/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "ac_debug.h" #ifdef HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif #include #include "sid.h" #include "sid_tables.h" #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_string.h" #include /* Parsed IBs are difficult to read without colors. Use "less -R file" to * read them, or use "aha -b -f file" to convert them to html. */ #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" #define INDENT_PKT 8 struct ac_ib_parser { FILE *f; uint32_t *ib; unsigned num_dw; const int *trace_ids; unsigned trace_id_count; enum chip_class chip_class; ac_debug_addr_callback addr_callback; void *addr_callback_data; unsigned cur_dw; }; static void ac_do_parse_ib(FILE *f, struct ac_ib_parser *ib); static void print_spaces(FILE *f, unsigned num) { fprintf(f, "%*s", num, ""); } static void print_value(FILE *file, uint32_t value, int bits) { /* Guess if it's int or float */ if (value <= (1 << 15)) { if (value <= 9) fprintf(file, "%u\n", value); else fprintf(file, "%u (0x%0*x)\n", value, bits / 4, value); } else { float f = uif(value); if (fabs(f) < 100000 && f*10 == floor(f*10)) fprintf(file, "%.1ff (0x%0*x)\n", f, bits / 4, value); else /* Don't print more leading zeros than there are bits. */ fprintf(file, "0x%0*x\n", bits / 4, value); } } static void print_named_value(FILE *file, const char *name, uint32_t value, int bits) { print_spaces(file, INDENT_PKT); fprintf(file, COLOR_YELLOW "%s" COLOR_RESET " <- ", name); print_value(file, value, bits); } static const struct si_reg *find_register(const struct si_reg *table, unsigned table_size, unsigned offset) { for (unsigned i = 0; i < table_size; i++) { const struct si_reg *reg = &table[i]; if (reg->offset == offset) return reg; } return NULL; } void ac_dump_reg(FILE *file, enum chip_class chip_class, unsigned offset, uint32_t value, uint32_t field_mask) { const struct si_reg *reg = NULL; if (chip_class >= GFX10) reg = find_register(gfx10_reg_table, ARRAY_SIZE(gfx10_reg_table), offset); else if (chip_class >= GFX9) reg = find_register(gfx9_reg_table, ARRAY_SIZE(gfx9_reg_table), offset); else if (chip_class >= GFX8) reg = find_register(gfx8_reg_table, ARRAY_SIZE(gfx8_reg_table), offset); else if (chip_class >= GFX7) reg = find_register(gfx7_reg_table, ARRAY_SIZE(gfx7_reg_table), offset); else reg = find_register(gfx6_reg_table, ARRAY_SIZE(gfx6_reg_table), offset); if (reg) { const char *reg_name = sid_strings + reg->name_offset; bool first_field = true; print_spaces(file, INDENT_PKT); fprintf(file, COLOR_YELLOW "%s" COLOR_RESET " <- ", reg_name); if (!reg->num_fields) { print_value(file, value, 32); return; } for (unsigned f = 0; f < reg->num_fields; f++) { const struct si_field *field = sid_fields_table + reg->fields_offset + f; const int *values_offsets = sid_strings_offsets + field->values_offset; uint32_t val = (value & field->mask) >> (ffs(field->mask) - 1); if (!(field->mask & field_mask)) continue; /* Indent the field. */ if (!first_field) print_spaces(file, INDENT_PKT + strlen(reg_name) + 4); /* Print the field. */ fprintf(file, "%s = ", sid_strings + field->name_offset); if (val < field->num_values && values_offsets[val] >= 0) fprintf(file, "%s\n", sid_strings + values_offsets[val]); else print_value(file, val, util_bitcount(field->mask)); first_field = false; } return; } print_spaces(file, INDENT_PKT); fprintf(file, COLOR_YELLOW "0x%05x" COLOR_RESET " <- 0x%08x\n", offset, value); } static uint32_t ac_ib_get(struct ac_ib_parser *ib) { uint32_t v = 0; if (ib->cur_dw < ib->num_dw) { v = ib->ib[ib->cur_dw]; #ifdef HAVE_VALGRIND /* Help figure out where garbage data is written to IBs. * * Arguably we should do this already when the IBs are written, * see RADEON_VALGRIND. The problem is that client-requests to * Valgrind have an overhead even when Valgrind isn't running, * and radeon_emit is performance sensitive... */ if (VALGRIND_CHECK_VALUE_IS_DEFINED(v)) fprintf(ib->f, COLOR_RED "Valgrind: The next DWORD is garbage" COLOR_RESET "\n"); #endif fprintf(ib->f, "\n\035#%08x ", v); } else { fprintf(ib->f, "\n\035#???????? "); } ib->cur_dw++; return v; } static void ac_parse_set_reg_packet(FILE *f, unsigned count, unsigned reg_offset, struct ac_ib_parser *ib) { unsigned reg_dw = ac_ib_get(ib); unsigned reg = ((reg_dw & 0xFFFF) << 2) + reg_offset; unsigned index = reg_dw >> 28; int i; if (index != 0) { print_spaces(f, INDENT_PKT); fprintf(f, "INDEX = %u\n", index); } for (i = 0; i < count; i++) ac_dump_reg(f, ib->chip_class, reg + i*4, ac_ib_get(ib), ~0); } static void ac_parse_packet3(FILE *f, uint32_t header, struct ac_ib_parser *ib, int *current_trace_id) { unsigned first_dw = ib->cur_dw; int count = PKT_COUNT_G(header); unsigned op = PKT3_IT_OPCODE_G(header); const char *predicate = PKT3_PREDICATE(header) ? "(predicate)" : ""; int i; /* Print the name first. */ for (i = 0; i < ARRAY_SIZE(packet3_table); i++) if (packet3_table[i].op == op) break; if (i < ARRAY_SIZE(packet3_table)) { const char *name = sid_strings + packet3_table[i].name_offset; if (op == PKT3_SET_CONTEXT_REG || op == PKT3_SET_CONFIG_REG || op == PKT3_SET_UCONFIG_REG || op == PKT3_SET_UCONFIG_REG_INDEX || op == PKT3_SET_SH_REG) fprintf(f, COLOR_CYAN "%s%s" COLOR_CYAN ":\n", name, predicate); else fprintf(f, COLOR_GREEN "%s%s" COLOR_RESET ":\n", name, predicate); } else fprintf(f, COLOR_RED "PKT3_UNKNOWN 0x%x%s" COLOR_RESET ":\n", op, predicate); /* Print the contents. */ switch (op) { case PKT3_SET_CONTEXT_REG: ac_parse_set_reg_packet(f, count, SI_CONTEXT_REG_OFFSET, ib); break; case PKT3_SET_CONFIG_REG: ac_parse_set_reg_packet(f, count, SI_CONFIG_REG_OFFSET, ib); break; case PKT3_SET_UCONFIG_REG: case PKT3_SET_UCONFIG_REG_INDEX: ac_parse_set_reg_packet(f, count, CIK_UCONFIG_REG_OFFSET, ib); break; case PKT3_SET_SH_REG: ac_parse_set_reg_packet(f, count, SI_SH_REG_OFFSET, ib); break; case PKT3_ACQUIRE_MEM: ac_dump_reg(f, ib->chip_class, R_0301F0_CP_COHER_CNTL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0301F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_030230_CP_COHER_SIZE_HI, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0301F8_CP_COHER_BASE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0301E4_CP_COHER_BASE_HI, ac_ib_get(ib), ~0); print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); if (ib->chip_class >= GFX10) ac_dump_reg(f, ib->chip_class, R_586_GCR_CNTL, ac_ib_get(ib), ~0); break; case PKT3_SURFACE_SYNC: if (ib->chip_class >= GFX7) { ac_dump_reg(f, ib->chip_class, R_0301F0_CP_COHER_CNTL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0301F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0301F8_CP_COHER_BASE, ac_ib_get(ib), ~0); } else { ac_dump_reg(f, ib->chip_class, R_0085F0_CP_COHER_CNTL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0085F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0085F8_CP_COHER_BASE, ac_ib_get(ib), ~0); } print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); break; case PKT3_EVENT_WRITE: { uint32_t event_dw = ac_ib_get(ib); ac_dump_reg(f, ib->chip_class, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "INV_L2", (event_dw >> 20) & 0x1, 1); if (count > 0) { print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_HI", ac_ib_get(ib), 16); } break; } case PKT3_EVENT_WRITE_EOP: { uint32_t event_dw = ac_ib_get(ib); ac_dump_reg(f, ib->chip_class, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "TCL1_VOL_ACTION_ENA", (event_dw >> 12) & 0x1, 1); print_named_value(f, "TC_VOL_ACTION_ENA", (event_dw >> 13) & 0x1, 1); print_named_value(f, "TC_WB_ACTION_ENA", (event_dw >> 15) & 0x1, 1); print_named_value(f, "TCL1_ACTION_ENA", (event_dw >> 16) & 0x1, 1); print_named_value(f, "TC_ACTION_ENA", (event_dw >> 17) & 0x1, 1); print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); uint32_t addr_hi_dw = ac_ib_get(ib); print_named_value(f, "ADDRESS_HI", addr_hi_dw, 16); print_named_value(f, "DST_SEL", (addr_hi_dw >> 16) & 0x3, 2); print_named_value(f, "INT_SEL", (addr_hi_dw >> 24) & 0x7, 3); print_named_value(f, "DATA_SEL", addr_hi_dw >> 29, 3); print_named_value(f, "DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "DATA_HI", ac_ib_get(ib), 32); break; } case PKT3_RELEASE_MEM: { uint32_t event_dw = ac_ib_get(ib); if (ib->chip_class >= GFX10) { ac_dump_reg(f, ib->chip_class, R_490_RELEASE_MEM_OP, event_dw, ~0u); } else { ac_dump_reg(f, ib->chip_class, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "TCL1_VOL_ACTION_ENA", (event_dw >> 12) & 0x1, 1); print_named_value(f, "TC_VOL_ACTION_ENA", (event_dw >> 13) & 0x1, 1); print_named_value(f, "TC_WB_ACTION_ENA", (event_dw >> 15) & 0x1, 1); print_named_value(f, "TCL1_ACTION_ENA", (event_dw >> 16) & 0x1, 1); print_named_value(f, "TC_ACTION_ENA", (event_dw >> 17) & 0x1, 1); print_named_value(f, "TC_NC_ACTION_ENA", (event_dw >> 19) & 0x1, 1); print_named_value(f, "TC_WC_ACTION_ENA", (event_dw >> 20) & 0x1, 1); print_named_value(f, "TC_MD_ACTION_ENA", (event_dw >> 21) & 0x1, 1); } uint32_t sel_dw = ac_ib_get(ib); print_named_value(f, "DST_SEL", (sel_dw >> 16) & 0x3, 2); print_named_value(f, "INT_SEL", (sel_dw >> 24) & 0x7, 3); print_named_value(f, "DATA_SEL", sel_dw >> 29, 3); print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_HI", ac_ib_get(ib), 32); print_named_value(f, "DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "DATA_HI", ac_ib_get(ib), 32); print_named_value(f, "CTXID", ac_ib_get(ib), 32); break; } case PKT3_WAIT_REG_MEM: print_named_value(f, "OP", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_HI", ac_ib_get(ib), 32); print_named_value(f, "REF", ac_ib_get(ib), 32); print_named_value(f, "MASK", ac_ib_get(ib), 32); print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); break; case PKT3_DRAW_INDEX_AUTO: ac_dump_reg(f, ib->chip_class, R_030930_VGT_NUM_INDICES, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_DRAW_INDEX_2: ac_dump_reg(f, ib->chip_class, R_028A78_VGT_DMA_MAX_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0287E8_VGT_DMA_BASE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0287E4_VGT_DMA_BASE_HI, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_030930_VGT_NUM_INDICES, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_INDEX_TYPE: ac_dump_reg(f, ib->chip_class, R_028A7C_VGT_DMA_INDEX_TYPE, ac_ib_get(ib), ~0); break; case PKT3_NUM_INSTANCES: ac_dump_reg(f, ib->chip_class, R_030934_VGT_NUM_INSTANCES, ac_ib_get(ib), ~0); break; case PKT3_WRITE_DATA: ac_dump_reg(f, ib->chip_class, R_370_CONTROL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_371_DST_ADDR_LO, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_372_DST_ADDR_HI, ac_ib_get(ib), ~0); /* The payload is written automatically */ break; case PKT3_CP_DMA: ac_dump_reg(f, ib->chip_class, R_410_CP_DMA_WORD0, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_411_CP_DMA_WORD1, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_412_CP_DMA_WORD2, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_413_CP_DMA_WORD3, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_414_COMMAND, ac_ib_get(ib), ~0); break; case PKT3_DMA_DATA: ac_dump_reg(f, ib->chip_class, R_500_DMA_DATA_WORD0, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_501_SRC_ADDR_LO, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_502_SRC_ADDR_HI, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_503_DST_ADDR_LO, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_504_DST_ADDR_HI, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->chip_class, R_414_COMMAND, ac_ib_get(ib), ~0); break; case PKT3_INDIRECT_BUFFER_SI: case PKT3_INDIRECT_BUFFER_CONST: case PKT3_INDIRECT_BUFFER_CIK: { uint32_t base_lo_dw = ac_ib_get(ib); ac_dump_reg(f, ib->chip_class, R_3F0_IB_BASE_LO, base_lo_dw, ~0); uint32_t base_hi_dw = ac_ib_get(ib); ac_dump_reg(f, ib->chip_class, R_3F1_IB_BASE_HI, base_hi_dw, ~0); uint32_t control_dw = ac_ib_get(ib); ac_dump_reg(f, ib->chip_class, R_3F2_IB_CONTROL, control_dw, ~0); if (!ib->addr_callback) break; uint64_t addr = ((uint64_t)base_hi_dw << 32) | base_lo_dw; void *data = ib->addr_callback(ib->addr_callback_data, addr); if (!data) break; if (G_3F2_CHAIN(control_dw)) { ib->ib = data; ib->num_dw = G_3F2_IB_SIZE(control_dw); ib->cur_dw = 0; return; } struct ac_ib_parser ib_recurse; memcpy(&ib_recurse, ib, sizeof(ib_recurse)); ib_recurse.ib = data; ib_recurse.num_dw = G_3F2_IB_SIZE(control_dw); ib_recurse.cur_dw = 0; if(ib_recurse.trace_id_count) { if (*current_trace_id == *ib->trace_ids) { ++ib_recurse.trace_ids; --ib_recurse.trace_id_count; } else { ib_recurse.trace_id_count = 0; } } fprintf(f, "\n\035>------------------ nested begin ------------------\n"); ac_do_parse_ib(f, &ib_recurse); fprintf(f, "\n\035<------------------- nested end -------------------\n"); break; } case PKT3_CLEAR_STATE: case PKT3_INCREMENT_DE_COUNTER: case PKT3_PFP_SYNC_ME: break; case PKT3_NOP: if (header == 0xffff1000) { count = -1; /* One dword NOP. */ } else if (count == 0 && ib->cur_dw < ib->num_dw && AC_IS_TRACE_POINT(ib->ib[ib->cur_dw])) { unsigned packet_id = AC_GET_TRACE_POINT_ID(ib->ib[ib->cur_dw]); print_spaces(f, INDENT_PKT); fprintf(f, COLOR_RED "Trace point ID: %u\n", packet_id); if (!ib->trace_id_count) break; /* tracing was disabled */ *current_trace_id = packet_id; print_spaces(f, INDENT_PKT); if (packet_id < *ib->trace_ids) fprintf(f, COLOR_RED "This trace point was reached by the CP." COLOR_RESET "\n"); else if (packet_id == *ib->trace_ids) fprintf(f, COLOR_RED "!!!!! This is the last trace point that " "was reached by the CP !!!!!" COLOR_RESET "\n"); else if (packet_id+1 == *ib->trace_ids) fprintf(f, COLOR_RED "!!!!! This is the first trace point that " "was NOT been reached by the CP !!!!!" COLOR_RESET "\n"); else fprintf(f, COLOR_RED "!!!!! This trace point was NOT reached " "by the CP !!!!!" COLOR_RESET "\n"); break; } break; } /* print additional dwords */ while (ib->cur_dw <= first_dw + count) ac_ib_get(ib); if (ib->cur_dw > first_dw + count + 1) fprintf(f, COLOR_RED "\n!!!!! count in header too low !!!!!" COLOR_RESET "\n"); } /** * Parse and print an IB into a file. */ static void ac_do_parse_ib(FILE *f, struct ac_ib_parser *ib) { int current_trace_id = -1; while (ib->cur_dw < ib->num_dw) { uint32_t header = ac_ib_get(ib); unsigned type = PKT_TYPE_G(header); switch (type) { case 3: ac_parse_packet3(f, header, ib, ¤t_trace_id); break; case 2: /* type-2 nop */ if (header == 0x80000000) { fprintf(f, COLOR_GREEN "NOP (type 2)" COLOR_RESET "\n"); break; } /* fall through */ default: fprintf(f, "Unknown packet type %i\n", type); break; } } } static void format_ib_output(FILE *f, char *out) { unsigned depth = 0; for (;;) { char op = 0; if (out[0] == '\n' && out[1] == '\035') out++; if (out[0] == '\035') { op = out[1]; out += 2; } if (op == '<') depth--; unsigned indent = 4 * depth; if (op != '#') indent += 9; if (indent) print_spaces(f, indent); char *end = util_strchrnul(out, '\n'); fwrite(out, end - out, 1, f); fputc('\n', f); /* always end with a new line */ if (!*end) break; out = end + 1; if (op == '>') depth++; } } /** * Parse and print an IB into a file. * * \param f file * \param ib_ptr IB * \param num_dw size of the IB * \param chip_class chip class * \param trace_ids the last trace IDs that are known to have been reached * and executed by the CP, typically read from a buffer * \param trace_id_count The number of entries in the trace_ids array. * \param addr_callback Get a mapped pointer of the IB at a given address. Can * be NULL. * \param addr_callback_data user data for addr_callback */ void ac_parse_ib_chunk(FILE *f, uint32_t *ib_ptr, int num_dw, const int *trace_ids, unsigned trace_id_count, enum chip_class chip_class, ac_debug_addr_callback addr_callback, void *addr_callback_data) { struct ac_ib_parser ib = {}; ib.ib = ib_ptr; ib.num_dw = num_dw; ib.trace_ids = trace_ids; ib.trace_id_count = trace_id_count; ib.chip_class = chip_class; ib.addr_callback = addr_callback; ib.addr_callback_data = addr_callback_data; char *out; size_t outsize; FILE *memf = open_memstream(&out, &outsize); ib.f = memf; ac_do_parse_ib(memf, &ib); fclose(memf); if (out) { format_ib_output(f, out); free(out); } if (ib.cur_dw > ib.num_dw) { printf("\nPacket ends after the end of IB.\n"); exit(1); } } /** * Parse and print an IB into a file. * * \param f file * \param ib IB * \param num_dw size of the IB * \param chip_class chip class * \param trace_ids the last trace IDs that are known to have been reached * and executed by the CP, typically read from a buffer * \param trace_id_count The number of entries in the trace_ids array. * \param addr_callback Get a mapped pointer of the IB at a given address. Can * be NULL. * \param addr_callback_data user data for addr_callback */ void ac_parse_ib(FILE *f, uint32_t *ib, int num_dw, const int *trace_ids, unsigned trace_id_count, const char *name, enum chip_class chip_class, ac_debug_addr_callback addr_callback, void *addr_callback_data) { fprintf(f, "------------------ %s begin ------------------\n", name); ac_parse_ib_chunk(f, ib, num_dw, trace_ids, trace_id_count, chip_class, addr_callback, addr_callback_data); fprintf(f, "------------------- %s end -------------------\n\n", name); } /** * Parse dmesg and return TRUE if a VM fault has been detected. * * \param chip_class chip class * \param old_dmesg_timestamp previous dmesg timestamp parsed at init time * \param out_addr detected VM fault addr */ bool ac_vm_fault_occured(enum chip_class chip_class, uint64_t *old_dmesg_timestamp, uint64_t *out_addr) { char line[2000]; unsigned sec, usec; int progress = 0; uint64_t dmesg_timestamp = 0; bool fault = false; FILE *p = popen("dmesg", "r"); if (!p) return false; while (fgets(line, sizeof(line), p)) { char *msg, len; if (!line[0] || line[0] == '\n') continue; /* Get the timestamp. */ if (sscanf(line, "[%u.%u]", &sec, &usec) != 2) { static bool hit = false; if (!hit) { fprintf(stderr, "%s: failed to parse line '%s'\n", __func__, line); hit = true; } continue; } dmesg_timestamp = sec * 1000000ull + usec; /* If just updating the timestamp. */ if (!out_addr) continue; /* Process messages only if the timestamp is newer. */ if (dmesg_timestamp <= *old_dmesg_timestamp) continue; /* Only process the first VM fault. */ if (fault) continue; /* Remove trailing \n */ len = strlen(line); if (len && line[len-1] == '\n') line[len-1] = 0; /* Get the message part. */ msg = strchr(line, ']'); if (!msg) continue; msg++; const char *header_line, *addr_line_prefix, *addr_line_format; if (chip_class >= GFX9) { /* Match this: * ..: [gfxhub] VMC page fault (src_id:0 ring:158 vm_id:2 pas_id:0) * ..: at page 0x0000000219f8f000 from 27 * ..: VM_L2_PROTECTION_FAULT_STATUS:0x0020113C */ header_line = "VMC page fault"; addr_line_prefix = " at page"; addr_line_format = "%"PRIx64; } else { header_line = "GPU fault detected:"; addr_line_prefix = "VM_CONTEXT1_PROTECTION_FAULT_ADDR"; addr_line_format = "%"PRIX64; } switch (progress) { case 0: if (strstr(msg, header_line)) progress = 1; break; case 1: msg = strstr(msg, addr_line_prefix); if (msg) { msg = strstr(msg, "0x"); if (msg) { msg += 2; if (sscanf(msg, addr_line_format, out_addr) == 1) fault = true; } } progress = 0; break; default: progress = 0; } } pclose(p); if (dmesg_timestamp > *old_dmesg_timestamp) *old_dmesg_timestamp = dmesg_timestamp; return fault; } static int compare_wave(const void *p1, const void *p2) { struct ac_wave_info *w1 = (struct ac_wave_info *)p1; struct ac_wave_info *w2 = (struct ac_wave_info *)p2; /* Sort waves according to PC and then SE, SH, CU, etc. */ if (w1->pc < w2->pc) return -1; if (w1->pc > w2->pc) return 1; if (w1->se < w2->se) return -1; if (w1->se > w2->se) return 1; if (w1->sh < w2->sh) return -1; if (w1->sh > w2->sh) return 1; if (w1->cu < w2->cu) return -1; if (w1->cu > w2->cu) return 1; if (w1->simd < w2->simd) return -1; if (w1->simd > w2->simd) return 1; if (w1->wave < w2->wave) return -1; if (w1->wave > w2->wave) return 1; return 0; } /* Return wave information. "waves" should be a large enough array. */ unsigned ac_get_wave_info(enum chip_class chip_class, struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP]) { char line[2000], cmd[128]; unsigned num_waves = 0; sprintf(cmd, "umr -O halt_waves -wa %s", chip_class >= GFX10 ? "gfx_0.0.0" : "gfx"); FILE *p = popen(cmd, "r"); if (!p) return 0; if (!fgets(line, sizeof(line), p) || strncmp(line, "SE", 2) != 0) { pclose(p); return 0; } while (fgets(line, sizeof(line), p)) { struct ac_wave_info *w; uint32_t pc_hi, pc_lo, exec_hi, exec_lo; assert(num_waves < AC_MAX_WAVES_PER_CHIP); w = &waves[num_waves]; if (sscanf(line, "%u %u %u %u %u %x %x %x %x %x %x %x", &w->se, &w->sh, &w->cu, &w->simd, &w->wave, &w->status, &pc_hi, &pc_lo, &w->inst_dw0, &w->inst_dw1, &exec_hi, &exec_lo) == 12) { w->pc = ((uint64_t)pc_hi << 32) | pc_lo; w->exec = ((uint64_t)exec_hi << 32) | exec_lo; w->matched = false; num_waves++; } } qsort(waves, num_waves, sizeof(struct ac_wave_info), compare_wave); pclose(p); return num_waves; }