/* * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * This is a port of the infamous "gears" demo to straight GLX (i.e. no GLUT) * Port by Brian Paul 23 March 2001 * * See usage() below for command line options. */ #include #include #include #include #include #include #include #include #ifndef GLX_MESA_swap_control #define GLX_MESA_swap_control 1 typedef int (*PFNGLXGETSWAPINTERVALMESAPROC)(void); #endif #define BENCHMARK #ifdef BENCHMARK /* XXX this probably isn't very portable */ #include #include /* return current time (in seconds) */ static double current_time(void) { struct timeval tv; #ifdef __VMS (void) gettimeofday(&tv, NULL ); #else struct timezone tz; (void) gettimeofday(&tv, &tz); #endif return (double) tv.tv_sec + tv.tv_usec / 1000000.0; } #else /*BENCHMARK*/ /* dummy */ static double current_time(void) { /* update this function for other platforms! */ static double t = 0.0; static int warn = 1; if (warn) { fprintf(stderr, "Warning: current_time() not implemented!!\n"); warn = 0; } return t += 1.0; } #endif /*BENCHMARK*/ #ifndef M_PI #define M_PI 3.14159265 #endif /** Event handler results: */ #define NOP 0 #define EXIT 1 #define DRAW 2 static GLfloat view_rotx = 20.0, view_roty = 30.0, view_rotz = 0.0; static GLint gear1, gear2, gear3; static GLfloat angle = 0.0; static GLboolean fullscreen = GL_FALSE; /* Create a single fullscreen window */ static GLboolean stereo = GL_FALSE; /* Enable stereo. */ static GLboolean animate = GL_TRUE; /* Animation */ static GLfloat eyesep = 5.0; /* Eye separation. */ static GLfloat fix_point = 40.0; /* Fixation point distance. */ static GLfloat left, right, asp; /* Stereo frustum params. */ /* * * Draw a gear wheel. You'll probably want to call this function when * building a display list since we do a lot of trig here. * * Input: inner_radius - radius of hole at center * outer_radius - radius at center of teeth * width - width of gear * teeth - number of teeth * tooth_depth - depth of tooth */ static void gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width, GLint teeth, GLfloat tooth_depth) { GLint i; GLfloat r0, r1, r2; GLfloat angle, da; GLfloat u, v, len; r0 = inner_radius; r1 = outer_radius - tooth_depth / 2.0; r2 = outer_radius + tooth_depth / 2.0; da = 2.0 * M_PI / teeth / 4.0; glShadeModel(GL_FLAT); glNormal3f(0.0, 0.0, 1.0); /* draw front face */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); if (i < teeth) { glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); } } glEnd(); /* draw front sides of teeth */ glBegin(GL_QUADS); da = 2.0 * M_PI / teeth / 4.0; for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); } glEnd(); glNormal3f(0.0, 0.0, -1.0); /* draw back face */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); if (i < teeth) { glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); } } glEnd(); /* draw back sides of teeth */ glBegin(GL_QUADS); da = 2.0 * M_PI / teeth / 4.0; for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), -width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); } glEnd(); /* draw outward faces of teeth */ glBegin(GL_QUAD_STRIP); for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); u = r2 * cos(angle + da) - r1 * cos(angle); v = r2 * sin(angle + da) - r1 * sin(angle); len = sqrt(u * u + v * v); u /= len; v /= len; glNormal3f(v, -u, 0.0); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5); glNormal3f(cos(angle), sin(angle), 0.0); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), -width * 0.5); u = r1 * cos(angle + 3 * da) - r2 * cos(angle + 2 * da); v = r1 * sin(angle + 3 * da) - r2 * sin(angle + 2 * da); glNormal3f(v, -u, 0.0); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glNormal3f(cos(angle), sin(angle), 0.0); } glVertex3f(r1 * cos(0), r1 * sin(0), width * 0.5); glVertex3f(r1 * cos(0), r1 * sin(0), -width * 0.5); glEnd(); glShadeModel(GL_SMOOTH); /* draw inside radius cylinder */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glNormal3f(-cos(angle), -sin(angle), 0.0); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); } glEnd(); } static void draw(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); glRotatef(view_rotx, 1.0, 0.0, 0.0); glRotatef(view_roty, 0.0, 1.0, 0.0); glRotatef(view_rotz, 0.0, 0.0, 1.0); glPushMatrix(); glTranslatef(-3.0, -2.0, 0.0); glRotatef(angle, 0.0, 0.0, 1.0); glCallList(gear1); glPopMatrix(); glPushMatrix(); glTranslatef(3.1, -2.0, 0.0); glRotatef(-2.0 * angle - 9.0, 0.0, 0.0, 1.0); glCallList(gear2); glPopMatrix(); glPushMatrix(); glTranslatef(-3.1, 4.2, 0.0); glRotatef(-2.0 * angle - 25.0, 0.0, 0.0, 1.0); glCallList(gear3); glPopMatrix(); glPopMatrix(); } static void draw_gears(void) { if (stereo) { /* First left eye. */ glDrawBuffer(GL_BACK_LEFT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustum(left, right, -asp, asp, 5.0, 60.0); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glTranslated(+0.5 * eyesep, 0.0, 0.0); draw(); glPopMatrix(); /* Then right eye. */ glDrawBuffer(GL_BACK_RIGHT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustum(-right, -left, -asp, asp, 5.0, 60.0); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glTranslated(-0.5 * eyesep, 0.0, 0.0); draw(); glPopMatrix(); } else { draw(); } } /** Draw single frame, do SwapBuffers, compute FPS */ static void draw_frame(Display *dpy, Window win) { static int frames = 0; static double tRot0 = -1.0, tRate0 = -1.0; double dt, t = current_time(); if (tRot0 < 0.0) tRot0 = t; dt = t - tRot0; tRot0 = t; if (animate) { /* advance rotation for next frame */ angle += 70.0 * dt; /* 70 degrees per second */ if (angle > 3600.0) angle -= 3600.0; } draw_gears(); glXSwapBuffers(dpy, win); frames++; if (tRate0 < 0.0) tRate0 = t; if (t - tRate0 >= 5.0) { GLfloat seconds = t - tRate0; GLfloat fps = frames / seconds; printf("%d frames in %3.1f seconds = %6.3f FPS\n", frames, seconds, fps); tRate0 = t; frames = 0; } } /* new window size or exposure */ static void reshape(int width, int height) { glViewport(0, 0, (GLint) width, (GLint) height); if (stereo) { GLfloat w; asp = (GLfloat) height / (GLfloat) width; w = fix_point * (1.0 / 5.0); left = -5.0 * ((w - 0.5 * eyesep) / fix_point); right = 5.0 * ((w + 0.5 * eyesep) / fix_point); } else { GLfloat h = (GLfloat) height / (GLfloat) width; glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustum(-1.0, 1.0, -h, h, 5.0, 60.0); } glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.0, 0.0, -40.0); } static void init(void) { static GLfloat pos[4] = { 5.0, 5.0, 10.0, 0.0 }; static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 }; static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 }; static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 }; glLightfv(GL_LIGHT0, GL_POSITION, pos); glEnable(GL_CULL_FACE); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_DEPTH_TEST); /* make the gears */ gear1 = glGenLists(1); glNewList(gear1, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red); gear(1.0, 4.0, 1.0, 20, 0.7); glEndList(); gear2 = glGenLists(1); glNewList(gear2, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green); gear(0.5, 2.0, 2.0, 10, 0.7); glEndList(); gear3 = glGenLists(1); glNewList(gear3, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, blue); gear(1.3, 2.0, 0.5, 10, 0.7); glEndList(); glEnable(GL_NORMALIZE); } /** * Remove window border/decorations. */ static void no_border( Display *dpy, Window w) { static const unsigned MWM_HINTS_DECORATIONS = (1 << 1); static const int PROP_MOTIF_WM_HINTS_ELEMENTS = 5; typedef struct { unsigned long flags; unsigned long functions; unsigned long decorations; long inputMode; unsigned long status; } PropMotifWmHints; PropMotifWmHints motif_hints; Atom prop, proptype; unsigned long flags = 0; /* setup the property */ motif_hints.flags = MWM_HINTS_DECORATIONS; motif_hints.decorations = flags; /* get the atom for the property */ prop = XInternAtom( dpy, "_MOTIF_WM_HINTS", True ); if (!prop) { /* something went wrong! */ return; } /* not sure this is correct, seems to work, XA_WM_HINTS didn't work */ proptype = prop; XChangeProperty( dpy, w, /* display, window */ prop, proptype, /* property, type */ 32, /* format: 32-bit datums */ PropModeReplace, /* mode */ (unsigned char *) &motif_hints, /* data */ PROP_MOTIF_WM_HINTS_ELEMENTS /* nelements */ ); } /* * Create an RGB, double-buffered window. * Return the window and context handles. */ static void make_window( Display *dpy, const char *name, int x, int y, int width, int height, Window *winRet, GLXContext *ctxRet) { int attribs[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, GLX_DOUBLEBUFFER, GLX_DEPTH_SIZE, 1, None }; int stereoAttribs[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, GLX_DOUBLEBUFFER, GLX_DEPTH_SIZE, 1, GLX_STEREO, None }; int scrnum; XSetWindowAttributes attr; unsigned long mask; Window root; Window win; GLXContext ctx; XVisualInfo *visinfo; scrnum = DefaultScreen( dpy ); root = RootWindow( dpy, scrnum ); if (fullscreen) { x = 0; y = 0; width = DisplayWidth( dpy, scrnum ); height = DisplayHeight( dpy, scrnum ); } if (stereo) visinfo = glXChooseVisual( dpy, scrnum, stereoAttribs ); else visinfo = glXChooseVisual( dpy, scrnum, attribs ); if (!visinfo) { if (stereo) { printf("Error: couldn't get an RGB, " "Double-buffered, Stereo visual\n"); } else printf("Error: couldn't get an RGB, Double-buffered visual\n"); exit(1); } /* window attributes */ attr.background_pixel = 0; attr.border_pixel = 0; attr.colormap = XCreateColormap( dpy, root, visinfo->visual, AllocNone); attr.event_mask = StructureNotifyMask | ExposureMask | KeyPressMask; /* XXX this is a bad way to get a borderless window! */ mask = CWBackPixel | CWBorderPixel | CWColormap | CWEventMask; win = XCreateWindow( dpy, root, x, y, width, height, 0, visinfo->depth, InputOutput, visinfo->visual, mask, &attr ); if (fullscreen) no_border(dpy, win); /* set hints and properties */ { XSizeHints sizehints; sizehints.x = x; sizehints.y = y; sizehints.width = width; sizehints.height = height; sizehints.flags = USSize | USPosition; XSetNormalHints(dpy, win, &sizehints); XSetStandardProperties(dpy, win, name, name, None, (char **)NULL, 0, &sizehints); } ctx = glXCreateContext( dpy, visinfo, NULL, True ); if (!ctx) { printf("Error: glXCreateContext failed\n"); exit(1); } XFree(visinfo); *winRet = win; *ctxRet = ctx; } /** * Determine whether or not a GLX extension is supported. */ static int is_glx_extension_supported(Display *dpy, const char *query) { const int scrnum = DefaultScreen(dpy); const char *glx_extensions = NULL; const size_t len = strlen(query); const char *ptr; if (glx_extensions == NULL) { glx_extensions = glXQueryExtensionsString(dpy, scrnum); } ptr = strstr(glx_extensions, query); return ((ptr != NULL) && ((ptr[len] == ' ') || (ptr[len] == '\0'))); } /** * Attempt to determine whether or not the display is synched to vblank. */ static void query_vsync(Display *dpy) { int interval = 0; if (is_glx_extension_supported(dpy, "GLX_MESA_swap_control")) { PFNGLXGETSWAPINTERVALMESAPROC pglXGetSwapIntervalMESA = (PFNGLXGETSWAPINTERVALMESAPROC) glXGetProcAddressARB((const GLubyte *) "glXGetSwapIntervalMESA"); interval = (*pglXGetSwapIntervalMESA)(); } else if (is_glx_extension_supported(dpy, "GLX_SGI_swap_control")) { /* The default swap interval with this extension is 1. Assume that it * is set to the default. * * Many Mesa-based drivers default to 0, but all of these drivers also * export GLX_MESA_swap_control. In that case, this branch will never * be taken, and the correct result should be reported. */ interval = 1; } if (interval > 0) { printf("Running synchronized to the vertical refresh. The framerate should be\n"); if (interval == 1) { printf("approximately the same as the monitor refresh rate.\n"); } else if (interval > 1) { printf("approximately 1/%d the monitor refresh rate.\n", interval); } } } /** * Handle one X event. * \return NOP, EXIT or DRAW */ static int handle_event(Display *dpy, Window win, XEvent *event) { (void) dpy; (void) win; switch (event->type) { case Expose: return DRAW; case ConfigureNotify: reshape(event->xconfigure.width, event->xconfigure.height); break; case KeyPress: { char buffer[10]; int r, code; code = XLookupKeysym(&event->xkey, 0); if (code == XK_Left) { view_roty += 5.0; } else if (code == XK_Right) { view_roty -= 5.0; } else if (code == XK_Up) { view_rotx += 5.0; } else if (code == XK_Down) { view_rotx -= 5.0; } else { r = XLookupString(&event->xkey, buffer, sizeof(buffer), NULL, NULL); if (buffer[0] == 27) { /* escape */ return EXIT; } else if (buffer[0] == 'a' || buffer[0] == 'A') { animate = !animate; } } return DRAW; } } return NOP; } static void event_loop(Display *dpy, Window win) { while (1) { int op; while (!animate || XPending(dpy) > 0) { XEvent event; XNextEvent(dpy, &event); op = handle_event(dpy, win, &event); if (op == EXIT) return; else if (op == DRAW) break; } draw_frame(dpy, win); } } static void usage(void) { printf("Usage:\n"); printf(" -display set the display to run on\n"); printf(" -stereo run in stereo mode\n"); printf(" -fullscreen run in fullscreen mode\n"); printf(" -info display OpenGL renderer info\n"); printf(" -geometry WxH+X+Y window geometry\n"); } int main(int argc, char *argv[]) { unsigned int winWidth = 300, winHeight = 300; int x = 0, y = 0; Display *dpy; Window win; GLXContext ctx; char *dpyName = NULL; GLboolean printInfo = GL_FALSE; int i; for (i = 1; i < argc; i++) { if (strcmp(argv[i], "-display") == 0) { dpyName = argv[i+1]; i++; } else if (strcmp(argv[i], "-info") == 0) { printInfo = GL_TRUE; } else if (strcmp(argv[i], "-stereo") == 0) { stereo = GL_TRUE; } else if (strcmp(argv[i], "-fullscreen") == 0) { fullscreen = GL_TRUE; } else if (i < argc-1 && strcmp(argv[i], "-geometry") == 0) { XParseGeometry(argv[i+1], &x, &y, &winWidth, &winHeight); i++; } else { usage(); return -1; } } dpy = XOpenDisplay(dpyName); if (!dpy) { printf("Error: couldn't open display %s\n", dpyName ? dpyName : getenv("DISPLAY")); return -1; } make_window(dpy, "glxgears", x, y, winWidth, winHeight, &win, &ctx); XMapWindow(dpy, win); glXMakeCurrent(dpy, win, ctx); query_vsync(dpy); if (printInfo) { printf("GL_RENDERER = %s\n", (char *) glGetString(GL_RENDERER)); printf("GL_VERSION = %s\n", (char *) glGetString(GL_VERSION)); printf("GL_VENDOR = %s\n", (char *) glGetString(GL_VENDOR)); printf("GL_EXTENSIONS = %s\n", (char *) glGetString(GL_EXTENSIONS)); } init(); /* Set initial projection/viewing transformation. * We can't be sure we'll get a ConfigureNotify event when the window * first appears. */ reshape(winWidth, winHeight); event_loop(dpy, win); glDeleteLists(gear1, 1); glDeleteLists(gear2, 1); glDeleteLists(gear3, 1); glXDestroyContext(dpy, ctx); XDestroyWindow(dpy, win); XCloseDisplay(dpy); return 0; } 6 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/*
 * Mesa 3-D graphics library
 * Version:  6.5.2
 *
 * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */


#include "glheader.h"
#include "context.h"
#include "colormac.h"
#include "convolve.h"
#include "histogram.h"
#include "image.h"
#include "macros.h"
#include "imports.h"
#include "pixel.h"

#include "s_context.h"
#include "s_depth.h"
#include "s_span.h"
#include "s_stencil.h"
#include "s_zoom.h"



/**
 * Determine if there's overlap in an image copy.
 * This test also compensates for the fact that copies are done from
 * bottom to top and overlaps can sometimes be handled correctly
 * without making a temporary image copy.
 * \return GL_TRUE if the regions overlap, GL_FALSE otherwise.
 */
static GLboolean
regions_overlap(GLint srcx, GLint srcy,
                GLint dstx, GLint dsty,
                GLint width, GLint height,
                GLfloat zoomX, GLfloat zoomY)
{
   if (zoomX == 1.0 && zoomY == 1.0) {
      /* no zoom */
      if (srcx >= dstx + width || (srcx + width <= dstx)) {
         return GL_FALSE;
      }
      else if (srcy < dsty) { /* this is OK */
         return GL_FALSE;
      }
      else if (srcy > dsty + height) {
         return GL_FALSE;
      }
      else {
         return GL_TRUE;
      }
   }
   else {
      /* add one pixel of slop when zooming, just to be safe */
      if ((srcx > dstx + (width * zoomX) + 1) || (srcx + width + 1 < dstx)) {
         return GL_FALSE;
      }
      else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) {
         return GL_FALSE;
      }
      else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) {
         return GL_FALSE;
      }
      else {
         return GL_TRUE;
      }
   }
}


/**
 * RGBA copypixels with convolution.
 */
static void
copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                      GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLint row;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   const GLbitfield transferOps = ctx->_ImageTransferState;
   const GLboolean sink = (ctx->Pixel.MinMaxEnabled && ctx->MinMax.Sink)
      || (ctx->Pixel.HistogramEnabled && ctx->Histogram.Sink);
   GLfloat *dest, *tmpImage, *convImage;
   SWspan span;

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);

   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);


   /* allocate space for GLfloat image */
   tmpImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!tmpImage) {
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }
   convImage = (GLfloat *) _mesa_malloc(width * height * 4 * sizeof(GLfloat));
   if (!convImage) {
      _mesa_free(tmpImage);
      _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
      return;
   }

   /* read source image as float/RGBA */
   dest = tmpImage;
   for (row = 0; row < height; row++) {
      _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer,
                             width, srcx, srcy + row, GL_FLOAT, dest);
      dest += 4 * width;
   }

   /* do the image transfer ops which preceed convolution */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_PRE_CONVOLUTION_BITS,
                                    width, rgba);
   }

   /* do convolution */
   if (ctx->Pixel.Convolution2DEnabled) {
      _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage);
   }
   else {
      ASSERT(ctx->Pixel.Separable2DEnabled);
      _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage);
   }
   _mesa_free(tmpImage);

   /* do remaining post-convolution image transfer ops */
   for (row = 0; row < height; row++) {
      GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4);
      _mesa_apply_rgba_transfer_ops(ctx,
                                    transferOps & IMAGE_POST_CONVOLUTION_BITS,
                                    width, rgba);
   }

   if (!sink) {
      /* write the new image */
      for (row = 0; row < height; row++) {
         const GLfloat *src = convImage + row * width * 4;
         GLvoid *rgba = span.array->color.sz1.rgba; /* row storage */

         /* copy convolved colors into span array */
         _mesa_memcpy(rgba, src, width * 4 * sizeof(GLfloat));

         /* write span */
         span.x = destx;
         span.y = desty + row;
         span.end = width;
         span.array->ChanType = GL_FLOAT;
         if (zoom) {
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba);
         }
         else {
            _swrast_write_rgba_span(ctx, &span);
         }
      }
      /* restore this */
      span.array->ChanType = CHAN_TYPE;
   }

   _mesa_free(convImage);
}


/**
 * RGBA copypixels
 */
static void
copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy,
                 GLint width, GLint height, GLint destx, GLint desty)
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLfloat *tmpImage, *p;
   GLint sy, dy, stepy, row;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;
   const GLuint transferOps = ctx->_ImageTransferState;
   SWspan span;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) {
      copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty);
      return;
   }

   /* Determine if copy should be done bottom-to-top or top-to-bottom */
   if (srcy < desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA);
   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);

   if (overlapping) {
      tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat) * 4);
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      /* read the source image as RGBA/float */
      p = tmpImage;
      for (row = 0; row < height; row++) {
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, sy + row, GL_FLOAT, p );
         p += width * 4;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warnings */
      p = NULL;
   }

   ASSERT(width < MAX_WIDTH);

   for (row = 0; row < height; row++, sy += stepy, dy += stepy) {
      GLvoid *rgba = span.array->color.sz4.rgba;

      /* Get row/span of source pixels */
      if (overlapping) {
         /* get from buffered image */
         _mesa_memcpy(rgba, p, width * sizeof(GLfloat) * 4);
         p += width * 4;
      }
      else {
         /* get from framebuffer */
         _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                 width, srcx, sy, GL_FLOAT, rgba );
      }

      if (transferOps) {
         _mesa_apply_rgba_transfer_ops(ctx, transferOps, width,
                                       (GLfloat (*)[4]) rgba);
      }

      /* Write color span */
      span.x = destx;
      span.y = dy;
      span.end = width;
      span.array->ChanType = GL_FLOAT;
      if (zoom) {
         _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, rgba);
      }
      else {
         _swrast_write_rgba_span(ctx, &span);
      }
   }

   span.array->ChanType = CHAN_TYPE; /* restore */

   if (overlapping)
      _mesa_free(tmpImage);
}


static void
copy_ci_pixels( GLcontext *ctx, GLint srcx, GLint srcy,
                GLint width, GLint height,
                GLint destx, GLint desty )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   GLuint *tmpImage,*p;
   GLint sy, dy, stepy;
   GLint j;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;
   SWspan span;

   if (!ctx->ReadBuffer->_ColorReadBuffer) {
      /* no readbuffer - OK */
      return;
   }

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_INDEX);

   /* Determine if copy should be bottom-to-top or top-to-bottom */
   if (srcy<desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   if (ctx->Depth.Test)
      _swrast_span_default_z(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);

   if (overlapping) {
      GLint ssy = sy;
      tmpImage = (GLuint *) _mesa_malloc(width * height * sizeof(GLuint));
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      /* read the image */
      p = tmpImage;
      for (j = 0; j < height; j++, ssy += stepy) {
         _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                  width, srcx, ssy, p );
         p += width;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warning */
      p = NULL;
   }

   for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
      /* Get color indexes */
      if (overlapping) {
         _mesa_memcpy(span.array->index, p, width * sizeof(GLuint));
         p += width;
      }
      else {
         _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer,
                                  width, srcx, sy, span.array->index );
      }

      if (ctx->_ImageTransferState)
         _mesa_apply_ci_transfer_ops(ctx, ctx->_ImageTransferState,
                                     width, span.array->index);

      /* write color indexes */
      span.x = destx;
      span.y = dy;
      span.end = width;
      if (zoom)
         _swrast_write_zoomed_index_span(ctx, destx, desty, &span);
      else
         _swrast_write_index_span(ctx, &span);
   }

   if (overlapping)
      _mesa_free(tmpImage);
}


/**
 * Convert floating point Z values to integer Z values with pixel transfer's
 * Z scale and bias.
 */
static void
scale_and_bias_z(GLcontext *ctx, GLuint width,
                 const GLfloat depth[], GLuint z[])
{
   const GLuint depthMax = ctx->DrawBuffer->_DepthMax;
   GLuint i;

   if (depthMax <= 0xffffff &&
       ctx->Pixel.DepthScale == 1.0 &&
       ctx->Pixel.DepthBias == 0.0) {
      /* no scale or bias and no clamping and no worry of overflow */
      const GLfloat depthMaxF = ctx->DrawBuffer->_DepthMaxF;
      for (i = 0; i < width; i++) {
         z[i] = (GLuint) (depth[i] * depthMaxF);
      }
   }
   else {
      /* need to be careful with overflow */
      const GLdouble depthMaxF = ctx->DrawBuffer->_DepthMaxF;
      for (i = 0; i < width; i++) {
         GLdouble d = depth[i] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias;
         d = CLAMP(d, 0.0, 1.0) * depthMaxF;
         if (d >= depthMaxF)
            z[i] = depthMax;
         else
            z[i] = (GLuint) d;
      }
   }
}



/*
 * TODO: Optimize!!!!
 */
static void
copy_depth_pixels( GLcontext *ctx, GLint srcx, GLint srcy,
                   GLint width, GLint height,
                   GLint destx, GLint desty )
{
   SWcontext *swrast = SWRAST_CONTEXT(ctx);
   struct gl_framebuffer *fb = ctx->ReadBuffer;
   struct gl_renderbuffer *readRb = fb->_DepthBuffer;
   GLfloat *p, *tmpImage;
   GLint sy, dy, stepy;
   GLint j;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;
   SWspan span;

   if (!readRb) {
      /* no readbuffer - OK */
      return;
   }

   INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_Z);

   /* Determine if copy should be bottom-to-top or top-to-bottom */
   if (srcy<desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   _swrast_span_default_color(ctx, &span);
   if (swrast->_FogEnabled)
      _swrast_span_default_fog(ctx, &span);

   if (overlapping) {
      GLint ssy = sy;
      tmpImage = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat));
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      p = tmpImage;
      for (j = 0; j < height; j++, ssy += stepy) {
         _swrast_read_depth_span_float(ctx, readRb, width, srcx, ssy, p);
         p += width;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warning */
      p = NULL;
   }

   for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
      GLfloat depth[MAX_WIDTH];
      /* get depth values */
      if (overlapping) {
         _mesa_memcpy(depth, p, width * sizeof(GLfloat));
         p += width;
      }
      else {
         _swrast_read_depth_span_float(ctx, readRb, width, srcx, sy, depth);
      }

      /* apply scale and bias */
      scale_and_bias_z(ctx, width, depth, span.array->z);

      /* write depth values */
      span.x = destx;
      span.y = dy;
      span.end = width;
      if (fb->Visual.rgbMode) {
         if (zoom)
            _swrast_write_zoomed_rgba_span(ctx, destx, desty, &span, 
                                           span.array->rgba);
         else
            _swrast_write_rgba_span(ctx, &span);
      }
      else {
         if (zoom)
            _swrast_write_zoomed_index_span(ctx, destx, desty, &span);
         else
            _swrast_write_index_span(ctx, &span);
      }
   }

   if (overlapping)
      _mesa_free(tmpImage);
}



static void
copy_stencil_pixels( GLcontext *ctx, GLint srcx, GLint srcy,
                     GLint width, GLint height,
                     GLint destx, GLint desty )
{
   struct gl_framebuffer *fb = ctx->ReadBuffer;
   struct gl_renderbuffer *rb = fb->_StencilBuffer;
   GLint sy, dy, stepy;
   GLint j;
   GLstencil *p, *tmpImage;
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   GLint overlapping;

   if (!rb) {
      /* no readbuffer - OK */
      return;
   }

   /* Determine if copy should be bottom-to-top or top-to-bottom */
   if (srcy < desty) {
      /* top-down  max-to-min */
      sy = srcy + height - 1;
      dy = desty + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcy;
      dy = desty;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcx, srcy, destx, desty, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   if (overlapping) {
      GLint ssy = sy;
      tmpImage = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil));
      if (!tmpImage) {
         _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" );
         return;
      }
      p = tmpImage;
      for (j = 0; j < height; j++, ssy += stepy) {
         _swrast_read_stencil_span( ctx, rb, width, srcx, ssy, p );
         p += width;
      }
      p = tmpImage;
   }
   else {
      tmpImage = NULL;  /* silence compiler warning */
      p = NULL;
   }

   for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
      GLstencil stencil[MAX_WIDTH];

      /* Get stencil values */
      if (overlapping) {
         _mesa_memcpy(stencil, p, width * sizeof(GLstencil));
         p += width;
      }
      else {
         _swrast_read_stencil_span( ctx, rb, width, srcx, sy, stencil );
      }

      _mesa_apply_stencil_transfer_ops(ctx, width, stencil);

      /* Write stencil values */
      if (zoom) {
         _swrast_write_zoomed_stencil_span(ctx, destx, desty, width,
                                           destx, dy, stencil);
      }
      else {
         _swrast_write_stencil_span( ctx, width, destx, dy, stencil );
      }
   }

   if (overlapping)
      _mesa_free(tmpImage);
}


/**
 * This isn't terribly efficient.  If a driver really has combined
 * depth/stencil buffers the driver should implement an optimized
 * CopyPixels function.
 */
static void
copy_depth_stencil_pixels(GLcontext *ctx,
                          const GLint srcX, const GLint srcY,
                          const GLint width, const GLint height,
                          const GLint destX, const GLint destY)
{
   struct gl_renderbuffer *stencilReadRb, *depthReadRb, *depthDrawRb;
   GLint sy, dy, stepy;
   GLint j;
   GLstencil *tempStencilImage = NULL, *stencilPtr = NULL;
   GLfloat *tempDepthImage = NULL, *depthPtr = NULL;
   const GLfloat depthScale = ctx->DrawBuffer->_DepthMaxF;
   const GLuint stencilMask = ctx->Stencil.WriteMask[0];
   const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F;
   const GLboolean scaleOrBias
      = ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0;
   GLint overlapping;

   depthDrawRb = ctx->DrawBuffer->_DepthBuffer;
   depthReadRb = ctx->ReadBuffer->_DepthBuffer;
   stencilReadRb = ctx->ReadBuffer->_StencilBuffer;

   ASSERT(depthDrawRb);
   ASSERT(depthReadRb);
   ASSERT(stencilReadRb);

   /* Determine if copy should be bottom-to-top or top-to-bottom */
   if (srcY < destY) {
      /* top-down  max-to-min */
      sy = srcY + height - 1;
      dy = destY + height - 1;
      stepy = -1;
   }
   else {
      /* bottom-up  min-to-max */
      sy = srcY;
      dy = destY;
      stepy = 1;
   }

   if (ctx->DrawBuffer == ctx->ReadBuffer) {
      overlapping = regions_overlap(srcX, srcY, destX, destY, width, height,
                                    ctx->Pixel.ZoomX, ctx->Pixel.ZoomY);
   }
   else {
      overlapping = GL_FALSE;
   }

   if (overlapping) {
      GLint ssy = sy;

      if (stencilMask != 0x0) {
         tempStencilImage
            = (GLstencil *) _mesa_malloc(width * height * sizeof(GLstencil));
         if (!tempStencilImage) {
            _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
            return;
         }

         /* get copy of stencil pixels */
         stencilPtr = tempStencilImage;
         for (j = 0; j < height; j++, ssy += stepy) {
            _swrast_read_stencil_span(ctx, stencilReadRb,
                                      width, srcX, ssy, stencilPtr);
            stencilPtr += width;
         }
         stencilPtr = tempStencilImage;
      }

      if (ctx->Depth.Mask) {
         tempDepthImage
            = (GLfloat *) _mesa_malloc(width * height * sizeof(GLfloat));
         if (!tempDepthImage) {
            _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels");
            _mesa_free(tempStencilImage);
            return;
         }

         /* get copy of depth pixels */
         depthPtr = tempDepthImage;
         for (j = 0; j < height; j++, ssy += stepy) {
            _swrast_read_depth_span_float(ctx, depthReadRb,
                                          width, srcX, ssy, depthPtr);
            depthPtr += width;
         }
         depthPtr = tempDepthImage;
      }
   }

   for (j = 0; j < height; j++, sy += stepy, dy += stepy) {
      if (stencilMask != 0x0) {
         GLstencil stencil[MAX_WIDTH];

         /* Get stencil values */
         if (overlapping) {
            _mesa_memcpy(stencil, stencilPtr, width * sizeof(GLstencil));
            stencilPtr += width;
         }
         else {
            _swrast_read_stencil_span(ctx, stencilReadRb,
                                      width, srcX, sy, stencil);
         }

         _mesa_apply_stencil_transfer_ops(ctx, width, stencil);

         /* Write values */
         if (zoom) {
            _swrast_write_zoomed_stencil_span(ctx, destX, destY, width,
                                              destX, dy, stencil);
         }
         else {
            _swrast_write_stencil_span( ctx, width, destX, dy, stencil );
         }
      }

      if (ctx->Depth.Mask) {
         GLfloat depth[MAX_WIDTH];
         GLuint zVals32[MAX_WIDTH];
         GLushort zVals16[MAX_WIDTH];
         GLvoid *zVals;
         GLuint zBytes;

         /* get depth values */
         if (overlapping) {
            _mesa_memcpy(depth, depthPtr, width * sizeof(GLfloat));
            depthPtr += width;
         }
         else {
            _swrast_read_depth_span_float(ctx, depthReadRb,
                                          width, srcX, sy, depth);
         }

         /* scale & bias */
         if (scaleOrBias) {
            _mesa_scale_and_bias_depth(ctx, width, depth);
         }
         /* convert to integer Z values */
         if (depthDrawRb->DataType == GL_UNSIGNED_SHORT) {
            GLint k;
            for (k = 0; k < width; k++)
               zVals16[k] = (GLushort) (depth[k] * depthScale);
            zVals = zVals16;
            zBytes = 2;
         }
         else {
            GLint k;
            for (k = 0; k < width; k++)
               zVals32[k] = (GLuint) (depth[k] * depthScale);
            zVals = zVals32;
            zBytes = 4;
         }

         /* Write values */
         if (zoom) {
            _swrast_write_zoomed_z_span(ctx, destX, destY, width,
                                        destX, dy, zVals);
         }
         else {
            _swrast_put_row(ctx, depthDrawRb, width, destX, dy, zVals, zBytes);
         }
      }
   }

   if (tempStencilImage)
      _mesa_free(tempStencilImage);

   if (tempDepthImage)
      _mesa_free(tempDepthImage);
}



/**
 * Try to do a fast copy pixels.
 */
static GLboolean
fast_copy_pixels(GLcontext *ctx,
                 GLint srcX, GLint srcY, GLsizei width, GLsizei height,
                 GLint dstX, GLint dstY, GLenum type)
{