#include #include #include "aco_ir.h" #include "common/sid.h" #include "ac_shader_util.h" #include "util/u_math.h" namespace aco { struct asm_context { Program *program; enum chip_class chip_class; std::vector> branches; std::vector constaddrs; const int16_t* opcode; // TODO: keep track of branch instructions referring blocks // and, when emitting the block, correct the offset in instr asm_context(Program* program) : program(program), chip_class(program->chip_class) { if (chip_class <= GFX7) opcode = &instr_info.opcode_gfx7[0]; else if (chip_class <= GFX9) opcode = &instr_info.opcode_gfx9[0]; else if (chip_class == GFX10) opcode = &instr_info.opcode_gfx10[0]; } int subvector_begin_pos = -1; }; void emit_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t instr_offset = out.size() * 4u; /* lower remaining pseudo-instructions */ if (instr->opcode == aco_opcode::p_constaddr) { unsigned dest = instr->definitions[0].physReg(); unsigned offset = instr->operands[0].constantValue(); /* s_getpc_b64 dest[0:1] */ uint32_t encoding = (0b101111101 << 23); uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64]; if (opcode >= 55 && ctx.chip_class <= GFX9) { assert(ctx.chip_class == GFX9 && opcode < 60); opcode = opcode - 4; } encoding |= dest << 16; encoding |= opcode << 8; out.push_back(encoding); /* s_add_u32 dest[0], dest[0], ... */ encoding = (0b10 << 30); encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23; encoding |= dest << 16; encoding |= dest; encoding |= 255 << 8; out.push_back(encoding); ctx.constaddrs.push_back(out.size()); out.push_back(-(instr_offset + 4) + offset); /* s_addc_u32 dest[1], dest[1], 0 */ encoding = (0b10 << 30); encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23; encoding |= (dest + 1) << 16; encoding |= dest + 1; encoding |= 128 << 8; out.push_back(encoding); return; } uint32_t opcode = ctx.opcode[(int)instr->opcode]; if (opcode == (uint32_t)-1) { fprintf(stderr, "Unsupported opcode: "); aco_print_instr(instr, stderr); abort(); } switch (instr->format) { case Format::SOP2: { uint32_t encoding = (0b10 << 30); encoding |= opcode << 23; encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPK: { SOPK_instruction *sopk = static_cast(instr); if (instr->opcode == aco_opcode::s_subvector_loop_begin) { assert(ctx.chip_class >= GFX10); assert(ctx.subvector_begin_pos == -1); ctx.subvector_begin_pos = out.size(); } else if (instr->opcode == aco_opcode::s_subvector_loop_end) { assert(ctx.chip_class >= GFX10); assert(ctx.subvector_begin_pos != -1); /* Adjust s_subvector_loop_begin instruction to the address after the end */ out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos); /* Adjust s_subvector_loop_end instruction to the address after the beginning */ sopk->imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size()); ctx.subvector_begin_pos = -1; } uint32_t encoding = (0b1011 << 28); encoding |= opcode << 23; encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ? instr->definitions[0].physReg() << 16 : !instr->operands.empty() && instr->operands[0].physReg() <= 127 ? instr->operands[0].physReg() << 16 : 0; encoding |= sopk->imm; out.push_back(encoding); break; } case Format::SOP1: { uint32_t encoding = (0b101111101 << 23); if (opcode >= 55 && ctx.chip_class <= GFX9) { assert(ctx.chip_class == GFX9 && opcode < 60); opcode = opcode - 4; } encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= opcode << 8; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPC: { uint32_t encoding = (0b101111110 << 23); encoding |= opcode << 16; encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPP: { SOPP_instruction* sopp = static_cast(instr); uint32_t encoding = (0b101111111 << 23); encoding |= opcode << 16; encoding |= (uint16_t) sopp->imm; if (sopp->block != -1) ctx.branches.emplace_back(out.size(), sopp); out.push_back(encoding); break; } case Format::SMEM: { SMEM_instruction* smem = static_cast(instr); bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); bool is_load = !instr->definitions.empty(); uint32_t encoding = 0; if (ctx.chip_class <= GFX7) { encoding = (0b11000 << 27); encoding |= opcode << 22; encoding |= instr->definitions.size() ? instr->definitions[0].physReg() << 15 : 0; encoding |= instr->operands.size() ? (instr->operands[0].physReg() >> 1) << 9 : 0; if (instr->operands.size() >= 2) { if (!instr->operands[1].isConstant() || instr->operands[1].constantValue() >= 1024) { encoding |= instr->operands[1].physReg().reg; } else { encoding |= instr->operands[1].constantValue() >> 2; encoding |= 1 << 8; } } out.push_back(encoding); /* SMRD instructions can take a literal on GFX6 & GFX7 */ if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && instr->operands[1].constantValue() >= 1024) out.push_back(instr->operands[1].constantValue() >> 2); return; } if (ctx.chip_class <= GFX9) { encoding = (0b110000 << 26); assert(!smem->dlc); /* Device-level coherent is not supported on GFX9 and lower */ encoding |= smem->nv ? 1 << 15 : 0; } else { encoding = (0b111101 << 26); assert(!smem->nv); /* Non-volatile is not supported on GFX10 */ encoding |= smem->dlc ? 1 << 14 : 0; } encoding |= opcode << 18; encoding |= smem->glc ? 1 << 16 : 0; if (ctx.chip_class <= GFX9) { if (instr->operands.size() >= 2) encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */ } if (ctx.chip_class == GFX9) { encoding |= soe ? 1 << 14 : 0; } if (is_load || instr->operands.size() >= 3) { /* SDATA */ encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6; } if (instr->operands.size() >= 1) { /* SBASE */ encoding |= instr->operands[0].physReg() >> 1; } out.push_back(encoding); encoding = 0; int32_t offset = 0; uint32_t soffset = ctx.chip_class >= GFX10 ? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */ : 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */ if (instr->operands.size() >= 2) { const Operand &op_off1 = instr->operands[1]; if (ctx.chip_class <= GFX9) { offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg(); } else { /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an SGPR */ if (op_off1.isConstant()) { offset = op_off1.constantValue(); } else { soffset = op_off1.physReg(); assert(!soe); /* There is no place to put the other SGPR offset, if any */ } } if (soe) { const Operand &op_off2 = instr->operands.back(); assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */ assert(!op_off2.isConstant()); soffset = op_off2.physReg(); } } encoding |= offset; encoding |= soffset << 25; out.push_back(encoding); return; } case Format::VOP2: { uint32_t encoding = 0; encoding |= opcode << 25; encoding |= (0xFF & instr->definitions[0].physReg()) << 17; encoding |= (0xFF & instr->operands[1].physReg()) << 9; encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VOP1: { uint32_t encoding = (0b0111111 << 25); if (!instr->definitions.empty()) encoding |= (0xFF & instr->definitions[0].physReg()) << 17; encoding |= opcode << 9; if (!instr->operands.empty()) encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VOPC: { uint32_t encoding = (0b0111110 << 25); encoding |= opcode << 17; encoding |= (0xFF & instr->operands[1].physReg()) << 9; encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VINTRP: { Interp_instruction* interp = static_cast(instr); uint32_t encoding = 0; if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */ } else { encoding = (0b110010 << 26); } assert(encoding); encoding |= (0xFF & instr->definitions[0].physReg()) << 18; encoding |= opcode << 16; encoding |= interp->attribute << 10; encoding |= interp->component << 8; if (instr->opcode == aco_opcode::v_interp_mov_f32) encoding |= (0x3 & instr->operands[0].constantValue()); else encoding |= (0xFF & instr->operands[0].physReg()); out.push_back(encoding); break; } case Format::DS: { DS_instruction* ds = static_cast(instr); uint32_t encoding = (0b110110 << 26); if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding |= opcode << 17; encoding |= (ds->gds ? 1 : 0) << 16; } else { encoding |= opcode << 18; encoding |= (ds->gds ? 1 : 0) << 17; } encoding |= ((0xFF & ds->offset1) << 8); encoding |= (0xFFFF & ds->offset0); out.push_back(encoding); encoding = 0; unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0; encoding |= (0xFF & reg) << 24; reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0; encoding |= (0xFF & reg) << 16; reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0; encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[0].physReg()); out.push_back(encoding); break; } case Format::MUBUF: { MUBUF_instruction* mubuf = static_cast(instr); uint32_t encoding = (0b111000 << 26); encoding |= opcode << 18; encoding |= (mubuf->lds ? 1 : 0) << 16; encoding |= (mubuf->glc ? 1 : 0) << 14; encoding |= (mubuf->idxen ? 1 : 0) << 13; assert(!mubuf->addr64 || ctx.chip_class <= GFX7); if (ctx.chip_class == GFX6 || ctx.chip_class == GFX7) encoding |= (mubuf->addr64 ? 1 : 0) << 15; encoding |= (mubuf->offen ? 1 : 0) << 12; if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { assert(!mubuf->dlc); /* Device-level coherent is not supported on GFX9 and lower */ encoding |= (mubuf->slc ? 1 : 0) << 17; } else if (ctx.chip_class >= GFX10) { encoding |= (mubuf->dlc ? 1 : 0) << 15; } encoding |= 0x0FFF & mubuf->offset; out.push_back(encoding); encoding = 0; if (ctx.chip_class <= GFX7 || ctx.chip_class >= GFX10) { encoding |= (mubuf->slc ? 1 : 0) << 22; } encoding |= instr->operands[2].physReg() << 24; encoding |= (mubuf->tfe ? 1 : 0) << 23; encoding |= (instr->operands[0].physReg() >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg(); encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[1].physReg()); out.push_back(encoding); break; } case Format::MTBUF: { MTBUF_instruction* mtbuf = static_cast(instr); uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf->dfmt, mtbuf->nfmt); uint32_t encoding = (0b111010 << 26); assert(img_format <= 0x7F); assert(!mtbuf->dlc || ctx.chip_class >= GFX10); encoding |= (mtbuf->dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */ encoding |= (mtbuf->glc ? 1 : 0) << 14; encoding |= (mtbuf->idxen ? 1 : 0) << 13; encoding |= (mtbuf->offen ? 1 : 0) << 12; encoding |= 0x0FFF & mtbuf->offset; encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */ if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding |= opcode << 15; } else { encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */ } out.push_back(encoding); encoding = 0; encoding |= instr->operands[2].physReg() << 24; encoding |= (mtbuf->tfe ? 1 : 0) << 23; encoding |= (mtbuf->slc ? 1 : 0) << 22; encoding |= (instr->operands[0].physReg() >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg(); encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[1].physReg()); if (ctx.chip_class >= GFX10) { encoding |= (((opcode & 0x08) >> 4) << 21); /* MSB of 4-bit OPCODE */ } out.push_back(encoding); break; } case Format::MIMG: { MIMG_instruction* mimg = static_cast(instr); uint32_t encoding = (0b111100 << 26); encoding |= mimg->slc ? 1 << 25 : 0; encoding |= opcode << 18; encoding |= mimg->lwe ? 1 << 17 : 0; encoding |= mimg->tfe ? 1 << 16 : 0; encoding |= mimg->glc ? 1 << 13 : 0; encoding |= mimg->unrm ? 1 << 12 : 0; if (ctx.chip_class <= GFX9) { assert(!mimg->dlc); /* Device-level coherent is not supported on GFX9 and lower */ assert(!mimg->r128); encoding |= mimg->a16 ? 1 << 15 : 0; encoding |= mimg->da ? 1 << 14 : 0; } else { encoding |= mimg->r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */ encoding |= mimg->dim << 3; /* GFX10: dimensionality instead of declare array */ encoding |= mimg->dlc ? 1 << 7 : 0; } encoding |= (0xF & mimg->dmask) << 8; out.push_back(encoding); encoding = (0xFF & instr->operands[2].physReg()); /* VADDR */ if (!instr->definitions.empty()) { encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */ } else if (instr->operands[1].regClass().type() == RegType::vgpr) { encoding |= (0xFF & instr->operands[1].physReg()) << 8; /* VDATA */ } encoding |= (0x1F & (instr->operands[0].physReg() >> 2)) << 16; /* T# (resource) */ if (instr->operands[1].regClass().type() == RegType::sgpr) encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 21; /* sampler */ assert(!mimg->d16 || ctx.chip_class >= GFX9); encoding |= mimg->d16 ? 1 << 15 : 0; if (ctx.chip_class >= GFX10) { encoding |= mimg->a16 ? 1 << 14 : 0; /* GFX10: A16 still exists, but is in a different place */ } out.push_back(encoding); break; } case Format::FLAT: case Format::SCRATCH: case Format::GLOBAL: { FLAT_instruction *flat = static_cast(instr); uint32_t encoding = (0b110111 << 26); encoding |= opcode << 18; if (ctx.chip_class <= GFX9) { assert(flat->offset <= 0x1fff); encoding |= flat->offset & 0x1fff; } else if (instr->format == Format::FLAT) { /* GFX10 has a 12-bit immediate OFFSET field, * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug */ assert(flat->offset == 0); } else { assert(flat->offset <= 0xfff); encoding |= flat->offset & 0xfff; } if (instr->format == Format::SCRATCH) encoding |= 1 << 14; else if (instr->format == Format::GLOBAL) encoding |= 2 << 14; encoding |= flat->lds ? 1 << 13 : 0; encoding |= flat->glc ? 1 << 16 : 0; encoding |= flat->slc ? 1 << 17 : 0; if (ctx.chip_class >= GFX10) { assert(!flat->nv); encoding |= flat->dlc ? 1 << 12 : 0; } else { assert(!flat->dlc); } out.push_back(encoding); encoding = (0xFF & instr->operands[0].physReg()); if (!instr->definitions.empty()) encoding |= (0xFF & instr->definitions[0].physReg()) << 24; if (instr->operands.size() >= 3) encoding |= (0xFF & instr->operands[2].physReg()) << 8; if (!instr->operands[1].isUndefined()) { assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F); assert(instr->format != Format::FLAT); encoding |= instr->operands[1].physReg() << 16; } else if (instr->format != Format::FLAT || ctx.chip_class >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */ if (ctx.chip_class <= GFX9) encoding |= 0x7F << 16; else encoding |= sgpr_null << 16; } encoding |= flat->nv ? 1 << 23 : 0; out.push_back(encoding); break; } case Format::EXP: { Export_instruction* exp = static_cast(instr); uint32_t encoding; if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding = (0b110001 << 26); } else { encoding = (0b111110 << 26); } encoding |= exp->valid_mask ? 0b1 << 12 : 0; encoding |= exp->done ? 0b1 << 11 : 0; encoding |= exp->compressed ? 0b1 << 10 : 0; encoding |= exp->dest << 4; encoding |= exp->enabled_mask; out.push_back(encoding); encoding = 0xFF & exp->operands[0].physReg(); encoding |= (0xFF & exp->operands[1].physReg()) << 8; encoding |= (0xFF & exp->operands[2].physReg()) << 16; encoding |= (0xFF & exp->operands[3].physReg()) << 24; out.push_back(encoding); break; } case Format::PSEUDO: case Format::PSEUDO_BARRIER: unreachable("Pseudo instructions should be lowered before assembly."); default: if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) { VOP3A_instruction* vop3 = static_cast(instr); if ((uint16_t) instr->format & (uint16_t) Format::VOP2) { opcode = opcode + 0x100; } else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) { if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) opcode = opcode + 0x140; else opcode = opcode + 0x180; } else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) { opcode = opcode + 0x0; } else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) { opcode = opcode + 0x270; } uint32_t encoding; if (ctx.chip_class <= GFX9) { encoding = (0b110100 << 26); } else if (ctx.chip_class == GFX10) { encoding = (0b110101 << 26); } else { unreachable("Unknown chip_class."); } if (ctx.chip_class <= GFX7) { encoding |= opcode << 17; encoding |= (vop3->clamp ? 1 : 0) << 11; } else { encoding |= opcode << 16; encoding |= (vop3->clamp ? 1 : 0) << 15; } encoding |= vop3->opsel << 11; for (unsigned i = 0; i < 3; i++) encoding |= vop3->abs[i] << (8+i); if (instr->definitions.size() == 2) encoding |= instr->definitions[1].physReg() << 8; encoding |= (0xFF & instr->definitions[0].physReg()); out.push_back(encoding); encoding = 0; if (instr->opcode == aco_opcode::v_interp_mov_f32) { encoding = 0x3 & instr->operands[0].constantValue(); } else { for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= instr->operands[i].physReg() << (i * 9); } encoding |= vop3->omod << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3->neg[i] << (29+i); out.push_back(encoding); } else if (instr->isDPP()){ assert(ctx.chip_class >= GFX8); /* first emit the instruction without the DPP operand */ Operand dpp_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{250}, v1); instr->format = (Format) ((uint32_t) instr->format & ~(1 << 14)); emit_instruction(ctx, out, instr); DPP_instruction* dpp = static_cast(instr); uint32_t encoding = (0xF & dpp->row_mask) << 28; encoding |= (0xF & dpp->bank_mask) << 24; encoding |= dpp->abs[1] << 23; encoding |= dpp->neg[1] << 22; encoding |= dpp->abs[0] << 21; encoding |= dpp->neg[0] << 20; encoding |= dpp->bound_ctrl << 19; encoding |= dpp->dpp_ctrl << 8; encoding |= (0xFF) & dpp_op.physReg(); out.push_back(encoding); return; } else { unreachable("unimplemented instruction format"); } break; } /* append literal dword */ for (const Operand& op : instr->operands) { if (op.isLiteral()) { out.push_back(op.constantValue()); break; } } } void emit_block(asm_context& ctx, std::vector& out, Block& block) { for (aco_ptr& instr : block.instructions) { #if 0 int start_idx = out.size(); std::cerr << "Encoding:\t" << std::endl; aco_print_instr(&*instr, stderr); std::cerr << std::endl; #endif emit_instruction(ctx, out, instr.get()); #if 0 for (int i = start_idx; i < out.size(); i++) std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl; #endif } } void fix_exports(asm_context& ctx, std::vector& out, Program* program) { bool exported = false; for (Block& block : program->blocks) { if (!(block.kind & block_kind_export_end)) continue; std::vector>::reverse_iterator it = block.instructions.rbegin(); while ( it != block.instructions.rend()) { if ((*it)->format == Format::EXP) { Export_instruction* exp = static_cast((*it).get()); if (program->stage & hw_vs) { if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) { exp->done = true; exported = true; break; } } else { exp->done = true; exp->valid_mask = true; exported = true; break; } } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) break; ++it; } } if (!exported) { /* Abort in order to avoid a GPU hang. */ fprintf(stderr, "Missing export in %s shader:\n", (program->stage & hw_vs) ? "vertex" : "fragment"); aco_print_program(program, stderr); abort(); } } static void fix_branches_gfx10(asm_context& ctx, std::vector& out) { /* Branches with an offset of 0x3f are buggy on GFX10, we workaround by inserting NOPs if needed. */ bool gfx10_3f_bug = false; do { auto buggy_branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto &branch) -> bool { return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f; }); gfx10_3f_bug = buggy_branch_it != ctx.branches.end(); if (gfx10_3f_bug) { /* Insert an s_nop after the branch */ constexpr uint32_t s_nop_0 = 0xbf800000u; int s_nop_pos = buggy_branch_it->first + 1; auto out_pos = std::next(out.begin(), s_nop_pos); out.insert(out_pos, s_nop_0); /* Update the offset of each affected block */ for (Block& block : ctx.program->blocks) { if (block.offset > (unsigned)buggy_branch_it->first) block.offset++; } /* Update the branches following the current one */ for (auto branch_it = std::next(buggy_branch_it); branch_it != ctx.branches.end(); ++branch_it) branch_it->first++; /* Find first constant address after the inserted instruction */ auto caddr_it = std::find_if(ctx.constaddrs.begin(), ctx.constaddrs.end(), [s_nop_pos](const int &caddr_pos) -> bool { return caddr_pos >= s_nop_pos; }); /* Update the locations of constant addresses */ for (; caddr_it != ctx.constaddrs.end(); ++caddr_it) (*caddr_it)++; } } while (gfx10_3f_bug); } void fix_branches(asm_context& ctx, std::vector& out) { if (ctx.chip_class >= GFX10) fix_branches_gfx10(ctx, out); for (std::pair &branch : ctx.branches) { int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1; out[branch.first] |= (uint16_t) offset; } } void fix_constaddrs(asm_context& ctx, std::vector& out) { for (unsigned addr : ctx.constaddrs) out[addr] += out.size() * 4u; } unsigned emit_program(Program* program, std::vector& code) { asm_context ctx(program); if (program->stage & (hw_vs | hw_fs)) fix_exports(ctx, code, program); for (Block& block : program->blocks) { block.offset = code.size(); emit_block(ctx, code, block); } fix_branches(ctx, code); unsigned exec_size = code.size() * sizeof(uint32_t); if (program->chip_class >= GFX10) { /* Pad output with s_code_end so instruction prefetching doesn't cause * page faults */ unsigned final_size = align(code.size() + 3 * 16, 16); while (code.size() < final_size) code.push_back(0xbf9f0000u); } fix_constaddrs(ctx, code); while (program->constant_data.size() % 4u) program->constant_data.push_back(0); /* Copy constant data */ code.insert(code.end(), (uint32_t*)program->constant_data.data(), (uint32_t*)(program->constant_data.data() + program->constant_data.size())); return exec_size; } }