOTH: case INTERP_MODE_NONE: if (intrin == nir_intrinsic_load_barycentric_pixel || intrin == nir_intrinsic_load_barycentric_at_sample || intrin == nir_intrinsic_load_barycentric_at_offset) return S_0286CC_PERSP_CENTER_ENA(1); else if (intrin == nir_intrinsic_load_barycentric_centroid) return S_0286CC_PERSP_CENTROID_ENA(1); else if (intrin == nir_intrinsic_load_barycentric_sample) return S_0286CC_PERSP_SAMPLE_ENA(1); break; case INTERP_MODE_NOPERSPECTIVE: if (intrin == nir_intrinsic_load_barycentric_pixel) return S_0286CC_LINEAR_CENTER_ENA(1); else if (intrin == nir_intrinsic_load_barycentric_centroid) return S_0286CC_LINEAR_CENTROID_ENA(1); else if (intrin == nir_intrinsic_load_barycentric_sample) return S_0286CC_LINEAR_SAMPLE_ENA(1); break; default: break; } return 0; } /* If one side of a divergent IF ends in a branch and the other doesn't, we * might have to emit the contents of the side without the branch at the merge * block instead. This is so that we can use any SGPR live-out of the side * without the branch without creating a linear phi in the invert or merge block. */ bool sanitize_if(nir_function_impl *impl, nir_if *nif) { //TODO: skip this if the condition is uniform and there are no divergent breaks/continues? nir_block *then_block = nir_if_last_then_block(nif); nir_block *else_block = nir_if_last_else_block(nif); bool then_jump = nir_block_ends_in_jump(then_block) || nir_block_is_unreachable(then_block); bool else_jump = nir_block_ends_in_jump(else_block) || nir_block_is_unreachable(else_block); if (then_jump == else_jump) return false; /* If the continue from block is empty then return as there is nothing to * move. */ if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list)) return false; /* Even though this if statement has a jump on one side, we may still have * phis afterwards. Single-source phis can be produced by loop unrolling * or dead control-flow passes and are perfectly legal. Run a quick phi * removal on the block after the if to clean up any such phis. */ nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node))); /* Finally, move the continue from branch after the if-statement. */ nir_block *last_continue_from_blk = else_jump ? then_block : else_block; nir_block *first_continue_from_blk = else_jump ? nir_if_first_then_block(nif) : nir_if_first_else_block(nif); nir_cf_list tmp; nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk), nir_after_block(last_continue_from_blk)); nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node)); /* nir_cf_extract() invalidates dominance metadata, but it should still be * correct because of the specific type of transformation we did. Block * indices are not valid except for block_0's, which is all we care about for * nir_block_is_unreachable(). */ impl->valid_metadata = (nir_metadata)(impl->valid_metadata | nir_metadata_dominance | nir_metadata_block_index); return true; } bool sanitize_cf_list(nir_function_impl *impl, struct exec_list *cf_list) { bool progress = false; foreach_list_typed(nir_cf_node, cf_node, node, cf_list) { switch (cf_node->type) { case nir_cf_node_block: break; case nir_cf_node_if: { nir_if *nif = nir_cf_node_as_if(cf_node); progress |= sanitize_cf_list(impl, &nif->then_list); progress |= sanitize_cf_list(impl, &nif->else_list); progress |= sanitize_if(impl, nif); break; } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(cf_node); progress |= sanitize_cf_list(impl, &loop->body); break; } case nir_cf_node_function: unreachable("Invalid cf type"); } } return progress; } RegClass get_reg_class(isel_context *ctx, RegType type, unsigned components, unsigned bitsize) { if (bitsize == 1) return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components); else return RegClass::get(type, components * bitsize / 8u); } void init_context(isel_context *ctx, nir_shader *shader) { nir_function_impl *impl = nir_shader_get_entrypoint(shader); unsigned lane_mask_size = ctx->program->lane_mask.size(); ctx->shader = shader; nir_divergence_analysis(shader, nir_divergence_view_index_uniform); /* sanitize control flow */ nir_metadata_require(impl, nir_metadata_dominance); sanitize_cf_list(impl, &impl->body); nir_metadata_preserve(impl, (nir_metadata)~nir_metadata_block_index); /* we'll need this for isel */ nir_metadata_require(impl, nir_metadata_block_index); if (!(ctx->stage & sw_gs_copy) && ctx->options->dump_preoptir) { fprintf(stderr, "NIR shader before instruction selection:\n"); nir_print_shader(shader, stderr); } std::unique_ptr allocated{new Temp[impl->ssa_alloc]()}; unsigned spi_ps_inputs = 0; std::unique_ptr nir_to_aco{new unsigned[impl->num_blocks]()}; bool done = false; while (!done) { done = true; nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { switch(instr->type) { case nir_instr_type_alu: { nir_alu_instr *alu_instr = nir_instr_as_alu(instr); RegType type = RegType::sgpr; switch(alu_instr->op) { case nir_op_fmul: case nir_op_fadd: case nir_op_fsub: case nir_op_fmax: case nir_op_fmin: case nir_op_fmax3: case nir_op_fmin3: case nir_op_fmed3: case nir_op_fneg: case nir_op_fabs: case nir_op_fsat: case nir_op_fsign: case nir_op_frcp: case nir_op_frsq: case nir_op_fsqrt: case nir_op_fexp2: case nir_op_flog2: case nir_op_ffract: case nir_op_ffloor: case nir_op_fceil: case nir_op_ftrunc: case nir_op_fround_even: case nir_op_fsin: case nir_op_fcos: case nir_op_f2f16: case nir_op_f2f16_rtz: case nir_op_f2f16_rtne: case nir_op_f2f32: case nir_op_f2f64: case nir_op_u2f16: case nir_op_u2f32: case nir_op_u2f64: case nir_op_i2f16: case nir_op_i2f32: case nir_op_i2f64: case nir_op_pack_half_2x16: case nir_op_unpack_half_2x16_split_x: case nir_op_unpack_half_2x16_split_y: case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: case nir_op_fquantize2f16: case nir_op_ldexp: case nir_op_frexp_sig: case nir_op_frexp_exp: case nir_op_cube_face_index: case nir_op_cube_face_coord: type = RegType::vgpr; break; case nir_op_f2i16: case nir_op_f2u16: case nir_op_f2i32: case nir_op_f2u32: case nir_op_f2i64: case nir_op_f2u64: case nir_op_b2i32: case nir_op_b2b32: case nir_op_b2f16: case nir_op_b2f32: case nir_op_mov: type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr; break; case nir_op_bcsel: type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr; /* fallthrough */ default: for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) { if (allocated[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size); allocated[alu_instr->dest.dest.ssa.index] = Temp(0, rc); break; } case nir_instr_type_load_const: { unsigned num_components = nir_instr_as_load_const(instr)->def.num_components; unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); allocated[nir_instr_as_load_const(instr)->def.index] = Temp(0, rc); break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr); if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest) break; RegType type = RegType::sgpr; switch(intrinsic->intrinsic) { case nir_intrinsic_load_push_constant: case nir_intrinsic_load_work_group_id: case nir_intrinsic_load_num_work_groups: case nir_intrinsic_load_subgroup_id: case nir_intrinsic_load_num_subgroups: case nir_intrinsic_load_first_vertex: case nir_intrinsic_load_base_instance: case nir_intrinsic_get_buffer_size: case nir_intrinsic_vote_all: case nir_intrinsic_vote_any: case nir_intrinsic_read_first_invocation: case nir_intrinsic_read_invocation: case nir_intrinsic_first_invocation: case nir_intrinsic_ballot: type = RegType::sgpr; break; case nir_intrinsic_load_sample_id: case nir_intrinsic_load_sample_mask_in: case nir_intrinsic_load_input: case nir_intrinsic_load_output: case nir_intrinsic_load_input_vertex: case nir_intrinsic_load_per_vertex_input: case nir_intrinsic_load_per_vertex_output: case nir_intrinsic_load_vertex_id: case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_model: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_at_sample: case nir_intrinsic_load_barycentric_at_offset: case nir_intrinsic_load_interpolated_input: case nir_intrinsic_load_frag_coord: case nir_intrinsic_load_sample_pos: case nir_intrinsic_load_layer_id: case nir_intrinsic_load_local_invocation_id: case nir_intrinsic_load_local_invocation_index: case nir_intrinsic_load_subgroup_invocation: case nir_intrinsic_load_tess_coord: case nir_intrinsic_write_invocation_amd: case nir_intrinsic_mbcnt_amd: case nir_intrinsic_load_instance_id: case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: case nir_intrinsic_global_atomic_add: case nir_intrinsic_global_atomic_imin: case nir_intrinsic_global_atomic_umin: case nir_intrinsic_global_atomic_imax: case nir_intrinsic_global_atomic_umax: case nir_intrinsic_global_atomic_and: case nir_intrinsic_global_atomic_or: case nir_intrinsic_global_atomic_xor: case nir_intrinsic_global_atomic_exchange: case nir_intrinsic_global_atomic_comp_swap: case nir_intrinsic_image_deref_atomic_add: case nir_intrinsic_image_deref_atomic_umin: case nir_intrinsic_image_deref_atomic_imin: case nir_intrinsic_image_deref_atomic_umax: case nir_intrinsic_image_deref_atomic_imax: case nir_intrinsic_image_deref_atomic_and: case nir_intrinsic_image_deref_atomic_or: case nir_intrinsic_image_deref_atomic_xor: case nir_intrinsic_image_deref_atomic_exchange: case nir_intrinsic_image_deref_atomic_comp_swap: case nir_intrinsic_image_deref_size: case nir_intrinsic_shared_atomic_add: case nir_intrinsic_shared_atomic_imin: case nir_intrinsic_shared_atomic_umin: case nir_intrinsic_shared_atomic_imax: case nir_intrinsic_shared_atomic_umax: case nir_intrinsic_shared_atomic_and: case nir_intrinsic_shared_atomic_or: case nir_intrinsic_shared_atomic_xor: case nir_intrinsic_shared_atomic_exchange: case nir_intrinsic_shared_atomic_comp_swap: case nir_intrinsic_load_scratch: case nir_intrinsic_load_invocation_id: case nir_intrinsic_load_primitive_id: type = RegType::vgpr; break; case nir_intrinsic_shuffle: case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: case nir_intrinsic_masked_swizzle_amd: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: case nir_intrinsic_reduce: case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_global: case nir_intrinsic_vulkan_resource_index: case nir_intrinsic_load_shared: type = nir_dest_is_divergent(intrinsic->dest) ? RegType::vgpr : RegType::sgpr; break; case nir_intrinsic_load_view_index: type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr; break; default: for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) { if (allocated[intrinsic->src[i].ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size); allocated[intrinsic->dest.ssa.index] = Temp(0, rc); switch(intrinsic->intrinsic) { case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_at_sample: case nir_intrinsic_load_barycentric_at_offset: { glsl_interp_mode mode = (glsl_interp_mode)nir_intrinsic_interp_mode(intrinsic); spi_ps_inputs |= get_interp_input(intrinsic->intrinsic, mode); break; } case nir_intrinsic_load_barycentric_model: spi_ps_inputs |= S_0286CC_PERSP_PULL_MODEL_ENA(1); break; case nir_intrinsic_load_front_face: spi_ps_inputs |= S_0286CC_FRONT_FACE_ENA(1); break; case nir_intrinsic_load_frag_coord: case nir_intrinsic_load_sample_pos: { uint8_t mask = nir_ssa_def_components_read(&intrinsic->dest.ssa); for (unsigned i = 0; i < 4; i++) { if (mask & (1 << i)) spi_ps_inputs |= S_0286CC_POS_X_FLOAT_ENA(1) << i; } break; } case nir_intrinsic_load_sample_id: spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1); break; case nir_intrinsic_load_sample_mask_in: spi_ps_inputs |= S_0286CC_ANCILLARY_ENA(1); spi_ps_inputs |= S_0286CC_SAMPLE_COVERAGE_ENA(1); break; default: break; } break; } case nir_instr_type_tex: { nir_tex_instr* tex = nir_instr_as_tex(instr); unsigned size = tex->dest.ssa.num_components; if (tex->dest.ssa.bit_size == 64) size *= 2; if (tex->op == nir_texop_texture_samples) { assert(!tex->dest.ssa.divergent); } if (nir_dest_is_divergent(tex->dest)) allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::vgpr, size)); else allocated[tex->dest.ssa.index] = Temp(0, RegClass(RegType::sgpr, size)); break; } case nir_instr_type_parallel_copy: { nir_foreach_parallel_copy_entry(entry, nir_instr_as_parallel_copy(instr)) { allocated[entry->dest.ssa.index] = allocated[entry->src.ssa->index]; } break; } case nir_instr_type_ssa_undef: { unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components; unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); allocated[nir_instr_as_ssa_undef(instr)->def.index] = Temp(0, rc); break; } case nir_instr_type_phi: { nir_phi_instr* phi = nir_instr_as_phi(instr); RegType type; unsigned size = phi->dest.ssa.num_components; if (phi->dest.ssa.bit_size == 1) { assert(size == 1 && "multiple components not yet supported on boolean phis."); type = RegType::sgpr; size *= lane_mask_size; allocated[phi->dest.ssa.index] = Temp(0, RegClass(type, size)); break; } if (nir_dest_is_divergent(phi->dest)) { type = RegType::vgpr; } else { type = RegType::sgpr; nir_foreach_phi_src (src, phi) { if (allocated[src->src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; if (allocated[src->src.ssa->index].type() == RegType::none) done = false; } } RegClass rc = get_reg_class(ctx, type, phi->dest.ssa.num_components, phi->dest.ssa.bit_size); if (rc != allocated[phi->dest.ssa.index].regClass()) { done = false; } else { nir_foreach_phi_src(src, phi) assert(allocated[src->src.ssa->index].size() == rc.size()); } allocated[phi->dest.ssa.index] = Temp(0, rc); break; } default: break; } } } } if (G_0286CC_POS_W_FLOAT_ENA(spi_ps_inputs)) { /* If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be enabled too */ spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1); } if (!(spi_ps_inputs & 0x7F)) { /* At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled */ spi_ps_inputs |= S_0286CC_PERSP_CENTER_ENA(1); } ctx->program->config->spi_ps_input_ena = spi_ps_inputs; ctx->program->config->spi_ps_input_addr = spi_ps_inputs; for (unsigned i = 0; i < impl->ssa_alloc; i++) allocated[i] = Temp(ctx->program->allocateId(), allocated[i].regClass()); ctx->allocated.reset(allocated.release()); ctx->cf_info.nir_to_aco.reset(nir_to_aco.release()); } Pseudo_instruction *add_startpgm(struct isel_context *ctx) { unsigned arg_count = ctx->args->ac.arg_count; if (ctx->stage == fragment_fs) { /* LLVM optimizes away unused FS inputs and computes spi_ps_input_addr * itself and then communicates the results back via the ELF binary. * Mirror what LLVM does by re-mapping the VGPR arguments here. * * TODO: If we made the FS input scanning code into a separate pass that * could run before argument setup, then this wouldn't be necessary * anymore. */ struct ac_shader_args *args = &ctx->args->ac; arg_count = 0; for (unsigned i = 0, vgpr_arg = 0, vgpr_reg = 0; i < args->arg_count; i++) { if (args->args[i].file != AC_ARG_VGPR) { arg_count++; continue; } if (!(ctx->program->config->spi_ps_input_addr & (1 << vgpr_arg))) { args->args[i].skip = true; } else { args->args[i].offset = vgpr_reg; vgpr_reg += args->args[i].size; arg_count++; } vgpr_arg++; } } aco_ptr startpgm{create_instruction(aco_opcode::p_startpgm, Format::PSEUDO, 0, arg_count + 1)}; for (unsigned i = 0, arg = 0; i < ctx->args->ac.arg_count; i++) { if (ctx->args->ac.args[i].skip) continue; enum ac_arg_regfile file = ctx->args->ac.args[i].file; unsigned size = ctx->args->ac.args[i].size; unsigned reg = ctx->args->ac.args[i].offset; RegClass type = RegClass(file == AC_ARG_SGPR ? RegType::sgpr : RegType::vgpr, size); Temp dst = Temp{ctx->program->allocateId(), type}; ctx->arg_temps[i] = dst; startpgm->definitions[arg] = Definition(dst); startpgm->definitions[arg].setFixed(PhysReg{file == AC_ARG_SGPR ? reg : reg + 256}); arg++; } startpgm->definitions[arg_count] = Definition{ctx->program->allocateId(), exec, ctx->program->lane_mask}; Pseudo_instruction *instr = startpgm.get(); ctx->block->instructions.push_back(std::move(startpgm)); /* Stash these in the program so that they can be accessed later when * handling spilling. */ ctx->program->private_segment_buffer = get_arg(ctx, ctx->args->ring_offsets); ctx->program->scratch_offset = get_arg(ctx, ctx->args->scratch_offset); return instr; } int type_size(const struct glsl_type *type, bool bindless) { // TODO: don't we need type->std430_base_alignment() here? return glsl_count_attribute_slots(type, false); } void shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align) { assert(glsl_type_is_vector_or_scalar(type)); uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8; unsigned length = glsl_get_vector_elements(type); *size = comp_size * length, *align = comp_size; } static bool mem_vectorize_callback(unsigned align, unsigned bit_size, unsigned num_components, unsigned high_offset, nir_intrinsic_instr *low, nir_intrinsic_instr *high) { if ((bit_size != 32 && bit_size != 64) || num_components > 4) return false; /* >128 bit loads are split except with SMEM */ if (bit_size * num_components > 128) return false; switch (low->intrinsic) { case nir_intrinsic_load_global: case nir_intrinsic_store_global: return align % 4 == 0; case nir_intrinsic_store_ssbo: if (low->src[0].ssa->bit_size < 32 || high->src[0].ssa->bit_size < 32) return false; return align % 4 == 0; case nir_intrinsic_load_ssbo: if (low->dest.ssa.bit_size < 32 || high->dest.ssa.bit_size < 32) return false; case nir_intrinsic_load_ubo: case nir_intrinsic_load_push_constant: return align % 4 == 0; case nir_intrinsic_load_deref: case nir_intrinsic_store_deref: assert(nir_src_as_deref(low->src[0])->mode == nir_var_mem_shared); /* fallthrough */ case nir_intrinsic_load_shared: case nir_intrinsic_store_shared: if (bit_size * num_components > 64) /* 96 and 128 bit loads require 128 bit alignment and are split otherwise */ return align % 16 == 0; else return align % 4 == 0; default: return false; } return false; } void setup_vs_output_info(isel_context *ctx, nir_shader *nir, bool export_prim_id, bool export_clip_dists, radv_vs_output_info *outinfo) { memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED, sizeof(outinfo->vs_output_param_offset)); outinfo->param_exports = 0; int pos_written = 0x1; if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer) pos_written |= 1 << 1; uint64_t mask = nir->info.outputs_written; while (mask) { int idx = u_bit_scan64(&mask); if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER || idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT || ((idx == VARYING_SLOT_CLIP_DIST0 || idx == VARYING_SLOT_CLIP_DIST1) && export_clip_dists)) { if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED) outinfo->vs_output_param_offset[idx] = outinfo->param_exports++; } } if (outinfo->writes_layer && outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] == AC_EXP_PARAM_UNDEFINED) { /* when ctx->options->key.has_multiview_view_index = true, the layer * variable isn't declared in NIR and it's isel's job to get the layer */ outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = outinfo->param_exports++; } if (export_prim_id) { assert(outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED); outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++; } ctx->export_clip_dists = export_clip_dists; ctx->num_clip_distances = util_bitcount(outinfo->clip_dist_mask); ctx->num_cull_distances = util_bitcount(outinfo->cull_dist_mask); assert(ctx->num_clip_distances + ctx->num_cull_distances <= 8); if (ctx->num_clip_distances + ctx->num_cull_distances > 0) pos_written |= 1 << 2; if (ctx->num_clip_distances + ctx->num_cull_distances > 4) pos_written |= 1 << 3; outinfo->pos_exports = util_bitcount(pos_written); } void setup_vs_variables(isel_context *ctx, nir_shader *nir) { nir_foreach_variable(variable, &nir->inputs) { variable->data.driver_location = variable->data.location * 4; } nir_foreach_variable(variable, &nir->outputs) { if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) variable->data.driver_location = variable->data.location * 4; assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX); ctx->output_drv_loc_to_var_slot[MESA_SHADER_VERTEX][variable->data.driver_location / 4] = variable->data.location; } if (ctx->stage == vertex_vs || ctx->stage == ngg_vertex_gs) { radv_vs_output_info *outinfo = &ctx->program->info->vs.outinfo; setup_vs_output_info(ctx, nir, outinfo->export_prim_id, ctx->options->key.vs_common_out.export_clip_dists, outinfo); } else if (ctx->stage == vertex_ls) { ctx->tcs_num_inputs = ctx->program->info->vs.num_linked_outputs; } if (ctx->stage == ngg_vertex_gs && ctx->args->options->key.vs_common_out.export_prim_id) { /* We need to store the primitive IDs in LDS */ unsigned lds_size = ctx->program->info->ngg_info.esgs_ring_size; ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) / ctx->program->lds_alloc_granule; } } void setup_gs_variables(isel_context *ctx, nir_shader *nir) { if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) ctx->program->config->lds_size = ctx->program->info->gs_ring_info.lds_size; /* Already in units of the alloc granularity */ nir_foreach_variable(variable, &nir->outputs) { variable->data.driver_location = variable->data.location * 4; } if (ctx->stage == vertex_geometry_gs) ctx->program->info->gs.es_type = MESA_SHADER_VERTEX; else if (ctx->stage == tess_eval_geometry_gs) ctx->program->info->gs.es_type = MESA_SHADER_TESS_EVAL; } void setup_tcs_info(isel_context *ctx, nir_shader *nir) { /* When the number of TCS input and output vertices are the same (typically 3): * - There is an equal amount of LS and HS invocations * - In case of merged LSHS shaders, the LS and HS halves of the shader * always process the exact same vertex. We can use this knowledge to optimize them. */ ctx->tcs_in_out_eq = ctx->stage == vertex_tess_control_hs && ctx->args->options->key.tcs.input_vertices == nir->info.tess.tcs_vertices_out; if (ctx->tcs_in_out_eq) { ctx->tcs_temp_only_inputs = ~nir->info.tess.tcs_cross_invocation_inputs_read & ~nir->info.inputs_read_indirectly & nir->info.inputs_read; } ctx->tcs_num_inputs = ctx->program->info->tcs.num_linked_inputs; ctx->tcs_num_outputs = ctx->program->info->tcs.num_linked_outputs; ctx->tcs_num_patch_outputs = ctx->program->info->tcs.num_linked_patch_outputs; ctx->tcs_num_patches = get_tcs_num_patches( ctx->args->options->key.tcs.input_vertices, nir->info.tess.tcs_vertices_out, ctx->tcs_num_inputs, ctx->tcs_num_outputs, ctx->tcs_num_patch_outputs, ctx->args->options->tess_offchip_block_dw_size, ctx->args->options->chip_class, ctx->args->options->family); unsigned lds_size = calculate_tess_lds_size( ctx->args->options->key.tcs.input_vertices, nir->info.tess.tcs_vertices_out, ctx->tcs_num_inputs, ctx->tcs_num_patches, ctx->tcs_num_outputs, ctx->tcs_num_patch_outputs); ctx->args->shader_info->tcs.num_patches = ctx->tcs_num_patches; ctx->args->shader_info->tcs.lds_size = lds_size; ctx->program->config->lds_size = (lds_size + ctx->program->lds_alloc_granule - 1) / ctx->program->lds_alloc_granule; } void setup_tcs_variables(isel_context *ctx, nir_shader *nir) { nir_foreach_variable(variable, &nir->outputs) { assert(variable->data.location >= 0 && variable->data.location <= UINT8_MAX); if (variable->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ctx->tcs_tess_lvl_out_loc = variable->data.driver_location * 4u; else if (variable->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ctx->tcs_tess_lvl_in_loc = variable->data.driver_location * 4u; if (variable->data.patch) ctx->output_tcs_patch_drv_loc_to_var_slot[variable->data.driver_location / 4] = variable->data.location; else ctx->output_drv_loc_to_var_slot[MESA_SHADER_TESS_CTRL][variable->data.driver_location / 4] = variable->data.location; } } void setup_tes_variables(isel_context *ctx, nir_shader *nir) { ctx->tcs_num_patches = ctx->args->options->key.tes.num_patches; ctx->tcs_num_outputs = ctx->program->info->tes.num_linked_inputs; nir_foreach_variable(variable, &nir->outputs) { if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) variable->data.driver_location = variable->data.location * 4; } if (ctx->stage == tess_eval_vs || ctx->stage == ngg_tess_eval_gs) { radv_vs_output_info *outinfo = &ctx->program->info->tes.outinfo; setup_vs_output_info(ctx, nir, outinfo->export_prim_id, ctx->options->key.vs_common_out.export_clip_dists, outinfo); } } void setup_variables(isel_context *ctx, nir_shader *nir) { switch (nir->info.stage) { case MESA_SHADER_FRAGMENT: { nir_foreach_variable(variable, &nir->outputs) { int idx = variable->data.location + variable->data.index; variable->data.driver_location = idx * 4; } break; } case MESA_SHADER_COMPUTE: { ctx->program->config->lds_size = (nir->info.cs.shared_size + ctx->program->lds_alloc_granule - 1) / ctx->program->lds_alloc_granule; break; } case MESA_SHADER_VERTEX: { setup_vs_variables(ctx, nir); break; } case MESA_SHADER_GEOMETRY: { setup_gs_variables(ctx, nir); break; } case MESA_SHADER_TESS_CTRL: { setup_tcs_variables(ctx, nir); break; } case MESA_SHADER_TESS_EVAL: { setup_tes_variables(ctx, nir); break; } default: unreachable("Unhandled shader stage."); } } unsigned lower_bit_size_callback(const nir_alu_instr *alu, void *_) { if (nir_op_is_vec(alu->op)) return 0; unsigned bit_size = alu->dest.dest.ssa.bit_size; if (nir_alu_instr_is_comparison(alu)) bit_size = nir_src_bit_size(alu->src[0].src); if (bit_size >= 32 || bit_size == 1) return 0; if (alu->op == nir_op_bcsel) return 0; const nir_op_info *info = &nir_op_infos[alu->op]; if (info->is_conversion) return 0; bool is_integer = info->output_type & (nir_type_uint | nir_type_int); for (unsigned i = 0; is_integer && (i < info->num_inputs); i++) is_integer = info->input_types[i] & (nir_type_uint | nir_type_int); return is_integer ? 32 : 0; } void setup_nir(isel_context *ctx, nir_shader *nir) { Program *program = ctx->program; /* align and copy constant data */ while (program->constant_data.size() % 4u) program->constant_data.push_back(0); ctx->constant_data_offset = program->constant_data.size(); program->constant_data.insert(program->constant_data.end(), (uint8_t*)nir->constant_data, (uint8_t*)nir->constant_data + nir->constant_data_size); /* the variable setup has to be done before lower_io / CSE */ setup_variables(ctx, nir); /* optimize and lower memory operations */ if (nir_lower_explicit_io(nir, nir_var_mem_global, nir_address_format_64bit_global)) { nir_opt_constant_folding(nir); nir_opt_cse(nir); } bool lower_to_scalar = false; bool lower_pack = false; nir_variable_mode robust_modes = (nir_variable_mode)0; if (ctx->options->robust_buffer_access) { robust_modes = (nir_variable_mode)(nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_global | nir_var_mem_push_const); } if (nir_opt_load_store_vectorize(nir, (nir_variable_mode)(nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const | nir_var_mem_shared | nir_var_mem_global), mem_vectorize_callback, robust_modes)) { lower_to_scalar = true; lower_pack = true; } if (nir->info.stage != MESA_SHADER_COMPUTE) nir_lower_io(nir, (nir_variable_mode)(nir_var_shader_in | nir_var_shader_out), type_size, (nir_lower_io_options)0); if (lower_to_scalar) nir_lower_alu_to_scalar(nir, NULL, NULL); if (lower_pack) nir_lower_pack(nir); /* lower ALU operations */ // TODO: implement logic64 in aco, it's more effective for sgprs nir_lower_int64(nir, nir->options->lower_int64_options); if (nir_lower_bit_size(nir, lower_bit_size_callback, NULL)) nir_copy_prop(nir); /* allow nir_opt_idiv_const() to optimize lowered divisions */ nir_opt_idiv_const(nir, 32); nir_lower_idiv(nir, nir_lower_idiv_precise); /* optimize the lowered ALU operations */ bool more_algebraic = true; while (more_algebraic) { more_algebraic = false; NIR_PASS_V(nir, nir_copy_prop); NIR_PASS_V(nir, nir_opt_dce); NIR_PASS_V(nir, nir_opt_constant_folding); NIR_PASS(more_algebraic, nir, nir_opt_algebraic); } /* Do late algebraic optimization to turn add(a, neg(b)) back into * subs, then the mandatory cleanup after algebraic. Note that it may * produce fnegs, and if so then we need to keep running to squash * fneg(fneg(a)). */ bool more_late_algebraic = true; while (more_late_algebraic) { more_late_algebraic = false; NIR_PASS(more_late_algebraic, nir, nir_opt_algebraic_late); NIR_PASS_V(nir, nir_opt_constant_folding); NIR_PASS_V(nir, nir_copy_prop); NIR_PASS_V(nir, nir_opt_dce); NIR_PASS_V(nir, nir_opt_cse); } /* cleanup passes */ nir_lower_load_const_to_scalar(nir); nir_opt_shrink_load(nir); nir_move_options move_opts = (nir_move_options)( nir_move_const_undef | nir_move_load_ubo | nir_move_load_input | nir_move_comparisons | nir_move_copies); nir_opt_sink(nir, move_opts); nir_opt_move(nir, move_opts); nir_convert_to_lcssa(nir, true, false); nir_lower_phis_to_scalar(nir); nir_function_impl *func = nir_shader_get_entrypoint(nir); nir_index_ssa_defs(func); } void setup_xnack(Program *program) { switch (program->family) { /* GFX8 APUs */ case CHIP_CARRIZO: case CHIP_STONEY: /* GFX9 APUS */ case CHIP_RAVEN: case CHIP_RAVEN2: case CHIP_RENOIR: program->xnack_enabled = true; break; default: break; } } isel_context setup_isel_context(Program* program, unsigned shader_count, struct nir_shader *const *shaders, ac_shader_config* config, struct radv_shader_args *args, bool is_gs_copy_shader) { program->stage = 0; for (unsigned i = 0; i < shader_count; i++) { switch (shaders[i]->info.stage) { case MESA_SHADER_VERTEX: program->stage |= sw_vs; break; case MESA_SHADER_TESS_CTRL: program->stage |= sw_tcs; break; case MESA_SHADER_TESS_EVAL: program->stage |= sw_tes; break; case MESA_SHADER_GEOMETRY: program->stage |= is_gs_copy_shader ? sw_gs_copy : sw_gs; break; case MESA_SHADER_FRAGMENT: program->stage |= sw_fs; break; case MESA_SHADER_COMPUTE: program->stage |= sw_cs; break; default: unreachable("Shader stage not implemented"); } } bool gfx9_plus = args->options->chip_class >= GFX9; bool ngg = args->shader_info->is_ngg && args->options->chip_class >= GFX10; if (program->stage == sw_vs && args->shader_info->vs.as_es && !ngg) program->stage |= hw_es; else if (program->stage == sw_vs && !args->shader_info->vs.as_ls && !ngg) program->stage |= hw_vs; else if (program->stage == sw_vs && ngg) program->stage |= hw_ngg_gs; /* GFX10/NGG: VS without GS uses the HW GS stage */ else if (program->stage == sw_gs) program->stage |= hw_gs; else if (program->stage == sw_fs) program->stage |= hw_fs; else if (program->stage == sw_cs) program->stage |= hw_cs; else if (program->stage == sw_gs_copy) program->stage |= hw_vs; else if (program->stage == (sw_vs | sw_gs) && gfx9_plus && !ngg) program->stage |= hw_gs; else if (program->stage == sw_vs && args->shader_info->vs.as_ls) program->stage |= hw_ls; /* GFX6-8: VS is a Local Shader, when tessellation is used */ else if (program->stage == sw_tcs) program->stage |= hw_hs; /* GFX6-8: TCS is a Hull Shader */ else if (program->stage == (sw_vs | sw_tcs)) program->stage |= hw_hs; /* GFX9-10: VS+TCS merged into a Hull Shader */ else if (program->stage == sw_tes && !args->shader_info->tes.as_es && !ngg) program->stage |= hw_vs; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */ else if (program->stage == sw_tes && !args->shader_info->tes.as_es && ngg) program->stage |= hw_ngg_gs; /* GFX10/NGG: TES without GS uses the HW GS stage */ else if (program->stage == sw_tes && args->shader_info->tes.as_es && !ngg) program->stage |= hw_es; /* GFX6-8: TES is an Export Shader */ else if (program->stage == (sw_tes | sw_gs) && gfx9_plus && !ngg) program->stage |= hw_gs; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */ else unreachable("Shader stage not implemented"); program->config = config; program->info = args->shader_info; program->chip_class = args->options->chip_class; program->family = args->options->family; program->wave_size = args->shader_info->wave_size; program->lane_mask = program->wave_size == 32 ? s1 : s2; program->lds_alloc_granule = args->options->chip_class >= GFX7 ? 512 : 256; program->lds_limit = args->options->chip_class >= GFX7 ? 65536 : 32768; /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */ program->has_16bank_lds = args->options->family == CHIP_KABINI || args->options->family == CHIP_STONEY; program->vgpr_limit = 256; program->vgpr_alloc_granule = 3; if (args->options->chip_class >= GFX10) { program->physical_sgprs = 2560; /* doesn't matter as long as it's at least 128 * 20 */ program->sgpr_alloc_granule = 127; program->sgpr_limit = 106; program->vgpr_alloc_granule = program->wave_size == 32 ? 7 : 3; } else if (program->chip_class >= GFX8) { program->physical_sgprs = 800; program->sgpr_alloc_granule = 15; if (args->options->family == CHIP_TONGA || args->options->family == CHIP_ICELAND) program->sgpr_limit = 94; /* workaround hardware bug */ else program->sgpr_limit = 102; } else { program->physical_sgprs = 512; program->sgpr_alloc_granule = 7; program->sgpr_limit = 104; } isel_context ctx = {}; ctx.program = program; ctx.args = args; ctx.options = args->options; ctx.stage = program->stage; /* TODO: Check if we need to adjust min_waves for unknown workgroup sizes. */ if (program->stage & (hw_vs | hw_fs)) { /* PS and legacy VS have separate waves, no workgroups */ program->workgroup_size = program->wave_size; } else if (program->stage == compute_cs) { /* CS sets the workgroup size explicitly */ unsigned* bsize = program->info->cs.block_size; program->workgroup_size = bsize[0] * bsize[1] * bsize[2]; } else if ((program->stage & hw_es) || program->stage == geometry_gs) { /* Unmerged ESGS operate in workgroups if on-chip GS (LDS rings) are enabled on GFX7-8 (not implemented in Mesa) */ program->workgroup_size = program->wave_size; } else if (program->stage & hw_gs) { /* If on-chip GS (LDS rings) are enabled on GFX9 or later, merged GS operates in workgroups */ assert(program->chip_class >= GFX9); uint32_t es_verts_per_subgrp = G_028A44_ES_VERTS_PER_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl); uint32_t gs_instr_prims_in_subgrp = G_028A44_GS_INST_PRIMS_IN_SUBGRP(program->info->gs_ring_info.vgt_gs_onchip_cntl); uint32_t workgroup_size = MAX2(es_verts_per_subgrp, gs_instr_prims_in_subgrp); program->workgroup_size = MAX2(MIN2(workgroup_size, 256), 1); } else if (program->stage == vertex_ls) { /* Unmerged LS operates in workgroups */ program->workgroup_size = UINT_MAX; /* TODO: probably tcs_num_patches * tcs_vertices_in, but those are not plumbed to ACO for LS */ } else if (program->stage == tess_control_hs) { /* Unmerged HS operates in workgroups, size is determined by the output vertices */ setup_tcs_info(&ctx, shaders[0]); program->workgroup_size = ctx.tcs_num_patches * shaders[0]->info.tess.tcs_vertices_out; } else if (program->stage == vertex_tess_control_hs) { /* Merged LSHS operates in workgroups, but can still have a different number of LS and HS invocations */ setup_tcs_info(&ctx, shaders[1]); program->workgroup_size = ctx.tcs_num_patches * MAX2(shaders[1]->info.tess.tcs_vertices_out, ctx.args->options->key.tcs.input_vertices); } else if (program->stage & hw_ngg_gs) { /* TODO: Calculate workgroup size of NGG shaders. */ program->workgroup_size = UINT_MAX; } else { unreachable("Unsupported shader stage."); } calc_min_waves(program); program->vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves); program->sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves); unsigned scratch_size = 0; if (program->stage == gs_copy_vs) { assert(shader_count == 1); setup_vs_output_info(&ctx, shaders[0], false, true, &args->shader_info->vs.outinfo); } else { for (unsigned i = 0; i < shader_count; i++) { nir_shader *nir = shaders[i]; setup_nir(&ctx, nir); } for (unsigned i = 0; i < shader_count; i++) scratch_size = std::max(scratch_size, shaders[i]->scratch_size); } ctx.program->config->scratch_bytes_per_wave = align(scratch_size * ctx.program->wave_size, 1024); ctx.block = ctx.program->create_and_insert_block(); ctx.block->loop_nest_depth = 0; ctx.block->kind = block_kind_top_level; setup_xnack(program); return ctx; } }