/* * Copyright © 2019 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" namespace aco { namespace { struct NOP_ctx { enum chip_class chip_class; unsigned vcc_physical; /* pre-GFX10 */ /* just initialize these with something less than max NOPs */ int VALU_wrexec = -10; int VALU_wrvcc = -10; int VALU_wrsgpr = -10; /* GFX10 */ int last_VMEM_since_scalar_write = -1; NOP_ctx(Program* program) : chip_class(program->chip_class) { vcc_physical = program->config->num_sgprs - 2; } }; bool VALU_writes_sgpr(aco_ptr& instr) { if ((uint32_t) instr->format & (uint32_t) Format::VOPC) return true; if (instr->isVOP3() && instr->definitions.size() == 2) return true; if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32) return true; return false; } bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size) { return a_reg > b_reg ? (a_reg - b_reg < b_size) : (b_reg - a_reg < a_size); } unsigned handle_SMEM_clause(aco_ptr& instr, int new_idx, std::vector>& new_instructions) { //TODO: s_dcache_inv needs to be in it's own group on GFX10 (and previous versions?) const bool is_store = instr->definitions.empty(); for (int pred_idx = new_idx - 1; pred_idx >= 0; pred_idx--) { aco_ptr& pred = new_instructions[pred_idx]; if (pred->format != Format::SMEM) break; /* Don't allow clauses with store instructions since the clause's * instructions may use the same address. */ if (is_store || pred->definitions.empty()) return 1; Definition& instr_def = instr->definitions[0]; Definition& pred_def = pred->definitions[0]; /* ISA reference doesn't say anything about this, but best to be safe */ if (regs_intersect(instr_def.physReg(), instr_def.size(), pred_def.physReg(), pred_def.size())) return 1; for (const Operand& op : pred->operands) { if (op.isConstant() || !op.isFixed()) continue; if (regs_intersect(instr_def.physReg(), instr_def.size(), op.physReg(), op.size())) return 1; } for (const Operand& op : instr->operands) { if (op.isConstant() || !op.isFixed()) continue; if (regs_intersect(pred_def.physReg(), pred_def.size(), op.physReg(), op.size())) return 1; } } return 0; } int handle_instruction(NOP_ctx& ctx, aco_ptr& instr, std::vector>& old_instructions, std::vector>& new_instructions) { int new_idx = new_instructions.size(); // TODO: setreg / getreg / m0 writes // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles /* break off from prevous SMEM clause if needed */ if (instr->format == Format::SMEM && ctx.chip_class >= GFX8) { return handle_SMEM_clause(instr, new_idx, new_instructions); } else if (instr->isVALU() || instr->format == Format::VINTRP) { int NOPs = 0; if (instr->isDPP()) { /* VALU does not forward EXEC to DPP. */ if (ctx.VALU_wrexec + 5 >= new_idx) NOPs = 5 + ctx.VALU_wrexec - new_idx + 1; /* VALU DPP reads VGPR written by VALU */ for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 2; pred_idx--) { aco_ptr& pred = new_instructions[pred_idx]; if ((pred->isVALU() || pred->format == Format::VINTRP) && !pred->definitions.empty() && pred->definitions[0].physReg() == instr->operands[0].physReg()) { NOPs = std::max(NOPs, 2 + pred_idx - new_idx + 1); break; } } } /* SALU writes M0 */ if (instr->format == Format::VINTRP && new_idx > 0 && ctx.chip_class >= GFX9) { aco_ptr& pred = new_instructions.back(); if (pred->isSALU() && !pred->definitions.empty() && pred->definitions[0].physReg() == m0) NOPs = std::max(NOPs, 1); } for (const Operand& op : instr->operands) { /* VALU which uses VCCZ */ if (op.physReg() == PhysReg{251} && ctx.VALU_wrvcc + 5 >= new_idx) NOPs = std::max(NOPs, 5 + ctx.VALU_wrvcc - new_idx + 1); /* VALU which uses EXECZ */ if (op.physReg() == PhysReg{252} && ctx.VALU_wrexec + 5 >= new_idx) NOPs = std::max(NOPs, 5 + ctx.VALU_wrexec - new_idx + 1); /* VALU which reads VCC as a constant */ if (ctx.VALU_wrvcc + 1 >= new_idx) { for (unsigned k = 0; k < op.size(); k++) { unsigned reg = op.physReg() + k; if (reg == ctx.vcc_physical || reg == ctx.vcc_physical + 1) NOPs = std::max(NOPs, 1); } } } switch (instr->opcode) { case aco_opcode::v_readlane_b32: case aco_opcode::v_writelane_b32: { if (ctx.VALU_wrsgpr + 4 < new_idx) break; PhysReg reg = instr->operands[1].physReg(); for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 4; pred_idx--) { aco_ptr& pred = new_instructions[pred_idx]; if (!pred->isVALU() || !VALU_writes_sgpr(pred)) continue; for (const Definition& def : pred->definitions) { if (def.physReg() == reg) NOPs = std::max(NOPs, 4 + pred_idx - new_idx + 1); } } break; } case aco_opcode::v_div_fmas_f32: case aco_opcode::v_div_fmas_f64: { if (ctx.VALU_wrvcc + 4 >= new_idx) NOPs = std::max(NOPs, 4 + ctx.VALU_wrvcc - new_idx + 1); break; } default: break; } /* Write VGPRs holding writedata > 64 bit from MIMG/MUBUF instructions */ // FIXME: handle case if the last instruction of a block without branch is such store // TODO: confirm that DS instructions cannot cause WAR hazards here if (new_idx > 0) { aco_ptr& pred = new_instructions.back(); if (pred->isVMEM() && pred->operands.size() == 4 && pred->operands[3].size() > 2 && pred->operands[1].size() != 8 && (pred->format != Format::MUBUF || pred->operands[2].physReg() >= 102)) { /* Ops that use a 256-bit T# do not need a wait state. * BUFFER_STORE_* operations that use an SGPR for "offset" * do not require any wait states. */ PhysReg wrdata = pred->operands[3].physReg(); unsigned size = pred->operands[3].size(); assert(wrdata >= 256); for (const Definition& def : instr->definitions) { if (regs_intersect(def.physReg(), def.size(), wrdata, size)) NOPs = std::max(NOPs, 1); } } } if (VALU_writes_sgpr(instr)) { for (const Definition& def : instr->definitions) { if (def.physReg() == vcc) ctx.VALU_wrvcc = NOPs ? new_idx : new_idx + 1; else if (def.physReg() == exec) ctx.VALU_wrexec = NOPs ? new_idx : new_idx + 1; else if (def.physReg() <= 102) ctx.VALU_wrsgpr = NOPs ? new_idx : new_idx + 1; } } return NOPs; } else if (instr->isVMEM() && ctx.VALU_wrsgpr + 5 >= new_idx) { /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */ for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 5; pred_idx--) { aco_ptr& pred = new_instructions[pred_idx]; if (!(pred->isVALU() && VALU_writes_sgpr(pred))) continue; for (const Definition& def : pred->definitions) { if (def.physReg() > 102) continue; if (instr->operands.size() > 1 && regs_intersect(instr->operands[1].physReg(), instr->operands[1].size(), def.physReg(), def.size())) { return 5 + pred_idx - new_idx + 1; } if (instr->operands.size() > 2 && regs_intersect(instr->operands[2].physReg(), instr->operands[2].size(), def.physReg(), def.size())) { return 5 + pred_idx - new_idx + 1; } } } } return 0; } std::pair handle_instruction_gfx10(NOP_ctx& ctx, aco_ptr& instr, std::vector>& old_instructions, std::vector>& new_instructions) { int new_idx = new_instructions.size(); unsigned vNOPs = 0; unsigned sNOPs = 0; /* break off from prevous SMEM group ("clause" seems to mean something different in RDNA) if needed */ if (instr->format == Format::SMEM) sNOPs = std::max(sNOPs, handle_SMEM_clause(instr, new_idx, new_instructions)); /* handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between */ if (instr->isSALU() || instr->format == Format::SMEM) { if (!instr->definitions.empty() && ctx.last_VMEM_since_scalar_write != -1) { ctx.last_VMEM_since_scalar_write = -1; vNOPs = 1; } } else if (instr->isVMEM() || instr->isFlatOrGlobal()) { ctx.last_VMEM_since_scalar_write = new_idx; } else if (instr->opcode == aco_opcode::s_waitcnt) { uint16_t imm = static_cast(instr.get())->imm; unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10); if (vmcnt == 0) ctx.last_VMEM_since_scalar_write = -1; } else if (instr->isVALU()) { ctx.last_VMEM_since_scalar_write = -1; } return std::make_pair(sNOPs, vNOPs); } void handle_block(NOP_ctx& ctx, Block& block) { std::vector> instructions; instructions.reserve(block.instructions.size()); for (unsigned i = 0; i < block.instructions.size(); i++) { aco_ptr& instr = block.instructions[i]; unsigned NOPs = handle_instruction(ctx, instr, block.instructions, instructions); if (NOPs) { // TODO: try to move the instruction down /* create NOP */ aco_ptr nop{create_instruction(aco_opcode::s_nop, Format::SOPP, 0, 0)}; nop->imm = NOPs - 1; nop->block = -1; instructions.emplace_back(std::move(nop)); } instructions.emplace_back(std::move(instr)); } ctx.VALU_wrvcc -= instructions.size(); ctx.VALU_wrexec -= instructions.size(); ctx.VALU_wrsgpr -= instructions.size(); block.instructions = std::move(instructions); } void handle_block_gfx10(NOP_ctx& ctx, Block& block) { std::vector> instructions; instructions.reserve(block.instructions.size()); for (unsigned i = 0; i < block.instructions.size(); i++) { aco_ptr& instr = block.instructions[i]; std::pair NOPs = handle_instruction_gfx10(ctx, instr, block.instructions, instructions); for (int i = 0; i < NOPs.second; i++) { // TODO: try to move the instruction down /* create NOP */ aco_ptr nop{create_instruction(aco_opcode::v_nop, Format::VOP1, 0, 0)}; instructions.emplace_back(std::move(nop)); } if (NOPs.first) { // TODO: try to move the instruction down /* create NOP */ aco_ptr nop{create_instruction(aco_opcode::s_nop, Format::SOPP, 0, 0)}; nop->imm = NOPs.first - 1; nop->block = -1; instructions.emplace_back(std::move(nop)); } instructions.emplace_back(std::move(instr)); } block.instructions = std::move(instructions); } } /* end namespace */ void insert_NOPs(Program* program) { NOP_ctx ctx(program); for (Block& block : program->blocks) { if (block.instructions.empty()) continue; if (ctx.chip_class >= GFX10) handle_block_gfx10(ctx, block); else handle_block(ctx, block); } } }