/*----------------------------- * stex3d.c GL example of the mesa 3d-texture extention to simulate procedural * texturing, it uses a perlin noise and turbulence functions. * * Author: Daniel Barrero * barrero@irit.fr * dbarrero@pegasus.uniandes.edu.co * * Converted to GLUT by brianp on 1/1/98 * Massive clean-up on 2002/10/23 by brianp * * * cc stex3d.c -o stex3d -lglut -lMesaGLU -lMesaGL -lX11 -lXext -lm * *---------------------------- */ #include <string.h> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <GL/glew.h> #include <GL/glut.h> #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #define NOISE_TEXTURE 1 #define GRADIENT_TEXTURE 2 #define TORUS 1 #define SPHERE 2 static int tex_width=64, tex_height=64, tex_depth=64; static float angx=0, angy=0, angz=0; static int texgen = 2, animate = 1, smooth = 1, wireframe = 0; static int CurTexture = NOISE_TEXTURE, CurObject = TORUS; static void BuildTorus(void) { GLint i, j; float theta1, phi1, theta2, phi2, rings, sides; float v0[03], v1[3], v2[3], v3[3]; float t0[03], t1[3], t2[3], t3[3]; float n0[3], n1[3], n2[3], n3[3]; float innerRadius = 0.25; float outerRadius = 0.5; float scalFac; rings = 16; sides = 12; scalFac = 1 / (outerRadius * 2); glNewList(TORUS, GL_COMPILE); for (i = 0; i < rings; i++) { theta1 = (float) i *2.0 * M_PI / rings; theta2 = (float) (i + 1) * 2.0 * M_PI / rings; for (j = 0; j < sides; j++) { phi1 = (float) j *2.0 * M_PI / sides; phi2 = (float) (j + 1) * 2.0 * M_PI / sides; v0[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi1)); v0[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi1)); v0[2] = innerRadius * sin(phi1); v1[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi1)); v1[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi1)); v1[2] = innerRadius * sin(phi1); v2[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi2)); v2[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi2)); v2[2] = innerRadius * sin(phi2); v3[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi2)); v3[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi2)); v3[2] = innerRadius * sin(phi2); n0[0] = cos(theta1) * (cos(phi1)); n0[1] = -sin(theta1) * (cos(phi1)); n0[2] = sin(phi1); n1[0] = cos(theta2) * (cos(phi1)); n1[1] = -sin(theta2) * (cos(phi1)); n1[2] = sin(phi1); n2[0] = cos(theta2) * (cos(phi2)); n2[1] = -sin(theta2) * (cos(phi2)); n2[2] = sin(phi2); n3[0] = cos(theta1) * (cos(phi2)); n3[1] = -sin(theta1) * (cos(phi2)); n3[2] = sin(phi2); t0[0] = v0[0] * scalFac + 0.5; t0[1] = v0[1] * scalFac + 0.5; t0[2] = v0[2] * scalFac + 0.5; t1[0] = v1[0] * scalFac + 0.5; t1[1] = v1[1] * scalFac + 0.5; t1[2] = v1[2] * scalFac + 0.5; t2[0] = v2[0] * scalFac + 0.5; t2[1] = v2[1] * scalFac + 0.5; t2[2] = v2[2] * scalFac + 0.5; t3[0] = v3[0] * scalFac + 0.5; t3[1] = v3[1] * scalFac + 0.5; t3[2] = v3[2] * scalFac + 0.5; glBegin(GL_POLYGON); glNormal3fv(n3); glTexCoord3fv(t3); glVertex3fv(v3); glNormal3fv(n2); glTexCoord3fv(t2); glVertex3fv(v2); glNormal3fv(n1); glTexCoord3fv(t1); glVertex3fv(v1); glNormal3fv(n0); glTexCoord3fv(t0); glVertex3fv(v0); glEnd(); } } glEndList(); } /*-------------------------------------------------------------------- noise function over R3 - implemented by a pseudorandom tricubic spline EXCERPTED FROM SIGGRAPH 92, COURSE 23 PROCEDURAL MODELING Ken Perlin New York University ----------------------------------------------------------------------*/ #define DOT(a,b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2]) #define B 128 static int p[B + B + 2]; static float g[B + B + 2][3]; #define setup(i,b0,b1,r0,r1) \ t = vec[i] + 10000.; \ b0 = ((int)t) & (B-1); \ b1 = (b0+1) & (B-1); \ r0 = t - (int)t; \ r1 = r0 - 1.; static float noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sx, sy, sz, a, b, c, d, t, u, v; register int i, j; setup(0, bx0, bx1, rx0, rx1); setup(1, by0, by1, ry0, ry1); setup(2, bz0, bz1, rz0, rz1); i = p[bx0]; j = p[bx1]; b00 = p[i + by0]; b10 = p[j + by0]; b01 = p[i + by1]; b11 = p[j + by1]; #define at(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) #define surve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) sx = surve(rx0); sy = surve(ry0); sz = surve(rz0); q = g[b00 + bz0]; u = at(rx0, ry0, rz0); q = g[b10 + bz0]; v = at(rx1, ry0, rz0); a = lerp(sx, u, v); q = g[b01 + bz0]; u = at(rx0, ry1, rz0); q = g[b11 + bz0]; v = at(rx1, ry1, rz0); b = lerp(sx, u, v); c = lerp(sy, a, b); /* interpolate in y at lo x */ q = g[b00 + bz1]; u = at(rx0, ry0, rz1); q = g[b10 + bz1]; v = at(rx1, ry0, rz1); a = lerp(sx, u, v); q = g[b01 + bz1]; u = at(rx0, ry1, rz1); q = g[b11 + bz1]; v = at(rx1, ry1, rz1); b = lerp(sx, u, v); d = lerp(sy, a, b); /* interpolate in y at hi x */ return 1.5 * lerp(sz, c, d); /* interpolate in z */ } static void initNoise(void) { /*long random(); */ int i, j, k; float v[3], s; /* Create an array of random gradient vectors uniformly on the unit sphere */ /*srandom(1); */ srand(1); for (i = 0; i < B; i++) { do { /* Choose uniformly in a cube */ for (j = 0; j < 3; j++) v[j] = (float) ((rand() % (B + B)) - B) / B; s = DOT(v, v); } while (s > 1.0); /* If not in sphere try again */ s = sqrt(s); for (j = 0; j < 3; j++) /* Else normalize */ g[i][j] = v[j] / s; } /* Create a pseudorandom permutation of [1..B] */ for (i = 0; i < B; i++) p[i] = i; for (i = B; i > 0; i -= 2) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } /* Extend g and p arrays to allow for faster indexing */ for (i = 0; i < B + 2; i++) { p[B + i] = p[i]; for (j = 0; j < 3; j++) g[B + i][j] = g[i][j]; } } static float turbulence(float point[3], float lofreq, float hifreq) { float freq, t, p[3]; p[0] = point[0] + 123.456; p[1] = point[1]; p[2] = point[2]; t = 0; for (freq = lofreq; freq < hifreq; freq *= 2.) { t += fabs(noise3(p)) / freq; p[0] *= 2.; p[1] *= 2.; p[2] *= 2.; } return t - 0.3; /* readjust to make mean value = 0.0 */ } static void create3Dtexture(void) { unsigned char *voxels = NULL; int i, j, k; unsigned char *vp; float vec[3]; int tmp; printf("creating 3d textures...\n"); voxels = (unsigned char *) malloc((size_t) (4 * tex_width * tex_height * tex_depth)); vp = voxels; for (i = 0; i < tex_width; i++) { vec[0] = i; for (j = 0; j < tex_height; j++) { vec[1] = j; for (k = 0; k < tex_depth; k++) { vec[2] = k; tmp = (sin(k * i * j + turbulence(vec, 0.01, 1)) + 1) * 127.5; *vp++ = 0; *vp++ = 0; *vp++ = tmp; *vp++ = tmp + 128; } } } printf("setting up 3d texture...\n"); glBindTexture(GL_TEXTURE_3D, NOISE_TEXTURE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, tex_width, tex_height, tex_depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, voxels); free(voxels); printf("finished setting up 3d texture image.\n"); } static void printHelp(void) { printf("\nUsage: stex3d <cmd line options>\n"); printf(" cmd line options:\n"); printf(" -wxxx Width of the texture (Default=64)\n"); printf(" -hxxx Height of the texture (Default=64)\n"); printf(" -dxxx Depth of the texture (Default=64)\n"); printf(" Keyboard Options:\n"); printf(" up/down rotate around X\n"); printf(" left/right rotate around Y\n"); printf(" z/Z rotate around Z\n"); printf(" a toggle animation\n"); printf(" s toggle smooth shading\n"); printf(" t toggle texgen mode\n"); printf(" o toggle object: torus/sphere\n"); printf(" i toggle texture image: noise/gradient\n"); } static GLenum parseCmdLine(int argc, char **argv) { GLint i; for (i = 1; i < argc; i++) { if (strcmp(argv[i], "-help") == 0) { printHelp(); return GL_FALSE; } else if (strstr(argv[i], "-w") != NULL) { tex_width = atoi((argv[i]) + 2); } else if (strstr(argv[i], "-h") != NULL) { tex_height = atoi((argv[i]) + 2); } else if (strstr(argv[i], "-d") != NULL) { tex_depth = atoi((argv[i]) + 2); } else { printf("%s (Bad option).\n", argv[i]); printHelp(); return GL_FALSE; } } if (tex_width == 0 || tex_height == 0 || tex_depth == 0) { printf("%s (Bad option).\n", "size parameters can't be 0"); printHelp(); return GL_FALSE; } return GL_TRUE; } static void drawScene(void) { static const GLfloat sPlane[4] = { 0.5, 0, 0, -.5 }; static const GLfloat tPlane[4] = { 0, 0.5, 0, -.5 }; static const GLfloat rPlane[4] = { 0, 0, 0.5, -.5 }; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); if (texgen == 2) { glTexGenfv(GL_S, GL_EYE_PLANE, sPlane); glTexGenfv(GL_T, GL_EYE_PLANE, tPlane); glTexGenfv(GL_R, GL_EYE_PLANE, rPlane); } glRotatef(angx, 1.0, 0.0, 0.0); glRotatef(angy, 0.0, 1.0, 0.0); glRotatef(angz, 0.0, 0.0, 1.0); if (texgen == 1) { glTexGenfv(GL_S, GL_EYE_PLANE, sPlane); glTexGenfv(GL_T, GL_EYE_PLANE, tPlane); glTexGenfv(GL_R, GL_EYE_PLANE, rPlane); } if (texgen) { glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); glEnable(GL_TEXTURE_GEN_R); } else { glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); glDisable(GL_TEXTURE_GEN_R); } glCallList(CurObject); glPopMatrix(); glutSwapBuffers(); } static void resize(int w, int h) { float ar = (float) w / (float) h; float ax = 0.6 * ar; float ay = 0.6; glViewport(0, 0, (GLint) w, (GLint) h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glFrustum(-ax, ax, -ay, ay, 2, 20); /*glOrtho(-2, 2, -2, 2, -10, 10);*/ glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0, 0, -4); } static void Idle(void) { float t = glutGet(GLUT_ELAPSED_TIME); angx = 0.01 * t; angy = 0.03 * t; angz += 0; glutPostRedisplay(); } static void SpecialKey(int k, int x, int y) { switch (k) { case GLUT_KEY_UP: angx += 5.0; break; case GLUT_KEY_DOWN: angx -= 5.0; break; case GLUT_KEY_LEFT: angy += 5.0; break; case GLUT_KEY_RIGHT: angy -= 5.0; break; default: return; } glutPostRedisplay(); } static void KeyHandler(unsigned char key, int x, int y) { static const char *mode[] = { "glTexCoord3f (no texgen)", "texgen fixed to object coords", "texgen fixed to eye coords" }; (void) x; (void) y; switch (key) { case 27: case 'q': case 'Q': /* quit game. */ exit(0); break; case 'z': angz += 10; break; case 'Z': angz -= 10; break; case 's': smooth = !smooth; if (smooth) glShadeModel(GL_SMOOTH); else glShadeModel(GL_FLAT); break; case 't': texgen++; if (texgen > 2) texgen = 0; printf("Texgen: %s\n", mode[texgen]); break; case 'o': if (CurObject == TORUS) CurObject = SPHERE; else CurObject = TORUS; break; case 'i': if (CurTexture == NOISE_TEXTURE) CurTexture = GRADIENT_TEXTURE; else CurTexture = NOISE_TEXTURE; glBindTexture(GL_TEXTURE_3D, CurTexture); break; case 'a': animate = !animate; if (animate) glutIdleFunc(Idle); else glutIdleFunc(NULL); break; case 'w': wireframe = !wireframe; if (wireframe) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); else glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); break; default: break; } glutPostRedisplay(); } static void create3Dgradient(void) { unsigned char *v; int i, j, k; unsigned char *voxels = NULL; voxels = (unsigned char *) malloc(4 * tex_width * tex_height * tex_depth); v = voxels; for (i = 0; i < tex_depth; i++) { for (j = 0; j < tex_height; j++) { for (k = 0; k < tex_width; k++) { GLint r = (255 * i) / (tex_depth - 1); GLint g = (255 * j) / (tex_height - 1); GLint b = (255 * k) / (tex_width - 1); *v++ = r; *v++ = g; *v++ = b; *v++ = 255; } } } glBindTexture(GL_TEXTURE_3D, GRADIENT_TEXTURE); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, tex_width, tex_height, tex_depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, voxels); free(voxels); } static void init(void) { static const GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; static const GLfloat mat_shininess[] = { 25.0 }; static const GLfloat gray[] = { 0.6, 0.6, 0.6, 0.0 }; static const GLfloat white[] = { 1.0, 1.0, 1.0, 0.0 }; static const GLfloat light_position[] = { 0.0, 1.0, 1.0, 0.0 }; int max; /* see if we have OpenGL 1.2 or later, for 3D texturing */ { const char *version = (const char *) glGetString(GL_VERSION); if (strncmp(version, "1.0", 3) == 0 || strncmp(version, "1.1", 3) == 0) { printf("Sorry, OpenGL 1.2 or later is required\n"); exit(1); } } printf("GL_RENDERER: %s\n", (char *) glGetString(GL_RENDERER)); glGetIntegerv(GL_MAX_3D_TEXTURE_SIZE, &max); printf("GL_MAX_3D_TEXTURE_SIZE: %d\n", max); printf("Current 3D texture size: %d x %d x %d\n", tex_width, tex_height, tex_depth); /* init light */ glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); glLightfv(GL_LIGHT1, GL_POSITION, light_position); glLightfv(GL_LIGHT1, GL_AMBIENT, gray); glLightfv(GL_LIGHT1, GL_DIFFUSE, white); glLightfv(GL_LIGHT1, GL_SPECULAR, white); glColorMaterial(GL_FRONT, GL_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_LIGHTING); glEnable(GL_LIGHT1); glClearColor(.5, .5, .5, 0); { GLUquadricObj *q; q = gluNewQuadric(); gluQuadricTexture( q, GL_TRUE ); glNewList(SPHERE, GL_COMPILE); gluSphere( q, 0.95, 30, 15 ); glEndList(); gluDeleteQuadric(q); } BuildTorus(); create3Dgradient(); initNoise(); create3Dtexture(); glEnable(GL_TEXTURE_3D); /* glBlendFunc(GL_SRC_COLOR, GL_SRC_ALPHA); glEnable(GL_BLEND); */ glEnable(GL_DEPTH_TEST); glColor3f(0.6, 0.7, 0.8); } int main(int argc, char **argv) { glutInit(&argc, argv); if (parseCmdLine(argc, argv) == GL_FALSE) { exit(0); } glutInitWindowPosition(0, 0); glutInitWindowSize(400, 400); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); if (glutCreateWindow("stex3d") <= 0) { exit(0); } glewInit(); init(); printHelp(); glutReshapeFunc(resize); glutKeyboardFunc(KeyHandler); glutSpecialFunc(SpecialKey); glutDisplayFunc(drawScene); if (animate) glutIdleFunc(Idle); glutMainLoop(); return 0; }