| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
opt_constant_folding() already detects conditional assignments where the
condition is constant, and either deletes the assignment or the
condition.
Make it handle discards in the same fashion.
Spotted happening in the wild in Tropico 5 shaders.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
Reviewed-by: Connor Abbott <[email protected]>
Reviewed-by: Matt Turner <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ir_rvalue::constant_expression_value() recursively walks down an IR
tree, attempting to reduce it to a single constant value. This is
useful when you want to know whether a variable has a constant
expression value at all, and if so, what it is.
The constant folding optimization pass attempts to replace rvalues with
their constant expression value from the bottom up. That way, we can
optimize subexpressions, and ideally stop as soon as we find a
non-constant subexpression.
In order to obtain the actual value of an expression, the optimization
pass calls constant_expression_value(). But it should only do so if it
knows the value can be combined into a constant. Otherwise, at each
step of walking back up the tree, it will walk down the tree again, only
to discover what it already knew: it isn't constant.
We properly avoided this call for ir_expression nodes, but not for
ir_swizzle nodes. This patch fixes that, drastically reducing compile
times on certain shaders where tree grafting has given us huge
expression trees. It also fixes SuperTuxKart.
Thanks to Iago and Mike for help in tracking this down.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=78468
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Jordan Justen <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
Cc: [email protected]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When handling function calls, we often want to walk through the list of
formal parameters and list of actual parameters at the same time.
(Both are guaranteed to be the same length.)
Previously, we used a pattern of:
exec_list_iterator 1st_iter = <1st list>.iterator();
foreach_iter(exec_list_iterator, 2nd_iter, <2nd list>) {
...
1st_iter.next();
}
This was awkward, since you had to manually iterate through one of
the two lists.
This patch introduces a foreach_two_lists macro which safely walks
through two lists at the same time, so you can simply do:
foreach_two_lists(1st_node, <1st list>, 2nd_node, <2nd list>) {
...
}
v2: Rename macro from foreach_list2 to foreach_two_lists, as suggested
by Ian Romanick.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Matt Turner <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
This patch moves following bitfields in to the data structure:
used, assigned, how_declared, mode, interpolation,
origin_upper_left, pixel_center_integer
Signed-off-by: Tapani Pälli <[email protected]>
Reviewed-by: Paul Berry <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces the three ir_variable_mode enums:
- ir_var_in
- ir_var_out
- ir_var_inout
with the following five:
- ir_var_shader_in
- ir_var_shader_out
- ir_var_function_in
- ir_var_function_out
- ir_var_function_inout
This eliminates a frustrating ambiguity: it used to be impossible to
tell whether an ir_var_{in,out} variable was a shader in/out or a
function in/out without seeing where the variable was declared in the
IR. This complicated some optimization and lowering passes, and would
have become a problem for implementing varying structs.
In the lisp-style serialization of GLSL IR to strings performed by
ir_print_visitor.cpp and ir_reader.cpp, I've retained the names "in",
"out", and "inout" for function parameters, to avoid introducing code
churn to the src/glsl/builtins/ir/ directory.
Note: a couple of comments in the code seemed to indicate that we were
planning for a possible future in which geometry shaders could have
shader-scope inout variables. Our GLSL grammar rejects shader-scope
inout variables, and I've been unable to find any evidence in the GLSL
standards documents (or extensions) that this will ever be allowed, so
I've eliminated these comments.
Reviewed-by: Carl Worth <[email protected]>
Reviewed-by: Jordan Justen <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because these classes are used entirely from their own source files
and not from separate DSOs, the linker gets to produce massively less
code. This cuts about 13k of text in the libdricore case. In the
non-libdricore case, the additional linkage information allows the
compiler to inline some code, so libglsl.a size actually increases by
about 300 bytes.
For a dricore build, improves shader_runner runtime on
glsl-fs-copy-propagation-texcoords-1 by 0.21% +/- 0.03% (n=353574,
outliers removed). No statistically significant difference with n=322
on glslparsertest on a yofrankie shader intended to test compiler
performance.
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, set_callee() performed some assertions about the type of the
ir_call; protecting the bare pointer ensured these checks would be run.
However, ir_call no longer has a type, so the getter and setter methods
don't actually do anything useful. Remove them in favor of accessing
callee directly, as is done with most other fields in our IR.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Aside from ir_call, our IR is cleanly split into two classes:
- Statements (typeless; used for side effects, control flow)
- Values (deeply nestable, pure, typed expression trees)
Unfortunately, ir_call confused all this:
- For void functions, we placed ir_call directly in the instruction
stream, treating it as an untyped statement. Yet, it was a subclass
of ir_rvalue, and no other ir_rvalue could be used in this way.
- For functions with a return value, ir_call could be placed in
arbitrary expression trees. While this fit naturally with the source
language, it meant that expressions might not be pure, making it
difficult to transform and optimize them. To combat this, we always
emitted ir_call directly in the RHS of an ir_assignment, only using
a temporary variable in expression trees. Many passes relied on this
assumption; the acos and atan built-ins violated it.
This patch makes ir_call a statement (ir_instruction) rather than a
value (ir_rvalue). Non-void calls now take a ir_dereference of a
variable, and store the return value there---effectively a call and
assignment rolled into one. They cannot be embedded in expressions.
All expression trees are now pure, without exception.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
This annotation is for an "in" function parameter for which it is only legal
to pass constant expressions. The only known example of this, currently,
is the textureOffset functions.
This should never be used for globals.
|
| |
|
|
This helps distinguish between lowering passes, optimization passes, and
other compiler code.
|