| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces the three ir_variable_mode enums:
- ir_var_in
- ir_var_out
- ir_var_inout
with the following five:
- ir_var_shader_in
- ir_var_shader_out
- ir_var_function_in
- ir_var_function_out
- ir_var_function_inout
This eliminates a frustrating ambiguity: it used to be impossible to
tell whether an ir_var_{in,out} variable was a shader in/out or a
function in/out without seeing where the variable was declared in the
IR. This complicated some optimization and lowering passes, and would
have become a problem for implementing varying structs.
In the lisp-style serialization of GLSL IR to strings performed by
ir_print_visitor.cpp and ir_reader.cpp, I've retained the names "in",
"out", and "inout" for function parameters, to avoid introducing code
churn to the src/glsl/builtins/ir/ directory.
Note: a couple of comments in the code seemed to indicate that we were
planning for a possible future in which geometry shaders could have
shader-scope inout variables. Our GLSL grammar rejects shader-scope
inout variables, and I've been unable to find any evidence in the GLSL
standards documents (or extensions) that this will ever be allowed, so
I've eliminated these comments.
Reviewed-by: Carl Worth <[email protected]>
Reviewed-by: Jordan Justen <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
| |
This lets ir_reader eat the output of builtin_compiler on actual
function definitions.
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Aside from ir_call, our IR is cleanly split into two classes:
- Statements (typeless; used for side effects, control flow)
- Values (deeply nestable, pure, typed expression trees)
Unfortunately, ir_call confused all this:
- For void functions, we placed ir_call directly in the instruction
stream, treating it as an untyped statement. Yet, it was a subclass
of ir_rvalue, and no other ir_rvalue could be used in this way.
- For functions with a return value, ir_call could be placed in
arbitrary expression trees. While this fit naturally with the source
language, it meant that expressions might not be pure, making it
difficult to transform and optimize them. To combat this, we always
emitted ir_call directly in the RHS of an ir_assignment, only using
a temporary variable in expression trees. Many passes relied on this
assumption; the acos and atan built-ins violated it.
This patch makes ir_call a statement (ir_instruction) rather than a
value (ir_rvalue). Non-void calls now take a ir_dereference of a
variable, and store the return value there---effectively a call and
assignment rolled into one. They cannot be embedded in expressions.
All expression trees are now pure, without exception.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
Most of the time, we just want to read an ir_dereference, so there's no
need to have these in separate functions. However, the next patch will
want to read an ir_dereference_variable directly.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
These are effectively doing type->get_base_type()->base_type, which is
equivalent to type->base_type. Just use that, as it's simpler.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes GLSL interpolation qualifiers visible to drivers via
the array InterpQualifier[] in gl_fragment_program, so that they can
easily be used by driver back-ends to select the correct interpolation
mode.
Previous to this patch, the GLSL compiler was using the enum
ir_variable_interpolation to represent interpolation types. Rather
than make a duplicate enum in core mesa to represent the same thing, I
moved the enum into mtypes.h and renamed it to be more consistent with
the other enums defined there.
Reviewed-by: Brian Paul <[email protected]>
Reviewed-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
|
|
| |
For some reason I thought subexpressions were chained off the top-level
one. This isn't the case, so just create a temporary context and free
it. All of this memory would be eventually freed, but now is freed
much sooner.
Signed-off-by: Kenneth Graunke <[email protected]>
|
| |
|
|
|
|
|
|
|
|
| |
The list of numbers in (constant type (<numbers>)) needs to contain
exactly type->components() numbers (16 for a mat4, 3 for a vec3, etc.)
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
One unique aspect of TXS is that it doesn't have a coordinate.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
Reviewed-by: Dave Airlie <[email protected]>
|
|
|
|
|
|
|
|
|
| |
Previously ir_reader was only able to handle return of non-void.
This patch is necessary in order to allow optimization passes to be
tested in isolation.
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
| |
This is necessary for GLSL 1.30+ shadow sampling functions, which return
a single float rather than splatting the value to a vec4 based on
GL_DEPTH_TEXTURE_MODE.
|
|
|
|
|
|
|
|
| |
This annotation is for an "in" function parameter for which it is only legal
to pass constant expressions. The only known example of this, currently,
is the textureOffset functions.
This should never be used for globals.
|
|
|
|
|
|
|
|
|
|
|
| |
Having these as actual integer values makes it difficult to implement
the texture*Offset built-in functions, since the offset is actually a
function parameter (which doesn't have a constant value).
The original rationale was that some hardware needs these offset baked
into the instruction opcode. However, at least i965 should be able to
support non-constant offsets. Others should be able to rely on inlining
and constant propagation.
|
| |
|
|
|
|
| |
And generate an error if the texture pattern is not matched.
|
|
|
|
| |
These are already picked up by ir.h or glsl_types.h.
|
|
|
|
|
| |
You can now simply write (assign (xy) <lhs> <rhs>) instead of the
verbose (assign (constant bool (1)) (xy) <lhs> <rhs>).
|
|
|
|
|
|
|
| |
This makes it unnecessary to pass _mesa_glsl_parse_state around
everywhere, making at least the prototypes a lot easier to read.
It's also more C++-ish than a pile of static C functions.
|
|
|
|
|
| |
These used to be more complicated, but now are so simple there's no real
point in keeping them separate.
|
|
|
|
|
|
|
|
|
| |
All of these functions used to take s_list pointers so they wouldn't all
need SX_AS_LIST conversions and error checking. However, the new
pattern matcher conveniently does this for us in one centralized place.
So there's no need to insist on s_list. Switching to s_expression saves
a bit of code and is somewhat cleaner.
|
|
|
|
|
| |
Most code now relies on the pattern matcher rather than this function,
and for the only remaining case, not using this saves an iteration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the IR reader was riddled with code that:
1. Checked for the right number of list elements (via a linked list walk)
2. Retrieved references to each component (via ->next->next pointers)
3. Downcasted as necessary to make sure that each sub-component was the
right type (i.e. symbol, int, list).
4. Checking that the tag (i.e. "declare") was correct.
This was all very ad-hoc and a bit ugly. Error checking had to be done
at both steps 1, 3, and 4. Most code didn't even check the tag, relying
on the caller to do so. Not all callers did.
The new pattern matching module performs the whole process in a single
straightforward function call, resulting in shorter, more readable code.
Unfortunately, MSVC does not support C99-style anonymous arrays, so the
pattern must be declared outside of the match call.
|
| |
|
| |
|
|
|
|
| |
Found by inspection.
|
|
|
|
|
| |
It's already been determined that length == 3, so clearly swiz->next is
a valid S-Expression.
|
|
|
|
|
| |
There's really no reason to return the base class when we have more
specific information about what type it is.
|
|
|
|
|
|
|
|
|
|
|
| |
This effectively reverts b6f15869b324ae64a00d0fe46fa3c8c62c1edb6c.
In desktop GLSL, defining a function with the same name as a built-in
hides that built-in function completely, so there would never be
built-in and user function signatures in the same ir_function.
However, in GLSL ES, overloading built-ins is allowed, and does not
hide the built-in signatures - so we're back to needing this.
|
|
|
|
|
|
|
|
|
| |
This extra validation is very useful when working on the built-ins, but
in general overkill - the results should stay the same unless the
built-ins or ir_validate have changed.
Also, validating all the built-in functions in every test case makes
piglit run unacceptably slow.
|
|
|
|
| |
It's just too easy to get something wrong in hand-written IR.
|
|
|
|
|
|
|
|
| |
Since functions are emitted when scanning for prototypes, functions
always come first, even if the original IR listed the variable
declarations first.
Fixes an ir_validate error (to be turned on in the next commit).
|
| |
|
|
|
|
|
| |
This preserves the ability to read the old format, for momentary
compatibility with all the existing IR implementations of built-ins.
|
| |
|
|
|
|
|
|
|
| |
Completely initialize data that is passed into a ir_constant constructor.
Fixes piglit glsl-fs-mix valgrind uninitialized variable error on
softpipe and llvmpipe.
|
|
|
|
|
|
| |
Also rename it to "is_builtin" for consistency.
Signed-off-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Each language version/extension and target now has a "profile" containing
all of the available builtin function prototypes. These are written in
GLSL, and come directly out of the GLSL spec (except for expanding genType).
A new builtins/ir/ folder contains the hand-written IR for each builtin,
regardless of what version includes it. Only those definitions that have
prototypes in the profile will be included.
The autogenerated IR for texture builtins is no longer written to disk,
so there's no longer any confusion as to what's hand-written or
generated.
All scripts are now in python instead of perl.
|
| |
|
|
|
|
|
|
| |
Assignments can only exist at the top level instruction stream; the
residual value is handled by assigning the value to a temporary and
returning an ir_dereference_variable of that temporary.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is quite a large patch because breaking it into smaller pieces
would result in the tree being intermitently broken. The big changes
are:
* Add the ir_var_temporary variable mode
* Change the ir_variable constructor to take the mode as a
parameter and correctly specify the mode for all ir_varables.
* Change the linker to not cross validate ir_var_temporary
variables.
* Change the linker to pull all ir_var_temporary variables from
global scope into 'main'.
|
| |
|
|
|
|
|
|
|
| |
This currently involves an ugly hack so that every link doesn't result
in all the built-in functions showing up as multiply defined. As soon
as the built-in functions are stored in a separate compilation unit,
ir_function_signature::is_built_in can be removed.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
_mesa_glsl_parse_state should be the parent for all temporary allocation
done while compiling a shader. glsl_shader should only be used as the
parent for the shader's final IR---the _result_ of compilation.
Since many IR instructions may be added or discarded during optimization
passes, IR should not ever be allocated to glsl_shader directly.
Done via sed -i s/talloc_parent(state)/state/g and s/talloc_parent(st)/st/g.
This also removes a ton of talloc_parent calls, which may help performance.
|
|
|
|
|
|
| |
There's no point in keeping it around once we've read the IR.
Also, remove an unnecessary talloc_parent call.
|
|
|