/* * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "ac_nir_to_llvm.h" #include "ac_llvm_build.h" #include "ac_llvm_util.h" #include "ac_binary.h" #include "sid.h" #include "nir/nir.h" #include "../vulkan/radv_descriptor_set.h" #include "util/bitscan.h" #include #include "ac_shader_info.h" #include "ac_exp_param.h" enum radeon_llvm_calling_convention { RADEON_LLVM_AMDGPU_VS = 87, RADEON_LLVM_AMDGPU_GS = 88, RADEON_LLVM_AMDGPU_PS = 89, RADEON_LLVM_AMDGPU_CS = 90, }; #define CONST_ADDR_SPACE 2 #define LOCAL_ADDR_SPACE 3 #define RADEON_LLVM_MAX_INPUTS (VARYING_SLOT_VAR31 + 1) #define RADEON_LLVM_MAX_OUTPUTS (VARYING_SLOT_VAR31 + 1) enum desc_type { DESC_IMAGE, DESC_FMASK, DESC_SAMPLER, DESC_BUFFER, }; struct nir_to_llvm_context { struct ac_llvm_context ac; const struct ac_nir_compiler_options *options; struct ac_shader_variant_info *shader_info; unsigned max_workgroup_size; LLVMContextRef context; LLVMModuleRef module; LLVMBuilderRef builder; LLVMValueRef main_function; struct hash_table *defs; struct hash_table *phis; LLVMValueRef descriptor_sets[AC_UD_MAX_SETS]; LLVMValueRef ring_offsets; LLVMValueRef push_constants; LLVMValueRef num_work_groups; LLVMValueRef workgroup_ids; LLVMValueRef local_invocation_ids; LLVMValueRef tg_size; LLVMValueRef vertex_buffers; LLVMValueRef base_vertex; LLVMValueRef start_instance; LLVMValueRef draw_index; LLVMValueRef vertex_id; LLVMValueRef rel_auto_id; LLVMValueRef vs_prim_id; LLVMValueRef instance_id; LLVMValueRef ls_out_layout; LLVMValueRef es2gs_offset; LLVMValueRef tcs_offchip_layout; LLVMValueRef tcs_out_offsets; LLVMValueRef tcs_out_layout; LLVMValueRef tcs_in_layout; LLVMValueRef oc_lds; LLVMValueRef tess_factor_offset; LLVMValueRef tcs_patch_id; LLVMValueRef tcs_rel_ids; LLVMValueRef tes_rel_patch_id; LLVMValueRef tes_patch_id; LLVMValueRef tes_u; LLVMValueRef tes_v; LLVMValueRef gsvs_ring_stride; LLVMValueRef gsvs_num_entries; LLVMValueRef gs2vs_offset; LLVMValueRef gs_wave_id; LLVMValueRef gs_vtx_offset[6]; LLVMValueRef gs_prim_id, gs_invocation_id; LLVMValueRef esgs_ring; LLVMValueRef gsvs_ring; LLVMValueRef hs_ring_tess_offchip; LLVMValueRef hs_ring_tess_factor; LLVMValueRef prim_mask; LLVMValueRef sample_pos_offset; LLVMValueRef persp_sample, persp_center, persp_centroid; LLVMValueRef linear_sample, linear_center, linear_centroid; LLVMValueRef front_face; LLVMValueRef ancillary; LLVMValueRef sample_coverage; LLVMValueRef frag_pos[4]; LLVMBasicBlockRef continue_block; LLVMBasicBlockRef break_block; LLVMTypeRef i1; LLVMTypeRef i8; LLVMTypeRef i16; LLVMTypeRef i32; LLVMTypeRef i64; LLVMTypeRef v2i32; LLVMTypeRef v3i32; LLVMTypeRef v4i32; LLVMTypeRef v8i32; LLVMTypeRef f64; LLVMTypeRef f32; LLVMTypeRef f16; LLVMTypeRef v2f32; LLVMTypeRef v4f32; LLVMTypeRef v16i8; LLVMTypeRef voidt; LLVMValueRef i1true; LLVMValueRef i1false; LLVMValueRef i32zero; LLVMValueRef i32one; LLVMValueRef f32zero; LLVMValueRef f32one; LLVMValueRef v4f32empty; unsigned uniform_md_kind; LLVMValueRef empty_md; gl_shader_stage stage; LLVMValueRef lds; LLVMValueRef inputs[RADEON_LLVM_MAX_INPUTS * 4]; LLVMValueRef outputs[RADEON_LLVM_MAX_OUTPUTS * 4]; LLVMValueRef shared_memory; uint64_t input_mask; uint64_t output_mask; int num_locals; LLVMValueRef *locals; bool has_ddxy; uint8_t num_output_clips; uint8_t num_output_culls; bool has_ds_bpermute; bool is_gs_copy_shader; LLVMValueRef gs_next_vertex; unsigned gs_max_out_vertices; unsigned tes_primitive_mode; uint64_t tess_outputs_written; uint64_t tess_patch_outputs_written; }; static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx, const nir_deref_var *deref, enum desc_type desc_type); static unsigned radeon_llvm_reg_index_soa(unsigned index, unsigned chan) { return (index * 4) + chan; } static unsigned shader_io_get_unique_index(gl_varying_slot slot) { /* handle patch indices separate */ if (slot == VARYING_SLOT_TESS_LEVEL_OUTER) return 0; if (slot == VARYING_SLOT_TESS_LEVEL_INNER) return 1; if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX) return 2 + (slot - VARYING_SLOT_PATCH0); if (slot == VARYING_SLOT_POS) return 0; if (slot == VARYING_SLOT_PSIZ) return 1; if (slot == VARYING_SLOT_CLIP_DIST0) return 2; /* 3 is reserved for clip dist as well */ if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31) return 4 + (slot - VARYING_SLOT_VAR0); unreachable("illegal slot in get unique index\n"); } static unsigned llvm_get_type_size(LLVMTypeRef type) { LLVMTypeKind kind = LLVMGetTypeKind(type); switch (kind) { case LLVMIntegerTypeKind: return LLVMGetIntTypeWidth(type) / 8; case LLVMFloatTypeKind: return 4; case LLVMPointerTypeKind: return 8; case LLVMVectorTypeKind: return LLVMGetVectorSize(type) * llvm_get_type_size(LLVMGetElementType(type)); default: assert(0); return 0; } } static void set_llvm_calling_convention(LLVMValueRef func, gl_shader_stage stage) { enum radeon_llvm_calling_convention calling_conv; switch (stage) { case MESA_SHADER_VERTEX: case MESA_SHADER_TESS_CTRL: case MESA_SHADER_TESS_EVAL: calling_conv = RADEON_LLVM_AMDGPU_VS; break; case MESA_SHADER_GEOMETRY: calling_conv = RADEON_LLVM_AMDGPU_GS; break; case MESA_SHADER_FRAGMENT: calling_conv = RADEON_LLVM_AMDGPU_PS; break; case MESA_SHADER_COMPUTE: calling_conv = RADEON_LLVM_AMDGPU_CS; break; default: unreachable("Unhandle shader type"); } LLVMSetFunctionCallConv(func, calling_conv); } #define MAX_ARGS 23 struct arg_info { LLVMTypeRef types[MAX_ARGS]; LLVMValueRef *assign[MAX_ARGS]; unsigned array_params_mask; uint8_t count; uint8_t user_sgpr_count; uint8_t sgpr_count; uint8_t num_user_sgprs_used; uint8_t num_sgprs_used; uint8_t num_vgprs_used; }; static inline void add_argument(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr) { assert(info->count < MAX_ARGS); info->assign[info->count] = param_ptr; info->types[info->count] = type; info->count++; } static inline void add_sgpr_argument(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr) { add_argument(info, type, param_ptr); info->num_sgprs_used += llvm_get_type_size(type) / 4; info->sgpr_count++; } static inline void add_user_sgpr_argument(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr) { add_sgpr_argument(info, type, param_ptr); info->num_user_sgprs_used += llvm_get_type_size(type) / 4; info->user_sgpr_count++; } static inline void add_vgpr_argument(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr) { add_argument(info, type, param_ptr); info->num_vgprs_used += llvm_get_type_size(type) / 4; } static inline void add_user_sgpr_array_argument(struct arg_info *info, LLVMTypeRef type, LLVMValueRef *param_ptr) { info->array_params_mask |= (1 << info->count); add_user_sgpr_argument(info, type, param_ptr); } static void assign_arguments(LLVMValueRef main_function, struct arg_info *info) { unsigned i; for (i = 0; i < info->count; i++) { if (info->assign[i]) *info->assign[i] = LLVMGetParam(main_function, i); } } static LLVMValueRef create_llvm_function(LLVMContextRef ctx, LLVMModuleRef module, LLVMBuilderRef builder, LLVMTypeRef *return_types, unsigned num_return_elems, struct arg_info *args, unsigned max_workgroup_size, bool unsafe_math) { LLVMTypeRef main_function_type, ret_type; LLVMBasicBlockRef main_function_body; if (num_return_elems) ret_type = LLVMStructTypeInContext(ctx, return_types, num_return_elems, true); else ret_type = LLVMVoidTypeInContext(ctx); /* Setup the function */ main_function_type = LLVMFunctionType(ret_type, args->types, args->count, 0); LLVMValueRef main_function = LLVMAddFunction(module, "main", main_function_type); main_function_body = LLVMAppendBasicBlockInContext(ctx, main_function, "main_body"); LLVMPositionBuilderAtEnd(builder, main_function_body); LLVMSetFunctionCallConv(main_function, RADEON_LLVM_AMDGPU_CS); for (unsigned i = 0; i < args->sgpr_count; ++i) { if (args->array_params_mask & (1 << i)) { LLVMValueRef P = LLVMGetParam(main_function, i); ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_BYVAL); ac_add_attr_dereferenceable(P, UINT64_MAX); } else { ac_add_function_attr(ctx, main_function, i + 1, AC_FUNC_ATTR_INREG); } } if (max_workgroup_size) { ac_llvm_add_target_dep_function_attr(main_function, "amdgpu-max-work-group-size", max_workgroup_size); } if (unsafe_math) { /* These were copied from some LLVM test. */ LLVMAddTargetDependentFunctionAttr(main_function, "less-precise-fpmad", "true"); LLVMAddTargetDependentFunctionAttr(main_function, "no-infs-fp-math", "true"); LLVMAddTargetDependentFunctionAttr(main_function, "no-nans-fp-math", "true"); LLVMAddTargetDependentFunctionAttr(main_function, "unsafe-fp-math", "true"); } return main_function; } static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements) { return LLVMPointerType(LLVMArrayType(elem_type, num_elements), CONST_ADDR_SPACE); } static LLVMValueRef get_shared_memory_ptr(struct nir_to_llvm_context *ctx, int idx, LLVMTypeRef type) { LLVMValueRef offset; LLVMValueRef ptr; int addr_space; offset = LLVMConstInt(ctx->i32, idx * 16, false); ptr = ctx->shared_memory; ptr = LLVMBuildGEP(ctx->builder, ptr, &offset, 1, ""); addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); ptr = LLVMBuildBitCast(ctx->builder, ptr, LLVMPointerType(type, addr_space), ""); return ptr; } static LLVMTypeRef to_integer_type_scalar(struct nir_to_llvm_context *ctx, LLVMTypeRef t) { if (t == ctx->f16 || t == ctx->i16) return ctx->i16; else if (t == ctx->f32 || t == ctx->i32) return ctx->i32; else if (t == ctx->f64 || t == ctx->i64) return ctx->i64; else unreachable("Unhandled integer size"); } static LLVMTypeRef to_integer_type(struct nir_to_llvm_context *ctx, LLVMTypeRef t) { if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) { LLVMTypeRef elem_type = LLVMGetElementType(t); return LLVMVectorType(to_integer_type_scalar(ctx, elem_type), LLVMGetVectorSize(t)); } return to_integer_type_scalar(ctx, t); } static LLVMValueRef to_integer(struct nir_to_llvm_context *ctx, LLVMValueRef v) { LLVMTypeRef type = LLVMTypeOf(v); return LLVMBuildBitCast(ctx->builder, v, to_integer_type(ctx, type), ""); } static LLVMTypeRef to_float_type_scalar(struct nir_to_llvm_context *ctx, LLVMTypeRef t) { if (t == ctx->i16 || t == ctx->f16) return ctx->f16; else if (t == ctx->i32 || t == ctx->f32) return ctx->f32; else if (t == ctx->i64 || t == ctx->f64) return ctx->f64; else unreachable("Unhandled float size"); } static LLVMTypeRef to_float_type(struct nir_to_llvm_context *ctx, LLVMTypeRef t) { if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) { LLVMTypeRef elem_type = LLVMGetElementType(t); return LLVMVectorType(to_float_type_scalar(ctx, elem_type), LLVMGetVectorSize(t)); } return to_float_type_scalar(ctx, t); } static LLVMValueRef to_float(struct nir_to_llvm_context *ctx, LLVMValueRef v) { LLVMTypeRef type = LLVMTypeOf(v); return LLVMBuildBitCast(ctx->builder, v, to_float_type(ctx, type), ""); } static int get_elem_bits(struct nir_to_llvm_context *ctx, LLVMTypeRef type) { if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) type = LLVMGetElementType(type); if (LLVMGetTypeKind(type) == LLVMIntegerTypeKind) return LLVMGetIntTypeWidth(type); if (type == ctx->f16) return 16; if (type == ctx->f32) return 32; if (type == ctx->f64) return 64; unreachable("Unhandled type kind in get_elem_bits"); } static LLVMValueRef unpack_param(struct nir_to_llvm_context *ctx, LLVMValueRef param, unsigned rshift, unsigned bitwidth) { LLVMValueRef value = param; if (rshift) value = LLVMBuildLShr(ctx->builder, value, LLVMConstInt(ctx->i32, rshift, false), ""); if (rshift + bitwidth < 32) { unsigned mask = (1 << bitwidth) - 1; value = LLVMBuildAnd(ctx->builder, value, LLVMConstInt(ctx->i32, mask, false), ""); } return value; } static LLVMValueRef get_rel_patch_id(struct nir_to_llvm_context *ctx) { switch (ctx->stage) { case MESA_SHADER_TESS_CTRL: return unpack_param(ctx, ctx->tcs_rel_ids, 0, 8); case MESA_SHADER_TESS_EVAL: return ctx->tes_rel_patch_id; break; default: unreachable("Illegal stage"); } } /* Tessellation shaders pass outputs to the next shader using LDS. * * LS outputs = TCS inputs * TCS outputs = TES inputs * * The LDS layout is: * - TCS inputs for patch 0 * - TCS inputs for patch 1 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2) * - ... * - TCS outputs for patch 0 = get_tcs_out_patch0_offset * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset * - TCS outputs for patch 1 * - Per-patch TCS outputs for patch 1 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2) * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2) * - ... * * All three shaders VS(LS), TCS, TES share the same LDS space. */ static LLVMValueRef get_tcs_in_patch_stride(struct nir_to_llvm_context *ctx) { if (ctx->stage == MESA_SHADER_VERTEX) return unpack_param(ctx, ctx->ls_out_layout, 0, 13); else if (ctx->stage == MESA_SHADER_TESS_CTRL) return unpack_param(ctx, ctx->tcs_in_layout, 0, 13); else { assert(0); return NULL; } } static LLVMValueRef get_tcs_out_patch_stride(struct nir_to_llvm_context *ctx) { return unpack_param(ctx, ctx->tcs_out_layout, 0, 13); } static LLVMValueRef get_tcs_out_patch0_offset(struct nir_to_llvm_context *ctx) { return LLVMBuildMul(ctx->builder, unpack_param(ctx, ctx->tcs_out_offsets, 0, 16), LLVMConstInt(ctx->i32, 4, false), ""); } static LLVMValueRef get_tcs_out_patch0_patch_data_offset(struct nir_to_llvm_context *ctx) { return LLVMBuildMul(ctx->builder, unpack_param(ctx, ctx->tcs_out_offsets, 16, 16), LLVMConstInt(ctx->i32, 4, false), ""); } static LLVMValueRef get_tcs_in_current_patch_offset(struct nir_to_llvm_context *ctx) { LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, ""); } static LLVMValueRef get_tcs_out_current_patch_offset(struct nir_to_llvm_context *ctx) { LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return LLVMBuildAdd(ctx->builder, patch0_offset, LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, ""), ""); } static LLVMValueRef get_tcs_out_current_patch_data_offset(struct nir_to_llvm_context *ctx) { LLVMValueRef patch0_patch_data_offset = get_tcs_out_patch0_patch_data_offset(ctx); LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx); LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); return LLVMBuildAdd(ctx->builder, patch0_patch_data_offset, LLVMBuildMul(ctx->builder, patch_stride, rel_patch_id, ""), ""); } static void set_userdata_location(struct ac_userdata_info *ud_info, uint8_t *sgpr_idx, uint8_t num_sgprs) { ud_info->sgpr_idx = *sgpr_idx; ud_info->num_sgprs = num_sgprs; ud_info->indirect = false; ud_info->indirect_offset = 0; *sgpr_idx += num_sgprs; } static void set_userdata_location_shader(struct nir_to_llvm_context *ctx, int idx, uint8_t *sgpr_idx, uint8_t num_sgprs) { set_userdata_location(&ctx->shader_info->user_sgprs_locs.shader_data[idx], sgpr_idx, num_sgprs); } static void set_userdata_location_indirect(struct ac_userdata_info *ud_info, uint8_t sgpr_idx, uint8_t num_sgprs, uint32_t indirect_offset) { ud_info->sgpr_idx = sgpr_idx; ud_info->num_sgprs = num_sgprs; ud_info->indirect = true; ud_info->indirect_offset = indirect_offset; } static void declare_tess_lds(struct nir_to_llvm_context *ctx) { unsigned lds_size = ctx->options->chip_class >= CIK ? 65536 : 32768; ctx->lds = LLVMBuildIntToPtr(ctx->builder, ctx->i32zero, LLVMPointerType(LLVMArrayType(ctx->i32, lds_size / 4), LOCAL_ADDR_SPACE), "tess_lds"); } struct user_sgpr_info { bool need_ring_offsets; uint8_t sgpr_count; bool indirect_all_descriptor_sets; }; static void allocate_user_sgprs(struct nir_to_llvm_context *ctx, struct user_sgpr_info *user_sgpr_info) { memset(user_sgpr_info, 0, sizeof(struct user_sgpr_info)); /* until we sort out scratch/global buffers always assign ring offsets for gs/vs/es */ if (ctx->stage == MESA_SHADER_GEOMETRY || ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_CTRL || ctx->stage == MESA_SHADER_TESS_EVAL || ctx->is_gs_copy_shader) user_sgpr_info->need_ring_offsets = true; if (ctx->stage == MESA_SHADER_FRAGMENT && ctx->shader_info->info.ps.needs_sample_positions) user_sgpr_info->need_ring_offsets = true; /* 2 user sgprs will nearly always be allocated for scratch/rings */ if (ctx->options->supports_spill || user_sgpr_info->need_ring_offsets) { user_sgpr_info->sgpr_count += 2; } switch (ctx->stage) { case MESA_SHADER_COMPUTE: user_sgpr_info->sgpr_count += ctx->shader_info->info.cs.grid_components_used; break; case MESA_SHADER_FRAGMENT: user_sgpr_info->sgpr_count += ctx->shader_info->info.ps.needs_sample_positions; break; case MESA_SHADER_VERTEX: if (!ctx->is_gs_copy_shader) { user_sgpr_info->sgpr_count += ctx->shader_info->info.vs.has_vertex_buffers ? 2 : 0; if (ctx->shader_info->info.vs.needs_draw_id) { user_sgpr_info->sgpr_count += 3; } else { user_sgpr_info->sgpr_count += 2; } } if (ctx->options->key.vs.as_ls) user_sgpr_info->sgpr_count++; break; case MESA_SHADER_TESS_CTRL: user_sgpr_info->sgpr_count += 4; break; case MESA_SHADER_TESS_EVAL: user_sgpr_info->sgpr_count += 1; break; case MESA_SHADER_GEOMETRY: user_sgpr_info->sgpr_count += 2; break; default: break; } if (ctx->shader_info->info.needs_push_constants) user_sgpr_info->sgpr_count += 2; uint32_t remaining_sgprs = 16 - user_sgpr_info->sgpr_count; if (remaining_sgprs / 2 < util_bitcount(ctx->shader_info->info.desc_set_used_mask)) { user_sgpr_info->sgpr_count += 2; user_sgpr_info->indirect_all_descriptor_sets = true; } else { user_sgpr_info->sgpr_count += util_bitcount(ctx->shader_info->info.desc_set_used_mask) * 2; } } static void create_function(struct nir_to_llvm_context *ctx) { unsigned num_sets = ctx->options->layout ? ctx->options->layout->num_sets : 0; uint8_t user_sgpr_idx; struct user_sgpr_info user_sgpr_info; struct arg_info args = {}; LLVMValueRef desc_sets; allocate_user_sgprs(ctx, &user_sgpr_info); if (user_sgpr_info.need_ring_offsets && !ctx->options->supports_spill) { add_user_sgpr_argument(&args, const_array(ctx->v16i8, 16), &ctx->ring_offsets); /* address of rings */ } /* 1 for each descriptor set */ if (!user_sgpr_info.indirect_all_descriptor_sets) { for (unsigned i = 0; i < num_sets; ++i) { if (ctx->options->layout->set[i].layout->shader_stages & (1 << ctx->stage)) { add_user_sgpr_array_argument(&args, const_array(ctx->i8, 1024 * 1024), &ctx->descriptor_sets[i]); } } } else add_user_sgpr_array_argument(&args, const_array(const_array(ctx->i8, 1024 * 1024), 32), &desc_sets); if (ctx->shader_info->info.needs_push_constants) { /* 1 for push constants and dynamic descriptors */ add_user_sgpr_array_argument(&args, const_array(ctx->i8, 1024 * 1024), &ctx->push_constants); } switch (ctx->stage) { case MESA_SHADER_COMPUTE: if (ctx->shader_info->info.cs.grid_components_used) add_user_sgpr_argument(&args, LLVMVectorType(ctx->i32, ctx->shader_info->info.cs.grid_components_used), &ctx->num_work_groups); /* grid size */ add_sgpr_argument(&args, LLVMVectorType(ctx->i32, 3), &ctx->workgroup_ids); add_sgpr_argument(&args, ctx->i32, &ctx->tg_size); add_vgpr_argument(&args, LLVMVectorType(ctx->i32, 3), &ctx->local_invocation_ids); break; case MESA_SHADER_VERTEX: if (!ctx->is_gs_copy_shader) { if (ctx->shader_info->info.vs.has_vertex_buffers) add_user_sgpr_argument(&args, const_array(ctx->v16i8, 16), &ctx->vertex_buffers); /* vertex buffers */ add_user_sgpr_argument(&args, ctx->i32, &ctx->base_vertex); // base vertex add_user_sgpr_argument(&args, ctx->i32, &ctx->start_instance);// start instance if (ctx->shader_info->info.vs.needs_draw_id) add_user_sgpr_argument(&args, ctx->i32, &ctx->draw_index); // draw id } if (ctx->options->key.vs.as_es) add_sgpr_argument(&args, ctx->i32, &ctx->es2gs_offset); // es2gs offset else if (ctx->options->key.vs.as_ls) add_user_sgpr_argument(&args, ctx->i32, &ctx->ls_out_layout); // ls out layout add_vgpr_argument(&args, ctx->i32, &ctx->vertex_id); // vertex id if (!ctx->is_gs_copy_shader) { add_vgpr_argument(&args, ctx->i32, &ctx->rel_auto_id); // rel auto id add_vgpr_argument(&args, ctx->i32, &ctx->vs_prim_id); // vs prim id add_vgpr_argument(&args, ctx->i32, &ctx->instance_id); // instance id } break; case MESA_SHADER_TESS_CTRL: add_user_sgpr_argument(&args, ctx->i32, &ctx->tcs_offchip_layout); // tcs offchip layout add_user_sgpr_argument(&args, ctx->i32, &ctx->tcs_out_offsets); // tcs out offsets add_user_sgpr_argument(&args, ctx->i32, &ctx->tcs_out_layout); // tcs out layout add_user_sgpr_argument(&args, ctx->i32, &ctx->tcs_in_layout); // tcs in layout add_sgpr_argument(&args, ctx->i32, &ctx->oc_lds); // param oc lds add_sgpr_argument(&args, ctx->i32, &ctx->tess_factor_offset); // tess factor offset add_vgpr_argument(&args, ctx->i32, &ctx->tcs_patch_id); // patch id add_vgpr_argument(&args, ctx->i32, &ctx->tcs_rel_ids); // rel ids; break; case MESA_SHADER_TESS_EVAL: add_user_sgpr_argument(&args, ctx->i32, &ctx->tcs_offchip_layout); // tcs offchip layout if (ctx->options->key.tes.as_es) { add_sgpr_argument(&args, ctx->i32, &ctx->oc_lds); // OC LDS add_sgpr_argument(&args, ctx->i32, NULL); // add_sgpr_argument(&args, ctx->i32, &ctx->es2gs_offset); // es2gs offset } else { add_sgpr_argument(&args, ctx->i32, NULL); // add_sgpr_argument(&args, ctx->i32, &ctx->oc_lds); // OC LDS } add_vgpr_argument(&args, ctx->f32, &ctx->tes_u); // tes_u add_vgpr_argument(&args, ctx->f32, &ctx->tes_v); // tes_v add_vgpr_argument(&args, ctx->i32, &ctx->tes_rel_patch_id); // tes rel patch id add_vgpr_argument(&args, ctx->i32, &ctx->tes_patch_id); // tes patch id break; case MESA_SHADER_GEOMETRY: add_user_sgpr_argument(&args, ctx->i32, &ctx->gsvs_ring_stride); // gsvs stride add_user_sgpr_argument(&args, ctx->i32, &ctx->gsvs_num_entries); // gsvs num entires add_sgpr_argument(&args, ctx->i32, &ctx->gs2vs_offset); // gs2vs offset add_sgpr_argument(&args, ctx->i32, &ctx->gs_wave_id); // wave id add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[0]); // vtx0 add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[1]); // vtx1 add_vgpr_argument(&args, ctx->i32, &ctx->gs_prim_id); // prim id add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[2]); add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[3]); add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[4]); add_vgpr_argument(&args, ctx->i32, &ctx->gs_vtx_offset[5]); add_vgpr_argument(&args, ctx->i32, &ctx->gs_invocation_id); break; case MESA_SHADER_FRAGMENT: if (ctx->shader_info->info.ps.needs_sample_positions) add_user_sgpr_argument(&args, ctx->i32, &ctx->sample_pos_offset); /* sample position offset */ add_sgpr_argument(&args, ctx->i32, &ctx->prim_mask); /* prim mask */ add_vgpr_argument(&args, ctx->v2i32, &ctx->persp_sample); /* persp sample */ add_vgpr_argument(&args, ctx->v2i32, &ctx->persp_center); /* persp center */ add_vgpr_argument(&args, ctx->v2i32, &ctx->persp_centroid); /* persp centroid */ add_vgpr_argument(&args, ctx->v3i32, NULL); /* persp pull model */ add_vgpr_argument(&args, ctx->v2i32, &ctx->linear_sample); /* linear sample */ add_vgpr_argument(&args, ctx->v2i32, &ctx->linear_center); /* linear center */ add_vgpr_argument(&args, ctx->v2i32, &ctx->linear_centroid); /* linear centroid */ add_vgpr_argument(&args, ctx->f32, NULL); /* line stipple tex */ add_vgpr_argument(&args, ctx->f32, &ctx->frag_pos[0]); /* pos x float */ add_vgpr_argument(&args, ctx->f32, &ctx->frag_pos[1]); /* pos y float */ add_vgpr_argument(&args, ctx->f32, &ctx->frag_pos[2]); /* pos z float */ add_vgpr_argument(&args, ctx->f32, &ctx->frag_pos[3]); /* pos w float */ add_vgpr_argument(&args, ctx->i32, &ctx->front_face); /* front face */ add_vgpr_argument(&args, ctx->i32, &ctx->ancillary); /* ancillary */ add_vgpr_argument(&args, ctx->i32, &ctx->sample_coverage); /* sample coverage */ add_vgpr_argument(&args, ctx->i32, NULL); /* fixed pt */ break; default: unreachable("Shader stage not implemented"); } ctx->main_function = create_llvm_function( ctx->context, ctx->module, ctx->builder, NULL, 0, &args, ctx->max_workgroup_size, ctx->options->unsafe_math); set_llvm_calling_convention(ctx->main_function, ctx->stage); ctx->shader_info->num_input_vgprs = 0; ctx->shader_info->num_input_sgprs = ctx->shader_info->num_user_sgprs = ctx->options->supports_spill ? 2 : 0; ctx->shader_info->num_user_sgprs += args.num_user_sgprs_used; ctx->shader_info->num_input_sgprs += args.num_sgprs_used; if (ctx->stage != MESA_SHADER_FRAGMENT) ctx->shader_info->num_input_vgprs = args.num_vgprs_used; assign_arguments(ctx->main_function, &args); user_sgpr_idx = 0; if (ctx->options->supports_spill || user_sgpr_info.need_ring_offsets) { set_userdata_location_shader(ctx, AC_UD_SCRATCH_RING_OFFSETS, &user_sgpr_idx, 2); if (ctx->options->supports_spill) { ctx->ring_offsets = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.implicit.buffer.ptr", LLVMPointerType(ctx->i8, CONST_ADDR_SPACE), NULL, 0, AC_FUNC_ATTR_READNONE); ctx->ring_offsets = LLVMBuildBitCast(ctx->builder, ctx->ring_offsets, const_array(ctx->v16i8, 16), ""); } } if (!user_sgpr_info.indirect_all_descriptor_sets) { for (unsigned i = 0; i < num_sets; ++i) { if (ctx->options->layout->set[i].layout->shader_stages & (1 << ctx->stage)) { set_userdata_location(&ctx->shader_info->user_sgprs_locs.descriptor_sets[i], &user_sgpr_idx, 2); } else ctx->descriptor_sets[i] = NULL; } } else { uint32_t desc_sgpr_idx = user_sgpr_idx; set_userdata_location_shader(ctx, AC_UD_INDIRECT_DESCRIPTOR_SETS, &user_sgpr_idx, 2); for (unsigned i = 0; i < num_sets; ++i) { if (ctx->options->layout->set[i].layout->shader_stages & (1 << ctx->stage)) { set_userdata_location_indirect(&ctx->shader_info->user_sgprs_locs.descriptor_sets[i], desc_sgpr_idx, 2, i * 8); ctx->descriptor_sets[i] = ac_build_indexed_load_const(&ctx->ac, desc_sets, LLVMConstInt(ctx->i32, i, false)); } else ctx->descriptor_sets[i] = NULL; } ctx->shader_info->need_indirect_descriptor_sets = true; } if (ctx->shader_info->info.needs_push_constants) { set_userdata_location_shader(ctx, AC_UD_PUSH_CONSTANTS, &user_sgpr_idx, 2); } switch (ctx->stage) { case MESA_SHADER_COMPUTE: if (ctx->shader_info->info.cs.grid_components_used) { set_userdata_location_shader(ctx, AC_UD_CS_GRID_SIZE, &user_sgpr_idx, ctx->shader_info->info.cs.grid_components_used); } break; case MESA_SHADER_VERTEX: if (!ctx->is_gs_copy_shader) { if (ctx->shader_info->info.vs.has_vertex_buffers) { set_userdata_location_shader(ctx, AC_UD_VS_VERTEX_BUFFERS, &user_sgpr_idx, 2); } unsigned vs_num = 2; if (ctx->shader_info->info.vs.needs_draw_id) vs_num++; set_userdata_location_shader(ctx, AC_UD_VS_BASE_VERTEX_START_INSTANCE, &user_sgpr_idx, vs_num); } if (ctx->options->key.vs.as_ls) { set_userdata_location_shader(ctx, AC_UD_VS_LS_TCS_IN_LAYOUT, &user_sgpr_idx, 1); } if (ctx->options->key.vs.as_ls) declare_tess_lds(ctx); break; case MESA_SHADER_TESS_CTRL: set_userdata_location_shader(ctx, AC_UD_TCS_OFFCHIP_LAYOUT, &user_sgpr_idx, 4); declare_tess_lds(ctx); break; case MESA_SHADER_TESS_EVAL: set_userdata_location_shader(ctx, AC_UD_TES_OFFCHIP_LAYOUT, &user_sgpr_idx, 1); break; case MESA_SHADER_GEOMETRY: set_userdata_location_shader(ctx, AC_UD_GS_VS_RING_STRIDE_ENTRIES, &user_sgpr_idx, 2); break; case MESA_SHADER_FRAGMENT: if (ctx->shader_info->info.ps.needs_sample_positions) { set_userdata_location_shader(ctx, AC_UD_PS_SAMPLE_POS_OFFSET, &user_sgpr_idx, 1); } break; default: unreachable("Shader stage not implemented"); } } static void setup_types(struct nir_to_llvm_context *ctx) { LLVMValueRef args[4]; ctx->voidt = LLVMVoidTypeInContext(ctx->context); ctx->i1 = LLVMIntTypeInContext(ctx->context, 1); ctx->i8 = LLVMIntTypeInContext(ctx->context, 8); ctx->i16 = LLVMIntTypeInContext(ctx->context, 16); ctx->i32 = LLVMIntTypeInContext(ctx->context, 32); ctx->i64 = LLVMIntTypeInContext(ctx->context, 64); ctx->v2i32 = LLVMVectorType(ctx->i32, 2); ctx->v3i32 = LLVMVectorType(ctx->i32, 3); ctx->v4i32 = LLVMVectorType(ctx->i32, 4); ctx->v8i32 = LLVMVectorType(ctx->i32, 8); ctx->f32 = LLVMFloatTypeInContext(ctx->context); ctx->f16 = LLVMHalfTypeInContext(ctx->context); ctx->f64 = LLVMDoubleTypeInContext(ctx->context); ctx->v2f32 = LLVMVectorType(ctx->f32, 2); ctx->v4f32 = LLVMVectorType(ctx->f32, 4); ctx->v16i8 = LLVMVectorType(ctx->i8, 16); ctx->i1false = LLVMConstInt(ctx->i1, 0, false); ctx->i1true = LLVMConstInt(ctx->i1, 1, false); ctx->i32zero = LLVMConstInt(ctx->i32, 0, false); ctx->i32one = LLVMConstInt(ctx->i32, 1, false); ctx->f32zero = LLVMConstReal(ctx->f32, 0.0); ctx->f32one = LLVMConstReal(ctx->f32, 1.0); args[0] = ctx->f32zero; args[1] = ctx->f32zero; args[2] = ctx->f32zero; args[3] = ctx->f32one; ctx->v4f32empty = LLVMConstVector(args, 4); ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context, "amdgpu.uniform", 14); ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0); args[0] = LLVMConstReal(ctx->f32, 2.5); } static int get_llvm_num_components(LLVMValueRef value) { LLVMTypeRef type = LLVMTypeOf(value); unsigned num_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind ? LLVMGetVectorSize(type) : 1; return num_components; } static LLVMValueRef llvm_extract_elem(struct nir_to_llvm_context *ctx, LLVMValueRef value, int index) { int count = get_llvm_num_components(value); assert(index < count); if (count == 1) return value; return LLVMBuildExtractElement(ctx->builder, value, LLVMConstInt(ctx->i32, index, false), ""); } static LLVMValueRef trim_vector(struct nir_to_llvm_context *ctx, LLVMValueRef value, unsigned count) { unsigned num_components = get_llvm_num_components(value); if (count == num_components) return value; LLVMValueRef masks[] = { LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false), LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false)}; if (count == 1) return LLVMBuildExtractElement(ctx->builder, value, masks[0], ""); LLVMValueRef swizzle = LLVMConstVector(masks, count); return LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, ""); } static void build_store_values_extended(struct nir_to_llvm_context *ctx, LLVMValueRef *values, unsigned value_count, unsigned value_stride, LLVMValueRef vec) { LLVMBuilderRef builder = ctx->builder; unsigned i; if (value_count == 1) { LLVMBuildStore(builder, vec, values[0]); return; } for (i = 0; i < value_count; i++) { LLVMValueRef ptr = values[i * value_stride]; LLVMValueRef index = LLVMConstInt(ctx->i32, i, false); LLVMValueRef value = LLVMBuildExtractElement(builder, vec, index, ""); LLVMBuildStore(builder, value, ptr); } } static LLVMTypeRef get_def_type(struct nir_to_llvm_context *ctx, const nir_ssa_def *def) { LLVMTypeRef type = LLVMIntTypeInContext(ctx->context, def->bit_size); if (def->num_components > 1) { type = LLVMVectorType(type, def->num_components); } return type; } static LLVMValueRef get_src(struct nir_to_llvm_context *ctx, nir_src src) { assert(src.is_ssa); struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, src.ssa); return (LLVMValueRef)entry->data; } static LLVMBasicBlockRef get_block(struct nir_to_llvm_context *ctx, const struct nir_block *b) { struct hash_entry *entry = _mesa_hash_table_search(ctx->defs, b); return (LLVMBasicBlockRef)entry->data; } static LLVMValueRef get_alu_src(struct nir_to_llvm_context *ctx, nir_alu_src src, unsigned num_components) { LLVMValueRef value = get_src(ctx, src.src); bool need_swizzle = false; assert(value); LLVMTypeRef type = LLVMTypeOf(value); unsigned src_components = LLVMGetTypeKind(type) == LLVMVectorTypeKind ? LLVMGetVectorSize(type) : 1; for (unsigned i = 0; i < num_components; ++i) { assert(src.swizzle[i] < src_components); if (src.swizzle[i] != i) need_swizzle = true; } if (need_swizzle || num_components != src_components) { LLVMValueRef masks[] = { LLVMConstInt(ctx->i32, src.swizzle[0], false), LLVMConstInt(ctx->i32, src.swizzle[1], false), LLVMConstInt(ctx->i32, src.swizzle[2], false), LLVMConstInt(ctx->i32, src.swizzle[3], false)}; if (src_components > 1 && num_components == 1) { value = LLVMBuildExtractElement(ctx->builder, value, masks[0], ""); } else if (src_components == 1 && num_components > 1) { LLVMValueRef values[] = {value, value, value, value}; value = ac_build_gather_values(&ctx->ac, values, num_components); } else { LLVMValueRef swizzle = LLVMConstVector(masks, num_components); value = LLVMBuildShuffleVector(ctx->builder, value, value, swizzle, ""); } } assert(!src.negate); assert(!src.abs); return value; } static LLVMValueRef emit_int_cmp(struct nir_to_llvm_context *ctx, LLVMIntPredicate pred, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef result = LLVMBuildICmp(ctx->builder, pred, src0, src1, ""); return LLVMBuildSelect(ctx->builder, result, LLVMConstInt(ctx->i32, 0xFFFFFFFF, false), LLVMConstInt(ctx->i32, 0, false), ""); } static LLVMValueRef emit_float_cmp(struct nir_to_llvm_context *ctx, LLVMRealPredicate pred, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef result; src0 = to_float(ctx, src0); src1 = to_float(ctx, src1); result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, ""); return LLVMBuildSelect(ctx->builder, result, LLVMConstInt(ctx->i32, 0xFFFFFFFF, false), LLVMConstInt(ctx->i32, 0, false), ""); } static LLVMValueRef emit_intrin_1f_param(struct nir_to_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0) { char name[64]; LLVMValueRef params[] = { to_float(ctx, src0), }; sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type)); return ac_build_intrinsic(&ctx->ac, name, result_type, params, 1, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_intrin_2f_param(struct nir_to_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0, LLVMValueRef src1) { char name[64]; LLVMValueRef params[] = { to_float(ctx, src0), to_float(ctx, src1), }; sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type)); return ac_build_intrinsic(&ctx->ac, name, result_type, params, 2, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_intrin_3f_param(struct nir_to_llvm_context *ctx, const char *intrin, LLVMTypeRef result_type, LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2) { char name[64]; LLVMValueRef params[] = { to_float(ctx, src0), to_float(ctx, src1), to_float(ctx, src2), }; sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type)); return ac_build_intrinsic(&ctx->ac, name, result_type, params, 3, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_bcsel(struct nir_to_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2) { LLVMValueRef v = LLVMBuildICmp(ctx->builder, LLVMIntNE, src0, ctx->i32zero, ""); return LLVMBuildSelect(ctx->builder, v, src1, src2, ""); } static LLVMValueRef emit_find_lsb(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef params[2] = { src0, /* The value of 1 means that ffs(x=0) = undef, so LLVM won't * add special code to check for x=0. The reason is that * the LLVM behavior for x=0 is different from what we * need here. * * The hardware already implements the correct behavior. */ LLVMConstInt(ctx->i32, 1, false), }; return ac_build_intrinsic(&ctx->ac, "llvm.cttz.i32", ctx->i32, params, 2, AC_FUNC_ATTR_READNONE); } static LLVMValueRef emit_ifind_msb(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { return ac_build_imsb(&ctx->ac, src0, ctx->i32); } static LLVMValueRef emit_ufind_msb(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { return ac_build_umsb(&ctx->ac, src0, ctx->i32); } static LLVMValueRef emit_minmax_int(struct nir_to_llvm_context *ctx, LLVMIntPredicate pred, LLVMValueRef src0, LLVMValueRef src1) { return LLVMBuildSelect(ctx->builder, LLVMBuildICmp(ctx->builder, pred, src0, src1, ""), src0, src1, ""); } static LLVMValueRef emit_iabs(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { return emit_minmax_int(ctx, LLVMIntSGT, src0, LLVMBuildNeg(ctx->builder, src0, "")); } static LLVMValueRef emit_fsign(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef cmp, val; cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGT, src0, ctx->f32zero, ""); val = LLVMBuildSelect(ctx->builder, cmp, ctx->f32one, src0, ""); cmp = LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val, ctx->f32zero, ""); val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstReal(ctx->f32, -1.0), ""); return val; } static LLVMValueRef emit_isign(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef cmp, val; cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGT, src0, ctx->i32zero, ""); val = LLVMBuildSelect(ctx->builder, cmp, ctx->i32one, src0, ""); cmp = LLVMBuildICmp(ctx->builder, LLVMIntSGE, val, ctx->i32zero, ""); val = LLVMBuildSelect(ctx->builder, cmp, val, LLVMConstInt(ctx->i32, -1, true), ""); return val; } static LLVMValueRef emit_ffract(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { const char *intr = "llvm.floor.f32"; LLVMValueRef fsrc0 = to_float(ctx, src0); LLVMValueRef params[] = { fsrc0, }; LLVMValueRef floor = ac_build_intrinsic(&ctx->ac, intr, ctx->f32, params, 1, AC_FUNC_ATTR_READNONE); return LLVMBuildFSub(ctx->builder, fsrc0, floor, ""); } static LLVMValueRef emit_uint_carry(struct nir_to_llvm_context *ctx, const char *intrin, LLVMValueRef src0, LLVMValueRef src1) { LLVMTypeRef ret_type; LLVMTypeRef types[] = { ctx->i32, ctx->i1 }; LLVMValueRef res; LLVMValueRef params[] = { src0, src1 }; ret_type = LLVMStructTypeInContext(ctx->context, types, 2, true); res = ac_build_intrinsic(&ctx->ac, intrin, ret_type, params, 2, AC_FUNC_ATTR_READNONE); res = LLVMBuildExtractValue(ctx->builder, res, 1, ""); res = LLVMBuildZExt(ctx->builder, res, ctx->i32, ""); return res; } static LLVMValueRef emit_b2f(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { return LLVMBuildAnd(ctx->builder, src0, LLVMBuildBitCast(ctx->builder, LLVMConstReal(ctx->f32, 1.0), ctx->i32, ""), ""); } static LLVMValueRef emit_f2f16(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef result; LLVMValueRef cond; src0 = to_float(ctx, src0); result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, ""); /* TODO SI/CIK options here */ if (ctx->options->chip_class >= VI) { LLVMValueRef args[2]; /* Check if the result is a denormal - and flush to 0 if so. */ args[0] = result; args[1] = LLVMConstInt(ctx->i32, N_SUBNORMAL | P_SUBNORMAL, false); cond = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.class.f16", ctx->i1, args, 2, AC_FUNC_ATTR_READNONE); } /* need to convert back up to f32 */ result = LLVMBuildFPExt(ctx->builder, result, ctx->f32, ""); if (ctx->options->chip_class >= VI) result = LLVMBuildSelect(ctx->builder, cond, ctx->f32zero, result, ""); return result; } static LLVMValueRef emit_umul_high(struct nir_to_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef dst64, result; src0 = LLVMBuildZExt(ctx->builder, src0, ctx->i64, ""); src1 = LLVMBuildZExt(ctx->builder, src1, ctx->i64, ""); dst64 = LLVMBuildMul(ctx->builder, src0, src1, ""); dst64 = LLVMBuildLShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), ""); result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, ""); return result; } static LLVMValueRef emit_imul_high(struct nir_to_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef dst64, result; src0 = LLVMBuildSExt(ctx->builder, src0, ctx->i64, ""); src1 = LLVMBuildSExt(ctx->builder, src1, ctx->i64, ""); dst64 = LLVMBuildMul(ctx->builder, src0, src1, ""); dst64 = LLVMBuildAShr(ctx->builder, dst64, LLVMConstInt(ctx->i64, 32, false), ""); result = LLVMBuildTrunc(ctx->builder, dst64, ctx->i32, ""); return result; } static LLVMValueRef emit_bitfield_extract(struct nir_to_llvm_context *ctx, bool is_signed, const LLVMValueRef srcs[3]) { LLVMValueRef result; LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, srcs[2], LLVMConstInt(ctx->i32, 32, false), ""); result = ac_build_bfe(&ctx->ac, srcs[0], srcs[1], srcs[2], is_signed); result = LLVMBuildSelect(ctx->builder, icond, srcs[0], result, ""); return result; } static LLVMValueRef emit_bitfield_insert(struct nir_to_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1, LLVMValueRef src2, LLVMValueRef src3) { LLVMValueRef bfi_args[3], result; bfi_args[0] = LLVMBuildShl(ctx->builder, LLVMBuildSub(ctx->builder, LLVMBuildShl(ctx->builder, ctx->i32one, src3, ""), ctx->i32one, ""), src2, ""); bfi_args[1] = LLVMBuildShl(ctx->builder, src1, src2, ""); bfi_args[2] = src0; LLVMValueRef icond = LLVMBuildICmp(ctx->builder, LLVMIntEQ, src3, LLVMConstInt(ctx->i32, 32, false), ""); /* Calculate: * (arg0 & arg1) | (~arg0 & arg2) = arg2 ^ (arg0 & (arg1 ^ arg2) * Use the right-hand side, which the LLVM backend can convert to V_BFI. */ result = LLVMBuildXor(ctx->builder, bfi_args[2], LLVMBuildAnd(ctx->builder, bfi_args[0], LLVMBuildXor(ctx->builder, bfi_args[1], bfi_args[2], ""), ""), ""); result = LLVMBuildSelect(ctx->builder, icond, src1, result, ""); return result; } static LLVMValueRef emit_pack_half_2x16(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false); int i; LLVMValueRef comp[2]; src0 = to_float(ctx, src0); comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, ""); comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, ""); for (i = 0; i < 2; i++) { comp[i] = LLVMBuildFPTrunc(ctx->builder, comp[i], ctx->f16, ""); comp[i] = LLVMBuildBitCast(ctx->builder, comp[i], ctx->i16, ""); comp[i] = LLVMBuildZExt(ctx->builder, comp[i], ctx->i32, ""); } comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, ""); comp[0] = LLVMBuildOr(ctx->builder, comp[0], comp[1], ""); return comp[0]; } static LLVMValueRef emit_unpack_half_2x16(struct nir_to_llvm_context *ctx, LLVMValueRef src0) { LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false); LLVMValueRef temps[2], result, val; int i; for (i = 0; i < 2; i++) { val = i == 1 ? LLVMBuildLShr(ctx->builder, src0, const16, "") : src0; val = LLVMBuildTrunc(ctx->builder, val, ctx->i16, ""); val = LLVMBuildBitCast(ctx->builder, val, ctx->f16, ""); temps[i] = LLVMBuildFPExt(ctx->builder, val, ctx->f32, ""); } result = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), temps[0], ctx->i32zero, ""); result = LLVMBuildInsertElement(ctx->builder, result, temps[1], ctx->i32one, ""); return result; } static LLVMValueRef emit_ddxy(struct nir_to_llvm_context *ctx, nir_op op, LLVMValueRef src0) { unsigned mask; int idx; LLVMValueRef result; ctx->has_ddxy = true; if (!ctx->lds && !ctx->has_ds_bpermute) ctx->lds = LLVMAddGlobalInAddressSpace(ctx->module, LLVMArrayType(ctx->i32, 64), "ddxy_lds", LOCAL_ADDR_SPACE); if (op == nir_op_fddx_fine || op == nir_op_fddx) mask = AC_TID_MASK_LEFT; else if (op == nir_op_fddy_fine || op == nir_op_fddy) mask = AC_TID_MASK_TOP; else mask = AC_TID_MASK_TOP_LEFT; /* for DDX we want to next X pixel, DDY next Y pixel. */ if (op == nir_op_fddx_fine || op == nir_op_fddx_coarse || op == nir_op_fddx) idx = 1; else idx = 2; result = ac_build_ddxy(&ctx->ac, ctx->has_ds_bpermute, mask, idx, ctx->lds, src0); return result; } /* * this takes an I,J coordinate pair, * and works out the X and Y derivatives. * it returns DDX(I), DDX(J), DDY(I), DDY(J). */ static LLVMValueRef emit_ddxy_interp( struct nir_to_llvm_context *ctx, LLVMValueRef interp_ij) { LLVMValueRef result[4], a; unsigned i; for (i = 0; i < 2; i++) { a = LLVMBuildExtractElement(ctx->builder, interp_ij, LLVMConstInt(ctx->i32, i, false), ""); result[i] = emit_ddxy(ctx, nir_op_fddx, a); result[2+i] = emit_ddxy(ctx, nir_op_fddy, a); } return ac_build_gather_values(&ctx->ac, result, 4); } static void visit_alu(struct nir_to_llvm_context *ctx, const nir_alu_instr *instr) { LLVMValueRef src[4], result = NULL; unsigned num_components = instr->dest.dest.ssa.num_components; unsigned src_components; LLVMTypeRef def_type = get_def_type(ctx, &instr->dest.dest.ssa); assert(nir_op_infos[instr->op].num_inputs <= ARRAY_SIZE(src)); switch (instr->op) { case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: src_components = 1; break; case nir_op_pack_half_2x16: src_components = 2; break; case nir_op_unpack_half_2x16: src_components = 1; break; default: src_components = num_components; break; } for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) src[i] = get_alu_src(ctx, instr->src[i], src_components); switch (instr->op) { case nir_op_fmov: case nir_op_imov: result = src[0]; break; case nir_op_fneg: src[0] = to_float(ctx, src[0]); result = LLVMBuildFNeg(ctx->builder, src[0], ""); break; case nir_op_ineg: result = LLVMBuildNeg(ctx->builder, src[0], ""); break; case nir_op_inot: result = LLVMBuildNot(ctx->builder, src[0], ""); break; case nir_op_iadd: result = LLVMBuildAdd(ctx->builder, src[0], src[1], ""); break; case nir_op_fadd: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = LLVMBuildFAdd(ctx->builder, src[0], src[1], ""); break; case nir_op_fsub: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = LLVMBuildFSub(ctx->builder, src[0], src[1], ""); break; case nir_op_isub: result = LLVMBuildSub(ctx->builder, src[0], src[1], ""); break; case nir_op_imul: result = LLVMBuildMul(ctx->builder, src[0], src[1], ""); break; case nir_op_imod: result = LLVMBuildSRem(ctx->builder, src[0], src[1], ""); break; case nir_op_umod: result = LLVMBuildURem(ctx->builder, src[0], src[1], ""); break; case nir_op_fmod: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = ac_build_fdiv(&ctx->ac, src[0], src[1]); result = emit_intrin_1f_param(ctx, "llvm.floor", to_float_type(ctx, def_type), result); result = LLVMBuildFMul(ctx->builder, src[1] , result, ""); result = LLVMBuildFSub(ctx->builder, src[0], result, ""); break; case nir_op_frem: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = LLVMBuildFRem(ctx->builder, src[0], src[1], ""); break; case nir_op_irem: result = LLVMBuildSRem(ctx->builder, src[0], src[1], ""); break; case nir_op_idiv: result = LLVMBuildSDiv(ctx->builder, src[0], src[1], ""); break; case nir_op_udiv: result = LLVMBuildUDiv(ctx->builder, src[0], src[1], ""); break; case nir_op_fmul: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = LLVMBuildFMul(ctx->builder, src[0], src[1], ""); break; case nir_op_fdiv: src[0] = to_float(ctx, src[0]); src[1] = to_float(ctx, src[1]); result = ac_build_fdiv(&ctx->ac, src[0], src[1]); break; case nir_op_frcp: src[0] = to_float(ctx, src[0]); result = ac_build_fdiv(&ctx->ac, ctx->f32one, src[0]); break; case nir_op_iand: result = LLVMBuildAnd(ctx->builder, src[0], src[1], ""); break; case nir_op_ior: result = LLVMBuildOr(ctx->builder, src[0], src[1], ""); break; case nir_op_ixor: result = LLVMBuildXor(ctx->builder, src[0], src[1], ""); break; case nir_op_ishl: result = LLVMBuildShl(ctx->builder, src[0], src[1], ""); break; case nir_op_ishr: result = LLVMBuildAShr(ctx->builder, src[0], src[1], ""); break; case nir_op_ushr: result = LLVMBuildLShr(ctx->builder, src[0], src[1], ""); break; case nir_op_ilt: result = emit_int_cmp(ctx, LLVMIntSLT, src[0], src[1]); break; case nir_op_ine: result = emit_int_cmp(ctx, LLVMIntNE, src[0], src[1]); break; case nir_op_ieq: result = emit_int_cmp(ctx, LLVMIntEQ, src[0], src[1]); break; case nir_op_ige: result = emit_int_cmp(ctx, LLVMIntSGE, src[0], src[1]); break; case nir_op_ult: result = emit_int_cmp(ctx, LLVMIntULT, src[0], src[1]); break; case nir_op_uge: result = emit_int_cmp(ctx, LLVMIntUGE, src[0], src[1]); break; case nir_op_feq: result = emit_float_cmp(ctx, LLVMRealUEQ, src[0], src[1]); break; case nir_op_fne: result = emit_float_cmp(ctx, LLVMRealUNE, src[0], src[1]); break; case nir_op_flt: result = emit_float_cmp(ctx, LLVMRealULT, src[0], src[1]); break; case nir_op_fge: result = emit_float_cmp(ctx, LLVMRealUGE, src[0], src[1]); break; case nir_op_fabs: result = emit_intrin_1f_param(ctx, "llvm.fabs", to_float_type(ctx, def_type), src[0]); break; case nir_op_iabs: result = emit_iabs(ctx, src[0]); break; case nir_op_imax: result = emit_minmax_int(ctx, LLVMIntSGT, src[0], src[1]); break; case nir_op_imin: result = emit_minmax_int(ctx, LLVMIntSLT, src[0], src[1]); break; case nir_op_umax: result = emit_minmax_int(ctx, LLVMIntUGT, src[0], src[1]); break; case nir_op_umin: result = emit_minmax_int(ctx, LLVMIntULT, src[0], src[1]); break; case nir_op_isign: result = emit_isign(ctx, src[0]); break; case nir_op_fsign: src[0] = to_float(ctx, src[0]); result = emit_fsign(ctx, src[0]); break; case nir_op_ffloor: result = emit_intrin_1f_param(ctx, "llvm.floor", to_float_type(ctx, def_type), src[0]); break; case nir_op_ftrunc: result = emit_intrin_1f_param(ctx, "llvm.trunc", to_float_type(ctx, def_type), src[0]); break; case nir_op_fceil: result = emit_intrin_1f_param(ctx, "llvm.ceil", to_float_type(ctx, def_type), src[0]); break; case nir_op_fround_even: result = emit_intrin_1f_param(ctx, "llvm.rint", to_float_type(ctx, def_type),src[0]); break; case nir_op_ffract: result = emit_ffract(ctx, src[0]); break; case nir_op_fsin: result = emit_intrin_1f_param(ctx, "llvm.sin", to_float_type(ctx, def_type), src[0]); break; case nir_op_fcos: result = emit_intrin_1f_param(ctx, "llvm.cos", to_float_type(ctx, def_type), src[0]); break; case nir_op_fsqrt: result = emit_intrin_1f_param(ctx, "llvm.sqrt", to_float_type(ctx, def_type), src[0]); break; case nir_op_fexp2: result = emit_intrin_1f_param(ctx, "llvm.exp2", to_float_type(ctx, def_type), src[0]); break; case nir_op_flog2: result = emit_intrin_1f_param(ctx, "llvm.log2", to_float_type(ctx, def_type), src[0]); break; case nir_op_frsq: result = emit_intrin_1f_param(ctx, "llvm.sqrt", to_float_type(ctx, def_type), src[0]); result = ac_build_fdiv(&ctx->ac, ctx->f32one, result); break; case nir_op_fpow: result = emit_intrin_2f_param(ctx, "llvm.pow", to_float_type(ctx, def_type), src[0], src[1]); break; case nir_op_fmax: result = emit_intrin_2f_param(ctx, "llvm.maxnum", to_float_type(ctx, def_type), src[0], src[1]); if (instr->dest.dest.ssa.bit_size == 32) result = emit_intrin_1f_param(ctx, "llvm.canonicalize", to_float_type(ctx, def_type), result); break; case nir_op_fmin: result = emit_intrin_2f_param(ctx, "llvm.minnum", to_float_type(ctx, def_type), src[0], src[1]); if (instr->dest.dest.ssa.bit_size == 32) result = emit_intrin_1f_param(ctx, "llvm.canonicalize", to_float_type(ctx, def_type), result); break; case nir_op_ffma: result = emit_intrin_3f_param(ctx, "llvm.fma", to_float_type(ctx, def_type), src[0], src[1], src[2]); break; case nir_op_ibitfield_extract: result = emit_bitfield_extract(ctx, true, src); break; case nir_op_ubitfield_extract: result = emit_bitfield_extract(ctx, false, src); break; case nir_op_bitfield_insert: result = emit_bitfield_insert(ctx, src[0], src[1], src[2], src[3]); break; case nir_op_bitfield_reverse: result = ac_build_intrinsic(&ctx->ac, "llvm.bitreverse.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE); break; case nir_op_bit_count: result = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32", ctx->i32, src, 1, AC_FUNC_ATTR_READNONE); break; case nir_op_vec2: case nir_op_vec3: case nir_op_vec4: for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) src[i] = to_integer(ctx, src[i]); result = ac_build_gather_values(&ctx->ac, src, num_components); break; case nir_op_f2i32: case nir_op_f2i64: src[0] = to_float(ctx, src[0]); result = LLVMBuildFPToSI(ctx->builder, src[0], def_type, ""); break; case nir_op_f2u32: case nir_op_f2u64: src[0] = to_float(ctx, src[0]); result = LLVMBuildFPToUI(ctx->builder, src[0], def_type, ""); break; case nir_op_i2f32: case nir_op_i2f64: result = LLVMBuildSIToFP(ctx->builder, src[0], to_float_type(ctx, def_type), ""); break; case nir_op_u2f32: case nir_op_u2f64: result = LLVMBuildUIToFP(ctx->builder, src[0], to_float_type(ctx, def_type), ""); break; case nir_op_f2f64: result = LLVMBuildFPExt(ctx->builder, src[0], to_float_type(ctx, def_type), ""); break; case nir_op_f2f32: result = LLVMBuildFPTrunc(ctx->builder, src[0], to_float_type(ctx, def_type), ""); break; case nir_op_u2u32: case nir_op_u2u64: if (get_elem_bits(ctx, LLVMTypeOf(src[0])) < get_elem_bits(ctx, def_type)) result = LLVMBuildZExt(ctx->builder, src[0], def_type, ""); else result = LLVMBuildTrunc(ctx->builder, src[0], def_type, ""); break; case nir_op_i2i32: case nir_op_i2i64: if (get_elem_bits(ctx, LLVMTypeOf(src[0])) < get_elem_bits(ctx, def_type)) result = LLVMBuildSExt(ctx->builder, src[0], def_type, ""); else result = LLVMBuildTrunc(ctx->builder, src[0], def_type, ""); break; case nir_op_bcsel: result = emit_bcsel(ctx, src[0], src[1], src[2]); break; case nir_op_find_lsb: result = emit_find_lsb(ctx, src[0]); break; case nir_op_ufind_msb: result = emit_ufind_msb(ctx, src[0]); break; case nir_op_ifind_msb: result = emit_ifind_msb(ctx, src[0]); break; case nir_op_uadd_carry: result = emit_uint_carry(ctx, "llvm.uadd.with.overflow.i32", src[0], src[1]); break; case nir_op_usub_borrow: result = emit_uint_carry(ctx, "llvm.usub.with.overflow.i32", src[0], src[1]); break; case nir_op_b2f: result = emit_b2f(ctx, src[0]); break; case nir_op_fquantize2f16: result = emit_f2f16(ctx, src[0]); break; case nir_op_umul_high: result = emit_umul_high(ctx, src[0], src[1]); break; case nir_op_imul_high: result = emit_imul_high(ctx, src[0], src[1]); break; case nir_op_pack_half_2x16: result = emit_pack_half_2x16(ctx, src[0]); break; case nir_op_unpack_half_2x16: result = emit_unpack_half_2x16(ctx, src[0]); break; case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: result = emit_ddxy(ctx, instr->op, src[0]); break; default: fprintf(stderr, "Unknown NIR alu instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } if (result) { assert(instr->dest.dest.is_ssa); result = to_integer(ctx, result); _mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa, result); } } static void visit_load_const(struct nir_to_llvm_context *ctx, const nir_load_const_instr *instr) { LLVMValueRef values[4], value = NULL; LLVMTypeRef element_type = LLVMIntTypeInContext(ctx->context, instr->def.bit_size); for (unsigned i = 0; i < instr->def.num_components; ++i) { switch (instr->def.bit_size) { case 32: values[i] = LLVMConstInt(element_type, instr->value.u32[i], false); break; case 64: values[i] = LLVMConstInt(element_type, instr->value.u64[i], false); break; default: fprintf(stderr, "unsupported nir load_const bit_size: %d\n", instr->def.bit_size); abort(); } } if (instr->def.num_components > 1) { value = LLVMConstVector(values, instr->def.num_components); } else value = values[0]; _mesa_hash_table_insert(ctx->defs, &instr->def, value); } static LLVMValueRef cast_ptr(struct nir_to_llvm_context *ctx, LLVMValueRef ptr, LLVMTypeRef type) { int addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr)); return LLVMBuildBitCast(ctx->builder, ptr, LLVMPointerType(type, addr_space), ""); } static LLVMValueRef get_buffer_size(struct nir_to_llvm_context *ctx, LLVMValueRef descriptor, bool in_elements) { LLVMValueRef size = LLVMBuildExtractElement(ctx->builder, descriptor, LLVMConstInt(ctx->i32, 2, false), ""); /* VI only */ if (ctx->options->chip_class >= VI && in_elements) { /* On VI, the descriptor contains the size in bytes, * but TXQ must return the size in elements. * The stride is always non-zero for resources using TXQ. */ LLVMValueRef stride = LLVMBuildExtractElement(ctx->builder, descriptor, LLVMConstInt(ctx->i32, 1, false), ""); stride = LLVMBuildLShr(ctx->builder, stride, LLVMConstInt(ctx->i32, 16, false), ""); stride = LLVMBuildAnd(ctx->builder, stride, LLVMConstInt(ctx->i32, 0x3fff, false), ""); size = LLVMBuildUDiv(ctx->builder, size, stride, ""); } return size; } /** * Given the i32 or vNi32 \p type, generate the textual name (e.g. for use with * intrinsic names). */ static void build_int_type_name( LLVMTypeRef type, char *buf, unsigned bufsize) { assert(bufsize >= 6); if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) snprintf(buf, bufsize, "v%ui32", LLVMGetVectorSize(type)); else strcpy(buf, "i32"); } static LLVMValueRef radv_lower_gather4_integer(struct nir_to_llvm_context *ctx, struct ac_image_args *args, const nir_tex_instr *instr) { enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type); LLVMValueRef coord = args->addr; LLVMValueRef half_texel[2]; LLVMValueRef compare_cube_wa; LLVMValueRef result; int c; unsigned coord_vgpr_index = (unsigned)args->offset + (unsigned)args->compare; //TODO Rect { struct ac_image_args txq_args = { 0 }; txq_args.da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE; txq_args.opcode = ac_image_get_resinfo; txq_args.dmask = 0xf; txq_args.addr = ctx->i32zero; txq_args.resource = args->resource; LLVMValueRef size = ac_build_image_opcode(&ctx->ac, &txq_args); for (c = 0; c < 2; c++) { half_texel[c] = LLVMBuildExtractElement(ctx->builder, size, LLVMConstInt(ctx->i32, c, false), ""); half_texel[c] = LLVMBuildUIToFP(ctx->builder, half_texel[c], ctx->f32, ""); half_texel[c] = ac_build_fdiv(&ctx->ac, ctx->f32one, half_texel[c]); half_texel[c] = LLVMBuildFMul(ctx->builder, half_texel[c], LLVMConstReal(ctx->f32, -0.5), ""); } } LLVMValueRef orig_coords = args->addr; for (c = 0; c < 2; c++) { LLVMValueRef tmp; LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0); tmp = LLVMBuildExtractElement(ctx->builder, coord, index, ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, ""); tmp = LLVMBuildFAdd(ctx->builder, tmp, half_texel[c], ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, ""); coord = LLVMBuildInsertElement(ctx->builder, coord, tmp, index, ""); } /* * Apparantly cube has issue with integer types that the workaround doesn't solve, * so this tests if the format is 8_8_8_8 and an integer type do an alternate * workaround by sampling using a scaled type and converting. * This is taken from amdgpu-pro shaders. */ /* NOTE this produces some ugly code compared to amdgpu-pro, * LLVM ends up dumping SGPRs into VGPRs to deal with the compare/select, * and then reads them back. -pro generates two selects, * one s_cmp for the descriptor rewriting * one v_cmp for the coordinate and result changes. */ if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { LLVMValueRef tmp, tmp2; /* workaround 8/8/8/8 uint/sint cube gather bug */ /* first detect it then change to a scaled read and f2i */ tmp = LLVMBuildExtractElement(ctx->builder, args->resource, ctx->i32one, ""); tmp2 = tmp; /* extract the DATA_FORMAT */ tmp = ac_build_bfe(&ctx->ac, tmp, LLVMConstInt(ctx->i32, 20, false), LLVMConstInt(ctx->i32, 6, false), false); /* is the DATA_FORMAT == 8_8_8_8 */ compare_cube_wa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, tmp, LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false), ""); if (stype == GLSL_TYPE_UINT) /* Create a NUM FORMAT - 0x2 or 0x4 - USCALED or UINT */ tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0x8000000, false), LLVMConstInt(ctx->i32, 0x10000000, false), ""); else /* Create a NUM FORMAT - 0x3 or 0x5 - SSCALED or SINT */ tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, LLVMConstInt(ctx->i32, 0xc000000, false), LLVMConstInt(ctx->i32, 0x14000000, false), ""); /* replace the NUM FORMAT in the descriptor */ tmp2 = LLVMBuildAnd(ctx->builder, tmp2, LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false), ""); tmp2 = LLVMBuildOr(ctx->builder, tmp2, tmp, ""); args->resource = LLVMBuildInsertElement(ctx->builder, args->resource, tmp2, ctx->i32one, ""); /* don't modify the coordinates for this case */ coord = LLVMBuildSelect(ctx->builder, compare_cube_wa, orig_coords, coord, ""); } args->addr = coord; result = ac_build_image_opcode(&ctx->ac, args); if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) { LLVMValueRef tmp, tmp2; /* if the cube workaround is in place, f2i the result. */ for (c = 0; c < 4; c++) { tmp = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, c, false), ""); if (stype == GLSL_TYPE_UINT) tmp2 = LLVMBuildFPToUI(ctx->builder, tmp, ctx->i32, ""); else tmp2 = LLVMBuildFPToSI(ctx->builder, tmp, ctx->i32, ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->i32, ""); tmp2 = LLVMBuildBitCast(ctx->builder, tmp2, ctx->i32, ""); tmp = LLVMBuildSelect(ctx->builder, compare_cube_wa, tmp2, tmp, ""); tmp = LLVMBuildBitCast(ctx->builder, tmp, ctx->f32, ""); result = LLVMBuildInsertElement(ctx->builder, result, tmp, LLVMConstInt(ctx->i32, c, false), ""); } } return result; } static LLVMValueRef build_tex_intrinsic(struct nir_to_llvm_context *ctx, const nir_tex_instr *instr, bool lod_is_zero, struct ac_image_args *args) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { return ac_build_buffer_load_format(&ctx->ac, args->resource, args->addr, LLVMConstInt(ctx->i32, 0, false), true); } args->opcode = ac_image_sample; args->compare = instr->is_shadow; switch (instr->op) { case nir_texop_txf: case nir_texop_txf_ms: case nir_texop_samples_identical: args->opcode = instr->sampler_dim == GLSL_SAMPLER_DIM_MS ? ac_image_load : ac_image_load_mip; args->compare = false; args->offset = false; break; case nir_texop_txb: args->bias = true; break; case nir_texop_txl: if (lod_is_zero) args->level_zero = true; else args->lod = true; break; case nir_texop_txs: case nir_texop_query_levels: args->opcode = ac_image_get_resinfo; break; case nir_texop_tex: if (ctx->stage != MESA_SHADER_FRAGMENT) args->level_zero = true; break; case nir_texop_txd: args->deriv = true; break; case nir_texop_tg4: args->opcode = ac_image_gather4; args->level_zero = true; break; case nir_texop_lod: args->opcode = ac_image_get_lod; args->compare = false; args->offset = false; break; default: break; } if (instr->op == nir_texop_tg4) { enum glsl_base_type stype = glsl_get_sampler_result_type(instr->texture->var->type); if (stype == GLSL_TYPE_UINT || stype == GLSL_TYPE_INT) { return radv_lower_gather4_integer(ctx, args, instr); } } return ac_build_image_opcode(&ctx->ac, args); } static LLVMValueRef visit_vulkan_resource_index(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef index = get_src(ctx, instr->src[0]); unsigned desc_set = nir_intrinsic_desc_set(instr); unsigned binding = nir_intrinsic_binding(instr); LLVMValueRef desc_ptr = ctx->descriptor_sets[desc_set]; struct radv_pipeline_layout *pipeline_layout = ctx->options->layout; struct radv_descriptor_set_layout *layout = pipeline_layout->set[desc_set].layout; unsigned base_offset = layout->binding[binding].offset; LLVMValueRef offset, stride; if (layout->binding[binding].type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || layout->binding[binding].type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) { unsigned idx = pipeline_layout->set[desc_set].dynamic_offset_start + layout->binding[binding].dynamic_offset_offset; desc_ptr = ctx->push_constants; base_offset = pipeline_layout->push_constant_size + 16 * idx; stride = LLVMConstInt(ctx->i32, 16, false); } else stride = LLVMConstInt(ctx->i32, layout->binding[binding].size, false); offset = LLVMConstInt(ctx->i32, base_offset, false); index = LLVMBuildMul(ctx->builder, index, stride, ""); offset = LLVMBuildAdd(ctx->builder, offset, index, ""); desc_ptr = ac_build_gep0(&ctx->ac, desc_ptr, offset); desc_ptr = cast_ptr(ctx, desc_ptr, ctx->v4i32); LLVMSetMetadata(desc_ptr, ctx->uniform_md_kind, ctx->empty_md); return LLVMBuildLoad(ctx->builder, desc_ptr, ""); } static LLVMValueRef visit_load_push_constant(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef ptr, addr; addr = LLVMConstInt(ctx->i32, nir_intrinsic_base(instr), 0); addr = LLVMBuildAdd(ctx->builder, addr, get_src(ctx, instr->src[0]), ""); ptr = ac_build_gep0(&ctx->ac, ctx->push_constants, addr); ptr = cast_ptr(ctx, ptr, get_def_type(ctx, &instr->dest.ssa)); return LLVMBuildLoad(ctx->builder, ptr, ""); } static LLVMValueRef visit_get_buffer_size(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef desc = get_src(ctx, instr->src[0]); return get_buffer_size(ctx, desc, false); } static void visit_store_ssbo(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { const char *store_name; LLVMValueRef src_data = get_src(ctx, instr->src[0]); LLVMTypeRef data_type = ctx->f32; int elem_size_mult = get_elem_bits(ctx, LLVMTypeOf(src_data)) / 32; int components_32bit = elem_size_mult * instr->num_components; unsigned writemask = nir_intrinsic_write_mask(instr); LLVMValueRef base_data, base_offset; LLVMValueRef params[6]; if (ctx->stage == MESA_SHADER_FRAGMENT) ctx->shader_info->fs.writes_memory = true; params[1] = get_src(ctx, instr->src[1]); params[2] = LLVMConstInt(ctx->i32, 0, false); /* vindex */ params[4] = ctx->i1false; /* glc */ params[5] = ctx->i1false; /* slc */ if (components_32bit > 1) data_type = LLVMVectorType(ctx->f32, components_32bit); base_data = to_float(ctx, src_data); base_data = trim_vector(ctx, base_data, instr->num_components); base_data = LLVMBuildBitCast(ctx->builder, base_data, data_type, ""); base_offset = get_src(ctx, instr->src[2]); /* voffset */ while (writemask) { int start, count; LLVMValueRef data; LLVMValueRef offset; LLVMValueRef tmp; u_bit_scan_consecutive_range(&writemask, &start, &count); /* Due to an LLVM limitation, split 3-element writes * into a 2-element and a 1-element write. */ if (count == 3) { writemask |= 1 << (start + 2); count = 2; } start *= elem_size_mult; count *= elem_size_mult; if (count > 4) { writemask |= ((1u << (count - 4)) - 1u) << (start + 4); count = 4; } if (count == 4) { store_name = "llvm.amdgcn.buffer.store.v4f32"; data = base_data; } else if (count == 2) { tmp = LLVMBuildExtractElement(ctx->builder, base_data, LLVMConstInt(ctx->i32, start, false), ""); data = LLVMBuildInsertElement(ctx->builder, LLVMGetUndef(ctx->v2f32), tmp, ctx->i32zero, ""); tmp = LLVMBuildExtractElement(ctx->builder, base_data, LLVMConstInt(ctx->i32, start + 1, false), ""); data = LLVMBuildInsertElement(ctx->builder, data, tmp, ctx->i32one, ""); store_name = "llvm.amdgcn.buffer.store.v2f32"; } else { assert(count == 1); if (get_llvm_num_components(base_data) > 1) data = LLVMBuildExtractElement(ctx->builder, base_data, LLVMConstInt(ctx->i32, start, false), ""); else data = base_data; store_name = "llvm.amdgcn.buffer.store.f32"; } offset = base_offset; if (start != 0) { offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, start * 4, false), ""); } params[0] = data; params[3] = offset; ac_build_intrinsic(&ctx->ac, store_name, ctx->voidt, params, 6, 0); } } static LLVMValueRef visit_atomic_ssbo(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { const char *name; LLVMValueRef params[6]; int arg_count = 0; if (ctx->stage == MESA_SHADER_FRAGMENT) ctx->shader_info->fs.writes_memory = true; if (instr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap) { params[arg_count++] = llvm_extract_elem(ctx, get_src(ctx, instr->src[3]), 0); } params[arg_count++] = llvm_extract_elem(ctx, get_src(ctx, instr->src[2]), 0); params[arg_count++] = get_src(ctx, instr->src[0]); params[arg_count++] = LLVMConstInt(ctx->i32, 0, false); /* vindex */ params[arg_count++] = get_src(ctx, instr->src[1]); /* voffset */ params[arg_count++] = ctx->i1false; /* slc */ switch (instr->intrinsic) { case nir_intrinsic_ssbo_atomic_add: name = "llvm.amdgcn.buffer.atomic.add"; break; case nir_intrinsic_ssbo_atomic_imin: name = "llvm.amdgcn.buffer.atomic.smin"; break; case nir_intrinsic_ssbo_atomic_umin: name = "llvm.amdgcn.buffer.atomic.umin"; break; case nir_intrinsic_ssbo_atomic_imax: name = "llvm.amdgcn.buffer.atomic.smax"; break; case nir_intrinsic_ssbo_atomic_umax: name = "llvm.amdgcn.buffer.atomic.umax"; break; case nir_intrinsic_ssbo_atomic_and: name = "llvm.amdgcn.buffer.atomic.and"; break; case nir_intrinsic_ssbo_atomic_or: name = "llvm.amdgcn.buffer.atomic.or"; break; case nir_intrinsic_ssbo_atomic_xor: name = "llvm.amdgcn.buffer.atomic.xor"; break; case nir_intrinsic_ssbo_atomic_exchange: name = "llvm.amdgcn.buffer.atomic.swap"; break; case nir_intrinsic_ssbo_atomic_comp_swap: name = "llvm.amdgcn.buffer.atomic.cmpswap"; break; default: abort(); } return ac_build_intrinsic(&ctx->ac, name, ctx->i32, params, arg_count, 0); } static LLVMValueRef visit_load_buffer(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef results[2]; int load_components; int num_components = instr->num_components; if (instr->dest.ssa.bit_size == 64) num_components *= 2; for (int i = 0; i < num_components; i += load_components) { load_components = MIN2(num_components - i, 4); const char *load_name; LLVMTypeRef data_type = ctx->f32; LLVMValueRef offset = LLVMConstInt(ctx->i32, i * 4, false); offset = LLVMBuildAdd(ctx->builder, get_src(ctx, instr->src[1]), offset, ""); if (load_components == 3) data_type = LLVMVectorType(ctx->f32, 4); else if (load_components > 1) data_type = LLVMVectorType(ctx->f32, load_components); if (load_components >= 3) load_name = "llvm.amdgcn.buffer.load.v4f32"; else if (load_components == 2) load_name = "llvm.amdgcn.buffer.load.v2f32"; else if (load_components == 1) load_name = "llvm.amdgcn.buffer.load.f32"; else unreachable("unhandled number of components"); LLVMValueRef params[] = { get_src(ctx, instr->src[0]), LLVMConstInt(ctx->i32, 0, false), offset, ctx->i1false, ctx->i1false, }; results[i] = ac_build_intrinsic(&ctx->ac, load_name, data_type, params, 5, 0); } LLVMValueRef ret = results[0]; if (num_components > 4 || num_components == 3) { LLVMValueRef masks[] = { LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false), LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false), LLVMConstInt(ctx->i32, 4, false), LLVMConstInt(ctx->i32, 5, false), LLVMConstInt(ctx->i32, 6, false), LLVMConstInt(ctx->i32, 7, false) }; LLVMValueRef swizzle = LLVMConstVector(masks, num_components); ret = LLVMBuildShuffleVector(ctx->builder, results[0], results[num_components > 4 ? 1 : 0], swizzle, ""); } return LLVMBuildBitCast(ctx->builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); } static LLVMValueRef visit_load_ubo_buffer(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef results[8], ret; LLVMValueRef rsrc = get_src(ctx, instr->src[0]); LLVMValueRef offset = get_src(ctx, instr->src[1]); int num_components = instr->num_components; rsrc = LLVMBuildBitCast(ctx->builder, rsrc, LLVMVectorType(ctx->i8, 16), ""); if (instr->dest.ssa.bit_size == 64) num_components *= 2; for (unsigned i = 0; i < num_components; ++i) { LLVMValueRef params[] = { rsrc, LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->i32, 4 * i, 0), offset, "") }; results[i] = ac_build_intrinsic(&ctx->ac, "llvm.SI.load.const", ctx->f32, params, 2, AC_FUNC_ATTR_READNONE | AC_FUNC_ATTR_LEGACY); } ret = ac_build_gather_values(&ctx->ac, results, instr->num_components); return LLVMBuildBitCast(ctx->builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); } static void radv_get_deref_offset(struct nir_to_llvm_context *ctx, nir_deref_var *deref, bool vs_in, unsigned *vertex_index_out, LLVMValueRef *vertex_index_ref, unsigned *const_out, LLVMValueRef *indir_out) { unsigned const_offset = 0; nir_deref *tail = &deref->deref; LLVMValueRef offset = NULL; if (vertex_index_out != NULL || vertex_index_ref != NULL) { tail = tail->child; nir_deref_array *deref_array = nir_deref_as_array(tail); if (vertex_index_out) *vertex_index_out = deref_array->base_offset; if (vertex_index_ref) { LLVMValueRef vtx = LLVMConstInt(ctx->i32, deref_array->base_offset, false); if (deref_array->deref_array_type == nir_deref_array_type_indirect) { vtx = LLVMBuildAdd(ctx->builder, vtx, get_src(ctx, deref_array->indirect), ""); } *vertex_index_ref = vtx; } } if (deref->var->data.compact) { assert(tail->child->deref_type == nir_deref_type_array); assert(glsl_type_is_scalar(glsl_without_array(deref->var->type))); nir_deref_array *deref_array = nir_deref_as_array(tail->child); /* We always lower indirect dereferences for "compact" array vars. */ assert(deref_array->deref_array_type == nir_deref_array_type_direct); const_offset = deref_array->base_offset; goto out; } while (tail->child != NULL) { const struct glsl_type *parent_type = tail->type; tail = tail->child; if (tail->deref_type == nir_deref_type_array) { nir_deref_array *deref_array = nir_deref_as_array(tail); LLVMValueRef index, stride, local_offset; unsigned size = glsl_count_attribute_slots(tail->type, vs_in); const_offset += size * deref_array->base_offset; if (deref_array->deref_array_type == nir_deref_array_type_direct) continue; assert(deref_array->deref_array_type == nir_deref_array_type_indirect); index = get_src(ctx, deref_array->indirect); stride = LLVMConstInt(ctx->i32, size, 0); local_offset = LLVMBuildMul(ctx->builder, stride, index, ""); if (offset) offset = LLVMBuildAdd(ctx->builder, offset, local_offset, ""); else offset = local_offset; } else if (tail->deref_type == nir_deref_type_struct) { nir_deref_struct *deref_struct = nir_deref_as_struct(tail); for (unsigned i = 0; i < deref_struct->index; i++) { const struct glsl_type *ft = glsl_get_struct_field(parent_type, i); const_offset += glsl_count_attribute_slots(ft, vs_in); } } else unreachable("unsupported deref type"); } out: if (const_offset && offset) offset = LLVMBuildAdd(ctx->builder, offset, LLVMConstInt(ctx->i32, const_offset, 0), ""); *const_out = const_offset; *indir_out = offset; } static LLVMValueRef lds_load(struct nir_to_llvm_context *ctx, LLVMValueRef dw_addr) { LLVMValueRef value; value = ac_build_indexed_load(&ctx->ac, ctx->lds, dw_addr, false); return value; } static void lds_store(struct nir_to_llvm_context *ctx, LLVMValueRef dw_addr, LLVMValueRef value) { value = LLVMBuildBitCast(ctx->builder, value, ctx->i32, ""); ac_build_indexed_store(&ctx->ac, ctx->lds, dw_addr, value); } /* The offchip buffer layout for TCS->TES is * * - attribute 0 of patch 0 vertex 0 * - attribute 0 of patch 0 vertex 1 * - attribute 0 of patch 0 vertex 2 * ... * - attribute 0 of patch 1 vertex 0 * - attribute 0 of patch 1 vertex 1 * ... * - attribute 1 of patch 0 vertex 0 * - attribute 1 of patch 0 vertex 1 * ... * - per patch attribute 0 of patch 0 * - per patch attribute 0 of patch 1 * ... * * Note that every attribute has 4 components. */ static LLVMValueRef get_tcs_tes_buffer_address(struct nir_to_llvm_context *ctx, LLVMValueRef vertex_index, LLVMValueRef param_index) { LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices; LLVMValueRef param_stride, constant16; LLVMValueRef rel_patch_id = get_rel_patch_id(ctx); vertices_per_patch = unpack_param(ctx, ctx->tcs_offchip_layout, 9, 6); num_patches = unpack_param(ctx, ctx->tcs_offchip_layout, 0, 9); total_vertices = LLVMBuildMul(ctx->builder, vertices_per_patch, num_patches, ""); constant16 = LLVMConstInt(ctx->i32, 16, false); if (vertex_index) { base_addr = LLVMBuildMul(ctx->builder, rel_patch_id, vertices_per_patch, ""); base_addr = LLVMBuildAdd(ctx->builder, base_addr, vertex_index, ""); param_stride = total_vertices; } else { base_addr = rel_patch_id; param_stride = num_patches; } base_addr = LLVMBuildAdd(ctx->builder, base_addr, LLVMBuildMul(ctx->builder, param_index, param_stride, ""), ""); base_addr = LLVMBuildMul(ctx->builder, base_addr, constant16, ""); if (!vertex_index) { LLVMValueRef patch_data_offset = unpack_param(ctx, ctx->tcs_offchip_layout, 16, 16); base_addr = LLVMBuildAdd(ctx->builder, base_addr, patch_data_offset, ""); } return base_addr; } static LLVMValueRef get_tcs_tes_buffer_address_params(struct nir_to_llvm_context *ctx, unsigned param, unsigned const_index, bool is_compact, LLVMValueRef vertex_index, LLVMValueRef indir_index) { LLVMValueRef param_index; if (indir_index) param_index = LLVMBuildAdd(ctx->builder, LLVMConstInt(ctx->i32, param, false), indir_index, ""); else { if (const_index && !is_compact) param += const_index; param_index = LLVMConstInt(ctx->i32, param, false); } return get_tcs_tes_buffer_address(ctx, vertex_index, param_index); } static void mark_tess_output(struct nir_to_llvm_context *ctx, bool is_patch, uint32_t param) { if (is_patch) { ctx->tess_patch_outputs_written |= (1ull << param); } else ctx->tess_outputs_written |= (1ull << param); } static LLVMValueRef get_dw_address(struct nir_to_llvm_context *ctx, LLVMValueRef dw_addr, unsigned param, unsigned const_index, bool compact_const_index, LLVMValueRef vertex_index, LLVMValueRef stride, LLVMValueRef indir_index) { if (vertex_index) { dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, LLVMBuildMul(ctx->builder, vertex_index, stride, ""), ""); } if (indir_index) dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, LLVMBuildMul(ctx->builder, indir_index, LLVMConstInt(ctx->i32, 4, false), ""), ""); else if (const_index && !compact_const_index) dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, LLVMConstInt(ctx->i32, const_index, false), ""); dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, LLVMConstInt(ctx->i32, param * 4, false), ""); if (const_index && compact_const_index) dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, LLVMConstInt(ctx->i32, const_index, false), ""); return dw_addr; } static LLVMValueRef load_tcs_input(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef dw_addr, stride; unsigned const_index; LLVMValueRef vertex_index; LLVMValueRef indir_index; unsigned param; LLVMValueRef value[4], result; const bool per_vertex = nir_is_per_vertex_io(instr->variables[0]->var, ctx->stage); const bool is_compact = instr->variables[0]->var->data.compact; param = shader_io_get_unique_index(instr->variables[0]->var->data.location); radv_get_deref_offset(ctx, instr->variables[0], false, NULL, per_vertex ? &vertex_index : NULL, &const_index, &indir_index); stride = unpack_param(ctx, ctx->tcs_in_layout, 13, 8); dw_addr = get_tcs_in_current_patch_offset(ctx); dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride, indir_index); for (unsigned i = 0; i < instr->num_components; i++) { value[i] = lds_load(ctx, dw_addr); dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->i32one, ""); } result = ac_build_gather_values(&ctx->ac, value, instr->num_components); result = LLVMBuildBitCast(ctx->builder, result, get_def_type(ctx, &instr->dest.ssa), ""); return result; } static LLVMValueRef load_tcs_output(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef dw_addr, stride; LLVMValueRef value[4], result; LLVMValueRef vertex_index = NULL; LLVMValueRef indir_index = NULL; unsigned const_index = 0; unsigned param; const bool per_vertex = nir_is_per_vertex_io(instr->variables[0]->var, ctx->stage); const bool is_compact = instr->variables[0]->var->data.compact; param = shader_io_get_unique_index(instr->variables[0]->var->data.location); radv_get_deref_offset(ctx, instr->variables[0], false, NULL, per_vertex ? &vertex_index : NULL, &const_index, &indir_index); if (!instr->variables[0]->var->data.patch) { stride = unpack_param(ctx, ctx->tcs_out_layout, 13, 8); dw_addr = get_tcs_out_current_patch_offset(ctx); } else { dw_addr = get_tcs_out_current_patch_data_offset(ctx); } dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride, indir_index); for (unsigned i = 0; i < instr->num_components; i++) { value[i] = lds_load(ctx, dw_addr); dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->i32one, ""); } result = ac_build_gather_values(&ctx->ac, value, instr->num_components); result = LLVMBuildBitCast(ctx->builder, result, get_def_type(ctx, &instr->dest.ssa), ""); return result; } static void store_tcs_output(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr, LLVMValueRef src, unsigned writemask) { LLVMValueRef stride, dw_addr; LLVMValueRef buf_addr = NULL; LLVMValueRef vertex_index = NULL; LLVMValueRef indir_index = NULL; unsigned const_index = 0; unsigned param; const bool per_vertex = nir_is_per_vertex_io(instr->variables[0]->var, ctx->stage); const bool is_compact = instr->variables[0]->var->data.compact; radv_get_deref_offset(ctx, instr->variables[0], false, NULL, per_vertex ? &vertex_index : NULL, &const_index, &indir_index); param = shader_io_get_unique_index(instr->variables[0]->var->data.location); if (instr->variables[0]->var->data.location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) { const_index -= 3; param++; } if (!instr->variables[0]->var->data.patch) { stride = unpack_param(ctx, ctx->tcs_out_layout, 13, 8); dw_addr = get_tcs_out_current_patch_offset(ctx); } else { dw_addr = get_tcs_out_current_patch_data_offset(ctx); } mark_tess_output(ctx, instr->variables[0]->var->data.patch, param); dw_addr = get_dw_address(ctx, dw_addr, param, const_index, is_compact, vertex_index, stride, indir_index); buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact, vertex_index, indir_index); unsigned base = is_compact ? const_index : 0; for (unsigned chan = 0; chan < 8; chan++) { bool is_tess_factor = false; if (!(writemask & (1 << chan))) continue; LLVMValueRef value = llvm_extract_elem(ctx, src, chan); lds_store(ctx, dw_addr, value); if (instr->variables[0]->var->data.location == VARYING_SLOT_TESS_LEVEL_INNER || instr->variables[0]->var->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) is_tess_factor = true; if (!is_tess_factor && writemask != 0xF) ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, value, 1, buf_addr, ctx->oc_lds, 4 * (base + chan), 1, 0, true, false); dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->i32one, ""); } if (writemask == 0xF) { ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, src, 4, buf_addr, ctx->oc_lds, (base * 4), 1, 0, true, false); } } static LLVMValueRef load_tes_input(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef buf_addr; LLVMValueRef result; LLVMValueRef vertex_index = NULL; LLVMValueRef indir_index = NULL; unsigned const_index = 0; unsigned param; const bool per_vertex = nir_is_per_vertex_io(instr->variables[0]->var, ctx->stage); const bool is_compact = instr->variables[0]->var->data.compact; radv_get_deref_offset(ctx, instr->variables[0], false, NULL, per_vertex ? &vertex_index : NULL, &const_index, &indir_index); param = shader_io_get_unique_index(instr->variables[0]->var->data.location); if (instr->variables[0]->var->data.location == VARYING_SLOT_CLIP_DIST0 && is_compact && const_index > 3) { const_index -= 3; param++; } buf_addr = get_tcs_tes_buffer_address_params(ctx, param, const_index, is_compact, vertex_index, indir_index); result = ac_build_buffer_load(&ctx->ac, ctx->hs_ring_tess_offchip, instr->num_components, NULL, buf_addr, ctx->oc_lds, is_compact ? (4 * const_index) : 0, 1, 0, true, false); result = trim_vector(ctx, result, instr->num_components); result = LLVMBuildBitCast(ctx->builder, result, get_def_type(ctx, &instr->dest.ssa), ""); return result; } static LLVMValueRef load_gs_input(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef indir_index, vtx_offset; unsigned const_index; LLVMValueRef args[9]; unsigned param, vtx_offset_param; LLVMValueRef value[4], result; unsigned vertex_index; radv_get_deref_offset(ctx, instr->variables[0], false, &vertex_index, NULL, &const_index, &indir_index); vtx_offset_param = vertex_index; assert(vtx_offset_param < 6); vtx_offset = LLVMBuildMul(ctx->builder, ctx->gs_vtx_offset[vtx_offset_param], LLVMConstInt(ctx->i32, 4, false), ""); param = shader_io_get_unique_index(instr->variables[0]->var->data.location); for (unsigned i = 0; i < instr->num_components; i++) { args[0] = ctx->esgs_ring; args[1] = vtx_offset; args[2] = LLVMConstInt(ctx->i32, (param * 4 + i + const_index) * 256, false); args[3] = ctx->i32zero; args[4] = ctx->i32one; /* OFFEN */ args[5] = ctx->i32zero; /* IDXEN */ args[6] = ctx->i32one; /* GLC */ args[7] = ctx->i32zero; /* SLC */ args[8] = ctx->i32zero; /* TFE */ value[i] = ac_build_intrinsic(&ctx->ac, "llvm.SI.buffer.load.dword.i32.i32", ctx->i32, args, 9, AC_FUNC_ATTR_READONLY | AC_FUNC_ATTR_LEGACY); } result = ac_build_gather_values(&ctx->ac, value, instr->num_components); return result; } static LLVMValueRef visit_load_var(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef values[8]; int idx = instr->variables[0]->var->data.driver_location; int ve = instr->dest.ssa.num_components; LLVMValueRef indir_index; LLVMValueRef ret; unsigned const_index; bool vs_in = ctx->stage == MESA_SHADER_VERTEX && instr->variables[0]->var->data.mode == nir_var_shader_in; radv_get_deref_offset(ctx, instr->variables[0], vs_in, NULL, NULL, &const_index, &indir_index); if (instr->dest.ssa.bit_size == 64) ve *= 2; switch (instr->variables[0]->var->data.mode) { case nir_var_shader_in: if (ctx->stage == MESA_SHADER_TESS_CTRL) return load_tcs_input(ctx, instr); if (ctx->stage == MESA_SHADER_TESS_EVAL) return load_tes_input(ctx, instr); if (ctx->stage == MESA_SHADER_GEOMETRY) { return load_gs_input(ctx, instr); } for (unsigned chan = 0; chan < ve; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( instr->variables[0]->var->type, ctx->stage == MESA_SHADER_VERTEX); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->inputs + idx + chan, count, 4, false); values[chan] = LLVMBuildExtractElement(ctx->builder, tmp_vec, indir_index, ""); } else values[chan] = ctx->inputs[idx + chan + const_index * 4]; } break; case nir_var_local: for (unsigned chan = 0; chan < ve; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( instr->variables[0]->var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->locals + idx + chan, count, 4, true); values[chan] = LLVMBuildExtractElement(ctx->builder, tmp_vec, indir_index, ""); } else { values[chan] = LLVMBuildLoad(ctx->builder, ctx->locals[idx + chan + const_index * 4], ""); } } break; case nir_var_shader_out: if (ctx->stage == MESA_SHADER_TESS_CTRL) return load_tcs_output(ctx, instr); for (unsigned chan = 0; chan < ve; chan++) { if (indir_index) { unsigned count = glsl_count_attribute_slots( instr->variables[0]->var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->outputs + idx + chan, count, 4, true); values[chan] = LLVMBuildExtractElement(ctx->builder, tmp_vec, indir_index, ""); } else { values[chan] = LLVMBuildLoad(ctx->builder, ctx->outputs[idx + chan + const_index * 4], ""); } } break; case nir_var_shared: { LLVMValueRef ptr = get_shared_memory_ptr(ctx, idx, ctx->i32); LLVMValueRef derived_ptr; if (indir_index) indir_index = LLVMBuildMul(ctx->builder, indir_index, LLVMConstInt(ctx->i32, 4, false), ""); for (unsigned chan = 0; chan < ve; chan++) { LLVMValueRef index = LLVMConstInt(ctx->i32, chan, false); if (indir_index) index = LLVMBuildAdd(ctx->builder, index, indir_index, ""); derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, ""); values[chan] = LLVMBuildLoad(ctx->builder, derived_ptr, ""); } break; } default: unreachable("unhandle variable mode"); } ret = ac_build_gather_values(&ctx->ac, values, ve); return LLVMBuildBitCast(ctx->builder, ret, get_def_type(ctx, &instr->dest.ssa), ""); } static void visit_store_var(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef temp_ptr, value; int idx = instr->variables[0]->var->data.driver_location; LLVMValueRef src = to_float(ctx, get_src(ctx, instr->src[0])); int writemask = instr->const_index[0]; LLVMValueRef indir_index; unsigned const_index; radv_get_deref_offset(ctx, instr->variables[0], false, NULL, NULL, &const_index, &indir_index); if (get_elem_bits(ctx, LLVMTypeOf(src)) == 64) { int old_writemask = writemask; src = LLVMBuildBitCast(ctx->builder, src, LLVMVectorType(ctx->f32, get_llvm_num_components(src) * 2), ""); writemask = 0; for (unsigned chan = 0; chan < 4; chan++) { if (old_writemask & (1 << chan)) writemask |= 3u << (2 * chan); } } switch (instr->variables[0]->var->data.mode) { case nir_var_shader_out: if (ctx->stage == MESA_SHADER_TESS_CTRL) { store_tcs_output(ctx, instr, src, writemask); return; } for (unsigned chan = 0; chan < 8; chan++) { int stride = 4; if (!(writemask & (1 << chan))) continue; value = llvm_extract_elem(ctx, src, chan); if (instr->variables[0]->var->data.compact) stride = 1; if (indir_index) { unsigned count = glsl_count_attribute_slots( instr->variables[0]->var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->outputs + idx + chan, count, stride, true); if (get_llvm_num_components(tmp_vec) > 1) { tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec, value, indir_index, ""); } else tmp_vec = value; build_store_values_extended(ctx, ctx->outputs + idx + chan, count, stride, tmp_vec); } else { temp_ptr = ctx->outputs[idx + chan + const_index * stride]; LLVMBuildStore(ctx->builder, value, temp_ptr); } } break; case nir_var_local: for (unsigned chan = 0; chan < 8; chan++) { if (!(writemask & (1 << chan))) continue; value = llvm_extract_elem(ctx, src, chan); if (indir_index) { unsigned count = glsl_count_attribute_slots( instr->variables[0]->var->type, false); count -= chan / 4; LLVMValueRef tmp_vec = ac_build_gather_values_extended( &ctx->ac, ctx->locals + idx + chan, count, 4, true); tmp_vec = LLVMBuildInsertElement(ctx->builder, tmp_vec, value, indir_index, ""); build_store_values_extended(ctx, ctx->locals + idx + chan, count, 4, tmp_vec); } else { temp_ptr = ctx->locals[idx + chan + const_index * 4]; LLVMBuildStore(ctx->builder, value, temp_ptr); } } break; case nir_var_shared: { LLVMValueRef ptr = get_shared_memory_ptr(ctx, idx, ctx->i32); if (indir_index) indir_index = LLVMBuildMul(ctx->builder, indir_index, LLVMConstInt(ctx->i32, 4, false), ""); for (unsigned chan = 0; chan < 8; chan++) { if (!(writemask & (1 << chan))) continue; LLVMValueRef index = LLVMConstInt(ctx->i32, chan, false); LLVMValueRef derived_ptr; if (indir_index) index = LLVMBuildAdd(ctx->builder, index, indir_index, ""); value = llvm_extract_elem(ctx, src, chan); derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, ""); LLVMBuildStore(ctx->builder, to_integer(ctx, value), derived_ptr); } break; } default: break; } } static int image_type_to_components_count(enum glsl_sampler_dim dim, bool array) { switch (dim) { case GLSL_SAMPLER_DIM_BUF: return 1; case GLSL_SAMPLER_DIM_1D: return array ? 2 : 1; case GLSL_SAMPLER_DIM_2D: return array ? 3 : 2; case GLSL_SAMPLER_DIM_MS: return array ? 4 : 3; case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: return 3; case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_SUBPASS: return 2; case GLSL_SAMPLER_DIM_SUBPASS_MS: return 3; default: break; } return 0; } /* Adjust the sample index according to FMASK. * * For uncompressed MSAA surfaces, FMASK should return 0x76543210, * which is the identity mapping. Each nibble says which physical sample * should be fetched to get that sample. * * For example, 0x11111100 means there are only 2 samples stored and * the second sample covers 3/4 of the pixel. When reading samples 0 * and 1, return physical sample 0 (determined by the first two 0s * in FMASK), otherwise return physical sample 1. * * The sample index should be adjusted as follows: * sample_index = (fmask >> (sample_index * 4)) & 0xF; */ static LLVMValueRef adjust_sample_index_using_fmask(struct nir_to_llvm_context *ctx, LLVMValueRef coord_x, LLVMValueRef coord_y, LLVMValueRef coord_z, LLVMValueRef sample_index, LLVMValueRef fmask_desc_ptr) { LLVMValueRef fmask_load_address[4]; LLVMValueRef res; fmask_load_address[0] = coord_x; fmask_load_address[1] = coord_y; if (coord_z) { fmask_load_address[2] = coord_z; fmask_load_address[3] = LLVMGetUndef(ctx->i32); } struct ac_image_args args = {0}; args.opcode = ac_image_load; args.da = coord_z ? true : false; args.resource = fmask_desc_ptr; args.dmask = 0xf; args.addr = ac_build_gather_values(&ctx->ac, fmask_load_address, coord_z ? 4 : 2); res = ac_build_image_opcode(&ctx->ac, &args); res = to_integer(ctx, res); LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false); LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false); LLVMValueRef fmask = LLVMBuildExtractElement(ctx->builder, res, ctx->i32zero, ""); LLVMValueRef sample_index4 = LLVMBuildMul(ctx->builder, sample_index, four, ""); LLVMValueRef shifted_fmask = LLVMBuildLShr(ctx->builder, fmask, sample_index4, ""); LLVMValueRef final_sample = LLVMBuildAnd(ctx->builder, shifted_fmask, F, ""); /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK * resource descriptor is 0 (invalid), */ LLVMValueRef fmask_desc = LLVMBuildBitCast(ctx->builder, fmask_desc_ptr, ctx->v8i32, ""); LLVMValueRef fmask_word1 = LLVMBuildExtractElement(ctx->builder, fmask_desc, ctx->i32one, ""); LLVMValueRef word1_is_nonzero = LLVMBuildICmp(ctx->builder, LLVMIntNE, fmask_word1, ctx->i32zero, ""); /* Replace the MSAA sample index. */ sample_index = LLVMBuildSelect(ctx->builder, word1_is_nonzero, final_sample, sample_index, ""); return sample_index; } static LLVMValueRef get_image_coords(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { const struct glsl_type *type = instr->variables[0]->var->type; if(instr->variables[0]->deref.child) type = instr->variables[0]->deref.child->type; LLVMValueRef src0 = get_src(ctx, instr->src[0]); LLVMValueRef coords[4]; LLVMValueRef masks[] = { LLVMConstInt(ctx->i32, 0, false), LLVMConstInt(ctx->i32, 1, false), LLVMConstInt(ctx->i32, 2, false), LLVMConstInt(ctx->i32, 3, false), }; LLVMValueRef res; LLVMValueRef sample_index = llvm_extract_elem(ctx, get_src(ctx, instr->src[1]), 0); int count; enum glsl_sampler_dim dim = glsl_get_sampler_dim(type); bool add_frag_pos = (dim == GLSL_SAMPLER_DIM_SUBPASS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); bool is_ms = (dim == GLSL_SAMPLER_DIM_MS || dim == GLSL_SAMPLER_DIM_SUBPASS_MS); count = image_type_to_components_count(dim, glsl_sampler_type_is_array(type)); if (is_ms) { LLVMValueRef fmask_load_address[3]; int chan; fmask_load_address[0] = LLVMBuildExtractElement(ctx->builder, src0, masks[0], ""); fmask_load_address[1] = LLVMBuildExtractElement(ctx->builder, src0, masks[1], ""); if (glsl_sampler_type_is_array(type)) fmask_load_address[2] = LLVMBuildExtractElement(ctx->builder, src0, masks[2], ""); else fmask_load_address[2] = NULL; if (add_frag_pos) { for (chan = 0; chan < 2; ++chan) fmask_load_address[chan] = LLVMBuildAdd(ctx->builder, fmask_load_address[chan], LLVMBuildFPToUI(ctx->builder, ctx->frag_pos[chan], ctx->i32, ""), ""); } sample_index = adjust_sample_index_using_fmask(ctx, fmask_load_address[0], fmask_load_address[1], fmask_load_address[2], sample_index, get_sampler_desc(ctx, instr->variables[0], DESC_FMASK)); } if (count == 1) { if (instr->src[0].ssa->num_components) res = LLVMBuildExtractElement(ctx->builder, src0, masks[0], ""); else res = src0; } else { int chan; if (is_ms) count--; for (chan = 0; chan < count; ++chan) { coords[chan] = LLVMBuildExtractElement(ctx->builder, src0, masks[chan], ""); } if (add_frag_pos) { for (chan = 0; chan < count; ++chan) coords[chan] = LLVMBuildAdd(ctx->builder, coords[chan], LLVMBuildFPToUI(ctx->builder, ctx->frag_pos[chan], ctx->i32, ""), ""); } if (is_ms) { coords[count] = sample_index; count++; } if (count == 3) { coords[3] = LLVMGetUndef(ctx->i32); count = 4; } res = ac_build_gather_values(&ctx->ac, coords, count); } return res; } static LLVMValueRef visit_image_load(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef params[7]; LLVMValueRef res; char intrinsic_name[64]; const nir_variable *var = instr->variables[0]->var; const struct glsl_type *type = var->type; if(instr->variables[0]->deref.child) type = instr->variables[0]->deref.child->type; type = glsl_without_array(type); if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) { params[0] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER); params[1] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]), LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */ params[2] = LLVMConstInt(ctx->i32, 0, false); /* voffset */ params[3] = ctx->i1false; /* glc */ params[4] = ctx->i1false; /* slc */ res = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.load.format.v4f32", ctx->v4f32, params, 5, 0); res = trim_vector(ctx, res, instr->dest.ssa.num_components); res = to_integer(ctx, res); } else { bool is_da = glsl_sampler_type_is_array(type) || glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE; LLVMValueRef da = is_da ? ctx->i1true : ctx->i1false; LLVMValueRef glc = ctx->i1false; LLVMValueRef slc = ctx->i1false; params[0] = get_image_coords(ctx, instr); params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE); params[2] = LLVMConstInt(ctx->i32, 15, false); /* dmask */ if (HAVE_LLVM <= 0x0309) { params[3] = ctx->i1false; /* r128 */ params[4] = da; params[5] = glc; params[6] = slc; } else { LLVMValueRef lwe = ctx->i1false; params[3] = glc; params[4] = slc; params[5] = lwe; params[6] = da; } ac_get_image_intr_name("llvm.amdgcn.image.load", ctx->v4f32, /* vdata */ LLVMTypeOf(params[0]), /* coords */ LLVMTypeOf(params[1]), /* rsrc */ intrinsic_name, sizeof(intrinsic_name)); res = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->v4f32, params, 7, AC_FUNC_ATTR_READONLY); } return to_integer(ctx, res); } static void visit_image_store(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef params[8]; char intrinsic_name[64]; const nir_variable *var = instr->variables[0]->var; const struct glsl_type *type = glsl_without_array(var->type); if (ctx->stage == MESA_SHADER_FRAGMENT) ctx->shader_info->fs.writes_memory = true; if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) { params[0] = to_float(ctx, get_src(ctx, instr->src[2])); /* data */ params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER); params[2] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]), LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */ params[3] = LLVMConstInt(ctx->i32, 0, false); /* voffset */ params[4] = ctx->i1false; /* glc */ params[5] = ctx->i1false; /* slc */ ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.buffer.store.format.v4f32", ctx->voidt, params, 6, 0); } else { bool is_da = glsl_sampler_type_is_array(type) || glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE; LLVMValueRef da = is_da ? ctx->i1true : ctx->i1false; LLVMValueRef glc = ctx->i1false; LLVMValueRef slc = ctx->i1false; params[0] = to_float(ctx, get_src(ctx, instr->src[2])); params[1] = get_image_coords(ctx, instr); /* coords */ params[2] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE); params[3] = LLVMConstInt(ctx->i32, 15, false); /* dmask */ if (HAVE_LLVM <= 0x0309) { params[4] = ctx->i1false; /* r128 */ params[5] = da; params[6] = glc; params[7] = slc; } else { LLVMValueRef lwe = ctx->i1false; params[4] = glc; params[5] = slc; params[6] = lwe; params[7] = da; } ac_get_image_intr_name("llvm.amdgcn.image.store", LLVMTypeOf(params[0]), /* vdata */ LLVMTypeOf(params[1]), /* coords */ LLVMTypeOf(params[2]), /* rsrc */ intrinsic_name, sizeof(intrinsic_name)); ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->voidt, params, 8, 0); } } static LLVMValueRef visit_image_atomic(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef params[6]; int param_count = 0; const nir_variable *var = instr->variables[0]->var; const char *base_name = "llvm.amdgcn.image.atomic"; const char *atomic_name; LLVMValueRef coords; char intrinsic_name[32], coords_type[8]; const struct glsl_type *type = glsl_without_array(var->type); if (ctx->stage == MESA_SHADER_FRAGMENT) ctx->shader_info->fs.writes_memory = true; params[param_count++] = get_src(ctx, instr->src[2]); if (instr->intrinsic == nir_intrinsic_image_atomic_comp_swap) params[param_count++] = get_src(ctx, instr->src[3]); if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) { params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER); coords = params[param_count++] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]), LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */ params[param_count++] = ctx->i32zero; /* voffset */ params[param_count++] = ctx->i1false; /* glc */ params[param_count++] = ctx->i1false; /* slc */ } else { bool da = glsl_sampler_type_is_array(type) || glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE; coords = params[param_count++] = get_image_coords(ctx, instr); params[param_count++] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE); params[param_count++] = ctx->i1false; /* r128 */ params[param_count++] = da ? ctx->i1true : ctx->i1false; /* da */ params[param_count++] = ctx->i1false; /* slc */ } switch (instr->intrinsic) { case nir_intrinsic_image_atomic_add: atomic_name = "add"; break; case nir_intrinsic_image_atomic_min: atomic_name = "smin"; break; case nir_intrinsic_image_atomic_max: atomic_name = "smax"; break; case nir_intrinsic_image_atomic_and: atomic_name = "and"; break; case nir_intrinsic_image_atomic_or: atomic_name = "or"; break; case nir_intrinsic_image_atomic_xor: atomic_name = "xor"; break; case nir_intrinsic_image_atomic_exchange: atomic_name = "swap"; break; case nir_intrinsic_image_atomic_comp_swap: atomic_name = "cmpswap"; break; default: abort(); } build_int_type_name(LLVMTypeOf(coords), coords_type, sizeof(coords_type)); snprintf(intrinsic_name, sizeof(intrinsic_name), "%s.%s.%s", base_name, atomic_name, coords_type); return ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->i32, params, param_count, 0); } static LLVMValueRef visit_image_size(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef res; const nir_variable *var = instr->variables[0]->var; const struct glsl_type *type = instr->variables[0]->var->type; bool da = glsl_sampler_type_is_array(var->type) || glsl_get_sampler_dim(var->type) == GLSL_SAMPLER_DIM_CUBE; if(instr->variables[0]->deref.child) type = instr->variables[0]->deref.child->type; if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) return get_buffer_size(ctx, get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER), true); struct ac_image_args args = { 0 }; args.da = da; args.dmask = 0xf; args.resource = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE); args.opcode = ac_image_get_resinfo; args.addr = ctx->i32zero; res = ac_build_image_opcode(&ctx->ac, &args); if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE && glsl_sampler_type_is_array(type)) { LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false); LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false); LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, res, two, ""); z = LLVMBuildSDiv(ctx->builder, z, six, ""); res = LLVMBuildInsertElement(ctx->builder, res, z, two, ""); } return res; } #define NOOP_WAITCNT 0xf7f #define LGKM_CNT 0x07f #define VM_CNT 0xf70 static void emit_waitcnt(struct nir_to_llvm_context *ctx, unsigned simm16) { LLVMValueRef args[1] = { LLVMConstInt(ctx->i32, simm16, false), }; ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.s.waitcnt", ctx->voidt, args, 1, 0); } static void emit_barrier(struct nir_to_llvm_context *ctx) { /* SI only (thanks to a hw bug workaround): * The real barrier instruction isn’t needed, because an entire patch * always fits into a single wave. */ if (ctx->options->chip_class == SI && ctx->stage == MESA_SHADER_TESS_CTRL) { emit_waitcnt(ctx, LGKM_CNT & VM_CNT); return; } ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.s.barrier", ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT); } static void emit_discard_if(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef cond; ctx->shader_info->fs.can_discard = true; cond = LLVMBuildICmp(ctx->builder, LLVMIntNE, get_src(ctx, instr->src[0]), ctx->i32zero, ""); cond = LLVMBuildSelect(ctx->builder, cond, LLVMConstReal(ctx->f32, -1.0f), ctx->f32zero, ""); ac_build_kill(&ctx->ac, cond); } static LLVMValueRef visit_load_local_invocation_index(struct nir_to_llvm_context *ctx) { LLVMValueRef result; LLVMValueRef thread_id = ac_get_thread_id(&ctx->ac); result = LLVMBuildAnd(ctx->builder, ctx->tg_size, LLVMConstInt(ctx->i32, 0xfc0, false), ""); return LLVMBuildAdd(ctx->builder, result, thread_id, ""); } static LLVMValueRef visit_var_atomic(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef ptr, result; int idx = instr->variables[0]->var->data.driver_location; LLVMValueRef src = get_src(ctx, instr->src[0]); ptr = get_shared_memory_ptr(ctx, idx, ctx->i32); if (instr->intrinsic == nir_intrinsic_var_atomic_comp_swap) { LLVMValueRef src1 = get_src(ctx, instr->src[1]); result = LLVMBuildAtomicCmpXchg(ctx->builder, ptr, src, src1, LLVMAtomicOrderingSequentiallyConsistent, LLVMAtomicOrderingSequentiallyConsistent, false); } else { LLVMAtomicRMWBinOp op; switch (instr->intrinsic) { case nir_intrinsic_var_atomic_add: op = LLVMAtomicRMWBinOpAdd; break; case nir_intrinsic_var_atomic_umin: op = LLVMAtomicRMWBinOpUMin; break; case nir_intrinsic_var_atomic_umax: op = LLVMAtomicRMWBinOpUMax; break; case nir_intrinsic_var_atomic_imin: op = LLVMAtomicRMWBinOpMin; break; case nir_intrinsic_var_atomic_imax: op = LLVMAtomicRMWBinOpMax; break; case nir_intrinsic_var_atomic_and: op = LLVMAtomicRMWBinOpAnd; break; case nir_intrinsic_var_atomic_or: op = LLVMAtomicRMWBinOpOr; break; case nir_intrinsic_var_atomic_xor: op = LLVMAtomicRMWBinOpXor; break; case nir_intrinsic_var_atomic_exchange: op = LLVMAtomicRMWBinOpXchg; break; default: return NULL; } result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, to_integer(ctx, src), LLVMAtomicOrderingSequentiallyConsistent, false); } return result; } #define INTERP_CENTER 0 #define INTERP_CENTROID 1 #define INTERP_SAMPLE 2 static LLVMValueRef lookup_interp_param(struct nir_to_llvm_context *ctx, enum glsl_interp_mode interp, unsigned location) { switch (interp) { case INTERP_MODE_FLAT: default: return NULL; case INTERP_MODE_SMOOTH: case INTERP_MODE_NONE: if (location == INTERP_CENTER) return ctx->persp_center; else if (location == INTERP_CENTROID) return ctx->persp_centroid; else if (location == INTERP_SAMPLE) return ctx->persp_sample; break; case INTERP_MODE_NOPERSPECTIVE: if (location == INTERP_CENTER) return ctx->linear_center; else if (location == INTERP_CENTROID) return ctx->linear_centroid; else if (location == INTERP_SAMPLE) return ctx->linear_sample; break; } return NULL; } static LLVMValueRef load_sample_position(struct nir_to_llvm_context *ctx, LLVMValueRef sample_id) { LLVMValueRef result; LLVMValueRef ptr = ac_build_gep0(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_PS_SAMPLE_POSITIONS, false)); ptr = LLVMBuildBitCast(ctx->builder, ptr, const_array(ctx->v2f32, 64), ""); sample_id = LLVMBuildAdd(ctx->builder, sample_id, ctx->sample_pos_offset, ""); result = ac_build_indexed_load(&ctx->ac, ptr, sample_id, false); return result; } static LLVMValueRef load_sample_pos(struct nir_to_llvm_context *ctx) { LLVMValueRef values[2]; values[0] = emit_ffract(ctx, ctx->frag_pos[0]); values[1] = emit_ffract(ctx, ctx->frag_pos[1]); return ac_build_gather_values(&ctx->ac, values, 2); } static LLVMValueRef visit_interp(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef result[2]; LLVMValueRef interp_param, attr_number; unsigned location; unsigned chan; LLVMValueRef src_c0, src_c1; LLVMValueRef src0; int input_index = instr->variables[0]->var->data.location - VARYING_SLOT_VAR0; switch (instr->intrinsic) { case nir_intrinsic_interp_var_at_centroid: location = INTERP_CENTROID; break; case nir_intrinsic_interp_var_at_sample: case nir_intrinsic_interp_var_at_offset: location = INTERP_CENTER; src0 = get_src(ctx, instr->src[0]); break; default: break; } if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) { src_c0 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, "")); src_c1 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, "")); } else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) { LLVMValueRef sample_position; LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f); /* fetch sample ID */ sample_position = load_sample_position(ctx, src0); src_c0 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32zero, ""); src_c0 = LLVMBuildFSub(ctx->builder, src_c0, halfval, ""); src_c1 = LLVMBuildExtractElement(ctx->builder, sample_position, ctx->i32one, ""); src_c1 = LLVMBuildFSub(ctx->builder, src_c1, halfval, ""); } interp_param = lookup_interp_param(ctx, instr->variables[0]->var->data.interpolation, location); attr_number = LLVMConstInt(ctx->i32, input_index, false); if (location == INTERP_SAMPLE || location == INTERP_CENTER) { LLVMValueRef ij_out[2]; LLVMValueRef ddxy_out = emit_ddxy_interp(ctx, interp_param); /* * take the I then J parameters, and the DDX/Y for it, and * calculate the IJ inputs for the interpolator. * temp1 = ddx * offset/sample.x + I; * interp_param.I = ddy * offset/sample.y + temp1; * temp1 = ddx * offset/sample.x + J; * interp_param.J = ddy * offset/sample.y + temp1; */ for (unsigned i = 0; i < 2; i++) { LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, false); LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, false); LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->builder, ddxy_out, ix_ll, ""); LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->builder, ddxy_out, iy_ll, ""); LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->builder, interp_param, ix_ll, ""); LLVMValueRef temp1, temp2; interp_el = LLVMBuildBitCast(ctx->builder, interp_el, ctx->f32, ""); temp1 = LLVMBuildFMul(ctx->builder, ddx_el, src_c0, ""); temp1 = LLVMBuildFAdd(ctx->builder, temp1, interp_el, ""); temp2 = LLVMBuildFMul(ctx->builder, ddy_el, src_c1, ""); temp2 = LLVMBuildFAdd(ctx->builder, temp2, temp1, ""); ij_out[i] = LLVMBuildBitCast(ctx->builder, temp2, ctx->i32, ""); } interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2); } for (chan = 0; chan < 2; chan++) { LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false); if (interp_param) { interp_param = LLVMBuildBitCast(ctx->builder, interp_param, LLVMVectorType(ctx->f32, 2), ""); LLVMValueRef i = LLVMBuildExtractElement( ctx->builder, interp_param, ctx->i32zero, ""); LLVMValueRef j = LLVMBuildExtractElement( ctx->builder, interp_param, ctx->i32one, ""); result[chan] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number, ctx->prim_mask, i, j); } else { result[chan] = ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->i32, 2, false), llvm_chan, attr_number, ctx->prim_mask); } } return ac_build_gather_values(&ctx->ac, result, 2); } static void visit_emit_vertex(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef gs_next_vertex; LLVMValueRef can_emit, kill; int idx; assert(instr->const_index[0] == 0); /* Write vertex attribute values to GSVS ring */ gs_next_vertex = LLVMBuildLoad(ctx->builder, ctx->gs_next_vertex, ""); /* If this thread has already emitted the declared maximum number of * vertices, kill it: excessive vertex emissions are not supposed to * have any effect, and GS threads have no externally observable * effects other than emitting vertices. */ can_emit = LLVMBuildICmp(ctx->builder, LLVMIntULT, gs_next_vertex, LLVMConstInt(ctx->i32, ctx->gs_max_out_vertices, false), ""); kill = LLVMBuildSelect(ctx->builder, can_emit, LLVMConstReal(ctx->f32, 1.0f), LLVMConstReal(ctx->f32, -1.0f), ""); ac_build_kill(&ctx->ac, kill); /* loop num outputs */ idx = 0; for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { LLVMValueRef *out_ptr = &ctx->outputs[i * 4]; int length = 4; int slot = idx; int slot_inc = 1; if (!(ctx->output_mask & (1ull << i))) continue; if (i == VARYING_SLOT_CLIP_DIST0) { /* pack clip and cull into a single set of slots */ length = ctx->num_output_clips + ctx->num_output_culls; if (length > 4) slot_inc = 2; } for (unsigned j = 0; j < length; j++) { LLVMValueRef out_val = LLVMBuildLoad(ctx->builder, out_ptr[j], ""); LLVMValueRef voffset = LLVMConstInt(ctx->i32, (slot * 4 + j) * ctx->gs_max_out_vertices, false); voffset = LLVMBuildAdd(ctx->builder, voffset, gs_next_vertex, ""); voffset = LLVMBuildMul(ctx->builder, voffset, LLVMConstInt(ctx->i32, 4, false), ""); out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->i32, ""); ac_build_buffer_store_dword(&ctx->ac, ctx->gsvs_ring, out_val, 1, voffset, ctx->gs2vs_offset, 0, 1, 1, true, true); } idx += slot_inc; } gs_next_vertex = LLVMBuildAdd(ctx->builder, gs_next_vertex, ctx->i32one, ""); LLVMBuildStore(ctx->builder, gs_next_vertex, ctx->gs_next_vertex); ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id); } static void visit_end_primitive(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (0 << 8), ctx->gs_wave_id); } static LLVMValueRef visit_load_tess_coord(struct nir_to_llvm_context *ctx, const nir_intrinsic_instr *instr) { LLVMValueRef coord[4] = { ctx->tes_u, ctx->tes_v, ctx->f32zero, ctx->f32zero, }; if (ctx->tes_primitive_mode == GL_TRIANGLES) coord[2] = LLVMBuildFSub(ctx->builder, ctx->f32one, LLVMBuildFAdd(ctx->builder, coord[0], coord[1], ""), ""); LLVMValueRef result = ac_build_gather_values(&ctx->ac, coord, instr->num_components); return LLVMBuildBitCast(ctx->builder, result, get_def_type(ctx, &instr->dest.ssa), ""); } static void visit_intrinsic(struct nir_to_llvm_context *ctx, nir_intrinsic_instr *instr) { LLVMValueRef result = NULL; switch (instr->intrinsic) { case nir_intrinsic_load_work_group_id: { result = ctx->workgroup_ids; break; } case nir_intrinsic_load_base_vertex: { result = ctx->base_vertex; break; } case nir_intrinsic_load_vertex_id_zero_base: { result = ctx->vertex_id; break; } case nir_intrinsic_load_local_invocation_id: { result = ctx->local_invocation_ids; break; } case nir_intrinsic_load_base_instance: result = ctx->start_instance; break; case nir_intrinsic_load_draw_id: result = ctx->draw_index; break; case nir_intrinsic_load_invocation_id: if (ctx->stage == MESA_SHADER_TESS_CTRL) result = unpack_param(ctx, ctx->tcs_rel_ids, 8, 5); else result = ctx->gs_invocation_id; break; case nir_intrinsic_load_primitive_id: if (ctx->stage == MESA_SHADER_GEOMETRY) { ctx->shader_info->gs.uses_prim_id = true; result = ctx->gs_prim_id; } else if (ctx->stage == MESA_SHADER_TESS_CTRL) { ctx->shader_info->tcs.uses_prim_id = true; result = ctx->tcs_patch_id; } else if (ctx->stage == MESA_SHADER_TESS_EVAL) { ctx->shader_info->tcs.uses_prim_id = true; result = ctx->tes_patch_id; } else fprintf(stderr, "Unknown primitive id intrinsic: %d", ctx->stage); break; case nir_intrinsic_load_sample_id: ctx->shader_info->fs.force_persample = true; result = unpack_param(ctx, ctx->ancillary, 8, 4); break; case nir_intrinsic_load_sample_pos: ctx->shader_info->fs.force_persample = true; result = load_sample_pos(ctx); break; case nir_intrinsic_load_sample_mask_in: result = ctx->sample_coverage; break; case nir_intrinsic_load_front_face: result = ctx->front_face; break; case nir_intrinsic_load_instance_id: result = ctx->instance_id; ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3, ctx->shader_info->vs.vgpr_comp_cnt); break; case nir_intrinsic_load_num_work_groups: result = ctx->num_work_groups; break; case nir_intrinsic_load_local_invocation_index: result = visit_load_local_invocation_index(ctx); break; case nir_intrinsic_load_push_constant: result = visit_load_push_constant(ctx, instr); break; case nir_intrinsic_vulkan_resource_index: result = visit_vulkan_resource_index(ctx, instr); break; case nir_intrinsic_store_ssbo: visit_store_ssbo(ctx, instr); break; case nir_intrinsic_load_ssbo: result = visit_load_buffer(ctx, instr); break; case nir_intrinsic_ssbo_atomic_add: case nir_intrinsic_ssbo_atomic_imin: case nir_intrinsic_ssbo_atomic_umin: case nir_intrinsic_ssbo_atomic_imax: case nir_intrinsic_ssbo_atomic_umax: case nir_intrinsic_ssbo_atomic_and: case nir_intrinsic_ssbo_atomic_or: case nir_intrinsic_ssbo_atomic_xor: case nir_intrinsic_ssbo_atomic_exchange: case nir_intrinsic_ssbo_atomic_comp_swap: result = visit_atomic_ssbo(ctx, instr); break; case nir_intrinsic_load_ubo: result = visit_load_ubo_buffer(ctx, instr); break; case nir_intrinsic_get_buffer_size: result = visit_get_buffer_size(ctx, instr); break; case nir_intrinsic_load_var: result = visit_load_var(ctx, instr); break; case nir_intrinsic_store_var: visit_store_var(ctx, instr); break; case nir_intrinsic_image_load: result = visit_image_load(ctx, instr); break; case nir_intrinsic_image_store: visit_image_store(ctx, instr); break; case nir_intrinsic_image_atomic_add: case nir_intrinsic_image_atomic_min: case nir_intrinsic_image_atomic_max: case nir_intrinsic_image_atomic_and: case nir_intrinsic_image_atomic_or: case nir_intrinsic_image_atomic_xor: case nir_intrinsic_image_atomic_exchange: case nir_intrinsic_image_atomic_comp_swap: result = visit_image_atomic(ctx, instr); break; case nir_intrinsic_image_size: result = visit_image_size(ctx, instr); break; case nir_intrinsic_discard: ctx->shader_info->fs.can_discard = true; ac_build_intrinsic(&ctx->ac, "llvm.AMDGPU.kilp", ctx->voidt, NULL, 0, AC_FUNC_ATTR_LEGACY); break; case nir_intrinsic_discard_if: emit_discard_if(ctx, instr); break; case nir_intrinsic_memory_barrier: emit_waitcnt(ctx, VM_CNT); break; case nir_intrinsic_barrier: emit_barrier(ctx); break; case nir_intrinsic_var_atomic_add: case nir_intrinsic_var_atomic_imin: case nir_intrinsic_var_atomic_umin: case nir_intrinsic_var_atomic_imax: case nir_intrinsic_var_atomic_umax: case nir_intrinsic_var_atomic_and: case nir_intrinsic_var_atomic_or: case nir_intrinsic_var_atomic_xor: case nir_intrinsic_var_atomic_exchange: case nir_intrinsic_var_atomic_comp_swap: result = visit_var_atomic(ctx, instr); break; case nir_intrinsic_interp_var_at_centroid: case nir_intrinsic_interp_var_at_sample: case nir_intrinsic_interp_var_at_offset: result = visit_interp(ctx, instr); break; case nir_intrinsic_emit_vertex: visit_emit_vertex(ctx, instr); break; case nir_intrinsic_end_primitive: visit_end_primitive(ctx, instr); break; case nir_intrinsic_load_tess_coord: result = visit_load_tess_coord(ctx, instr); break; case nir_intrinsic_load_patch_vertices_in: result = LLVMConstInt(ctx->i32, ctx->options->key.tcs.input_vertices, false); break; default: fprintf(stderr, "Unknown intrinsic: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); break; } if (result) { _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result); } } static LLVMValueRef get_sampler_desc(struct nir_to_llvm_context *ctx, const nir_deref_var *deref, enum desc_type desc_type) { unsigned desc_set = deref->var->data.descriptor_set; LLVMValueRef list = ctx->descriptor_sets[desc_set]; struct radv_descriptor_set_layout *layout = ctx->options->layout->set[desc_set].layout; struct radv_descriptor_set_binding_layout *binding = layout->binding + deref->var->data.binding; unsigned offset = binding->offset; unsigned stride = binding->size; unsigned type_size; LLVMBuilderRef builder = ctx->builder; LLVMTypeRef type; LLVMValueRef index = NULL; unsigned constant_index = 0; assert(deref->var->data.binding < layout->binding_count); switch (desc_type) { case DESC_IMAGE: type = ctx->v8i32; type_size = 32; break; case DESC_FMASK: type = ctx->v8i32; offset += 32; type_size = 32; break; case DESC_SAMPLER: type = ctx->v4i32; if (binding->type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) offset += 64; type_size = 16; break; case DESC_BUFFER: type = ctx->v4i32; type_size = 16; break; default: unreachable("invalid desc_type\n"); } if (deref->deref.child) { const nir_deref_array *child = (const nir_deref_array *)deref->deref.child; assert(child->deref_array_type != nir_deref_array_type_wildcard); offset += child->base_offset * stride; if (child->deref_array_type == nir_deref_array_type_indirect) { index = get_src(ctx, child->indirect); } constant_index = child->base_offset; } if (desc_type == DESC_SAMPLER && binding->immutable_samplers_offset && (!index || binding->immutable_samplers_equal)) { if (binding->immutable_samplers_equal) constant_index = 0; const uint32_t *samplers = radv_immutable_samplers(layout, binding); LLVMValueRef constants[] = { LLVMConstInt(ctx->i32, samplers[constant_index * 4 + 0], 0), LLVMConstInt(ctx->i32, samplers[constant_index * 4 + 1], 0), LLVMConstInt(ctx->i32, samplers[constant_index * 4 + 2], 0), LLVMConstInt(ctx->i32, samplers[constant_index * 4 + 3], 0), }; return ac_build_gather_values(&ctx->ac, constants, 4); } assert(stride % type_size == 0); if (!index) index = ctx->i32zero; index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, stride / type_size, 0), ""); list = ac_build_gep0(&ctx->ac, list, LLVMConstInt(ctx->i32, offset, 0)); list = LLVMBuildPointerCast(builder, list, const_array(type, 0), ""); return ac_build_indexed_load_const(&ctx->ac, list, index); } static void set_tex_fetch_args(struct nir_to_llvm_context *ctx, struct ac_image_args *args, const nir_tex_instr *instr, nir_texop op, LLVMValueRef res_ptr, LLVMValueRef samp_ptr, LLVMValueRef *param, unsigned count, unsigned dmask) { unsigned is_rect = 0; bool da = instr->is_array || instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE; if (op == nir_texop_lod) da = false; /* Pad to power of two vector */ while (count < util_next_power_of_two(count)) param[count++] = LLVMGetUndef(ctx->i32); if (count > 1) args->addr = ac_build_gather_values(&ctx->ac, param, count); else args->addr = param[0]; args->resource = res_ptr; args->sampler = samp_ptr; if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF && op == nir_texop_txf) { args->addr = param[0]; return; } args->dmask = dmask; args->unorm = is_rect; args->da = da; } /* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL. * * SI-CI: * If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic * filtering manually. The driver sets img7 to a mask clearing * MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do: * s_and_b32 samp0, samp0, img7 * * VI: * The ANISO_OVERRIDE sampler field enables this fix in TA. */ static LLVMValueRef sici_fix_sampler_aniso(struct nir_to_llvm_context *ctx, LLVMValueRef res, LLVMValueRef samp) { LLVMBuilderRef builder = ctx->builder; LLVMValueRef img7, samp0; if (ctx->options->chip_class >= VI) return samp; img7 = LLVMBuildExtractElement(builder, res, LLVMConstInt(ctx->i32, 7, 0), ""); samp0 = LLVMBuildExtractElement(builder, samp, LLVMConstInt(ctx->i32, 0, 0), ""); samp0 = LLVMBuildAnd(builder, samp0, img7, ""); return LLVMBuildInsertElement(builder, samp, samp0, LLVMConstInt(ctx->i32, 0, 0), ""); } static void tex_fetch_ptrs(struct nir_to_llvm_context *ctx, nir_tex_instr *instr, LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) *res_ptr = get_sampler_desc(ctx, instr->texture, DESC_BUFFER); else *res_ptr = get_sampler_desc(ctx, instr->texture, DESC_IMAGE); if (samp_ptr) { if (instr->sampler) *samp_ptr = get_sampler_desc(ctx, instr->sampler, DESC_SAMPLER); else *samp_ptr = get_sampler_desc(ctx, instr->texture, DESC_SAMPLER); if (instr->sampler_dim < GLSL_SAMPLER_DIM_RECT) *samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr); } if (fmask_ptr && !instr->sampler && (instr->op == nir_texop_txf_ms || instr->op == nir_texop_samples_identical)) *fmask_ptr = get_sampler_desc(ctx, instr->texture, DESC_FMASK); } static LLVMValueRef apply_round_slice(struct nir_to_llvm_context *ctx, LLVMValueRef coord) { coord = to_float(ctx, coord); coord = ac_build_intrinsic(&ctx->ac, "llvm.rint.f32", ctx->f32, &coord, 1, 0); coord = to_integer(ctx, coord); return coord; } static void visit_tex(struct nir_to_llvm_context *ctx, nir_tex_instr *instr) { LLVMValueRef result = NULL; struct ac_image_args args = { 0 }; unsigned dmask = 0xf; LLVMValueRef address[16]; LLVMValueRef coords[5]; LLVMValueRef coord = NULL, lod = NULL, comparator = NULL; LLVMValueRef bias = NULL, offsets = NULL; LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL, sample_index = NULL; LLVMValueRef ddx = NULL, ddy = NULL; LLVMValueRef derivs[6]; unsigned chan, count = 0; unsigned const_src = 0, num_deriv_comp = 0; bool lod_is_zero = false; tex_fetch_ptrs(ctx, instr, &res_ptr, &samp_ptr, &fmask_ptr); for (unsigned i = 0; i < instr->num_srcs; i++) { switch (instr->src[i].src_type) { case nir_tex_src_coord: coord = get_src(ctx, instr->src[i].src); break; case nir_tex_src_projector: break; case nir_tex_src_comparator: comparator = get_src(ctx, instr->src[i].src); break; case nir_tex_src_offset: offsets = get_src(ctx, instr->src[i].src); const_src = i; break; case nir_tex_src_bias: bias = get_src(ctx, instr->src[i].src); break; case nir_tex_src_lod: { nir_const_value *val = nir_src_as_const_value(instr->src[i].src); if (val && val->i32[0] == 0) lod_is_zero = true; lod = get_src(ctx, instr->src[i].src); break; } case nir_tex_src_ms_index: sample_index = get_src(ctx, instr->src[i].src); break; case nir_tex_src_ms_mcs: break; case nir_tex_src_ddx: ddx = get_src(ctx, instr->src[i].src); num_deriv_comp = instr->src[i].src.ssa->num_components; break; case nir_tex_src_ddy: ddy = get_src(ctx, instr->src[i].src); break; case nir_tex_src_texture_offset: case nir_tex_src_sampler_offset: case nir_tex_src_plane: default: break; } } if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) { result = get_buffer_size(ctx, res_ptr, true); goto write_result; } if (instr->op == nir_texop_texture_samples) { LLVMValueRef res, samples, is_msaa; res = LLVMBuildBitCast(ctx->builder, res_ptr, ctx->v8i32, ""); samples = LLVMBuildExtractElement(ctx->builder, res, LLVMConstInt(ctx->i32, 3, false), ""); is_msaa = LLVMBuildLShr(ctx->builder, samples, LLVMConstInt(ctx->i32, 28, false), ""); is_msaa = LLVMBuildAnd(ctx->builder, is_msaa, LLVMConstInt(ctx->i32, 0xe, false), ""); is_msaa = LLVMBuildICmp(ctx->builder, LLVMIntEQ, is_msaa, LLVMConstInt(ctx->i32, 0xe, false), ""); samples = LLVMBuildLShr(ctx->builder, samples, LLVMConstInt(ctx->i32, 16, false), ""); samples = LLVMBuildAnd(ctx->builder, samples, LLVMConstInt(ctx->i32, 0xf, false), ""); samples = LLVMBuildShl(ctx->builder, ctx->i32one, samples, ""); samples = LLVMBuildSelect(ctx->builder, is_msaa, samples, ctx->i32one, ""); result = samples; goto write_result; } if (coord) for (chan = 0; chan < instr->coord_components; chan++) coords[chan] = llvm_extract_elem(ctx, coord, chan); if (offsets && instr->op != nir_texop_txf) { LLVMValueRef offset[3], pack; for (chan = 0; chan < 3; ++chan) offset[chan] = ctx->i32zero; args.offset = true; for (chan = 0; chan < get_llvm_num_components(offsets); chan++) { offset[chan] = llvm_extract_elem(ctx, offsets, chan); offset[chan] = LLVMBuildAnd(ctx->builder, offset[chan], LLVMConstInt(ctx->i32, 0x3f, false), ""); if (chan) offset[chan] = LLVMBuildShl(ctx->builder, offset[chan], LLVMConstInt(ctx->i32, chan * 8, false), ""); } pack = LLVMBuildOr(ctx->builder, offset[0], offset[1], ""); pack = LLVMBuildOr(ctx->builder, pack, offset[2], ""); address[count++] = pack; } /* pack LOD bias value */ if (instr->op == nir_texop_txb && bias) { address[count++] = bias; } /* Pack depth comparison value */ if (instr->is_shadow && comparator) { address[count++] = llvm_extract_elem(ctx, comparator, 0); } /* pack derivatives */ if (ddx || ddy) { switch (instr->sampler_dim) { case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: num_deriv_comp = 3; break; case GLSL_SAMPLER_DIM_2D: default: num_deriv_comp = 2; break; case GLSL_SAMPLER_DIM_1D: num_deriv_comp = 1; break; } for (unsigned i = 0; i < num_deriv_comp; i++) { derivs[i] = to_float(ctx, llvm_extract_elem(ctx, ddx, i)); derivs[num_deriv_comp + i] = to_float(ctx, llvm_extract_elem(ctx, ddy, i)); } } if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && coord) { if (instr->is_array && instr->op != nir_texop_lod) coords[3] = apply_round_slice(ctx, coords[3]); for (chan = 0; chan < instr->coord_components; chan++) coords[chan] = to_float(ctx, coords[chan]); if (instr->coord_components == 3) coords[3] = LLVMGetUndef(ctx->f32); ac_prepare_cube_coords(&ctx->ac, instr->op == nir_texop_txd, instr->is_array, coords, derivs); if (num_deriv_comp) num_deriv_comp--; } if (ddx || ddy) { for (unsigned i = 0; i < num_deriv_comp * 2; i++) address[count++] = derivs[i]; } /* Pack texture coordinates */ if (coord) { address[count++] = coords[0]; if (instr->coord_components > 1) { if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D && instr->is_array && instr->op != nir_texop_txf) { coords[1] = apply_round_slice(ctx, coords[1]); } address[count++] = coords[1]; } if (instr->coord_components > 2) { /* This seems like a bit of a hack - but it passes Vulkan CTS with it */ if (instr->sampler_dim != GLSL_SAMPLER_DIM_3D && instr->sampler_dim != GLSL_SAMPLER_DIM_CUBE && instr->op != nir_texop_txf) { coords[2] = apply_round_slice(ctx, coords[2]); } address[count++] = coords[2]; } } /* Pack LOD */ if (lod && ((instr->op == nir_texop_txl && !lod_is_zero) || instr->op == nir_texop_txf)) { address[count++] = lod; } else if (instr->op == nir_texop_txf_ms && sample_index) { address[count++] = sample_index; } else if(instr->op == nir_texop_txs) { count = 0; if (lod) address[count++] = lod; else address[count++] = ctx->i32zero; } for (chan = 0; chan < count; chan++) { address[chan] = LLVMBuildBitCast(ctx->builder, address[chan], ctx->i32, ""); } if (instr->op == nir_texop_samples_identical) { LLVMValueRef txf_address[4]; struct ac_image_args txf_args = { 0 }; unsigned txf_count = count; memcpy(txf_address, address, sizeof(txf_address)); if (!instr->is_array) txf_address[2] = ctx->i32zero; txf_address[3] = ctx->i32zero; set_tex_fetch_args(ctx, &txf_args, instr, nir_texop_txf, fmask_ptr, NULL, txf_address, txf_count, 0xf); result = build_tex_intrinsic(ctx, instr, false, &txf_args); result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, ""); result = emit_int_cmp(ctx, LLVMIntEQ, result, ctx->i32zero); goto write_result; } if (instr->sampler_dim == GLSL_SAMPLER_DIM_MS && instr->op != nir_texop_txs) { unsigned sample_chan = instr->is_array ? 3 : 2; address[sample_chan] = adjust_sample_index_using_fmask(ctx, address[0], address[1], instr->is_array ? address[2] : NULL, address[sample_chan], fmask_ptr); } if (offsets && instr->op == nir_texop_txf) { nir_const_value *const_offset = nir_src_as_const_value(instr->src[const_src].src); int num_offsets = instr->src[const_src].src.ssa->num_components; assert(const_offset); num_offsets = MIN2(num_offsets, instr->coord_components); if (num_offsets > 2) address[2] = LLVMBuildAdd(ctx->builder, address[2], LLVMConstInt(ctx->i32, const_offset->i32[2], false), ""); if (num_offsets > 1) address[1] = LLVMBuildAdd(ctx->builder, address[1], LLVMConstInt(ctx->i32, const_offset->i32[1], false), ""); address[0] = LLVMBuildAdd(ctx->builder, address[0], LLVMConstInt(ctx->i32, const_offset->i32[0], false), ""); } /* TODO TG4 support */ if (instr->op == nir_texop_tg4) { if (instr->is_shadow) dmask = 1; else dmask = 1 << instr->component; } set_tex_fetch_args(ctx, &args, instr, instr->op, res_ptr, samp_ptr, address, count, dmask); result = build_tex_intrinsic(ctx, instr, lod_is_zero, &args); if (instr->op == nir_texop_query_levels) result = LLVMBuildExtractElement(ctx->builder, result, LLVMConstInt(ctx->i32, 3, false), ""); else if (instr->is_shadow && instr->op != nir_texop_txs && instr->op != nir_texop_lod && instr->op != nir_texop_tg4) result = LLVMBuildExtractElement(ctx->builder, result, ctx->i32zero, ""); else if (instr->op == nir_texop_txs && instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE && instr->is_array) { LLVMValueRef two = LLVMConstInt(ctx->i32, 2, false); LLVMValueRef six = LLVMConstInt(ctx->i32, 6, false); LLVMValueRef z = LLVMBuildExtractElement(ctx->builder, result, two, ""); z = LLVMBuildSDiv(ctx->builder, z, six, ""); result = LLVMBuildInsertElement(ctx->builder, result, z, two, ""); } else if (instr->dest.ssa.num_components != 4) result = trim_vector(ctx, result, instr->dest.ssa.num_components); write_result: if (result) { assert(instr->dest.is_ssa); result = to_integer(ctx, result); _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result); } } static void visit_phi(struct nir_to_llvm_context *ctx, nir_phi_instr *instr) { LLVMTypeRef type = get_def_type(ctx, &instr->dest.ssa); LLVMValueRef result = LLVMBuildPhi(ctx->builder, type, ""); _mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result); _mesa_hash_table_insert(ctx->phis, instr, result); } static void visit_post_phi(struct nir_to_llvm_context *ctx, nir_phi_instr *instr, LLVMValueRef llvm_phi) { nir_foreach_phi_src(src, instr) { LLVMBasicBlockRef block = get_block(ctx, src->pred); LLVMValueRef llvm_src = get_src(ctx, src->src); LLVMAddIncoming(llvm_phi, &llvm_src, &block, 1); } } static void phi_post_pass(struct nir_to_llvm_context *ctx) { struct hash_entry *entry; hash_table_foreach(ctx->phis, entry) { visit_post_phi(ctx, (nir_phi_instr*)entry->key, (LLVMValueRef)entry->data); } } static void visit_ssa_undef(struct nir_to_llvm_context *ctx, const nir_ssa_undef_instr *instr) { unsigned num_components = instr->def.num_components; LLVMValueRef undef; if (num_components == 1) undef = LLVMGetUndef(ctx->i32); else { undef = LLVMGetUndef(LLVMVectorType(ctx->i32, num_components)); } _mesa_hash_table_insert(ctx->defs, &instr->def, undef); } static void visit_jump(struct nir_to_llvm_context *ctx, const nir_jump_instr *instr) { switch (instr->type) { case nir_jump_break: LLVMBuildBr(ctx->builder, ctx->break_block); LLVMClearInsertionPosition(ctx->builder); break; case nir_jump_continue: LLVMBuildBr(ctx->builder, ctx->continue_block); LLVMClearInsertionPosition(ctx->builder); break; default: fprintf(stderr, "Unknown NIR jump instr: "); nir_print_instr(&instr->instr, stderr); fprintf(stderr, "\n"); abort(); } } static void visit_cf_list(struct nir_to_llvm_context *ctx, struct exec_list *list); static void visit_block(struct nir_to_llvm_context *ctx, nir_block *block) { LLVMBasicBlockRef llvm_block = LLVMGetInsertBlock(ctx->builder); nir_foreach_instr(instr, block) { switch (instr->type) { case nir_instr_type_alu: visit_alu(ctx, nir_instr_as_alu(instr)); break; case nir_instr_type_load_const: visit_load_const(ctx, nir_instr_as_load_const(instr)); break; case nir_instr_type_intrinsic: visit_intrinsic(ctx, nir_instr_as_intrinsic(instr)); break; case nir_instr_type_tex: visit_tex(ctx, nir_instr_as_tex(instr)); break; case nir_instr_type_phi: visit_phi(ctx, nir_instr_as_phi(instr)); break; case nir_instr_type_ssa_undef: visit_ssa_undef(ctx, nir_instr_as_ssa_undef(instr)); break; case nir_instr_type_jump: visit_jump(ctx, nir_instr_as_jump(instr)); break; default: fprintf(stderr, "Unknown NIR instr type: "); nir_print_instr(instr, stderr); fprintf(stderr, "\n"); abort(); } } _mesa_hash_table_insert(ctx->defs, block, llvm_block); } static void visit_if(struct nir_to_llvm_context *ctx, nir_if *if_stmt) { LLVMValueRef value = get_src(ctx, if_stmt->condition); LLVMBasicBlockRef merge_block = LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, ""); LLVMBasicBlockRef if_block = LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, ""); LLVMBasicBlockRef else_block = merge_block; if (!exec_list_is_empty(&if_stmt->else_list)) else_block = LLVMAppendBasicBlockInContext( ctx->context, ctx->main_function, ""); LLVMValueRef cond = LLVMBuildICmp(ctx->builder, LLVMIntNE, value, LLVMConstInt(ctx->i32, 0, false), ""); LLVMBuildCondBr(ctx->builder, cond, if_block, else_block); LLVMPositionBuilderAtEnd(ctx->builder, if_block); visit_cf_list(ctx, &if_stmt->then_list); if (LLVMGetInsertBlock(ctx->builder)) LLVMBuildBr(ctx->builder, merge_block); if (!exec_list_is_empty(&if_stmt->else_list)) { LLVMPositionBuilderAtEnd(ctx->builder, else_block); visit_cf_list(ctx, &if_stmt->else_list); if (LLVMGetInsertBlock(ctx->builder)) LLVMBuildBr(ctx->builder, merge_block); } LLVMPositionBuilderAtEnd(ctx->builder, merge_block); } static void visit_loop(struct nir_to_llvm_context *ctx, nir_loop *loop) { LLVMBasicBlockRef continue_parent = ctx->continue_block; LLVMBasicBlockRef break_parent = ctx->break_block; ctx->continue_block = LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, ""); ctx->break_block = LLVMAppendBasicBlockInContext(ctx->context, ctx->main_function, ""); LLVMBuildBr(ctx->builder, ctx->continue_block); LLVMPositionBuilderAtEnd(ctx->builder, ctx->continue_block); visit_cf_list(ctx, &loop->body); if (LLVMGetInsertBlock(ctx->builder)) LLVMBuildBr(ctx->builder, ctx->continue_block); LLVMPositionBuilderAtEnd(ctx->builder, ctx->break_block); ctx->continue_block = continue_parent; ctx->break_block = break_parent; } static void visit_cf_list(struct nir_to_llvm_context *ctx, struct exec_list *list) { foreach_list_typed(nir_cf_node, node, node, list) { switch (node->type) { case nir_cf_node_block: visit_block(ctx, nir_cf_node_as_block(node)); break; case nir_cf_node_if: visit_if(ctx, nir_cf_node_as_if(node)); break; case nir_cf_node_loop: visit_loop(ctx, nir_cf_node_as_loop(node)); break; default: assert(0); } } } static void handle_vs_input_decl(struct nir_to_llvm_context *ctx, struct nir_variable *variable) { LLVMValueRef t_list_ptr = ctx->vertex_buffers; LLVMValueRef t_offset; LLVMValueRef t_list; LLVMValueRef input; LLVMValueRef buffer_index; int index = variable->data.location - VERT_ATTRIB_GENERIC0; int idx = variable->data.location; unsigned attrib_count = glsl_count_attribute_slots(variable->type, true); variable->data.driver_location = idx * 4; if (ctx->options->key.vs.instance_rate_inputs & (1u << index)) { buffer_index = LLVMBuildAdd(ctx->builder, ctx->instance_id, ctx->start_instance, ""); ctx->shader_info->vs.vgpr_comp_cnt = MAX2(3, ctx->shader_info->vs.vgpr_comp_cnt); } else buffer_index = LLVMBuildAdd(ctx->builder, ctx->vertex_id, ctx->base_vertex, ""); for (unsigned i = 0; i < attrib_count; ++i, ++idx) { t_offset = LLVMConstInt(ctx->i32, index + i, false); t_list = ac_build_indexed_load_const(&ctx->ac, t_list_ptr, t_offset); input = ac_build_buffer_load_format(&ctx->ac, t_list, buffer_index, LLVMConstInt(ctx->i32, 0, false), true); for (unsigned chan = 0; chan < 4; chan++) { LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false); ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] = to_integer(ctx, LLVMBuildExtractElement(ctx->builder, input, llvm_chan, "")); } } } static void interp_fs_input(struct nir_to_llvm_context *ctx, unsigned attr, LLVMValueRef interp_param, LLVMValueRef prim_mask, LLVMValueRef result[4]) { LLVMValueRef attr_number; unsigned chan; LLVMValueRef i, j; bool interp = interp_param != NULL; attr_number = LLVMConstInt(ctx->i32, attr, false); /* fs.constant returns the param from the middle vertex, so it's not * really useful for flat shading. It's meant to be used for custom * interpolation (but the intrinsic can't fetch from the other two * vertices). * * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state * to do the right thing. The only reason we use fs.constant is that * fs.interp cannot be used on integers, because they can be equal * to NaN. */ if (interp) { interp_param = LLVMBuildBitCast(ctx->builder, interp_param, LLVMVectorType(ctx->f32, 2), ""); i = LLVMBuildExtractElement(ctx->builder, interp_param, ctx->i32zero, ""); j = LLVMBuildExtractElement(ctx->builder, interp_param, ctx->i32one, ""); } for (chan = 0; chan < 4; chan++) { LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false); if (interp) { result[chan] = ac_build_fs_interp(&ctx->ac, llvm_chan, attr_number, prim_mask, i, j); } else { result[chan] = ac_build_fs_interp_mov(&ctx->ac, LLVMConstInt(ctx->i32, 2, false), llvm_chan, attr_number, prim_mask); } } } static void handle_fs_input_decl(struct nir_to_llvm_context *ctx, struct nir_variable *variable) { int idx = variable->data.location; unsigned attrib_count = glsl_count_attribute_slots(variable->type, false); LLVMValueRef interp; variable->data.driver_location = idx * 4; ctx->input_mask |= ((1ull << attrib_count) - 1) << variable->data.location; if (glsl_get_base_type(glsl_without_array(variable->type)) == GLSL_TYPE_FLOAT) { unsigned interp_type; if (variable->data.sample) { interp_type = INTERP_SAMPLE; ctx->shader_info->fs.force_persample = true; } else if (variable->data.centroid) interp_type = INTERP_CENTROID; else interp_type = INTERP_CENTER; interp = lookup_interp_param(ctx, variable->data.interpolation, interp_type); } else interp = NULL; for (unsigned i = 0; i < attrib_count; ++i) ctx->inputs[radeon_llvm_reg_index_soa(idx + i, 0)] = interp; } static void handle_shader_input_decl(struct nir_to_llvm_context *ctx, struct nir_variable *variable) { switch (ctx->stage) { case MESA_SHADER_VERTEX: handle_vs_input_decl(ctx, variable); break; case MESA_SHADER_FRAGMENT: handle_fs_input_decl(ctx, variable); break; default: break; } } static void handle_fs_inputs_pre(struct nir_to_llvm_context *ctx, struct nir_shader *nir) { unsigned index = 0; for (unsigned i = 0; i < RADEON_LLVM_MAX_INPUTS; ++i) { LLVMValueRef interp_param; LLVMValueRef *inputs = ctx->inputs +radeon_llvm_reg_index_soa(i, 0); if (!(ctx->input_mask & (1ull << i))) continue; if (i >= VARYING_SLOT_VAR0 || i == VARYING_SLOT_PNTC || i == VARYING_SLOT_PRIMITIVE_ID || i == VARYING_SLOT_LAYER) { interp_param = *inputs; interp_fs_input(ctx, index, interp_param, ctx->prim_mask, inputs); if (!interp_param) ctx->shader_info->fs.flat_shaded_mask |= 1u << index; ++index; } else if (i == VARYING_SLOT_POS) { for(int i = 0; i < 3; ++i) inputs[i] = ctx->frag_pos[i]; inputs[3] = ac_build_fdiv(&ctx->ac, ctx->f32one, ctx->frag_pos[3]); } } ctx->shader_info->fs.num_interp = index; if (ctx->input_mask & (1 << VARYING_SLOT_PNTC)) ctx->shader_info->fs.has_pcoord = true; if (ctx->input_mask & (1 << VARYING_SLOT_PRIMITIVE_ID)) ctx->shader_info->fs.prim_id_input = true; if (ctx->input_mask & (1 << VARYING_SLOT_LAYER)) ctx->shader_info->fs.layer_input = true; ctx->shader_info->fs.input_mask = ctx->input_mask >> VARYING_SLOT_VAR0; } static LLVMValueRef ac_build_alloca(struct nir_to_llvm_context *ctx, LLVMTypeRef type, const char *name) { LLVMBuilderRef builder = ctx->builder; LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder); LLVMValueRef function = LLVMGetBasicBlockParent(current_block); LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function); LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block); LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(ctx->context); LLVMValueRef res; if (first_instr) { LLVMPositionBuilderBefore(first_builder, first_instr); } else { LLVMPositionBuilderAtEnd(first_builder, first_block); } res = LLVMBuildAlloca(first_builder, type, name); LLVMBuildStore(builder, LLVMConstNull(type), res); LLVMDisposeBuilder(first_builder); return res; } static LLVMValueRef si_build_alloca_undef(struct nir_to_llvm_context *ctx, LLVMTypeRef type, const char *name) { LLVMValueRef ptr = ac_build_alloca(ctx, type, name); LLVMBuildStore(ctx->builder, LLVMGetUndef(type), ptr); return ptr; } static void handle_shader_output_decl(struct nir_to_llvm_context *ctx, struct nir_variable *variable) { int idx = variable->data.location + variable->data.index; unsigned attrib_count = glsl_count_attribute_slots(variable->type, false); uint64_t mask_attribs; variable->data.driver_location = idx * 4; /* tess ctrl has it's own load/store paths for outputs */ if (ctx->stage == MESA_SHADER_TESS_CTRL) return; mask_attribs = ((1ull << attrib_count) - 1) << idx; if (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL || ctx->stage == MESA_SHADER_GEOMETRY) { if (idx == VARYING_SLOT_CLIP_DIST0) { int length = ctx->num_output_clips + ctx->num_output_culls; if (ctx->stage == MESA_SHADER_VERTEX) { ctx->shader_info->vs.outinfo.clip_dist_mask = (1 << ctx->num_output_clips) - 1; ctx->shader_info->vs.outinfo.cull_dist_mask = (1 << ctx->num_output_culls) - 1; } if (ctx->stage == MESA_SHADER_TESS_EVAL) { ctx->shader_info->tes.outinfo.clip_dist_mask = (1 << ctx->num_output_clips) - 1; ctx->shader_info->tes.outinfo.cull_dist_mask = (1 << ctx->num_output_culls) - 1; } if (length > 4) attrib_count = 2; else attrib_count = 1; mask_attribs = 1ull << idx; } } for (unsigned i = 0; i < attrib_count; ++i) { for (unsigned chan = 0; chan < 4; chan++) { ctx->outputs[radeon_llvm_reg_index_soa(idx + i, chan)] = si_build_alloca_undef(ctx, ctx->f32, ""); } } ctx->output_mask |= mask_attribs; } static void setup_locals(struct nir_to_llvm_context *ctx, struct nir_function *func) { int i, j; ctx->num_locals = 0; nir_foreach_variable(variable, &func->impl->locals) { unsigned attrib_count = glsl_count_attribute_slots(variable->type, false); variable->data.driver_location = ctx->num_locals * 4; ctx->num_locals += attrib_count; } ctx->locals = malloc(4 * ctx->num_locals * sizeof(LLVMValueRef)); if (!ctx->locals) return; for (i = 0; i < ctx->num_locals; i++) { for (j = 0; j < 4; j++) { ctx->locals[i * 4 + j] = si_build_alloca_undef(ctx, ctx->f32, "temp"); } } } static LLVMValueRef emit_float_saturate(struct nir_to_llvm_context *ctx, LLVMValueRef v, float lo, float hi) { v = to_float(ctx, v); v = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", ctx->f32, v, LLVMConstReal(ctx->f32, lo)); return emit_intrin_2f_param(ctx, "llvm.minnum.f32", ctx->f32, v, LLVMConstReal(ctx->f32, hi)); } static LLVMValueRef emit_pack_int16(struct nir_to_llvm_context *ctx, LLVMValueRef src0, LLVMValueRef src1) { LLVMValueRef const16 = LLVMConstInt(ctx->i32, 16, false); LLVMValueRef comp[2]; comp[0] = LLVMBuildAnd(ctx->builder, src0, LLVMConstInt(ctx-> i32, 65535, 0), ""); comp[1] = LLVMBuildAnd(ctx->builder, src1, LLVMConstInt(ctx-> i32, 65535, 0), ""); comp[1] = LLVMBuildShl(ctx->builder, comp[1], const16, ""); return LLVMBuildOr(ctx->builder, comp[0], comp[1], ""); } /* Initialize arguments for the shader export intrinsic */ static void si_llvm_init_export_args(struct nir_to_llvm_context *ctx, LLVMValueRef *values, unsigned target, struct ac_export_args *args) { /* Default is 0xf. Adjusted below depending on the format. */ args->enabled_channels = 0xf; /* Specify whether the EXEC mask represents the valid mask */ args->valid_mask = 0; /* Specify whether this is the last export */ args->done = 0; /* Specify the target we are exporting */ args->target = target; args->compr = false; args->out[0] = LLVMGetUndef(ctx->f32); args->out[1] = LLVMGetUndef(ctx->f32); args->out[2] = LLVMGetUndef(ctx->f32); args->out[3] = LLVMGetUndef(ctx->f32); if (!values) return; if (ctx->stage == MESA_SHADER_FRAGMENT && target >= V_008DFC_SQ_EXP_MRT) { LLVMValueRef val[4]; unsigned index = target - V_008DFC_SQ_EXP_MRT; unsigned col_format = (ctx->options->key.fs.col_format >> (4 * index)) & 0xf; bool is_int8 = (ctx->options->key.fs.is_int8 >> index) & 1; switch(col_format) { case V_028714_SPI_SHADER_ZERO: args->enabled_channels = 0; /* writemask */ args->target = V_008DFC_SQ_EXP_NULL; break; case V_028714_SPI_SHADER_32_R: args->enabled_channels = 1; args->out[0] = values[0]; break; case V_028714_SPI_SHADER_32_GR: args->enabled_channels = 0x3; args->out[0] = values[0]; args->out[1] = values[1]; break; case V_028714_SPI_SHADER_32_AR: args->enabled_channels = 0x9; args->out[0] = values[0]; args->out[3] = values[3]; break; case V_028714_SPI_SHADER_FP16_ABGR: args->compr = 1; for (unsigned chan = 0; chan < 2; chan++) { LLVMValueRef pack_args[2] = { values[2 * chan], values[2 * chan + 1] }; LLVMValueRef packed; packed = ac_build_cvt_pkrtz_f16(&ctx->ac, pack_args); args->out[chan] = packed; } break; case V_028714_SPI_SHADER_UNORM16_ABGR: for (unsigned chan = 0; chan < 4; chan++) { val[chan] = ac_build_clamp(&ctx->ac, values[chan]); val[chan] = LLVMBuildFMul(ctx->builder, val[chan], LLVMConstReal(ctx->f32, 65535), ""); val[chan] = LLVMBuildFAdd(ctx->builder, val[chan], LLVMConstReal(ctx->f32, 0.5), ""); val[chan] = LLVMBuildFPToUI(ctx->builder, val[chan], ctx->i32, ""); } args->compr = 1; args->out[0] = emit_pack_int16(ctx, val[0], val[1]); args->out[1] = emit_pack_int16(ctx, val[2], val[3]); break; case V_028714_SPI_SHADER_SNORM16_ABGR: for (unsigned chan = 0; chan < 4; chan++) { val[chan] = emit_float_saturate(ctx, values[chan], -1, 1); val[chan] = LLVMBuildFMul(ctx->builder, val[chan], LLVMConstReal(ctx->f32, 32767), ""); /* If positive, add 0.5, else add -0.5. */ val[chan] = LLVMBuildFAdd(ctx->builder, val[chan], LLVMBuildSelect(ctx->builder, LLVMBuildFCmp(ctx->builder, LLVMRealOGE, val[chan], ctx->f32zero, ""), LLVMConstReal(ctx->f32, 0.5), LLVMConstReal(ctx->f32, -0.5), ""), ""); val[chan] = LLVMBuildFPToSI(ctx->builder, val[chan], ctx->i32, ""); } args->compr = 1; args->out[0] = emit_pack_int16(ctx, val[0], val[1]); args->out[1] = emit_pack_int16(ctx, val[2], val[3]); break; case V_028714_SPI_SHADER_UINT16_ABGR: { LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 255 : 65535, 0); for (unsigned chan = 0; chan < 4; chan++) { val[chan] = to_integer(ctx, values[chan]); val[chan] = emit_minmax_int(ctx, LLVMIntULT, val[chan], max); } args->compr = 1; args->out[0] = emit_pack_int16(ctx, val[0], val[1]); args->out[1] = emit_pack_int16(ctx, val[2], val[3]); break; } case V_028714_SPI_SHADER_SINT16_ABGR: { LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 127 : 32767, 0); LLVMValueRef min = LLVMConstInt(ctx->i32, is_int8 ? -128 : -32768, 0); /* Clamp. */ for (unsigned chan = 0; chan < 4; chan++) { val[chan] = to_integer(ctx, values[chan]); val[chan] = emit_minmax_int(ctx, LLVMIntSLT, val[chan], max); val[chan] = emit_minmax_int(ctx, LLVMIntSGT, val[chan], min); } args->compr = 1; args->out[0] = emit_pack_int16(ctx, val[0], val[1]); args->out[1] = emit_pack_int16(ctx, val[2], val[3]); break; } default: case V_028714_SPI_SHADER_32_ABGR: memcpy(&args->out[0], values, sizeof(values[0]) * 4); break; } } else memcpy(&args->out[0], values, sizeof(values[0]) * 4); for (unsigned i = 0; i < 4; ++i) args->out[i] = to_float(ctx, args->out[i]); } static void handle_vs_outputs_post(struct nir_to_llvm_context *ctx, bool export_prim_id, struct ac_vs_output_info *outinfo) { uint32_t param_count = 0; unsigned target; unsigned pos_idx, num_pos_exports = 0; struct ac_export_args args, pos_args[4] = {}; LLVMValueRef psize_value = NULL, layer_value = NULL, viewport_index_value = NULL; int i; memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED, sizeof(outinfo->vs_output_param_offset)); if (ctx->output_mask & (1ull << VARYING_SLOT_CLIP_DIST0)) { LLVMValueRef slots[8]; unsigned j; if (outinfo->cull_dist_mask) outinfo->cull_dist_mask <<= ctx->num_output_clips; i = VARYING_SLOT_CLIP_DIST0; for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++) slots[j] = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, j)], "")); for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++) slots[i] = LLVMGetUndef(ctx->f32); if (ctx->num_output_clips + ctx->num_output_culls > 4) { target = V_008DFC_SQ_EXP_POS + 3; si_llvm_init_export_args(ctx, &slots[4], target, &args); memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS], &args, sizeof(args)); } target = V_008DFC_SQ_EXP_POS + 2; si_llvm_init_export_args(ctx, &slots[0], target, &args); memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS], &args, sizeof(args)); } for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { LLVMValueRef values[4]; if (!(ctx->output_mask & (1ull << i))) continue; for (unsigned j = 0; j < 4; j++) values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, j)], "")); if (i == VARYING_SLOT_POS) { target = V_008DFC_SQ_EXP_POS; } else if (i == VARYING_SLOT_CLIP_DIST0) { continue; } else if (i == VARYING_SLOT_PSIZ) { outinfo->writes_pointsize = true; psize_value = values[0]; continue; } else if (i == VARYING_SLOT_LAYER) { outinfo->writes_layer = true; layer_value = values[0]; target = V_008DFC_SQ_EXP_PARAM + param_count; outinfo->vs_output_param_offset[VARYING_SLOT_LAYER] = param_count; param_count++; } else if (i == VARYING_SLOT_VIEWPORT) { outinfo->writes_viewport_index = true; viewport_index_value = values[0]; continue; } else if (i == VARYING_SLOT_PRIMITIVE_ID) { target = V_008DFC_SQ_EXP_PARAM + param_count; outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count; param_count++; } else if (i >= VARYING_SLOT_VAR0) { outinfo->export_mask |= 1u << (i - VARYING_SLOT_VAR0); target = V_008DFC_SQ_EXP_PARAM + param_count; outinfo->vs_output_param_offset[i] = param_count; param_count++; } si_llvm_init_export_args(ctx, values, target, &args); if (target >= V_008DFC_SQ_EXP_POS && target <= (V_008DFC_SQ_EXP_POS + 3)) { memcpy(&pos_args[target - V_008DFC_SQ_EXP_POS], &args, sizeof(args)); } else { ac_build_export(&ctx->ac, &args); } } /* We need to add the position output manually if it's missing. */ if (!pos_args[0].out[0]) { pos_args[0].enabled_channels = 0xf; pos_args[0].valid_mask = 0; pos_args[0].done = 0; pos_args[0].target = V_008DFC_SQ_EXP_POS; pos_args[0].compr = 0; pos_args[0].out[0] = ctx->f32zero; /* X */ pos_args[0].out[1] = ctx->f32zero; /* Y */ pos_args[0].out[2] = ctx->f32zero; /* Z */ pos_args[0].out[3] = ctx->f32one; /* W */ } uint32_t mask = ((outinfo->writes_pointsize == true ? 1 : 0) | (outinfo->writes_layer == true ? 4 : 0) | (outinfo->writes_viewport_index == true ? 8 : 0)); if (mask) { pos_args[1].enabled_channels = mask; pos_args[1].valid_mask = 0; pos_args[1].done = 0; pos_args[1].target = V_008DFC_SQ_EXP_POS + 1; pos_args[1].compr = 0; pos_args[1].out[0] = ctx->f32zero; /* X */ pos_args[1].out[1] = ctx->f32zero; /* Y */ pos_args[1].out[2] = ctx->f32zero; /* Z */ pos_args[1].out[3] = ctx->f32zero; /* W */ if (outinfo->writes_pointsize == true) pos_args[1].out[0] = psize_value; if (outinfo->writes_layer == true) pos_args[1].out[2] = layer_value; if (outinfo->writes_viewport_index == true) pos_args[1].out[3] = viewport_index_value; } for (i = 0; i < 4; i++) { if (pos_args[i].out[0]) num_pos_exports++; } pos_idx = 0; for (i = 0; i < 4; i++) { if (!pos_args[i].out[0]) continue; /* Specify the target we are exporting */ pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++; if (pos_idx == num_pos_exports) pos_args[i].done = 1; ac_build_export(&ctx->ac, &pos_args[i]); } if (export_prim_id) { LLVMValueRef values[4]; target = V_008DFC_SQ_EXP_PARAM + param_count; outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = param_count; param_count++; values[0] = ctx->vs_prim_id; ctx->shader_info->vs.vgpr_comp_cnt = MAX2(2, ctx->shader_info->vs.vgpr_comp_cnt); for (unsigned j = 1; j < 4; j++) values[j] = ctx->f32zero; si_llvm_init_export_args(ctx, values, target, &args); ac_build_export(&ctx->ac, &args); outinfo->export_prim_id = true; } outinfo->pos_exports = num_pos_exports; outinfo->param_exports = param_count; } static void handle_es_outputs_post(struct nir_to_llvm_context *ctx, struct ac_es_output_info *outinfo) { int j; uint64_t max_output_written = 0; for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { LLVMValueRef *out_ptr = &ctx->outputs[i * 4]; int param_index; int length = 4; if (!(ctx->output_mask & (1ull << i))) continue; if (i == VARYING_SLOT_CLIP_DIST0) length = ctx->num_output_clips + ctx->num_output_culls; param_index = shader_io_get_unique_index(i); max_output_written = MAX2(param_index + (length > 4), max_output_written); for (j = 0; j < length; j++) { LLVMValueRef out_val = LLVMBuildLoad(ctx->builder, out_ptr[j], ""); out_val = LLVMBuildBitCast(ctx->builder, out_val, ctx->i32, ""); ac_build_buffer_store_dword(&ctx->ac, ctx->esgs_ring, out_val, 1, NULL, ctx->es2gs_offset, (4 * param_index + j) * 4, 1, 1, true, true); } } outinfo->esgs_itemsize = (max_output_written + 1) * 16; } static void handle_ls_outputs_post(struct nir_to_llvm_context *ctx) { LLVMValueRef vertex_id = ctx->rel_auto_id; LLVMValueRef vertex_dw_stride = unpack_param(ctx, ctx->ls_out_layout, 13, 8); LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->builder, vertex_id, vertex_dw_stride, ""); for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { LLVMValueRef *out_ptr = &ctx->outputs[i * 4]; int length = 4; if (!(ctx->output_mask & (1ull << i))) continue; if (i == VARYING_SLOT_CLIP_DIST0) length = ctx->num_output_clips + ctx->num_output_culls; int param = shader_io_get_unique_index(i); mark_tess_output(ctx, false, param); if (length > 4) mark_tess_output(ctx, false, param + 1); LLVMValueRef dw_addr = LLVMBuildAdd(ctx->builder, base_dw_addr, LLVMConstInt(ctx->i32, param * 4, false), ""); for (unsigned j = 0; j < length; j++) { lds_store(ctx, dw_addr, LLVMBuildLoad(ctx->builder, out_ptr[j], "")); dw_addr = LLVMBuildAdd(ctx->builder, dw_addr, ctx->i32one, ""); } } } struct ac_build_if_state { struct nir_to_llvm_context *ctx; LLVMValueRef condition; LLVMBasicBlockRef entry_block; LLVMBasicBlockRef true_block; LLVMBasicBlockRef false_block; LLVMBasicBlockRef merge_block; }; static LLVMBasicBlockRef ac_build_insert_new_block(struct nir_to_llvm_context *ctx, const char *name) { LLVMBasicBlockRef current_block; LLVMBasicBlockRef next_block; LLVMBasicBlockRef new_block; /* get current basic block */ current_block = LLVMGetInsertBlock(ctx->builder); /* chqeck if there's another block after this one */ next_block = LLVMGetNextBasicBlock(current_block); if (next_block) { /* insert the new block before the next block */ new_block = LLVMInsertBasicBlockInContext(ctx->context, next_block, name); } else { /* append new block after current block */ LLVMValueRef function = LLVMGetBasicBlockParent(current_block); new_block = LLVMAppendBasicBlockInContext(ctx->context, function, name); } return new_block; } static void ac_nir_build_if(struct ac_build_if_state *ifthen, struct nir_to_llvm_context *ctx, LLVMValueRef condition) { LLVMBasicBlockRef block = LLVMGetInsertBlock(ctx->builder); memset(ifthen, 0, sizeof *ifthen); ifthen->ctx = ctx; ifthen->condition = condition; ifthen->entry_block = block; /* create endif/merge basic block for the phi functions */ ifthen->merge_block = ac_build_insert_new_block(ctx, "endif-block"); /* create/insert true_block before merge_block */ ifthen->true_block = LLVMInsertBasicBlockInContext(ctx->context, ifthen->merge_block, "if-true-block"); /* successive code goes into the true block */ LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block); } /** * End a conditional. */ static void ac_nir_build_endif(struct ac_build_if_state *ifthen) { LLVMBuilderRef builder = ifthen->ctx->builder; /* Insert branch to the merge block from current block */ LLVMBuildBr(builder, ifthen->merge_block); /* * Now patch in the various branch instructions. */ /* Insert the conditional branch instruction at the end of entry_block */ LLVMPositionBuilderAtEnd(builder, ifthen->entry_block); if (ifthen->false_block) { /* we have an else clause */ LLVMBuildCondBr(builder, ifthen->condition, ifthen->true_block, ifthen->false_block); } else { /* no else clause */ LLVMBuildCondBr(builder, ifthen->condition, ifthen->true_block, ifthen->merge_block); } /* Resume building code at end of the ifthen->merge_block */ LLVMPositionBuilderAtEnd(builder, ifthen->merge_block); } static void write_tess_factors(struct nir_to_llvm_context *ctx) { unsigned stride, outer_comps, inner_comps; struct ac_build_if_state if_ctx, inner_if_ctx; LLVMValueRef invocation_id = unpack_param(ctx, ctx->tcs_rel_ids, 8, 5); LLVMValueRef rel_patch_id = unpack_param(ctx, ctx->tcs_rel_ids, 0, 8); unsigned tess_inner_index, tess_outer_index; LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer; LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4]; int i; emit_barrier(ctx); switch (ctx->options->key.tcs.primitive_mode) { case GL_ISOLINES: stride = 2; outer_comps = 2; inner_comps = 0; break; case GL_TRIANGLES: stride = 4; outer_comps = 3; inner_comps = 1; break; case GL_QUADS: stride = 6; outer_comps = 4; inner_comps = 2; break; default: return; } ac_nir_build_if(&if_ctx, ctx, LLVMBuildICmp(ctx->builder, LLVMIntEQ, invocation_id, ctx->i32zero, "")); tess_inner_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER); tess_outer_index = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER); mark_tess_output(ctx, true, tess_inner_index); mark_tess_output(ctx, true, tess_outer_index); lds_base = get_tcs_out_current_patch_data_offset(ctx); lds_inner = LLVMBuildAdd(ctx->builder, lds_base, LLVMConstInt(ctx->i32, tess_inner_index * 4, false), ""); lds_outer = LLVMBuildAdd(ctx->builder, lds_base, LLVMConstInt(ctx->i32, tess_outer_index * 4, false), ""); for (i = 0; i < 4; i++) { inner[i] = LLVMGetUndef(ctx->i32); outer[i] = LLVMGetUndef(ctx->i32); } // LINES reverseal if (ctx->options->key.tcs.primitive_mode == GL_ISOLINES) { outer[0] = out[1] = lds_load(ctx, lds_outer); lds_outer = LLVMBuildAdd(ctx->builder, lds_outer, LLVMConstInt(ctx->i32, 1, false), ""); outer[1] = out[0] = lds_load(ctx, lds_outer); } else { for (i = 0; i < outer_comps; i++) { outer[i] = out[i] = lds_load(ctx, lds_outer); lds_outer = LLVMBuildAdd(ctx->builder, lds_outer, LLVMConstInt(ctx->i32, 1, false), ""); } for (i = 0; i < inner_comps; i++) { inner[i] = out[outer_comps+i] = lds_load(ctx, lds_inner); lds_inner = LLVMBuildAdd(ctx->builder, lds_inner, LLVMConstInt(ctx->i32, 1, false), ""); } } /* Convert the outputs to vectors for stores. */ vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4)); vec1 = NULL; if (stride > 4) vec1 = ac_build_gather_values(&ctx->ac, out + 4, stride - 4); buffer = ctx->hs_ring_tess_factor; tf_base = ctx->tess_factor_offset; byteoffset = LLVMBuildMul(ctx->builder, rel_patch_id, LLVMConstInt(ctx->i32, 4 * stride, false), ""); ac_nir_build_if(&inner_if_ctx, ctx, LLVMBuildICmp(ctx->builder, LLVMIntEQ, rel_patch_id, ctx->i32zero, "")); /* Store the dynamic HS control word. */ ac_build_buffer_store_dword(&ctx->ac, buffer, LLVMConstInt(ctx->i32, 0x80000000, false), 1, ctx->i32zero, tf_base, 0, 1, 0, true, false); ac_nir_build_endif(&inner_if_ctx); /* Store the tessellation factors. */ ac_build_buffer_store_dword(&ctx->ac, buffer, vec0, MIN2(stride, 4), byteoffset, tf_base, 4, 1, 0, true, false); if (vec1) ac_build_buffer_store_dword(&ctx->ac, buffer, vec1, stride - 4, byteoffset, tf_base, 20, 1, 0, true, false); //TODO store to offchip for TES to read - only if TES reads them if (1) { LLVMValueRef inner_vec, outer_vec, tf_outer_offset; LLVMValueRef tf_inner_offset; unsigned param_outer, param_inner; param_outer = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_OUTER); tf_outer_offset = get_tcs_tes_buffer_address(ctx, NULL, LLVMConstInt(ctx->i32, param_outer, 0)); outer_vec = ac_build_gather_values(&ctx->ac, outer, util_next_power_of_two(outer_comps)); ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, outer_vec, outer_comps, tf_outer_offset, ctx->oc_lds, 0, 1, 0, true, false); if (inner_comps) { param_inner = shader_io_get_unique_index(VARYING_SLOT_TESS_LEVEL_INNER); tf_inner_offset = get_tcs_tes_buffer_address(ctx, NULL, LLVMConstInt(ctx->i32, param_inner, 0)); inner_vec = inner_comps == 1 ? inner[0] : ac_build_gather_values(&ctx->ac, inner, inner_comps); ac_build_buffer_store_dword(&ctx->ac, ctx->hs_ring_tess_offchip, inner_vec, inner_comps, tf_inner_offset, ctx->oc_lds, 0, 1, 0, true, false); } } ac_nir_build_endif(&if_ctx); } static void handle_tcs_outputs_post(struct nir_to_llvm_context *ctx) { write_tess_factors(ctx); } static bool si_export_mrt_color(struct nir_to_llvm_context *ctx, LLVMValueRef *color, unsigned param, bool is_last, struct ac_export_args *args) { /* Export */ si_llvm_init_export_args(ctx, color, param, args); if (is_last) { args->valid_mask = 1; /* whether the EXEC mask is valid */ args->done = 1; /* DONE bit */ } else if (!args->enabled_channels) return false; /* unnecessary NULL export */ return true; } static void si_export_mrt_z(struct nir_to_llvm_context *ctx, LLVMValueRef depth, LLVMValueRef stencil, LLVMValueRef samplemask) { struct ac_export_args args; args.enabled_channels = 0; args.valid_mask = 1; args.done = 1; args.target = V_008DFC_SQ_EXP_MRTZ; args.compr = false; args.out[0] = LLVMGetUndef(ctx->f32); /* R, depth */ args.out[1] = LLVMGetUndef(ctx->f32); /* G, stencil test val[0:7], stencil op val[8:15] */ args.out[2] = LLVMGetUndef(ctx->f32); /* B, sample mask */ args.out[3] = LLVMGetUndef(ctx->f32); /* A, alpha to mask */ if (depth) { args.out[0] = depth; args.enabled_channels |= 0x1; } if (stencil) { args.out[1] = stencil; args.enabled_channels |= 0x2; } if (samplemask) { args.out[2] = samplemask; args.enabled_channels |= 0x4; } /* SI (except OLAND) has a bug that it only looks * at the X writemask component. */ if (ctx->options->chip_class == SI && ctx->options->family != CHIP_OLAND) args.enabled_channels |= 0x1; ac_build_export(&ctx->ac, &args); } static void handle_fs_outputs_post(struct nir_to_llvm_context *ctx) { unsigned index = 0; LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL; struct ac_export_args color_args[8]; for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { LLVMValueRef values[4]; if (!(ctx->output_mask & (1ull << i))) continue; if (i == FRAG_RESULT_DEPTH) { ctx->shader_info->fs.writes_z = true; depth = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], "")); } else if (i == FRAG_RESULT_STENCIL) { ctx->shader_info->fs.writes_stencil = true; stencil = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], "")); } else if (i == FRAG_RESULT_SAMPLE_MASK) { ctx->shader_info->fs.writes_sample_mask = true; samplemask = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], "")); } else { bool last = false; for (unsigned j = 0; j < 4; j++) values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder, ctx->outputs[radeon_llvm_reg_index_soa(i, j)], "")); if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil && !ctx->shader_info->fs.writes_sample_mask) last = ctx->output_mask <= ((1ull << (i + 1)) - 1); bool ret = si_export_mrt_color(ctx, values, V_008DFC_SQ_EXP_MRT + (i - FRAG_RESULT_DATA0), last, &color_args[index]); if (ret) index++; } } for (unsigned i = 0; i < index; i++) ac_build_export(&ctx->ac, &color_args[i]); if (depth || stencil || samplemask) si_export_mrt_z(ctx, depth, stencil, samplemask); else if (!index) { si_export_mrt_color(ctx, NULL, V_008DFC_SQ_EXP_NULL, true, &color_args[0]); ac_build_export(&ctx->ac, &color_args[0]); } ctx->shader_info->fs.output_mask = index ? ((1ull << index) - 1) : 0; } static void emit_gs_epilogue(struct nir_to_llvm_context *ctx) { ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id); } static void handle_shader_outputs_post(struct nir_to_llvm_context *ctx) { switch (ctx->stage) { case MESA_SHADER_VERTEX: if (ctx->options->key.vs.as_ls) handle_ls_outputs_post(ctx); else if (ctx->options->key.vs.as_es) handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info); else handle_vs_outputs_post(ctx, ctx->options->key.vs.export_prim_id, &ctx->shader_info->vs.outinfo); break; case MESA_SHADER_FRAGMENT: handle_fs_outputs_post(ctx); break; case MESA_SHADER_GEOMETRY: emit_gs_epilogue(ctx); break; case MESA_SHADER_TESS_CTRL: handle_tcs_outputs_post(ctx); break; case MESA_SHADER_TESS_EVAL: if (ctx->options->key.tes.as_es) handle_es_outputs_post(ctx, &ctx->shader_info->tes.es_info); else handle_vs_outputs_post(ctx, ctx->options->key.tes.export_prim_id, &ctx->shader_info->tes.outinfo); break; default: break; } } static void handle_shared_compute_var(struct nir_to_llvm_context *ctx, struct nir_variable *variable, uint32_t *offset, int idx) { unsigned size = glsl_count_attribute_slots(variable->type, false); variable->data.driver_location = *offset; *offset += size; } static void ac_llvm_finalize_module(struct nir_to_llvm_context * ctx) { LLVMPassManagerRef passmgr; /* Create the pass manager */ passmgr = LLVMCreateFunctionPassManagerForModule( ctx->module); /* This pass should eliminate all the load and store instructions */ LLVMAddPromoteMemoryToRegisterPass(passmgr); /* Add some optimization passes */ LLVMAddScalarReplAggregatesPass(passmgr); LLVMAddLICMPass(passmgr); LLVMAddAggressiveDCEPass(passmgr); LLVMAddCFGSimplificationPass(passmgr); LLVMAddInstructionCombiningPass(passmgr); /* Run the pass */ LLVMInitializeFunctionPassManager(passmgr); LLVMRunFunctionPassManager(passmgr, ctx->main_function); LLVMFinalizeFunctionPassManager(passmgr); LLVMDisposeBuilder(ctx->builder); LLVMDisposePassManager(passmgr); } static void ac_nir_eliminate_const_vs_outputs(struct nir_to_llvm_context *ctx) { struct ac_vs_output_info *outinfo; switch (ctx->stage) { case MESA_SHADER_FRAGMENT: case MESA_SHADER_COMPUTE: case MESA_SHADER_TESS_CTRL: case MESA_SHADER_GEOMETRY: return; case MESA_SHADER_VERTEX: if (ctx->options->key.vs.as_ls || ctx->options->key.vs.as_es) return; outinfo = &ctx->shader_info->vs.outinfo; break; case MESA_SHADER_TESS_EVAL: if (ctx->options->key.vs.as_es) return; outinfo = &ctx->shader_info->tes.outinfo; break; default: unreachable("Unhandled shader type"); } ac_optimize_vs_outputs(&ctx->ac, ctx->main_function, outinfo->vs_output_param_offset, VARYING_SLOT_MAX, &outinfo->param_exports); } static void ac_setup_rings(struct nir_to_llvm_context *ctx) { if ((ctx->stage == MESA_SHADER_VERTEX && ctx->options->key.vs.as_es) || (ctx->stage == MESA_SHADER_TESS_EVAL && ctx->options->key.tes.as_es)) { ctx->esgs_ring = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_ESGS_VS, false)); } if (ctx->is_gs_copy_shader) { ctx->gsvs_ring = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_GSVS_VS, false)); } if (ctx->stage == MESA_SHADER_GEOMETRY) { LLVMValueRef tmp; ctx->esgs_ring = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_ESGS_GS, false)); ctx->gsvs_ring = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_GSVS_GS, false)); ctx->gsvs_ring = LLVMBuildBitCast(ctx->builder, ctx->gsvs_ring, ctx->v4i32, ""); ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, ctx->gsvs_num_entries, LLVMConstInt(ctx->i32, 2, false), ""); tmp = LLVMBuildExtractElement(ctx->builder, ctx->gsvs_ring, ctx->i32one, ""); tmp = LLVMBuildOr(ctx->builder, tmp, ctx->gsvs_ring_stride, ""); ctx->gsvs_ring = LLVMBuildInsertElement(ctx->builder, ctx->gsvs_ring, tmp, ctx->i32one, ""); ctx->gsvs_ring = LLVMBuildBitCast(ctx->builder, ctx->gsvs_ring, ctx->v16i8, ""); } if (ctx->stage == MESA_SHADER_TESS_CTRL || ctx->stage == MESA_SHADER_TESS_EVAL) { ctx->hs_ring_tess_offchip = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_HS_TESS_OFFCHIP, false)); ctx->hs_ring_tess_factor = ac_build_indexed_load_const(&ctx->ac, ctx->ring_offsets, LLVMConstInt(ctx->i32, RING_HS_TESS_FACTOR, false)); } } static unsigned ac_nir_get_max_workgroup_size(enum chip_class chip_class, const struct nir_shader *nir) { switch (nir->stage) { case MESA_SHADER_TESS_CTRL: return chip_class >= CIK ? 128 : 64; case MESA_SHADER_GEOMETRY: return 64; case MESA_SHADER_COMPUTE: break; default: return 0; } unsigned max_workgroup_size = nir->info.cs.local_size[0] * nir->info.cs.local_size[1] * nir->info.cs.local_size[2]; return max_workgroup_size; } static LLVMModuleRef ac_translate_nir_to_llvm(LLVMTargetMachineRef tm, struct nir_shader *nir, struct ac_shader_variant_info *shader_info, const struct ac_nir_compiler_options *options) { struct nir_to_llvm_context ctx = {0}; struct nir_function *func; unsigned i; ctx.options = options; ctx.shader_info = shader_info; ctx.context = LLVMContextCreate(); ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context); ac_llvm_context_init(&ctx.ac, ctx.context); ctx.ac.module = ctx.module; ctx.has_ds_bpermute = ctx.options->chip_class >= VI; memset(shader_info, 0, sizeof(*shader_info)); ac_nir_shader_info_pass(nir, options, &shader_info->info); LLVMSetTarget(ctx.module, options->supports_spill ? "amdgcn-mesa-mesa3d" : "amdgcn--"); LLVMTargetDataRef data_layout = LLVMCreateTargetDataLayout(tm); char *data_layout_str = LLVMCopyStringRepOfTargetData(data_layout); LLVMSetDataLayout(ctx.module, data_layout_str); LLVMDisposeTargetData(data_layout); LLVMDisposeMessage(data_layout_str); setup_types(&ctx); ctx.builder = LLVMCreateBuilderInContext(ctx.context); ctx.ac.builder = ctx.builder; ctx.stage = nir->stage; ctx.max_workgroup_size = ac_nir_get_max_workgroup_size(ctx.options->chip_class, nir); for (i = 0; i < AC_UD_MAX_SETS; i++) shader_info->user_sgprs_locs.descriptor_sets[i].sgpr_idx = -1; for (i = 0; i < AC_UD_MAX_UD; i++) shader_info->user_sgprs_locs.shader_data[i].sgpr_idx = -1; create_function(&ctx); if (nir->stage == MESA_SHADER_COMPUTE) { int num_shared = 0; nir_foreach_variable(variable, &nir->shared) num_shared++; if (num_shared) { int idx = 0; uint32_t shared_size = 0; LLVMValueRef var; LLVMTypeRef i8p = LLVMPointerType(ctx.i8, LOCAL_ADDR_SPACE); nir_foreach_variable(variable, &nir->shared) { handle_shared_compute_var(&ctx, variable, &shared_size, idx); idx++; } shared_size *= 16; var = LLVMAddGlobalInAddressSpace(ctx.module, LLVMArrayType(ctx.i8, shared_size), "compute_lds", LOCAL_ADDR_SPACE); LLVMSetAlignment(var, 4); ctx.shared_memory = LLVMBuildBitCast(ctx.builder, var, i8p, ""); } } else if (nir->stage == MESA_SHADER_GEOMETRY) { ctx.gs_next_vertex = ac_build_alloca(&ctx, ctx.i32, "gs_next_vertex"); ctx.gs_max_out_vertices = nir->info.gs.vertices_out; } else if (nir->stage == MESA_SHADER_TESS_EVAL) { ctx.tes_primitive_mode = nir->info.tess.primitive_mode; } ac_setup_rings(&ctx); nir_foreach_variable(variable, &nir->inputs) handle_shader_input_decl(&ctx, variable); if (nir->stage == MESA_SHADER_FRAGMENT) handle_fs_inputs_pre(&ctx, nir); ctx.num_output_clips = nir->info.clip_distance_array_size; ctx.num_output_culls = nir->info.cull_distance_array_size; nir_foreach_variable(variable, &nir->outputs) handle_shader_output_decl(&ctx, variable); ctx.defs = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); ctx.phis = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); func = (struct nir_function *)exec_list_get_head(&nir->functions); setup_locals(&ctx, func); visit_cf_list(&ctx, &func->impl->body); phi_post_pass(&ctx); handle_shader_outputs_post(&ctx); LLVMBuildRetVoid(ctx.builder); ac_llvm_finalize_module(&ctx); ac_nir_eliminate_const_vs_outputs(&ctx); free(ctx.locals); ralloc_free(ctx.defs); ralloc_free(ctx.phis); if (nir->stage == MESA_SHADER_GEOMETRY) { unsigned addclip = ctx.num_output_clips + ctx.num_output_culls > 4; shader_info->gs.gsvs_vertex_size = (util_bitcount64(ctx.output_mask) + addclip) * 16; shader_info->gs.max_gsvs_emit_size = shader_info->gs.gsvs_vertex_size * nir->info.gs.vertices_out; } else if (nir->stage == MESA_SHADER_TESS_CTRL) { shader_info->tcs.outputs_written = ctx.tess_outputs_written; shader_info->tcs.patch_outputs_written = ctx.tess_patch_outputs_written; } else if (nir->stage == MESA_SHADER_VERTEX && ctx.options->key.vs.as_ls) { shader_info->vs.outputs_written = ctx.tess_outputs_written; } return ctx.module; } static void ac_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context) { unsigned *retval = (unsigned *)context; LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di); char *description = LLVMGetDiagInfoDescription(di); if (severity == LLVMDSError) { *retval = 1; fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description); } LLVMDisposeMessage(description); } static unsigned ac_llvm_compile(LLVMModuleRef M, struct ac_shader_binary *binary, LLVMTargetMachineRef tm) { unsigned retval = 0; char *err; LLVMContextRef llvm_ctx; LLVMMemoryBufferRef out_buffer; unsigned buffer_size; const char *buffer_data; LLVMBool mem_err; /* Setup Diagnostic Handler*/ llvm_ctx = LLVMGetModuleContext(M); LLVMContextSetDiagnosticHandler(llvm_ctx, ac_diagnostic_handler, &retval); /* Compile IR*/ mem_err = LLVMTargetMachineEmitToMemoryBuffer(tm, M, LLVMObjectFile, &err, &out_buffer); /* Process Errors/Warnings */ if (mem_err) { fprintf(stderr, "%s: %s", __FUNCTION__, err); free(err); retval = 1; goto out; } /* Extract Shader Code*/ buffer_size = LLVMGetBufferSize(out_buffer); buffer_data = LLVMGetBufferStart(out_buffer); ac_elf_read(buffer_data, buffer_size, binary); /* Clean up */ LLVMDisposeMemoryBuffer(out_buffer); out: return retval; } static void ac_compile_llvm_module(LLVMTargetMachineRef tm, LLVMModuleRef llvm_module, struct ac_shader_binary *binary, struct ac_shader_config *config, struct ac_shader_variant_info *shader_info, gl_shader_stage stage, bool dump_shader, bool supports_spill) { if (dump_shader) ac_dump_module(llvm_module); memset(binary, 0, sizeof(*binary)); int v = ac_llvm_compile(llvm_module, binary, tm); if (v) { fprintf(stderr, "compile failed\n"); } if (dump_shader) fprintf(stderr, "disasm:\n%s\n", binary->disasm_string); ac_shader_binary_read_config(binary, config, 0, supports_spill); LLVMContextRef ctx = LLVMGetModuleContext(llvm_module); LLVMDisposeModule(llvm_module); LLVMContextDispose(ctx); if (stage == MESA_SHADER_FRAGMENT) { shader_info->num_input_vgprs = 0; if (G_0286CC_PERSP_SAMPLE_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_PERSP_CENTER_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_PERSP_CENTROID_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_PERSP_PULL_MODEL_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 3; if (G_0286CC_LINEAR_SAMPLE_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_LINEAR_CENTER_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_LINEAR_CENTROID_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 2; if (G_0286CC_LINE_STIPPLE_TEX_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_POS_X_FLOAT_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_POS_Y_FLOAT_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_POS_Z_FLOAT_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_POS_W_FLOAT_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_FRONT_FACE_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_ANCILLARY_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_SAMPLE_COVERAGE_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; if (G_0286CC_POS_FIXED_PT_ENA(config->spi_ps_input_addr)) shader_info->num_input_vgprs += 1; } config->num_vgprs = MAX2(config->num_vgprs, shader_info->num_input_vgprs); /* +3 for scratch wave offset and VCC */ config->num_sgprs = MAX2(config->num_sgprs, shader_info->num_input_sgprs + 3); } void ac_compile_nir_shader(LLVMTargetMachineRef tm, struct ac_shader_binary *binary, struct ac_shader_config *config, struct ac_shader_variant_info *shader_info, struct nir_shader *nir, const struct ac_nir_compiler_options *options, bool dump_shader) { LLVMModuleRef llvm_module = ac_translate_nir_to_llvm(tm, nir, shader_info, options); ac_compile_llvm_module(tm, llvm_module, binary, config, shader_info, nir->stage, dump_shader, options->supports_spill); switch (nir->stage) { case MESA_SHADER_COMPUTE: for (int i = 0; i < 3; ++i) shader_info->cs.block_size[i] = nir->info.cs.local_size[i]; break; case MESA_SHADER_FRAGMENT: shader_info->fs.early_fragment_test = nir->info.fs.early_fragment_tests; break; case MESA_SHADER_GEOMETRY: shader_info->gs.vertices_in = nir->info.gs.vertices_in; shader_info->gs.vertices_out = nir->info.gs.vertices_out; shader_info->gs.output_prim = nir->info.gs.output_primitive; shader_info->gs.invocations = nir->info.gs.invocations; break; case MESA_SHADER_TESS_EVAL: shader_info->tes.primitive_mode = nir->info.tess.primitive_mode; shader_info->tes.spacing = nir->info.tess.spacing; shader_info->tes.ccw = nir->info.tess.ccw; shader_info->tes.point_mode = nir->info.tess.point_mode; shader_info->tes.as_es = options->key.tes.as_es; break; case MESA_SHADER_TESS_CTRL: shader_info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out; break; case MESA_SHADER_VERTEX: shader_info->vs.as_es = options->key.vs.as_es; shader_info->vs.as_ls = options->key.vs.as_ls; /* in LS mode we need at least 1, invocation id needs 3, handled elsewhere */ if (options->key.vs.as_ls) shader_info->vs.vgpr_comp_cnt = MAX2(1, shader_info->vs.vgpr_comp_cnt); break; default: break; } } static void ac_gs_copy_shader_emit(struct nir_to_llvm_context *ctx) { LLVMValueRef args[9]; args[0] = ctx->gsvs_ring; args[1] = LLVMBuildMul(ctx->builder, ctx->vertex_id, LLVMConstInt(ctx->i32, 4, false), ""); args[3] = ctx->i32zero; args[4] = ctx->i32one; /* OFFEN */ args[5] = ctx->i32zero; /* IDXEN */ args[6] = ctx->i32one; /* GLC */ args[7] = ctx->i32one; /* SLC */ args[8] = ctx->i32zero; /* TFE */ int idx = 0; for (unsigned i = 0; i < RADEON_LLVM_MAX_OUTPUTS; ++i) { int length = 4; int slot = idx; int slot_inc = 1; if (!(ctx->output_mask & (1ull << i))) continue; if (i == VARYING_SLOT_CLIP_DIST0) { /* unpack clip and cull from a single set of slots */ length = ctx->num_output_clips + ctx->num_output_culls; if (length > 4) slot_inc = 2; } for (unsigned j = 0; j < length; j++) { LLVMValueRef value; args[2] = LLVMConstInt(ctx->i32, (slot * 4 + j) * ctx->gs_max_out_vertices * 16 * 4, false); value = ac_build_intrinsic(&ctx->ac, "llvm.SI.buffer.load.dword.i32.i32", ctx->i32, args, 9, AC_FUNC_ATTR_READONLY | AC_FUNC_ATTR_LEGACY); LLVMBuildStore(ctx->builder, to_float(ctx, value), ctx->outputs[radeon_llvm_reg_index_soa(i, j)]); } idx += slot_inc; } handle_vs_outputs_post(ctx, false, &ctx->shader_info->vs.outinfo); } void ac_create_gs_copy_shader(LLVMTargetMachineRef tm, struct nir_shader *geom_shader, struct ac_shader_binary *binary, struct ac_shader_config *config, struct ac_shader_variant_info *shader_info, const struct ac_nir_compiler_options *options, bool dump_shader) { struct nir_to_llvm_context ctx = {0}; ctx.context = LLVMContextCreate(); ctx.module = LLVMModuleCreateWithNameInContext("shader", ctx.context); ctx.options = options; ctx.shader_info = shader_info; ac_llvm_context_init(&ctx.ac, ctx.context); ctx.ac.module = ctx.module; ctx.is_gs_copy_shader = true; LLVMSetTarget(ctx.module, "amdgcn--"); setup_types(&ctx); ctx.builder = LLVMCreateBuilderInContext(ctx.context); ctx.ac.builder = ctx.builder; ctx.stage = MESA_SHADER_VERTEX; create_function(&ctx); ctx.gs_max_out_vertices = geom_shader->info.gs.vertices_out; ac_setup_rings(&ctx); ctx.num_output_clips = geom_shader->info.clip_distance_array_size; ctx.num_output_culls = geom_shader->info.cull_distance_array_size; nir_foreach_variable(variable, &geom_shader->outputs) handle_shader_output_decl(&ctx, variable); ac_gs_copy_shader_emit(&ctx); LLVMBuildRetVoid(ctx.builder); ac_llvm_finalize_module(&ctx); ac_compile_llvm_module(tm, ctx.module, binary, config, shader_info, MESA_SHADER_VERTEX, dump_shader, options->supports_spill); }