| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
ARB_gpu_shader5 introduces new variants of textureGather* which have an
explicit component selector, rather than relying purely on the sampler's
swizzle state.
This patch adds the GLSL plumbing for the extra parameter.
Signed-off-by: Chris Forbes <[email protected]>
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
| |
Signed-off-by: Chris Forbes <[email protected]>
Reviewed-by: Matt Turner <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
V2 [Chris Forbes]:
- Add new pattern, fixup parameter reading.
V3: Rebase onto new builtins machinery
Reviewed-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
This gives the compiler the chance to inline and not export class symbols
even in the absence of LTO. Saves about 60kb on disk.
Reviewed-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During compilation, we'll use this to determine built-in availability.
The plan is to have a single shader containing every built-in in every
version of the language, but filter out the ones that aren't actually
available to the shader being compiled.
At link time, we don't actually need this filtering capability: we've
already imported prototypes for every built-in that the shader actually
calls, and they're flagged as is_builtin(). The linker doesn't import
any additional prototypes, so it won't pull in any unavailable
built-ins. When resolving prototypes to function definitions, the
linker ensures the values of is_builtin() match, which means that a
shader can't trick the linker into importing the body of an unavailable
built-in by defining a suspiciously similar prototype.
In other words, during linking, we can just pass in NULL. It will work
out fine.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Matt Turner <[email protected]>
Reviewed-by: Paul Berry <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the upcoming built-in function rewrite, we'll need to be able to
answer "Is this built-in function signature available?".
This is actually a somewhat complex question, since it depends on the
language version, GLSL vs. GLSL ES, enabled extensions, and the current
shader stage.
Storing such a set of constraints in a structure would be painful, so
instead we store a function pointer. When creating a signature, we
simply point to a predicate that inspects _mesa_glsl_parse_state and
answers whether the signature is available in the current shader.
Unfortunately, IR reader doesn't actually know when built-in functions
are available, so this patch makes it lie and say that they're always
present. This allows us to hook up the new functionality; it just won't
be useful until real data is populated. In the meantime, the existing
profile mechanism ensures built-ins are available in the right places.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Matt Turner <[email protected]>
Reviewed-by: Paul Berry <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These correspond to the EmitVertex and EndPrimitive functions in GLSL.
v2 (Paul Berry <[email protected]>): Add stub implementations of
new pure visitor functions to i965's vec4_visitor and fs_visitor
classes.
v3 (Paul Berry <[email protected]>): Rename classes to be more
consistent with the names used in the GL spec.
Reviewed-by: Ian Romanick <[email protected]>
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
| |
Fixes "Logically dead code" defect reported by Coverity.
Signed-off-by: Vinson Lee <[email protected]>
Reviewed-by: Brian Paul <[email protected]>
|
|
|
|
|
|
|
| |
Needed to support the bitfieldInsert() built-in added by
ARB_gpu_shader5.
Reviewed-by: Chris Forbes <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
v2 [mattst88]:
- Rebase.
- #define GL_ARB_texture_query_lod to 1.
- Remove comma after ir_lod in ir.h for MSVC.
- Handled ir_lod in ir_hv_accept.cpp, ir_rvalue_visitor.cpp,
opt_tree_grafting.cpp.
- Rename textureQueryLOD to textureQueryLod, see
https://www.khronos.org/bugzilla/show_bug.cgi?id=821
- Fix ir_reader of (lod ...).
v3 [mattst88]:
- Rename textureQueryLod to textureQueryLOD, pending resolution of
Khronos 821.
- Add ir_lod case to ir_to_mesa.cpp.
Reviewed-by: Matt Turner <[email protected]>
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
V2: - emit `sample` parameter properly for multisample texelFetch()
- fix spurious whitespace change
- introduce a new opcode ir_txf_ms rather than overloading the
existing ir_txf further. This makes doing the right thing in
the driver somewhat simpler.
V3: - fix weird whitespace
V4: - don't forget to include the new opcode in tex_opcode_strs[]
(thanks Kenneth for spotting this)
Signed-off-by: Chris Forbes <[email protected]>
[V2] Reviewed-by: Eric Anholt <[email protected]>
[V2] Reviewed-by: Paul Berry <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
| |
Reviewed-by: Matt Turner <[email protected]>
Signed-off-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch replaces the three ir_variable_mode enums:
- ir_var_in
- ir_var_out
- ir_var_inout
with the following five:
- ir_var_shader_in
- ir_var_shader_out
- ir_var_function_in
- ir_var_function_out
- ir_var_function_inout
This eliminates a frustrating ambiguity: it used to be impossible to
tell whether an ir_var_{in,out} variable was a shader in/out or a
function in/out without seeing where the variable was declared in the
IR. This complicated some optimization and lowering passes, and would
have become a problem for implementing varying structs.
In the lisp-style serialization of GLSL IR to strings performed by
ir_print_visitor.cpp and ir_reader.cpp, I've retained the names "in",
"out", and "inout" for function parameters, to avoid introducing code
churn to the src/glsl/builtins/ir/ directory.
Note: a couple of comments in the code seemed to indicate that we were
planning for a possible future in which geometry shaders could have
shader-scope inout variables. Our GLSL grammar rejects shader-scope
inout variables, and I've been unable to find any evidence in the GLSL
standards documents (or extensions) that this will ever be allowed, so
I've eliminated these comments.
Reviewed-by: Carl Worth <[email protected]>
Reviewed-by: Jordan Justen <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
| |
This lets ir_reader eat the output of builtin_compiler on actual
function definitions.
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Aside from ir_call, our IR is cleanly split into two classes:
- Statements (typeless; used for side effects, control flow)
- Values (deeply nestable, pure, typed expression trees)
Unfortunately, ir_call confused all this:
- For void functions, we placed ir_call directly in the instruction
stream, treating it as an untyped statement. Yet, it was a subclass
of ir_rvalue, and no other ir_rvalue could be used in this way.
- For functions with a return value, ir_call could be placed in
arbitrary expression trees. While this fit naturally with the source
language, it meant that expressions might not be pure, making it
difficult to transform and optimize them. To combat this, we always
emitted ir_call directly in the RHS of an ir_assignment, only using
a temporary variable in expression trees. Many passes relied on this
assumption; the acos and atan built-ins violated it.
This patch makes ir_call a statement (ir_instruction) rather than a
value (ir_rvalue). Non-void calls now take a ir_dereference of a
variable, and store the return value there---effectively a call and
assignment rolled into one. They cannot be embedded in expressions.
All expression trees are now pure, without exception.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
Most of the time, we just want to read an ir_dereference, so there's no
need to have these in separate functions. However, the next patch will
want to read an ir_dereference_variable directly.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
These are effectively doing type->get_base_type()->base_type, which is
equivalent to type->base_type. Just use that, as it's simpler.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes GLSL interpolation qualifiers visible to drivers via
the array InterpQualifier[] in gl_fragment_program, so that they can
easily be used by driver back-ends to select the correct interpolation
mode.
Previous to this patch, the GLSL compiler was using the enum
ir_variable_interpolation to represent interpolation types. Rather
than make a duplicate enum in core mesa to represent the same thing, I
moved the enum into mtypes.h and renamed it to be more consistent with
the other enums defined there.
Reviewed-by: Brian Paul <[email protected]>
Reviewed-by: Kenneth Graunke <[email protected]>
Reviewed-by: Eric Anholt <[email protected]>
|
|
|
|
|
|
|
|
|
| |
For some reason I thought subexpressions were chained off the top-level
one. This isn't the case, so just create a temporary context and free
it. All of this memory would be eventually freed, but now is freed
much sooner.
Signed-off-by: Kenneth Graunke <[email protected]>
|
| |
|
|
|
|
|
|
|
|
| |
The list of numbers in (constant type (<numbers>)) needs to contain
exactly type->components() numbers (16 for a mat4, 3 for a vec3, etc.)
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
| |
One unique aspect of TXS is that it doesn't have a coordinate.
Signed-off-by: Kenneth Graunke <[email protected]>
Reviewed-by: Ian Romanick <[email protected]>
Reviewed-by: Dave Airlie <[email protected]>
|
|
|
|
|
|
|
|
|
| |
Previously ir_reader was only able to handle return of non-void.
This patch is necessary in order to allow optimization passes to be
tested in isolation.
Reviewed-by: Kenneth Graunke <[email protected]>
|
|
|
|
|
|
| |
This is necessary for GLSL 1.30+ shadow sampling functions, which return
a single float rather than splatting the value to a vec4 based on
GL_DEPTH_TEXTURE_MODE.
|
|
|
|
|
|
|
|
| |
This annotation is for an "in" function parameter for which it is only legal
to pass constant expressions. The only known example of this, currently,
is the textureOffset functions.
This should never be used for globals.
|
|
|
|
|
|
|
|
|
|
|
| |
Having these as actual integer values makes it difficult to implement
the texture*Offset built-in functions, since the offset is actually a
function parameter (which doesn't have a constant value).
The original rationale was that some hardware needs these offset baked
into the instruction opcode. However, at least i965 should be able to
support non-constant offsets. Others should be able to rely on inlining
and constant propagation.
|
| |
|
|
|
|
| |
And generate an error if the texture pattern is not matched.
|
|
|
|
| |
These are already picked up by ir.h or glsl_types.h.
|
|
|
|
|
| |
You can now simply write (assign (xy) <lhs> <rhs>) instead of the
verbose (assign (constant bool (1)) (xy) <lhs> <rhs>).
|
|
|
|
|
|
|
| |
This makes it unnecessary to pass _mesa_glsl_parse_state around
everywhere, making at least the prototypes a lot easier to read.
It's also more C++-ish than a pile of static C functions.
|
|
|
|
|
| |
These used to be more complicated, but now are so simple there's no real
point in keeping them separate.
|
|
|
|
|
|
|
|
|
| |
All of these functions used to take s_list pointers so they wouldn't all
need SX_AS_LIST conversions and error checking. However, the new
pattern matcher conveniently does this for us in one centralized place.
So there's no need to insist on s_list. Switching to s_expression saves
a bit of code and is somewhat cleaner.
|
|
|
|
|
| |
Most code now relies on the pattern matcher rather than this function,
and for the only remaining case, not using this saves an iteration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the IR reader was riddled with code that:
1. Checked for the right number of list elements (via a linked list walk)
2. Retrieved references to each component (via ->next->next pointers)
3. Downcasted as necessary to make sure that each sub-component was the
right type (i.e. symbol, int, list).
4. Checking that the tag (i.e. "declare") was correct.
This was all very ad-hoc and a bit ugly. Error checking had to be done
at both steps 1, 3, and 4. Most code didn't even check the tag, relying
on the caller to do so. Not all callers did.
The new pattern matching module performs the whole process in a single
straightforward function call, resulting in shorter, more readable code.
Unfortunately, MSVC does not support C99-style anonymous arrays, so the
pattern must be declared outside of the match call.
|
| |
|
| |
|
|
|
|
| |
Found by inspection.
|
|
|
|
|
| |
It's already been determined that length == 3, so clearly swiz->next is
a valid S-Expression.
|
|
|
|
|
| |
There's really no reason to return the base class when we have more
specific information about what type it is.
|
|
|
|
|
|
|
|
|
|
|
| |
This effectively reverts b6f15869b324ae64a00d0fe46fa3c8c62c1edb6c.
In desktop GLSL, defining a function with the same name as a built-in
hides that built-in function completely, so there would never be
built-in and user function signatures in the same ir_function.
However, in GLSL ES, overloading built-ins is allowed, and does not
hide the built-in signatures - so we're back to needing this.
|
|
|
|
|
|
|
|
|
| |
This extra validation is very useful when working on the built-ins, but
in general overkill - the results should stay the same unless the
built-ins or ir_validate have changed.
Also, validating all the built-in functions in every test case makes
piglit run unacceptably slow.
|
|
|
|
| |
It's just too easy to get something wrong in hand-written IR.
|
|
|
|
|
|
|
|
| |
Since functions are emitted when scanning for prototypes, functions
always come first, even if the original IR listed the variable
declarations first.
Fixes an ir_validate error (to be turned on in the next commit).
|
| |
|
|
|
|
|
| |
This preserves the ability to read the old format, for momentary
compatibility with all the existing IR implementations of built-ins.
|
| |
|
|
|
|
|
|
|
| |
Completely initialize data that is passed into a ir_constant constructor.
Fixes piglit glsl-fs-mix valgrind uninitialized variable error on
softpipe and llvmpipe.
|
|
|
|
|
|
| |
Also rename it to "is_builtin" for consistency.
Signed-off-by: Ian Romanick <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Each language version/extension and target now has a "profile" containing
all of the available builtin function prototypes. These are written in
GLSL, and come directly out of the GLSL spec (except for expanding genType).
A new builtins/ir/ folder contains the hand-written IR for each builtin,
regardless of what version includes it. Only those definitions that have
prototypes in the profile will be included.
The autogenerated IR for texture builtins is no longer written to disk,
so there's no longer any confusion as to what's hand-written or
generated.
All scripts are now in python instead of perl.
|