summaryrefslogtreecommitdiffstats
path: root/SConstruct
Commit message (Expand)AuthorAgeFilesLines
* scons: Don't use deprecated Options.José Fonseca2009-05-051-5/+5
* Add scons build support for radeon/r300.Corbin Simpson2009-04-041-1/+1
* scons: Also link in additional LLVM components.Michel Dänzer2009-03-091-1/+1
* gallium: Also disable i965simple for sconsJakob Bornecrantz2009-02-181-1/+1
* Make r300 and amd build in scons.Corbin Simpson2009-02-011-2/+2
* scons: Build the progs into seperate dirs as well.José Fonseca2009-01-241-1/+1
* gallivm: Explicitly specify the LLVM components we need.Michel Dänzer2009-01-121-1/+1
* scons: ppc support.Michel Dänzer2008-10-231-0/+2
* Added command line option for Scons to select which version of MSVS to use. ...Jonathan White2008-08-291-0/+2
* scons: Build the trace pipe driver by default.José Fonseca2008-08-211-2/+2
* trace: New pipe driver to trace incoming calls.José Fonseca2008-08-071-1/+1
* python: Move the python scons code to a separate tool module.José Fonseca2008-07-151-1/+1
* python: New state tracker which exposes the pipe driver to python scripts.José Fonseca2008-07-131-4/+3
* scons: Fix typo.José Fonseca2008-06-271-1/+1
* scons: Don't force MSVS 2003.José Fonseca2008-06-061-1/+0
* scons: Put the tool logic in a frontend tool.José Fonseca2008-06-061-29/+7
* egl: assorted fixes for WindowsJonathan White2008-06-051-0/+1
* scons: Integrate gdi winsys.José Fonseca2008-06-031-2/+2
* scons: Enable mesa state tracker in all platforms by default.José Fonseca2008-05-311-2/+3
* scons: Play nice with MS Embedded Visual C++.José Fonseca2008-05-281-1/+4
* scons: A few fixes for building mesa on windows.José Fonseca2008-04-261-6/+0
* scons: More windows userspace fixes.José Fonseca2008-04-251-1/+1
* scons: Teach scons about user-land windows.José Fonseca2008-04-251-35/+2
* scons: Faithfully mimic every WINDDK builtin compiler/linker option.José Fonseca2008-03-121-19/+7
* scons: Preliminary code for quieting command lines.José Fonseca2008-03-051-6/+1
* gallium: Only use C++ compiler for linking when using LLVM.Michel Dänzer2008-03-041-3/+1
* scons: Force C++ linkage.José Fonseca2008-03-041-1/+4
* scons: Make command line arguments effective again.José Fonseca2008-03-031-4/+2
* scons: Move common code to a separate file.José Fonseca2008-02-271-106/+18
* scons: Autodetect the default machine.José Fonseca2008-02-271-7/+22
* Revert "scons: Prefer MSVS 2003 (patch by Mark Mueller)."José Fonseca2008-02-271-7/+0
* scons: Prefer MSVS 2003 (patch by Mark Mueller).José Fonseca2008-02-261-0/+7
* scons: Properly generate PDB files on MSVC.José Fonseca2008-02-261-3/+3
* Get more debugging info out of MSVC.José Fonseca2008-02-251-12/+25
* Cleanup scons files.José Fonseca2008-02-251-15/+8
* A few more tweaks to get correct WINDDK compilation.José Fonseca2008-02-241-12/+22
* Revamp scons usage.José Fonseca2008-02-231-17/+29
* Avoid building problematic module/drivers on windows.José Fonseca2008-02-231-5/+25
* Windows (DDK) compilation support.José Fonseca2008-02-191-13/+36
* Remove src/mesa and src/mesa/main from gallium source include paths.José Fonseca2008-02-191-2/+0
* Initial scons support to build gallivm.José Fonseca2008-02-191-0/+13
* Standardize on using the pipe/ include prefix.José Fonseca2008-02-181-1/+0
* Update scons build for new code layout.José Fonseca2008-02-181-2/+5
* gallium: Conditionally use posix libraries/includes.José Fonseca2008-02-071-21/+22
* gallium: Update scons instructions. Propagate user environment.José Fonseca2008-02-061-3/+5
* gallium: Make the build output dir depend on the configuration.José Fonseca2008-01-311-6/+17
* gallium: Add SCons as alternative build system for Gallium.José Fonseca2008-01-311-0/+214
id='n542' href='#n542'>542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file ast_to_hir.c
 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
 *
 * During the conversion to HIR, the majority of the symantic checking is
 * preformed on the program.  This includes:
 *
 *    * Symbol table management
 *    * Type checking
 *    * Function binding
 *
 * The majority of this work could be done during parsing, and the parser could
 * probably generate HIR directly.  However, this results in frequent changes
 * to the parser code.  Since we do not assume that every system this complier
 * is built on will have Flex and Bison installed, we have to store the code
 * generated by these tools in our version control system.  In other parts of
 * the system we've seen problems where a parser was changed but the generated
 * code was not committed, merge conflicts where created because two developers
 * had slightly different versions of Bison installed, etc.
 *
 * I have also noticed that running Bison generated parsers in GDB is very
 * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
 * well 'print $1' in GDB.
 *
 * As a result, my preference is to put as little C code as possible in the
 * parser (and lexer) sources.
 */

#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "program/hash_table.h"
#include "ir.h"
#include "ir_builder.h"

using namespace ir_builder;

static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
			       exec_list *instructions);
static void
remove_per_vertex_blocks(exec_list *instructions,
                         _mesa_glsl_parse_state *state, ir_variable_mode mode);


void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
   _mesa_glsl_initialize_variables(instructions, state);

   state->symbols->separate_function_namespace = state->language_version == 110;

   state->current_function = NULL;

   state->toplevel_ir = instructions;

   state->gs_input_prim_type_specified = false;
   state->cs_input_local_size_specified = false;

   /* Section 4.2 of the GLSL 1.20 specification states:
    * "The built-in functions are scoped in a scope outside the global scope
    *  users declare global variables in.  That is, a shader's global scope,
    *  available for user-defined functions and global variables, is nested
    *  inside the scope containing the built-in functions."
    *
    * Since built-in functions like ftransform() access built-in variables,
    * it follows that those must be in the outer scope as well.
    *
    * We push scope here to create this nesting effect...but don't pop.
    * This way, a shader's globals are still in the symbol table for use
    * by the linker.
    */
   state->symbols->push_scope();

   foreach_list_typed (ast_node, ast, link, & state->translation_unit)
      ast->hir(instructions, state);

   detect_recursion_unlinked(state, instructions);
   detect_conflicting_assignments(state, instructions);

   state->toplevel_ir = NULL;

   /* Move all of the variable declarations to the front of the IR list, and
    * reverse the order.  This has the (intended!) side effect that vertex
    * shader inputs and fragment shader outputs will appear in the IR in the
    * same order that they appeared in the shader code.  This results in the
    * locations being assigned in the declared order.  Many (arguably buggy)
    * applications depend on this behavior, and it matches what nearly all
    * other drivers do.
    */
   foreach_in_list_safe(ir_instruction, node, instructions) {
      ir_variable *const var = node->as_variable();

      if (var == NULL)
         continue;

      var->remove();
      instructions->push_head(var);
   }

   /* Figure out if gl_FragCoord is actually used in fragment shader */
   ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
   if (var != NULL)
      state->fs_uses_gl_fragcoord = var->data.used;

   /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
    *
    *     If multiple shaders using members of a built-in block belonging to
    *     the same interface are linked together in the same program, they
    *     must all redeclare the built-in block in the same way, as described
    *     in section 4.3.7 "Interface Blocks" for interface block matching, or
    *     a link error will result.
    *
    * The phrase "using members of a built-in block" implies that if two
    * shaders are linked together and one of them *does not use* any members
    * of the built-in block, then that shader does not need to have a matching
    * redeclaration of the built-in block.
    *
    * This appears to be a clarification to the behaviour established for
    * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
    * version.
    *
    * The definition of "interface" in section 4.3.7 that applies here is as
    * follows:
    *
    *     The boundary between adjacent programmable pipeline stages: This
    *     spans all the outputs in all compilation units of the first stage
    *     and all the inputs in all compilation units of the second stage.
    *
    * Therefore this rule applies to both inter- and intra-stage linking.
    *
    * The easiest way to implement this is to check whether the shader uses
    * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
    * remove all the relevant variable declaration from the IR, so that the
    * linker won't see them and complain about mismatches.
    */
   remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
   remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
}


static ir_expression_operation
get_conversion_operation(const glsl_type *to, const glsl_type *from,
                         struct _mesa_glsl_parse_state *state)
{
   switch (to->base_type) {
   case GLSL_TYPE_FLOAT:
      switch (from->base_type) {
      case GLSL_TYPE_INT: return ir_unop_i2f;
      case GLSL_TYPE_UINT: return ir_unop_u2f;
      default: return (ir_expression_operation)0;
      }

   case GLSL_TYPE_UINT:
      if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
         return (ir_expression_operation)0;
      switch (from->base_type) {
         case GLSL_TYPE_INT: return ir_unop_i2u;
         default: return (ir_expression_operation)0;
      }

   default: return (ir_expression_operation)0;
   }
}


/**
 * If a conversion is available, convert one operand to a different type
 *
 * The \c from \c ir_rvalue is converted "in place".
 *
 * \param to     Type that the operand it to be converted to
 * \param from   Operand that is being converted
 * \param state  GLSL compiler state
 *
 * \return
 * If a conversion is possible (or unnecessary), \c true is returned.
 * Otherwise \c false is returned.
 */
bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
                          struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   if (to->base_type == from->type->base_type)
      return true;

   /* Prior to GLSL 1.20, there are no implicit conversions */
   if (!state->is_version(120, 0))
      return false;

   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
    *
    *    "There are no implicit array or structure conversions. For
    *    example, an array of int cannot be implicitly converted to an
    *    array of float.
    */
   if (!to->is_numeric() || !from->type->is_numeric())
      return false;

   /* We don't actually want the specific type `to`, we want a type
    * with the same base type as `to`, but the same vector width as
    * `from`.
    */
   to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
                                from->type->matrix_columns);

   ir_expression_operation op = get_conversion_operation(to, from->type, state);
   if (op) {
      from = new(ctx) ir_expression(op, to, from, NULL);
      return true;
   } else {
      return false;
   }
}


static const struct glsl_type *
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
                       bool multiply,
                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
   const glsl_type *type_a = value_a->type;
   const glsl_type *type_b = value_b->type;

   /* From GLSL 1.50 spec, page 56:
    *
    *    "The arithmetic binary operators add (+), subtract (-),
    *    multiply (*), and divide (/) operate on integer and
    *    floating-point scalars, vectors, and matrices."
    */
   if (!type_a->is_numeric() || !type_b->is_numeric()) {
      _mesa_glsl_error(loc, state,
                       "operands to arithmetic operators must be numeric");
      return glsl_type::error_type;
   }


   /*    "If one operand is floating-point based and the other is
    *    not, then the conversions from Section 4.1.10 "Implicit
    *    Conversions" are applied to the non-floating-point-based operand."
    */
   if (!apply_implicit_conversion(type_a, value_b, state)
       && !apply_implicit_conversion(type_b, value_a, state)) {
      _mesa_glsl_error(loc, state,
                       "could not implicitly convert operands to "
                       "arithmetic operator");
      return glsl_type::error_type;
   }
   type_a = value_a->type;
   type_b = value_b->type;

   /*    "If the operands are integer types, they must both be signed or
    *    both be unsigned."
    *
    * From this rule and the preceeding conversion it can be inferred that
    * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
    * The is_numeric check above already filtered out the case where either
    * type is not one of these, so now the base types need only be tested for
    * equality.
    */
   if (type_a->base_type != type_b->base_type) {
      _mesa_glsl_error(loc, state,
                       "base type mismatch for arithmetic operator");
      return glsl_type::error_type;
   }

   /*    "All arithmetic binary operators result in the same fundamental type
    *    (signed integer, unsigned integer, or floating-point) as the
    *    operands they operate on, after operand type conversion. After
    *    conversion, the following cases are valid
    *
    *    * The two operands are scalars. In this case the operation is
    *      applied, resulting in a scalar."
    */
   if (type_a->is_scalar() && type_b->is_scalar())
      return type_a;

   /*   "* One operand is a scalar, and the other is a vector or matrix.
    *      In this case, the scalar operation is applied independently to each
    *      component of the vector or matrix, resulting in the same size
    *      vector or matrix."
    */
   if (type_a->is_scalar()) {
      if (!type_b->is_scalar())
         return type_b;
   } else if (type_b->is_scalar()) {
      return type_a;
   }

   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
    * handled.
    */
   assert(!type_a->is_scalar());
   assert(!type_b->is_scalar());

   /*   "* The two operands are vectors of the same size. In this case, the
    *      operation is done component-wise resulting in the same size
    *      vector."
    */
   if (type_a->is_vector() && type_b->is_vector()) {
      if (type_a == type_b) {
         return type_a;
      } else {
         _mesa_glsl_error(loc, state,
                          "vector size mismatch for arithmetic operator");
         return glsl_type::error_type;
      }
   }

   /* All of the combinations of <scalar, scalar>, <vector, scalar>,
    * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
    * <vector, vector> have been handled.  At least one of the operands must
    * be matrix.  Further, since there are no integer matrix types, the base
    * type of both operands must be float.
    */
   assert(type_a->is_matrix() || type_b->is_matrix());
   assert(type_a->base_type == GLSL_TYPE_FLOAT);
   assert(type_b->base_type == GLSL_TYPE_FLOAT);

   /*   "* The operator is add (+), subtract (-), or divide (/), and the
    *      operands are matrices with the same number of rows and the same
    *      number of columns. In this case, the operation is done component-
    *      wise resulting in the same size matrix."
    *    * The operator is multiply (*), where both operands are matrices or
    *      one operand is a vector and the other a matrix. A right vector
    *      operand is treated as a column vector and a left vector operand as a
    *      row vector. In all these cases, it is required that the number of
    *      columns of the left operand is equal to the number of rows of the
    *      right operand. Then, the multiply (*) operation does a linear
    *      algebraic multiply, yielding an object that has the same number of
    *      rows as the left operand and the same number of columns as the right
    *      operand. Section 5.10 "Vector and Matrix Operations" explains in
    *      more detail how vectors and matrices are operated on."
    */
   if (! multiply) {
      if (type_a == type_b)
         return type_a;
   } else {
      if (type_a->is_matrix() && type_b->is_matrix()) {
         /* Matrix multiply.  The columns of A must match the rows of B.  Given
          * the other previously tested constraints, this means the vector type
          * of a row from A must be the same as the vector type of a column from
          * B.
          */
         if (type_a->row_type() == type_b->column_type()) {
            /* The resulting matrix has the number of columns of matrix B and
             * the number of rows of matrix A.  We get the row count of A by
             * looking at the size of a vector that makes up a column.  The
             * transpose (size of a row) is done for B.
             */
            const glsl_type *const type =
               glsl_type::get_instance(type_a->base_type,
                                       type_a->column_type()->vector_elements,
                                       type_b->row_type()->vector_elements);
            assert(type != glsl_type::error_type);

            return type;
         }
      } else if (type_a->is_matrix()) {
         /* A is a matrix and B is a column vector.  Columns of A must match
          * rows of B.  Given the other previously tested constraints, this
          * means the vector type of a row from A must be the same as the
          * vector the type of B.
          */
         if (type_a->row_type() == type_b) {
            /* The resulting vector has a number of elements equal to
             * the number of rows of matrix A. */
            const glsl_type *const type =
               glsl_type::get_instance(type_a->base_type,
                                       type_a->column_type()->vector_elements,
                                       1);
            assert(type != glsl_type::error_type);

            return type;
         }
      } else {
         assert(type_b->is_matrix());

         /* A is a row vector and B is a matrix.  Columns of A must match rows
          * of B.  Given the other previously tested constraints, this means
          * the type of A must be the same as the vector type of a column from
          * B.
          */
         if (type_a == type_b->column_type()) {
            /* The resulting vector has a number of elements equal to
             * the number of columns of matrix B. */
            const glsl_type *const type =
               glsl_type::get_instance(type_a->base_type,
                                       type_b->row_type()->vector_elements,
                                       1);
            assert(type != glsl_type::error_type);

            return type;
         }
      }

      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
      return glsl_type::error_type;
   }


   /*    "All other cases are illegal."
    */
   _mesa_glsl_error(loc, state, "type mismatch");
   return glsl_type::error_type;
}


static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type,
                             struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
   /* From GLSL 1.50 spec, page 57:
    *
    *    "The arithmetic unary operators negate (-), post- and pre-increment
    *     and decrement (-- and ++) operate on integer or floating-point
    *     values (including vectors and matrices). All unary operators work
    *     component-wise on their operands. These result with the same type
    *     they operated on."
    */
   if (!type->is_numeric()) {
      _mesa_glsl_error(loc, state,
                       "operands to arithmetic operators must be numeric");
      return glsl_type::error_type;
   }

   return type;
}

/**
 * \brief Return the result type of a bit-logic operation.
 *
 * If the given types to the bit-logic operator are invalid, return
 * glsl_type::error_type.
 *
 * \param type_a Type of LHS of bit-logic op
 * \param type_b Type of RHS of bit-logic op
 */
static const struct glsl_type *
bit_logic_result_type(const struct glsl_type *type_a,
                      const struct glsl_type *type_b,
                      ast_operators op,
                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
    if (!state->check_bitwise_operations_allowed(loc)) {
       return glsl_type::error_type;
    }

    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
     *
     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
     *     (|). The operands must be of type signed or unsigned integers or
     *     integer vectors."
     */
    if (!type_a->is_integer()) {
       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
                         ast_expression::operator_string(op));
       return glsl_type::error_type;
    }
    if (!type_b->is_integer()) {
       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
                        ast_expression::operator_string(op));
       return glsl_type::error_type;
    }

    /*     "The fundamental types of the operands (signed or unsigned) must
     *     match,"
     */
    if (type_a->base_type != type_b->base_type) {
       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
                        "base type", ast_expression::operator_string(op));
       return glsl_type::error_type;
    }

    /*     "The operands cannot be vectors of differing size." */
    if (type_a->is_vector() &&
        type_b->is_vector() &&
        type_a->vector_elements != type_b->vector_elements) {
       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
                        "different sizes", ast_expression::operator_string(op));
       return glsl_type::error_type;
    }

    /*     "If one operand is a scalar and the other a vector, the scalar is
     *     applied component-wise to the vector, resulting in the same type as
     *     the vector. The fundamental types of the operands [...] will be the
     *     resulting fundamental type."
     */
    if (type_a->is_scalar())
        return type_b;
    else
        return type_a;
}

static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
                    const struct glsl_type *type_b,
                    struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
   if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
      return glsl_type::error_type;
   }

   /* From GLSL 1.50 spec, page 56:
    *    "The operator modulus (%) operates on signed or unsigned integers or
    *    integer vectors. The operand types must both be signed or both be
    *    unsigned."
    */
   if (!type_a->is_integer()) {
      _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
      return glsl_type::error_type;
   }
   if (!type_b->is_integer()) {
      _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
      return glsl_type::error_type;
   }
   if (type_a->base_type != type_b->base_type) {
      _mesa_glsl_error(loc, state,
                       "operands of %% must have the same base type");
      return glsl_type::error_type;
   }

   /*    "The operands cannot be vectors of differing size. If one operand is
    *    a scalar and the other vector, then the scalar is applied component-
    *    wise to the vector, resulting in the same type as the vector. If both
    *    are vectors of the same size, the result is computed component-wise."
    */
   if (type_a->is_vector()) {
      if (!type_b->is_vector()
          || (type_a->vector_elements == type_b->vector_elements))
      return type_a;
   } else
      return type_b;

   /*    "The operator modulus (%) is not defined for any other data types
    *    (non-integer types)."
    */
   _mesa_glsl_error(loc, state, "type mismatch");
   return glsl_type::error_type;
}


static const struct glsl_type *
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
   const glsl_type *type_a = value_a->type;
   const glsl_type *type_b = value_b->type;

   /* From GLSL 1.50 spec, page 56:
    *    "The relational operators greater than (>), less than (<), greater
    *    than or equal (>=), and less than or equal (<=) operate only on
    *    scalar integer and scalar floating-point expressions."
    */
   if (!type_a->is_numeric()
       || !type_b->is_numeric()
       || !type_a->is_scalar()
       || !type_b->is_scalar()) {
      _mesa_glsl_error(loc, state,
                       "operands to relational operators must be scalar and "
                       "numeric");
      return glsl_type::error_type;
   }

   /*    "Either the operands' types must match, or the conversions from
    *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
    *    operand, after which the types must match."
    */
   if (!apply_implicit_conversion(type_a, value_b, state)
       && !apply_implicit_conversion(type_b, value_a, state)) {
      _mesa_glsl_error(loc, state,
                       "could not implicitly convert operands to "
                       "relational operator");
      return glsl_type::error_type;
   }
   type_a = value_a->type;
   type_b = value_b->type;

   if (type_a->base_type != type_b->base_type) {
      _mesa_glsl_error(loc, state, "base type mismatch");
      return glsl_type::error_type;
   }

   /*    "The result is scalar Boolean."
    */
   return glsl_type::bool_type;
}

/**
 * \brief Return the result type of a bit-shift operation.
 *
 * If the given types to the bit-shift operator are invalid, return
 * glsl_type::error_type.
 *
 * \param type_a Type of LHS of bit-shift op
 * \param type_b Type of RHS of bit-shift op
 */
static const struct glsl_type *
shift_result_type(const struct glsl_type *type_a,
                  const struct glsl_type *type_b,
                  ast_operators op,
                  struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
   if (!state->check_bitwise_operations_allowed(loc)) {
      return glsl_type::error_type;
   }

   /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
    *
    *     "The shift operators (<<) and (>>). For both operators, the operands
    *     must be signed or unsigned integers or integer vectors. One operand
    *     can be signed while the other is unsigned."
    */
   if (!type_a->is_integer()) {
      _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
                       "integer vector", ast_expression::operator_string(op));
     return glsl_type::error_type;

   }
   if (!type_b->is_integer()) {
      _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
                       "integer vector", ast_expression::operator_string(op));
     return glsl_type::error_type;
   }

   /*     "If the first operand is a scalar, the second operand has to be
    *     a scalar as well."
    */
   if (type_a->is_scalar() && !type_b->is_scalar()) {
      _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
                       "second must be scalar as well",
                       ast_expression::operator_string(op));
     return glsl_type::error_type;
   }

   /* If both operands are vectors, check that they have same number of
    * elements.
    */
   if (type_a->is_vector() &&
      type_b->is_vector() &&
      type_a->vector_elements != type_b->vector_elements) {
      _mesa_glsl_error(loc, state, "vector operands to operator %s must "
                       "have same number of elements",
                       ast_expression::operator_string(op));
     return glsl_type::error_type;
   }

   /*     "In all cases, the resulting type will be the same type as the left
    *     operand."
    */
   return type_a;
}

/**
 * Validates that a value can be assigned to a location with a specified type
 *
 * Validates that \c rhs can be assigned to some location.  If the types are
 * not an exact match but an automatic conversion is possible, \c rhs will be
 * converted.
 *
 * \return
 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
 * Otherwise the actual RHS to be assigned will be returned.  This may be
 * \c rhs, or it may be \c rhs after some type conversion.
 *
 * \note
 * In addition to being used for assignments, this function is used to
 * type-check return values.
 */
ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state *state,
                    YYLTYPE loc, const glsl_type *lhs_type,
                    ir_rvalue *rhs, bool is_initializer)
{
   /* If there is already some error in the RHS, just return it.  Anything
    * else will lead to an avalanche of error message back to the user.
    */
   if (rhs->type->is_error())
      return rhs;

   /* If the types are identical, the assignment can trivially proceed.
    */
   if (rhs->type == lhs_type)
      return rhs;

   /* If the array element types are the same and the LHS is unsized,
    * the assignment is okay for initializers embedded in variable
    * declarations.
    *
    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
    * is handled by ir_dereference::is_lvalue.
    */
   if (lhs_type->is_unsized_array() && rhs->type->is_array()
       && (lhs_type->element_type() == rhs->type->element_type())) {
      if (is_initializer) {
         return rhs;
      } else {
         _mesa_glsl_error(&loc, state,
                          "implicitly sized arrays cannot be assigned");
         return NULL;
      }
   }

   /* Check for implicit conversion in GLSL 1.20 */
   if (apply_implicit_conversion(lhs_type, rhs, state)) {
      if (rhs->type == lhs_type)
	 return rhs;
   }

   _mesa_glsl_error(&loc, state,
                    "%s of type %s cannot be assigned to "
                    "variable of type %s",
                    is_initializer ? "initializer" : "value",
                    rhs->type->name, lhs_type->name);

   return NULL;
}

static void
mark_whole_array_access(ir_rvalue *access)
{
   ir_dereference_variable *deref = access->as_dereference_variable();

   if (deref && deref->var) {
      deref->var->data.max_array_access = deref->type->length - 1;
   }
}

static bool
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
              const char *non_lvalue_description,
              ir_rvalue *lhs, ir_rvalue *rhs,
              ir_rvalue **out_rvalue, bool needs_rvalue,
              bool is_initializer,
              YYLTYPE lhs_loc)
{
   void *ctx = state;
   bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
   ir_rvalue *extract_channel = NULL;

   /* If the assignment LHS comes back as an ir_binop_vector_extract
    * expression, move it to the RHS as an ir_triop_vector_insert.
    */
   if (lhs->ir_type == ir_type_expression) {
      ir_expression *const lhs_expr = lhs->as_expression();

      if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
         ir_rvalue *new_rhs =
            validate_assignment(state, lhs_loc, lhs->type,
                                rhs, is_initializer);

         if (new_rhs == NULL) {
            return lhs;
         } else {
            /* This converts:
             * - LHS: (expression float vector_extract <vec> <channel>)
             * - RHS: <scalar>
             * into:
             * - LHS: <vec>
             * - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
             *
             * The LHS type is now a vector instead of a scalar.  Since GLSL
             * allows assignments to be used as rvalues, we need to re-extract
             * the channel from assignment_temp when returning the rvalue.
             */
            extract_channel = lhs_expr->operands[1];
            rhs = new(ctx) ir_expression(ir_triop_vector_insert,
                                         lhs_expr->operands[0]->type,
                                         lhs_expr->operands[0],
                                         new_rhs,
                                         extract_channel);
            lhs = lhs_expr->operands[0]->clone(ctx, NULL);
         }
      }
   }

   ir_variable *lhs_var = lhs->variable_referenced();
   if (lhs_var)
      lhs_var->data.assigned = true;

   if (!error_emitted) {
      if (non_lvalue_description != NULL) {
         _mesa_glsl_error(&lhs_loc, state,
                          "assignment to %s",
                          non_lvalue_description);
         error_emitted = true;
      } else if (lhs_var != NULL && lhs_var->data.read_only) {
         _mesa_glsl_error(&lhs_loc, state,
                          "assignment to read-only variable '%s'",
                          lhs_var->name);
         error_emitted = true;
      } else if (lhs->type->is_array() &&
                 !state->check_version(120, 300, &lhs_loc,
                                       "whole array assignment forbidden")) {
         /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
          *
          *    "Other binary or unary expressions, non-dereferenced
          *     arrays, function names, swizzles with repeated fields,
          *     and constants cannot be l-values."
          *
          * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
          */
         error_emitted = true;
      } else if (!lhs->is_lvalue()) {
         _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
         error_emitted = true;
      }
   }

   ir_rvalue *new_rhs =
      validate_assignment(state, lhs_loc, lhs->type, rhs, is_initializer);
   if (new_rhs != NULL) {
      rhs = new_rhs;

      /* If the LHS array was not declared with a size, it takes it size from
       * the RHS.  If the LHS is an l-value and a whole array, it must be a
       * dereference of a variable.  Any other case would require that the LHS
       * is either not an l-value or not a whole array.
       */
      if (lhs->type->is_unsized_array()) {
         ir_dereference *const d = lhs->as_dereference();

         assert(d != NULL);

         ir_variable *const var = d->variable_referenced();

         assert(var != NULL);

         if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
            /* FINISHME: This should actually log the location of the RHS. */
            _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
                             "previous access",
                             var->data.max_array_access);
         }

         var->type = glsl_type::get_array_instance(lhs->type->element_type(),
                                                   rhs->type->array_size());
         d->type = var->type;
      }
      if (lhs->type->is_array()) {
         mark_whole_array_access(rhs);
         mark_whole_array_access(lhs);
      }
   }

   /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
    * but not post_inc) need the converted assigned value as an rvalue
    * to handle things like:
    *
    * i = j += 1;
    */
   if (needs_rvalue) {
      ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
                                              ir_var_temporary);
      instructions->push_tail(var);
      instructions->push_tail(assign(var, rhs));

      if (!error_emitted) {
         ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
         instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
      }
      ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);

      if (extract_channel) {
         rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
                                         rvalue,
                                         extract_channel->clone(ctx, NULL));
      }

      *out_rvalue = rvalue;
   } else {
      if (!error_emitted)
         instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
      *out_rvalue = NULL;
   }

   return error_emitted;
}

static ir_rvalue *
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
{
   void *ctx = ralloc_parent(lvalue);
   ir_variable *var;

   var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
			      ir_var_temporary);
   instructions->push_tail(var);
   var->data.mode = ir_var_auto;

   instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
						  lvalue));

   return new(ctx) ir_dereference_variable(var);
}


ir_rvalue *
ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
   (void) instructions;
   (void) state;

   return NULL;
}

void
ast_function_expression::hir_no_rvalue(exec_list *instructions,
                                       struct _mesa_glsl_parse_state *state)
{
   (void)hir(instructions, state);
}

void
ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
                                         struct _mesa_glsl_parse_state *state)
{
   (void)hir(instructions, state);
}

static ir_rvalue *
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
{
   int join_op;
   ir_rvalue *cmp = NULL;

   if (operation == ir_binop_all_equal)
      join_op = ir_binop_logic_and;
   else
      join_op = ir_binop_logic_or;

   switch (op0->type->base_type) {
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_BOOL:
      return new(mem_ctx) ir_expression(operation, op0, op1);

   case GLSL_TYPE_ARRAY: {
      for (unsigned int i = 0; i < op0->type->length; i++) {
         ir_rvalue *e0, *e1, *result;

         e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
                                                new(mem_ctx) ir_constant(i));
         e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
                                                new(mem_ctx) ir_constant(i));
         result = do_comparison(mem_ctx, operation, e0, e1);

         if (cmp) {
            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
         } else {
            cmp = result;
         }
      }

      mark_whole_array_access(op0);
      mark_whole_array_access(op1);
      break;
   }

   case GLSL_TYPE_STRUCT: {
      for (unsigned int i = 0; i < op0->type->length; i++) {
         ir_rvalue *e0, *e1, *result;
         const char *field_name = op0->type->fields.structure[i].name;

         e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
                                                 field_name);
         e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
                                                 field_name);
         result = do_comparison(mem_ctx, operation, e0, e1);

         if (cmp) {
            cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
         } else {
            cmp = result;
         }
      }
      break;
   }

   case GLSL_TYPE_ERROR:
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_IMAGE:
   case GLSL_TYPE_INTERFACE:
   case GLSL_TYPE_ATOMIC_UINT:
      /* I assume a comparison of a struct containing a sampler just
       * ignores the sampler present in the type.
       */
      break;
   }

   if (cmp == NULL)
      cmp = new(mem_ctx) ir_constant(true);

   return cmp;
}

/* For logical operations, we want to ensure that the operands are
 * scalar booleans.  If it isn't, emit an error and return a constant
 * boolean to avoid triggering cascading error messages.
 */
ir_rvalue *
get_scalar_boolean_operand(exec_list *instructions,
			   struct _mesa_glsl_parse_state *state,
			   ast_expression *parent_expr,
			   int operand,
			   const char *operand_name,
			   bool *error_emitted)
{
   ast_expression *expr = parent_expr->subexpressions[operand];
   void *ctx = state;
   ir_rvalue *val = expr->hir(instructions, state);

   if (val->type->is_boolean() && val->type->is_scalar())
      return val;

   if (!*error_emitted) {
      YYLTYPE loc = expr->get_location();
      _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
                       operand_name,
                       parent_expr->operator_string(parent_expr->oper));
      *error_emitted = true;
   }

   return new(ctx) ir_constant(true);
}

/**
 * If name refers to a builtin array whose maximum allowed size is less than
 * size, report an error and return true.  Otherwise return false.
 */
void
check_builtin_array_max_size(const char *name, unsigned size,
                             YYLTYPE loc, struct _mesa_glsl_parse_state *state)
{
   if ((strcmp("gl_TexCoord", name) == 0)
       && (size > state->Const.MaxTextureCoords)) {
      /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
       *
       *     "The size [of gl_TexCoord] can be at most
       *     gl_MaxTextureCoords."
       */
      _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
                       "be larger than gl_MaxTextureCoords (%u)",
                       state->Const.MaxTextureCoords);
   } else if (strcmp("gl_ClipDistance", name) == 0
              && size > state->Const.MaxClipPlanes) {
      /* From section 7.1 (Vertex Shader Special Variables) of the
       * GLSL 1.30 spec:
       *
       *   "The gl_ClipDistance array is predeclared as unsized and
       *   must be sized by the shader either redeclaring it with a
       *   size or indexing it only with integral constant
       *   expressions. ... The size can be at most
       *   gl_MaxClipDistances."
       */
      _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
                       "be larger than gl_MaxClipDistances (%u)",
                       state->Const.MaxClipPlanes);
   }
}

/**
 * Create the constant 1, of a which is appropriate for incrementing and
 * decrementing values of the given GLSL type.  For example, if type is vec4,
 * this creates a constant value of 1.0 having type float.
 *
 * If the given type is invalid for increment and decrement operators, return
 * a floating point 1--the error will be detected later.
 */
static ir_rvalue *
constant_one_for_inc_dec(void *ctx, const glsl_type *type)
{
   switch (type->base_type) {
   case GLSL_TYPE_UINT:
      return new(ctx) ir_constant((unsigned) 1);
   case GLSL_TYPE_INT:
      return new(ctx) ir_constant(1);
   default:
   case GLSL_TYPE_FLOAT:
      return new(ctx) ir_constant(1.0f);
   }
}

ir_rvalue *
ast_expression::hir(exec_list *instructions,
                    struct _mesa_glsl_parse_state *state)
{
   return do_hir(instructions, state, true);
}

void
ast_expression::hir_no_rvalue(exec_list *instructions,
                              struct _mesa_glsl_parse_state *state)
{
   do_hir(instructions, state, false);
}

ir_rvalue *
ast_expression::do_hir(exec_list *instructions,
                       struct _mesa_glsl_parse_state *state,
                       bool needs_rvalue)
{
   void *ctx = state;
   static const int operations[AST_NUM_OPERATORS] = {
      -1,               /* ast_assign doesn't convert to ir_expression. */
      -1,               /* ast_plus doesn't convert to ir_expression. */
      ir_unop_neg,
      ir_binop_add,
      ir_binop_sub,
      ir_binop_mul,
      ir_binop_div,
      ir_binop_mod,
      ir_binop_lshift,
      ir_binop_rshift,
      ir_binop_less,
      ir_binop_greater,
      ir_binop_lequal,
      ir_binop_gequal,
      ir_binop_all_equal,
      ir_binop_any_nequal,
      ir_binop_bit_and,
      ir_binop_bit_xor,
      ir_binop_bit_or,
      ir_unop_bit_not,
      ir_binop_logic_and,
      ir_binop_logic_xor,
      ir_binop_logic_or,
      ir_unop_logic_not,

      /* Note: The following block of expression types actually convert
       * to multiple IR instructions.
       */
      ir_binop_mul,     /* ast_mul_assign */
      ir_binop_div,     /* ast_div_assign */
      ir_binop_mod,     /* ast_mod_assign */
      ir_binop_add,     /* ast_add_assign */
      ir_binop_sub,     /* ast_sub_assign */
      ir_binop_lshift,  /* ast_ls_assign */
      ir_binop_rshift,  /* ast_rs_assign */
      ir_binop_bit_and, /* ast_and_assign */
      ir_binop_bit_xor, /* ast_xor_assign */
      ir_binop_bit_or,  /* ast_or_assign */

      -1,               /* ast_conditional doesn't convert to ir_expression. */
      ir_binop_add,     /* ast_pre_inc. */
      ir_binop_sub,     /* ast_pre_dec. */
      ir_binop_add,     /* ast_post_inc. */
      ir_binop_sub,     /* ast_post_dec. */
      -1,               /* ast_field_selection doesn't conv to ir_expression. */
      -1,               /* ast_array_index doesn't convert to ir_expression. */
      -1,               /* ast_function_call doesn't conv to ir_expression. */
      -1,               /* ast_identifier doesn't convert to ir_expression. */
      -1,               /* ast_int_constant doesn't convert to ir_expression. */
      -1,               /* ast_uint_constant doesn't conv to ir_expression. */
      -1,               /* ast_float_constant doesn't conv to ir_expression. */
      -1,               /* ast_bool_constant doesn't conv to ir_expression. */
      -1,               /* ast_sequence doesn't convert to ir_expression. */
   };
   ir_rvalue *result = NULL;
   ir_rvalue *op[3];
   const struct glsl_type *type; /* a temporary variable for switch cases */
   bool error_emitted = false;
   YYLTYPE loc;

   loc = this->get_location();

   switch (this->oper) {
   case ast_aggregate:
      assert(!"ast_aggregate: Should never get here.");
      break;

   case ast_assign: {
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0], op[1], &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());
      break;
   }

   case ast_plus:
      op[0] = this->subexpressions[0]->hir(instructions, state);

      type = unary_arithmetic_result_type(op[0]->type, state, & loc);

      error_emitted = type->is_error();

      result = op[0];
      break;

   case ast_neg:
      op[0] = this->subexpressions[0]->hir(instructions, state);

      type = unary_arithmetic_result_type(op[0]->type, state, & loc);

      error_emitted = type->is_error();

      result = new(ctx) ir_expression(operations[this->oper], type,
                                      op[0], NULL);
      break;

   case ast_add:
   case ast_sub:
   case ast_mul:
   case ast_div:
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      type = arithmetic_result_type(op[0], op[1],
                                    (this->oper == ast_mul),
                                    state, & loc);
      error_emitted = type->is_error();

      result = new(ctx) ir_expression(operations[this->oper], type,
                                      op[0], op[1]);
      break;

   case ast_mod:
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);

      assert(operations[this->oper] == ir_binop_mod);

      result = new(ctx) ir_expression(operations[this->oper], type,
                                      op[0], op[1]);
      error_emitted = type->is_error();
      break;

   case ast_lshift:
   case ast_rshift:
       if (!state->check_bitwise_operations_allowed(&loc)) {
          error_emitted = true;
       }

       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
                                &loc);
       result = new(ctx) ir_expression(operations[this->oper], type,
                                       op[0], op[1]);
       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
       break;

   case ast_less:
   case ast_greater:
   case ast_lequal:
   case ast_gequal:
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      type = relational_result_type(op[0], op[1], state, & loc);

      /* The relational operators must either generate an error or result
       * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
       */
      assert(type->is_error()
	     || ((type->base_type == GLSL_TYPE_BOOL)
		 && type->is_scalar()));

      result = new(ctx) ir_expression(operations[this->oper], type,
                                      op[0], op[1]);
      error_emitted = type->is_error();
      break;

   case ast_nequal:
   case ast_equal:
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
       *
       *    "The equality operators equal (==), and not equal (!=)
       *    operate on all types. They result in a scalar Boolean. If
       *    the operand types do not match, then there must be a
       *    conversion from Section 4.1.10 "Implicit Conversions"
       *    applied to one operand that can make them match, in which
       *    case this conversion is done."
       */
      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
           && !apply_implicit_conversion(op[1]->type, op[0], state))
          || (op[0]->type != op[1]->type)) {
         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
                          "type", (this->oper == ast_equal) ? "==" : "!=");
         error_emitted = true;
      } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
                 !state->check_version(120, 300, &loc,
                                       "array comparisons forbidden")) {
         error_emitted = true;
      } else if ((op[0]->type->contains_opaque() ||
                  op[1]->type->contains_opaque())) {
         _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
         error_emitted = true;
      }

      if (error_emitted) {
         result = new(ctx) ir_constant(false);
      } else {
         result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
         assert(result->type == glsl_type::bool_type);
      }
      break;

   case ast_bit_and:
   case ast_bit_xor:
   case ast_bit_or:
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);
      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
                                   state, &loc);
      result = new(ctx) ir_expression(operations[this->oper], type,
                                      op[0], op[1]);
      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
      break;

   case ast_bit_not:
      op[0] = this->subexpressions[0]->hir(instructions, state);

      if (!state->check_bitwise_operations_allowed(&loc)) {
         error_emitted = true;
      }

      if (!op[0]->type->is_integer()) {
         _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
         error_emitted = true;
      }

      type = error_emitted ? glsl_type::error_type : op[0]->type;
      result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
      break;

   case ast_logic_and: {
      exec_list rhs_instructions;
      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
                                         "LHS", &error_emitted);
      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
                                         "RHS", &error_emitted);

      if (rhs_instructions.is_empty()) {
         result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
         type = result->type;
      } else {
         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
                                                       "and_tmp",
                                                       ir_var_temporary);
         instructions->push_tail(tmp);

         ir_if *const stmt = new(ctx) ir_if(op[0]);
         instructions->push_tail(stmt);

         stmt->then_instructions.append_list(&rhs_instructions);
         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const then_assign =
            new(ctx) ir_assignment(then_deref, op[1]);
         stmt->then_instructions.push_tail(then_assign);

         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const else_assign =
            new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
         stmt->else_instructions.push_tail(else_assign);

         result = new(ctx) ir_dereference_variable(tmp);
         type = tmp->type;
      }
      break;
   }

   case ast_logic_or: {
      exec_list rhs_instructions;
      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
                                         "LHS", &error_emitted);
      op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
                                         "RHS", &error_emitted);

      if (rhs_instructions.is_empty()) {
         result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
         type = result->type;
      } else {
         ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
                                                       "or_tmp",
                                                       ir_var_temporary);
         instructions->push_tail(tmp);

         ir_if *const stmt = new(ctx) ir_if(op[0]);
         instructions->push_tail(stmt);

         ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const then_assign =
            new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
         stmt->then_instructions.push_tail(then_assign);

         stmt->else_instructions.append_list(&rhs_instructions);
         ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const else_assign =
            new(ctx) ir_assignment(else_deref, op[1]);
         stmt->else_instructions.push_tail(else_assign);

         result = new(ctx) ir_dereference_variable(tmp);
         type = tmp->type;
      }
      break;
   }

   case ast_logic_xor:
      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
       *
       *    "The logical binary operators and (&&), or ( | | ), and
       *     exclusive or (^^). They operate only on two Boolean
       *     expressions and result in a Boolean expression."
       */
      op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
                                         &error_emitted);
      op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
                                         &error_emitted);

      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
                                      op[0], op[1]);
      break;

   case ast_logic_not:
      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
                                         "operand", &error_emitted);

      result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
                                      op[0], NULL);
      break;

   case ast_mul_assign:
   case ast_div_assign:
   case ast_add_assign:
   case ast_sub_assign: {
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      type = arithmetic_result_type(op[0], op[1],
                                    (this->oper == ast_mul_assign),
                                    state, & loc);

      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
                                                   op[0], op[1]);

      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());

      /* GLSL 1.10 does not allow array assignment.  However, we don't have to
       * explicitly test for this because none of the binary expression
       * operators allow array operands either.
       */

      break;
   }

   case ast_mod_assign: {
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);

      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);

      assert(operations[this->oper] == ir_binop_mod);

      ir_rvalue *temp_rhs;
      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
                                        op[0], op[1]);

      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());
      break;
   }

   case ast_ls_assign:
   case ast_rs_assign: {
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);
      type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
                               &loc);
      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
                                                   type, op[0], op[1]);
      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());
      break;
   }

   case ast_and_assign:
   case ast_xor_assign:
   case ast_or_assign: {
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = this->subexpressions[1]->hir(instructions, state);
      type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
                                   state, &loc);
      ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
                                                   type, op[0], op[1]);
      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());
      break;
   }

   case ast_conditional: {
      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
       *
       *    "The ternary selection operator (?:). It operates on three
       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
       *    first expression, which must result in a scalar Boolean."
       */
      op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
                                         "condition", &error_emitted);

      /* The :? operator is implemented by generating an anonymous temporary
       * followed by an if-statement.  The last instruction in each branch of
       * the if-statement assigns a value to the anonymous temporary.  This
       * temporary is the r-value of the expression.
       */
      exec_list then_instructions;
      exec_list else_instructions;

      op[1] = this->subexpressions[1]->hir(&then_instructions, state);
      op[2] = this->subexpressions[2]->hir(&else_instructions, state);

      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
       *
       *     "The second and third expressions can be any type, as
       *     long their types match, or there is a conversion in
       *     Section 4.1.10 "Implicit Conversions" that can be applied
       *     to one of the expressions to make their types match. This
       *     resulting matching type is the type of the entire
       *     expression."
       */
      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
          && !apply_implicit_conversion(op[2]->type, op[1], state))
          || (op[1]->type != op[2]->type)) {
         YYLTYPE loc = this->subexpressions[1]->get_location();

         _mesa_glsl_error(& loc, state, "second and third operands of ?: "
                          "operator must have matching types");
         error_emitted = true;
         type = glsl_type::error_type;
      } else {
         type = op[1]->type;
      }

      /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
       *
       *    "The second and third expressions must be the same type, but can
       *    be of any type other than an array."
       */
      if (type->is_array() &&
          !state->check_version(120, 300, &loc,
                                "second and third operands of ?: operator "
                                "cannot be arrays")) {
         error_emitted = true;
      }

      ir_constant *cond_val = op[0]->constant_expression_value();
      ir_constant *then_val = op[1]->constant_expression_value();
      ir_constant *else_val = op[2]->constant_expression_value();

      if (then_instructions.is_empty()
          && else_instructions.is_empty()
          && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
         result = (cond_val->value.b[0]) ? then_val : else_val;
      } else {
         ir_variable *const tmp =
            new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
         instructions->push_tail(tmp);

         ir_if *const stmt = new(ctx) ir_if(op[0]);
         instructions->push_tail(stmt);

         then_instructions.move_nodes_to(& stmt->then_instructions);
         ir_dereference *const then_deref =
            new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const then_assign =
            new(ctx) ir_assignment(then_deref, op[1]);
         stmt->then_instructions.push_tail(then_assign);

         else_instructions.move_nodes_to(& stmt->else_instructions);
         ir_dereference *const else_deref =
            new(ctx) ir_dereference_variable(tmp);
         ir_assignment *const else_assign =
            new(ctx) ir_assignment(else_deref, op[2]);
         stmt->else_instructions.push_tail(else_assign);

         result = new(ctx) ir_dereference_variable(tmp);
      }
      break;
   }

   case ast_pre_inc:
   case ast_pre_dec: {
      this->non_lvalue_description = (this->oper == ast_pre_inc)
         ? "pre-increment operation" : "pre-decrement operation";

      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);

      type = arithmetic_result_type(op[0], op[1], false, state, & loc);

      ir_rvalue *temp_rhs;
      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
                                        op[0], op[1]);

      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &result, needs_rvalue, false,
                       this->subexpressions[0]->get_location());
      break;
   }

   case ast_post_inc:
   case ast_post_dec: {
      this->non_lvalue_description = (this->oper == ast_post_inc)
         ? "post-increment operation" : "post-decrement operation";
      op[0] = this->subexpressions[0]->hir(instructions, state);
      op[1] = constant_one_for_inc_dec(ctx, op[0]->type);

      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();

      type = arithmetic_result_type(op[0], op[1], false, state, & loc);

      ir_rvalue *temp_rhs;
      temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
                                        op[0], op[1]);

      /* Get a temporary of a copy of the lvalue before it's modified.
       * This may get thrown away later.
       */
      result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));

      ir_rvalue *junk_rvalue;
      error_emitted =
         do_assignment(instructions, state,
                       this->subexpressions[0]->non_lvalue_description,
                       op[0]->clone(ctx, NULL), temp_rhs,
                       &junk_rvalue, false, false,
                       this->subexpressions[0]->get_location());

      break;
   }

   case ast_field_selection:
      result = _mesa_ast_field_selection_to_hir(this, instructions, state);
      break;

   case ast_array_index: {
      YYLTYPE index_loc = subexpressions[1]->get_location();

      op[0] = subexpressions[0]->hir(instructions, state);
      op[1] = subexpressions[1]->hir(instructions, state);

      result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
                                            loc, index_loc);

      if (result->type->is_error())
         error_emitted = true;

      break;
   }

   case ast_function_call:
      /* Should *NEVER* get here.  ast_function_call should always be handled
       * by ast_function_expression::hir.
       */
      assert(0);
      break;

   case ast_identifier: {
      /* ast_identifier can appear several places in a full abstract syntax
       * tree.  This particular use must be at location specified in the grammar
       * as 'variable_identifier'.
       */
      ir_variable *var = 
         state->symbols->get_variable(this->primary_expression.identifier);

      if (var != NULL) {
         var->data.used = true;
         result = new(ctx) ir_dereference_variable(var);
      } else {
         _mesa_glsl_error(& loc, state, "`%s' undeclared",
                          this->primary_expression.identifier);

         result = ir_rvalue::error_value(ctx);
         error_emitted = true;
      }
      break;
   }

   case ast_int_constant:
      result = new(ctx) ir_constant(this->primary_expression.int_constant);
      break;

   case ast_uint_constant:
      result = new(ctx) ir_constant(this->primary_expression.uint_constant);
      break;

   case ast_float_constant:
      result = new(ctx) ir_constant(this->primary_expression.float_constant);
      break;

   case ast_bool_constant:
      result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
      break;

   case ast_sequence: {
      /* It should not be possible to generate a sequence in the AST without
       * any expressions in it.
       */
      assert(!this->expressions.is_empty());

      /* The r-value of a sequence is the last expression in the sequence.  If
       * the other expressions in the sequence do not have side-effects (and
       * therefore add instructions to the instruction list), they get dropped
       * on the floor.
       */
      exec_node *previous_tail_pred = NULL;
      YYLTYPE previous_operand_loc = loc;

      foreach_list_typed (ast_node, ast, link, &this->expressions) {
         /* If one of the operands of comma operator does not generate any
          * code, we want to emit a warning.  At each pass through the loop
          * previous_tail_pred will point to the last instruction in the
          * stream *before* processing the previous operand.  Naturally,
          * instructions->tail_pred will point to the last instruction in the
          * stream *after* processing the previous operand.  If the two
          * pointers match, then the previous operand had no effect.
          *
          * The warning behavior here differs slightly from GCC.  GCC will
          * only emit a warning if none of the left-hand operands have an
          * effect.  However, it will emit a warning for each.  I believe that
          * there are some cases in C (especially with GCC extensions) where
          * it is useful to have an intermediate step in a sequence have no
          * effect, but I don't think these cases exist in GLSL.  Either way,
          * it would be a giant hassle to replicate that behavior.
          */
         if (previous_tail_pred == instructions->tail_pred) {
            _mesa_glsl_warning(&previous_operand_loc, state,
                               "left-hand operand of comma expression has "
                               "no effect");
         }

         /* tail_pred is directly accessed instead of using the get_tail()
          * method for performance reasons.  get_tail() has extra code to
          * return NULL when the list is empty.  We don't care about that
          * here, so using tail_pred directly is fine.
          */
         previous_tail_pred = instructions->tail_pred;
         previous_operand_loc = ast->get_location();

         result = ast->hir(instructions, state);
      }

      /* Any errors should have already been emitted in the loop above.
       */
      error_emitted = true;
      break;
   }
   }
   type = NULL; /* use result->type, not type. */
   assert(result != NULL || !needs_rvalue);

   if (result && result->type->is_error() && !error_emitted)
      _mesa_glsl_error(& loc, state, "type mismatch");

   return result;
}


ir_rvalue *
ast_expression_statement::hir(exec_list *instructions,
                              struct _mesa_glsl_parse_state *state)
{
   /* It is possible to have expression statements that don't have an
    * expression.  This is the solitary semicolon:
    *
    * for (i = 0; i < 5; i++)
    *     ;
    *
    * In this case the expression will be NULL.  Test for NULL and don't do
    * anything in that case.
    */
   if (expression != NULL)
      expression->hir_no_rvalue(instructions, state);

   /* Statements do not have r-values.
    */
   return NULL;
}


ir_rvalue *
ast_compound_statement::hir(exec_list *instructions,
                            struct _mesa_glsl_parse_state *state)
{
   if (new_scope)
      state->symbols->push_scope();

   foreach_list_typed (ast_node, ast, link, &this->statements)
      ast->hir(instructions, state);

   if (new_scope)
      state->symbols->pop_scope();

   /* Compound statements do not have r-values.
    */
   return NULL;
}

/**
 * Evaluate the given exec_node (which should be an ast_node representing
 * a single array dimension) and return its integer value.
 */
static unsigned
process_array_size(exec_node *node,
                   struct _mesa_glsl_parse_state *state)
{
   exec_list dummy_instructions;

   ast_node *array_size = exec_node_data(ast_node, node, link);
   ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
   YYLTYPE loc = array_size->get_location();

   if (ir == NULL) {
      _mesa_glsl_error(& loc, state,
                       "array size could not be resolved");
      return 0;
   }

   if (!ir->type->is_integer()) {
      _mesa_glsl_error(& loc, state,
                       "array size must be integer type");
      return 0;
   }

   if (!ir->type->is_scalar()) {
      _mesa_glsl_error(& loc, state,
                       "array size must be scalar type");
      return 0;
   }

   ir_constant *const size = ir->constant_expression_value();
   if (size == NULL) {
      _mesa_glsl_error(& loc, state, "array size must be a "
                       "constant valued expression");
      return 0;
   }

   if (size->value.i[0] <= 0) {
      _mesa_glsl_error(& loc, state, "array size must be > 0");
      return 0;
   }

   assert(size->type == ir->type);

   /* If the array size is const (and we've verified that
    * it is) then no instructions should have been emitted
    * when we converted it to HIR. If they were emitted,
    * then either the array size isn't const after all, or
    * we are emitting unnecessary instructions.
    */
   assert(dummy_instructions.is_empty());

   return size->value.u[0];
}

static const glsl_type *
process_array_type(YYLTYPE *loc, const glsl_type *base,
                   ast_array_specifier *array_specifier,
                   struct _mesa_glsl_parse_state *state)
{
   const glsl_type *array_type = base;

   if (array_specifier != NULL) {
      if (base->is_array()) {

         /* From page 19 (page 25) of the GLSL 1.20 spec:
          *
          * "Only one-dimensional arrays may be declared."
          */
         if (!state->ARB_arrays_of_arrays_enable) {
            _mesa_glsl_error(loc, state,
                             "invalid array of `%s'"
                             "GL_ARB_arrays_of_arrays "
                             "required for defining arrays of arrays",
                             base->name);
            return glsl_type::error_type;
         }

         if (base->length == 0) {
            _mesa_glsl_error(loc, state,
                             "only the outermost array dimension can "
                             "be unsized",
                             base->name);
            return glsl_type::error_type;
         }
      }

      for (exec_node *node = array_specifier->array_dimensions.tail_pred;
           !node->is_head_sentinel(); node = node->prev) {
         unsigned array_size = process_array_size(node, state);
         array_type = glsl_type::get_array_instance(array_type, array_size);
      }

      if (array_specifier->is_unsized_array)
         array_type = glsl_type::get_array_instance(array_type, 0);
   }

   return array_type;
}


const glsl_type *
ast_type_specifier::glsl_type(const char **name,
                              struct _mesa_glsl_parse_state *state) const
{
   const struct glsl_type *type;

   type = state->symbols->get_type(this->type_name);
   *name = this->type_name;

   YYLTYPE loc = this->get_location();
   type = process_array_type(&loc, type, this->array_specifier, state);

   return type;
}

const glsl_type *
ast_fully_specified_type::glsl_type(const char **name,
                                    struct _mesa_glsl_parse_state *state) const
{
   const struct glsl_type *type = this->specifier->glsl_type(name, state);

   if (type == NULL)
      return NULL;

   if (type->base_type == GLSL_TYPE_FLOAT
       && state->es_shader
       && state->stage == MESA_SHADER_FRAGMENT
       && this->qualifier.precision == ast_precision_none
       && state->symbols->get_variable("#default precision") == NULL) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(&loc, state,
                       "no precision specified this scope for type `%s'",
                       type->name);
   }

   return type;
}

/**
 * Determine whether a toplevel variable declaration declares a varying.  This
 * function operates by examining the variable's mode and the shader target,
 * so it correctly identifies linkage variables regardless of whether they are
 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
 *
 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
 * this function will produce undefined results.
 */
static bool
is_varying_var(ir_variable *var, gl_shader_stage target)
{
   switch (target) {
   case MESA_SHADER_VERTEX:
      return var->data.mode == ir_var_shader_out;
   case MESA_SHADER_FRAGMENT:
      return var->data.mode == ir_var_shader_in;
   default:
      return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
   }
}


/**
 * Matrix layout qualifiers are only allowed on certain types
 */
static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
                                YYLTYPE *loc,
                                const glsl_type *type,
                                ir_variable *var)
{
   if (var && !var->is_in_uniform_block()) {
      /* Layout qualifiers may only apply to interface blocks and fields in
       * them.
       */
      _mesa_glsl_error(loc, state,
                       "uniform block layout qualifiers row_major and "
                       "column_major may not be applied to variables "
                       "outside of uniform blocks");
   } else if (!type->is_matrix()) {
      /* The OpenGL ES 3.0 conformance tests did not originally allow
       * matrix layout qualifiers on non-matrices.  However, the OpenGL
       * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
       * amended to specifically allow these layouts on all types.  Emit
       * a warning so that people know their code may not be portable.
       */
      _mesa_glsl_warning(loc, state,
                         "uniform block layout qualifiers row_major and "
                         "column_major applied to non-matrix types may "
                         "be rejected by older compilers");
   } else if (type->is_record()) {
      /* We allow 'layout(row_major)' on structure types because it's the only
       * way to get row-major layouts on matrices contained in structures.
       */
      _mesa_glsl_warning(loc, state,
                         "uniform block layout qualifiers row_major and "
                         "column_major applied to structure types is not "
                         "strictly conformant and may be rejected by other "
                         "compilers");
   }
}

static bool
validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
                           YYLTYPE *loc,
                           ir_variable *var,
                           const ast_type_qualifier *qual)
{
   if (var->data.mode != ir_var_uniform) {
      _mesa_glsl_error(loc, state,
                       "the \"binding\" qualifier only applies to uniforms");
      return false;
   }

   if (qual->binding < 0) {
      _mesa_glsl_error(loc, state, "binding values must be >= 0");
      return false;
   }

   const struct gl_context *const ctx = state->ctx;
   unsigned elements = var->type->is_array() ? var->type->length : 1;
   unsigned max_index = qual->binding + elements - 1;

   if (var->type->is_interface()) {
      /* UBOs.  From page 60 of the GLSL 4.20 specification:
       * "If the binding point for any uniform block instance is less than zero,
       *  or greater than or equal to the implementation-dependent maximum
       *  number of uniform buffer bindings, a compilation error will occur.
       *  When the binding identifier is used with a uniform block instanced as
       *  an array of size N, all elements of the array from binding through
       *  binding + N – 1 must be within this range."
       *
       * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
       */
      if (max_index >= ctx->Const.MaxUniformBufferBindings) {
         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
                          "the maximum number of UBO binding points (%d)",
                          qual->binding, elements,
                          ctx->Const.MaxUniformBufferBindings);
         return false;
      }
   } else if (var->type->is_sampler() ||
              (var->type->is_array() && var->type->fields.array->is_sampler())) {
      /* Samplers.  From page 63 of the GLSL 4.20 specification:
       * "If the binding is less than zero, or greater than or equal to the
       *  implementation-dependent maximum supported number of units, a
       *  compilation error will occur. When the binding identifier is used
       *  with an array of size N, all elements of the array from binding
       *  through binding + N - 1 must be within this range."
       */
      unsigned limit = ctx->Const.Program[state->stage].MaxTextureImageUnits;

      if (max_index >= limit) {
         _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
                          "exceeds the maximum number of texture image units "
                          "(%d)", qual->binding, elements, limit);

         return false;
      }
   } else if (var->type->contains_atomic()) {
      assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
      if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
         _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
                          " maximum number of atomic counter buffer bindings"
                          "(%d)", qual->binding,
                          ctx->Const.MaxAtomicBufferBindings);

         return false;
      }
   } else {
      _mesa_glsl_error(loc, state,
                       "the \"binding\" qualifier only applies to uniform "
                       "blocks, samplers, atomic counters, or arrays thereof");
      return false;
   }

   return true;
}


static glsl_interp_qualifier
interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
                                  ir_variable_mode mode,
                                  struct _mesa_glsl_parse_state *state,
                                  YYLTYPE *loc)
{
   glsl_interp_qualifier interpolation;
   if (qual->flags.q.flat)
      interpolation = INTERP_QUALIFIER_FLAT;
   else if (qual->flags.q.noperspective)
      interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
   else if (qual->flags.q.smooth)
      interpolation = INTERP_QUALIFIER_SMOOTH;
   else
      interpolation = INTERP_QUALIFIER_NONE;

   if (interpolation != INTERP_QUALIFIER_NONE) {
      if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
         _mesa_glsl_error(loc, state,
                          "interpolation qualifier `%s' can only be applied to "
                          "shader inputs or outputs.",
                          interpolation_string(interpolation));

      }

      if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
          (state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
         _mesa_glsl_error(loc, state,
                          "interpolation qualifier `%s' cannot be applied to "
                          "vertex shader inputs or fragment shader outputs",
                          interpolation_string(interpolation));
      }
   }

   return interpolation;
}


static void
validate_explicit_location(const struct ast_type_qualifier *qual,
                           ir_variable *var,
                           struct _mesa_glsl_parse_state *state,
                           YYLTYPE *loc)
{
   bool fail = false;

   /* Checks for GL_ARB_explicit_uniform_location. */
   if (qual->flags.q.uniform) {
      if (!state->check_explicit_uniform_location_allowed(loc, var))
         return;

      const struct gl_context *const ctx = state->ctx;
      unsigned max_loc = qual->location + var->type->uniform_locations() - 1;

      /* ARB_explicit_uniform_location specification states:
       *
       *     "The explicitly defined locations and the generated locations
       *     must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
       *
       *     "Valid locations for default-block uniform variable locations
       *     are in the range of 0 to the implementation-defined maximum
       *     number of uniform locations."
       */
      if (qual->location < 0) {
         _mesa_glsl_error(loc, state,
                          "explicit location < 0 for uniform %s", var->name);
         return;
      }

      if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
         _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
                          ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
                          ctx->Const.MaxUserAssignableUniformLocations);
         return;
      }

      var->data.explicit_location = true;
      var->data.location = qual->location;
      return;
   }

   /* Between GL_ARB_explicit_attrib_location an
    * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
    * stage can be assigned explicit locations.  The checking here associates
    * the correct extension with the correct stage's input / output:
    *
    *                     input            output
    *                     -----            ------
    * vertex              explicit_loc     sso
    * geometry            sso              sso
    * fragment            sso              explicit_loc
    */
   switch (state->stage) {
   case MESA_SHADER_VERTEX:
      if (var->data.mode == ir_var_shader_in) {
         if (!state->check_explicit_attrib_location_allowed(loc, var))
            return;

         break;
      }

      if (var->data.mode == ir_var_shader_out) {
         if (!state->check_separate_shader_objects_allowed(loc, var))
            return;

         break;
      }

      fail = true;
      break;

   case MESA_SHADER_GEOMETRY:
      if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
         if (!state->check_separate_shader_objects_allowed(loc, var))
            return;

         break;
      }

      fail = true;
      break;

   case MESA_SHADER_FRAGMENT:
      if (var->data.mode == ir_var_shader_in) {
         if (!state->check_separate_shader_objects_allowed(loc, var))
            return;

         break;
      }

      if (var->data.mode == ir_var_shader_out) {
         if (!state->check_explicit_attrib_location_allowed(loc, var))
            return;

         break;
      }

      fail = true;
      break;

   case MESA_SHADER_COMPUTE:
      _mesa_glsl_error(loc, state,
                       "compute shader variables cannot be given "
                       "explicit locations");
      return;
   };

   if (fail) {
      _mesa_glsl_error(loc, state,
                       "%s cannot be given an explicit location in %s shader",
                       mode_string(var),
      _mesa_shader_stage_to_string(state->stage));
   } else {
      var->data.explicit_location = true;

      /* This bit of silliness is needed because invalid explicit locations
       * are supposed to be flagged during linking.  Small negative values
       * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
       * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
       * The linker needs to be able to differentiate these cases.  This
       * ensures that negative values stay negative.
       */
      if (qual->location >= 0) {
         switch (state->stage) {
         case MESA_SHADER_VERTEX:
            var->data.location = (var->data.mode == ir_var_shader_in)
               ? (qual->location + VERT_ATTRIB_GENERIC0)
               : (qual->location + VARYING_SLOT_VAR0);
            break;

         case MESA_SHADER_GEOMETRY:
            var->data.location = qual->location + VARYING_SLOT_VAR0;
            break;

         case MESA_SHADER_FRAGMENT:
            var->data.location = (var->data.mode == ir_var_shader_out)
               ? (qual->location + FRAG_RESULT_DATA0)
               : (qual->location + VARYING_SLOT_VAR0);
            break;
         case MESA_SHADER_COMPUTE:
            assert(!"Unexpected shader type");
            break;
         }
      } else {
         var->data.location = qual->location;
      }

      if (qual->flags.q.explicit_index) {
         /* From the GLSL 4.30 specification, section 4.4.2 (Output
          * Layout Qualifiers):
          *
          * "It is also a compile-time error if a fragment shader
          *  sets a layout index to less than 0 or greater than 1."
          *
          * Older specifications don't mandate a behavior; we take
          * this as a clarification and always generate the error.
          */
         if (qual->index < 0 || qual->index > 1) {
            _mesa_glsl_error(loc, state,
                             "explicit index may only be 0 or 1");
         } else {
            var->data.explicit_index = true;
            var->data.index = qual->index;
         }
      }
   }
}

static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
                                  ir_variable *var,
                                  struct _mesa_glsl_parse_state *state,
                                  YYLTYPE *loc)
{
   const glsl_type *base_type =
      (var->type->is_array() ? var->type->element_type() : var->type);

   if (base_type->is_image()) {
      if (var->data.mode != ir_var_uniform &&
          var->data.mode != ir_var_function_in) {
         _mesa_glsl_error(loc, state, "image variables may only be declared as "
                          "function parameters or uniform-qualified "
                          "global variables");
      }

      var->data.image_read_only |= qual->flags.q.read_only;
      var->data.image_write_only |= qual->flags.q.write_only;
      var->data.image_coherent |= qual->flags.q.coherent;
      var->data.image_volatile |= qual->flags.q._volatile;
      var->data.image_restrict |= qual->flags.q.restrict_flag;
      var->data.read_only = true;

      if (qual->flags.q.explicit_image_format) {
         if (var->data.mode == ir_var_function_in) {
            _mesa_glsl_error(loc, state, "format qualifiers cannot be "
                             "used on image function parameters");
         }

         if (qual->image_base_type != base_type->sampler_type) {
            _mesa_glsl_error(loc, state, "format qualifier doesn't match the "
                             "base data type of the image");
         }

         var->data.image_format = qual->image_format;
      } else {
         if (var->data.mode == ir_var_uniform && !qual->flags.q.write_only) {
            _mesa_glsl_error(loc, state, "uniforms not qualified with "
                             "`writeonly' must have a format layout "
                             "qualifier");
         }

         var->data.image_format = GL_NONE;
      }
   }
}

static inline const char*
get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
{
   if (origin_upper_left && pixel_center_integer)
      return "origin_upper_left, pixel_center_integer";
   else if (origin_upper_left)
      return "origin_upper_left";
   else if (pixel_center_integer)
      return "pixel_center_integer";
   else
      return " ";
}

static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
                                       const struct ast_type_qualifier *qual)
{
   /* If gl_FragCoord was previously declared, and the qualifiers were
    * different in any way, return true.
    */
   if (state->fs_redeclares_gl_fragcoord) {
      return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
         || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
   }

   return false;
}

static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
                                 ir_variable *var,
                                 struct _mesa_glsl_parse_state *state,
                                 YYLTYPE *loc,
                                 bool is_parameter)
{
   STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));

   if (qual->flags.q.invariant) {
      if (var->data.used) {
         _mesa_glsl_error(loc, state,
                          "variable `%s' may not be redeclared "
                          "`invariant' after being used",
                          var->name);
      } else {
         var->data.invariant = 1;
      }
   }

   if (qual->flags.q.precise) {
      if (var->data.used) {
         _mesa_glsl_error(loc, state,
                          "variable `%s' may not be redeclared "
                          "`precise' after being used",
                          var->name);
      } else {
         var->data.precise = 1;
      }
   }

   if (qual->flags.q.constant || qual->flags.q.attribute
       || qual->flags.q.uniform
       || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
      var->data.read_only = 1;

   if (qual->flags.q.centroid)
      var->data.centroid = 1;

   if (qual->flags.q.sample)
      var->data.sample = 1;

   if (state->stage == MESA_SHADER_GEOMETRY &&
       qual->flags.q.out && qual->flags.q.stream) {
      var->data.stream = qual->stream;
   }

   if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
      var->type = glsl_type::error_type;
      _mesa_glsl_error(loc, state,
                       "`attribute' variables may not be declared in the "
                       "%s shader",
                       _mesa_shader_stage_to_string(state->stage));
   }

   /* Disallow layout qualifiers which may only appear on layout declarations. */
   if (qual->flags.q.prim_type) {
      _mesa_glsl_error(loc, state,
                       "Primitive type may only be specified on GS input or output "
                       "layout declaration, not on variables.");
   }

   /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
    *
    *     "However, the const qualifier cannot be used with out or inout."
    *
    * The same section of the GLSL 4.40 spec further clarifies this saying:
    *
    *     "The const qualifier cannot be used with out or inout, or a
    *     compile-time error results."
    */
   if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
      _mesa_glsl_error(loc, state,
                       "`const' may not be applied to `out' or `inout' "
                       "function parameters");
   }

   /* If there is no qualifier that changes the mode of the variable, leave
    * the setting alone.
    */
   if (qual->flags.q.in && qual->flags.q.out)
      var->data.mode = ir_var_function_inout;
   else if (qual->flags.q.in)
      var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
   else if (qual->flags.q.attribute
	    || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
      var->data.mode = ir_var_shader_in;
   else if (qual->flags.q.out)
      var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
   else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
      var->data.mode = ir_var_shader_out;
   else if (qual->flags.q.uniform)
      var->data.mode = ir_var_uniform;

   if (!is_parameter && is_varying_var(var, state->stage)) {
      /* User-defined ins/outs are not permitted in compute shaders. */
      if (state->stage == MESA_SHADER_COMPUTE) {
         _mesa_glsl_error(loc, state,
                          "user-defined input and output variables are not "
                          "permitted in compute shaders");
      }

      /* This variable is being used to link data between shader stages (in
       * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
       * that is allowed for such purposes.
       *
       * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
       *
       *     "The varying qualifier can be used only with the data types
       *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
       *     these."
       *
       * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
       * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
       *
       *     "Fragment inputs can only be signed and unsigned integers and
       *     integer vectors, float, floating-point vectors, matrices, or
       *     arrays of these. Structures cannot be input.
       *
       * Similar text exists in the section on vertex shader outputs.
       *
       * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
       * 3.00 spec allows structs as well.  Varying structs are also allowed
       * in GLSL 1.50.
       */
      switch (var->type->get_scalar_type()->base_type) {
      case GLSL_TYPE_FLOAT:
         /* Ok in all GLSL versions */
         break;
      case GLSL_TYPE_UINT:
      case GLSL_TYPE_INT:
         if (state->is_version(130, 300))
            break;
         _mesa_glsl_error(loc, state,
                          "varying variables must be of base type float in %s",
                          state->get_version_string());
         break;
      case GLSL_TYPE_STRUCT:
         if (state->is_version(150, 300))
            break;
         _mesa_glsl_error(loc, state,
                          "varying variables may not be of type struct");
         break;
      default:
         _mesa_glsl_error(loc, state, "illegal type for a varying variable");
         break;
      }
   }

   if (state->all_invariant && (state->current_function == NULL)) {
      switch (state->stage) {
      case MESA_SHADER_VERTEX:
         if (var->data.mode == ir_var_shader_out)
            var->data.invariant = true;
	      break;
      case MESA_SHADER_GEOMETRY:
         if ((var->data.mode == ir_var_shader_in)
             || (var->data.mode == ir_var_shader_out))
            var->data.invariant = true;
         break;
      case MESA_SHADER_FRAGMENT:
         if (var->data.mode == ir_var_shader_in)
            var->data.invariant = true;
         break;
      case MESA_SHADER_COMPUTE:
         /* Invariance isn't meaningful in compute shaders. */
         break;
      }
   }

   var->data.interpolation =
      interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
                                        state, loc);

   var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
   var->data.origin_upper_left = qual->flags.q.origin_upper_left;
   if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
       && (strcmp(var->name, "gl_FragCoord") != 0)) {
      const char *const qual_string = (qual->flags.q.origin_upper_left)
         ? "origin_upper_left" : "pixel_center_integer";

      _mesa_glsl_error(loc, state,
		       "layout qualifier `%s' can only be applied to "
		       "fragment shader input `gl_FragCoord'",
		       qual_string);
   }

   if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {

      /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
       *
       *    "Within any shader, the first redeclarations of gl_FragCoord
       *     must appear before any use of gl_FragCoord."
       *
       * Generate a compiler error if above condition is not met by the
       * fragment shader.
       */
      ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
      if (earlier != NULL &&
          earlier->data.used &&
          !state->fs_redeclares_gl_fragcoord) {
         _mesa_glsl_error(loc, state,
                          "gl_FragCoord used before its first redeclaration "
                          "in fragment shader");
      }

      /* Make sure all gl_FragCoord redeclarations specify the same layout
       * qualifiers.
       */
      if (is_conflicting_fragcoord_redeclaration(state, qual)) {
         const char *const qual_string =
            get_layout_qualifier_string(qual->flags.q.origin_upper_left,
                                        qual->flags.q.pixel_center_integer);

         const char *const state_string =
            get_layout_qualifier_string(state->fs_origin_upper_left,
                                        state->fs_pixel_center_integer);

         _mesa_glsl_error(loc, state,
                          "gl_FragCoord redeclared with different layout "
                          "qualifiers (%s) and (%s) ",
                          state_string,
                          qual_string);
      }
      state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
      state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
      state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
         !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
      state->fs_redeclares_gl_fragcoord =
         state->fs_origin_upper_left ||
         state->fs_pixel_center_integer ||
         state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
   }

   if (qual->flags.q.explicit_location) {
      validate_explicit_location(qual, var, state, loc);
   } else if (qual->flags.q.explicit_index) {
      _mesa_glsl_error(loc, state, "explicit index requires explicit location");
   }

   if (qual->flags.q.explicit_binding &&
       validate_binding_qualifier(state, loc, var, qual)) {
      var->data.explicit_binding = true;
      var->data.binding = qual->binding;
   }

   if (var->type->contains_atomic()) {
      if (var->data.mode == ir_var_uniform) {
         if (var->data.explicit_binding) {
            unsigned *offset =
               &state->atomic_counter_offsets[var->data.binding];

            if (*offset % ATOMIC_COUNTER_SIZE)
               _mesa_glsl_error(loc, state,
                                "misaligned atomic counter offset");

            var->data.atomic.offset = *offset;
            *offset += var->type->atomic_size();

         } else {
            _mesa_glsl_error(loc, state,
                             "atomic counters require explicit binding point");
         }
      } else if (var->data.mode != ir_var_function_in) {
         _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
                          "function parameters or uniform-qualified "
                          "global variables");
      }
   }

   /* Does the declaration use the deprecated 'attribute' or 'varying'
    * keywords?
    */
   const bool uses_deprecated_qualifier = qual->flags.q.attribute
      || qual->flags.q.varying;


   /* Validate auxiliary storage qualifiers */

   /* From section 4.3.4 of the GLSL 1.30 spec:
    *    "It is an error to use centroid in in a vertex shader."
    *
    * From section 4.3.4 of the GLSL ES 3.00 spec:
    *    "It is an error to use centroid in or interpolation qualifiers in
    *    a vertex shader input."
    */

   /* Section 4.3.6 of the GLSL 1.30 specification states:
    * "It is an error to use centroid out in a fragment shader."
    *
    * The GL_ARB_shading_language_420pack extension specification states:
    * "It is an error to use auxiliary storage qualifiers or interpolation
    *  qualifiers on an output in a fragment shader."
    */
   if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
      _mesa_glsl_error(loc, state,
                       "sample qualifier may only be used on `in` or `out` "
                       "variables between shader stages");
   }
   if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
      _mesa_glsl_error(loc, state,
                       "centroid qualifier may only be used with `in', "
                       "`out' or `varying' variables between shader stages");
   }


   /* Is the 'layout' keyword used with parameters that allow relaxed checking.
    * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
    * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
    * allowed the layout qualifier to be used with 'varying' and 'attribute'.
    * These extensions and all following extensions that add the 'layout'
    * keyword have been modified to require the use of 'in' or 'out'.
    *
    * The following extension do not allow the deprecated keywords:
    *
    *    GL_AMD_conservative_depth
    *    GL_ARB_conservative_depth
    *    GL_ARB_gpu_shader5
    *    GL_ARB_separate_shader_objects
    *    GL_ARB_tesselation_shader
    *    GL_ARB_transform_feedback3
    *    GL_ARB_uniform_buffer_object
    *
    * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
    * allow layout with the deprecated keywords.
    */
   const bool relaxed_layout_qualifier_checking =
      state->ARB_fragment_coord_conventions_enable;

   if (qual->has_layout() && uses_deprecated_qualifier) {
      if (relaxed_layout_qualifier_checking) {
         _mesa_glsl_warning(loc, state,
                            "`layout' qualifier may not be used with "
                            "`attribute' or `varying'");
      } else {
         _mesa_glsl_error(loc, state,
                          "`layout' qualifier may not be used with "
                          "`attribute' or `varying'");
      }
   }

   /* Layout qualifiers for gl_FragDepth, which are enabled by extension
    * AMD_conservative_depth.
    */
   int depth_layout_count = qual->flags.q.depth_any
      + qual->flags.q.depth_greater
      + qual->flags.q.depth_less
      + qual->flags.q.depth_unchanged;
   if (depth_layout_count > 0
       && !state->AMD_conservative_depth_enable
       && !state->ARB_conservative_depth_enable) {
       _mesa_glsl_error(loc, state,
                        "extension GL_AMD_conservative_depth or "
                        "GL_ARB_conservative_depth must be enabled "
                        "to use depth layout qualifiers");
   } else if (depth_layout_count > 0
              && strcmp(var->name, "gl_FragDepth") != 0) {
       _mesa_glsl_error(loc, state,
                        "depth layout qualifiers can be applied only to "
                        "gl_FragDepth");
   } else if (depth_layout_count > 1
              && strcmp(var->name, "gl_FragDepth") == 0) {
      _mesa_glsl_error(loc, state,
                       "at most one depth layout qualifier can be applied to "
                       "gl_FragDepth");
   }
   if (qual->flags.q.depth_any)
      var->data.depth_layout = ir_depth_layout_any;
   else if (qual->flags.q.depth_greater)
      var->data.depth_layout = ir_depth_layout_greater;
   else if (qual->flags.q.depth_less)
      var->data.depth_layout = ir_depth_layout_less;
   else if (qual->flags.q.depth_unchanged)
       var->data.depth_layout = ir_depth_layout_unchanged;
   else
       var->data.depth_layout = ir_depth_layout_none;

   if (qual->flags.q.std140 ||
       qual->flags.q.packed ||
       qual->flags.q.shared) {
      _mesa_glsl_error(loc, state,
                       "uniform block layout qualifiers std140, packed, and "
                       "shared can only be applied to uniform blocks, not "
                       "members");
   }

   if (qual->flags.q.row_major || qual->flags.q.column_major) {
      validate_matrix_layout_for_type(state, loc, var->type, var);
   }

   if (var->type->contains_image())
      apply_image_qualifier_to_variable(qual, var, state, loc);
}

/**
 * Get the variable that is being redeclared by this declaration
 *
 * Semantic checks to verify the validity of the redeclaration are also
 * performed.  If semantic checks fail, compilation error will be emitted via
 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
 *
 * \returns
 * A pointer to an existing variable in the current scope if the declaration
 * is a redeclaration, \c NULL otherwise.
 */
static ir_variable *
get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
                              struct _mesa_glsl_parse_state *state,
                              bool allow_all_redeclarations)
{
   /* Check if this declaration is actually a re-declaration, either to
    * resize an array or add qualifiers to an existing variable.
    *
    * This is allowed for variables in the current scope, or when at
    * global scope (for built-ins in the implicit outer scope).
    */
   ir_variable *earlier = state->symbols->get_variable(var->name);
   if (earlier == NULL ||
       (state->current_function != NULL &&
       !state->symbols->name_declared_this_scope(var->name))) {
      return NULL;
   }


   /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
    *
    * "It is legal to declare an array without a size and then
    *  later re-declare the same name as an array of the same
    *  type and specify a size."
    */
   if (earlier->type->is_unsized_array() && var->type->is_array()
       && (var->type->element_type() == earlier->type->element_type())) {
      /* FINISHME: This doesn't match the qualifiers on the two
       * FINISHME: declarations.  It's not 100% clear whether this is
       * FINISHME: required or not.
       */

      const unsigned size = unsigned(var->type->array_size());
      check_builtin_array_max_size(var->name, size, loc, state);
      if ((size > 0) && (size <= earlier->data.max_array_access)) {
         _mesa_glsl_error(& loc, state, "array size must be > %u due to "
                          "previous access",
                          earlier->data.max_array_access);
      }

      earlier->type = var->type;
      delete var;
      var = NULL;
   } else if ((state->ARB_fragment_coord_conventions_enable ||
              state->is_version(150, 0))
              && strcmp(var->name, "gl_FragCoord") == 0
              && earlier->type == var->type
              && earlier->data.mode == var->data.mode) {
      /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
       * qualifiers.
       */
      earlier->data.origin_upper_left = var->data.origin_upper_left;
      earlier->data.pixel_center_integer = var->data.pixel_center_integer;

      /* According to section 4.3.7 of the GLSL 1.30 spec,
       * the following built-in varaibles can be redeclared with an
       * interpolation qualifier:
       *    * gl_FrontColor
       *    * gl_BackColor
       *    * gl_FrontSecondaryColor
       *    * gl_BackSecondaryColor
       *    * gl_Color
       *    * gl_SecondaryColor
       */
   } else if (state->is_version(130, 0)
              && (strcmp(var->name, "gl_FrontColor") == 0
                  || strcmp(var->name, "gl_BackColor") == 0
                  || strcmp(var->name, "gl_FrontSecondaryColor") == 0
                  || strcmp(var->name, "gl_BackSecondaryColor") == 0
                  || strcmp(var->name, "gl_Color") == 0
                  || strcmp(var->name, "gl_SecondaryColor") == 0)
              && earlier->type == var->type
              && earlier->data.mode == var->data.mode) {
      earlier->data.interpolation = var->data.interpolation;

      /* Layout qualifiers for gl_FragDepth. */
   } else if ((state->AMD_conservative_depth_enable ||
               state->ARB_conservative_depth_enable)
              && strcmp(var->name, "gl_FragDepth") == 0
              && earlier->type == var->type
              && earlier->data.mode == var->data.mode) {

      /** From the AMD_conservative_depth spec:
       *     Within any shader, the first redeclarations of gl_FragDepth
       *     must appear before any use of gl_FragDepth.
       */
      if (earlier->data.used) {
         _mesa_glsl_error(&loc, state,
                          "the first redeclaration of gl_FragDepth "
                          "must appear before any use of gl_FragDepth");
      }

      /* Prevent inconsistent redeclaration of depth layout qualifier. */
      if (earlier->data.depth_layout != ir_depth_layout_none
          && earlier->data.depth_layout != var->data.depth_layout) {
            _mesa_glsl_error(&loc, state,
                             "gl_FragDepth: depth layout is declared here "
                             "as '%s, but it was previously declared as "
                             "'%s'",
                             depth_layout_string(var->data.depth_layout),
                             depth_layout_string(earlier->data.depth_layout));
      }

      earlier->data.depth_layout = var->data.depth_layout;

   } else if (allow_all_redeclarations) {
      if (earlier->data.mode != var->data.mode) {
         _mesa_glsl_error(&loc, state,
                          "redeclaration of `%s' with incorrect qualifiers",
                          var->name);
      } else if (earlier->type != var->type) {
         _mesa_glsl_error(&loc, state,
                          "redeclaration of `%s' has incorrect type",
                          var->name);
      }
   } else {
      _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
   }

   return earlier;
}

/**
 * Generate the IR for an initializer in a variable declaration
 */
ir_rvalue *
process_initializer(ir_variable *var, ast_declaration *decl,
		    ast_fully_specified_type *type,
		    exec_list *initializer_instructions,
		    struct _mesa_glsl_parse_state *state)
{
   ir_rvalue *result = NULL;

   YYLTYPE initializer_loc = decl->initializer->get_location();

   /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
    *
    *    "All uniform variables are read-only and are initialized either
    *    directly by an application via API commands, or indirectly by
    *    OpenGL."
    */
   if (var->data.mode == ir_var_uniform) {
      state->check_version(120, 0, &initializer_loc,
                           "cannot initialize uniforms");
   }

   /* From section 4.1.7 of the GLSL 4.40 spec:
    *
    *    "Opaque variables [...] are initialized only through the
    *     OpenGL API; they cannot be declared with an initializer in a
    *     shader."
    */
   if (var->type->contains_opaque()) {
      _mesa_glsl_error(& initializer_loc, state,
                       "cannot initialize opaque variable");
   }

   if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
      _mesa_glsl_error(& initializer_loc, state,
		       "cannot initialize %s shader input / %s",
		       _mesa_shader_stage_to_string(state->stage),
		       (state->stage == MESA_SHADER_VERTEX)
		       ? "attribute" : "varying");
   }

   /* If the initializer is an ast_aggregate_initializer, recursively store
    * type information from the LHS into it, so that its hir() function can do
    * type checking.
    */
   if (decl->initializer->oper == ast_aggregate)
      _mesa_ast_set_aggregate_type(var->type, decl->initializer);

   ir_dereference *const lhs = new(state) ir_dereference_variable(var);
   ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);

   /* Calculate the constant value if this is a const or uniform
    * declaration.
    */
   if (type->qualifier.flags.q.constant
       || type->qualifier.flags.q.uniform) {
      ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
                                               var->type, rhs, true);
      if (new_rhs != NULL) {
         rhs = new_rhs;

         ir_constant *constant_value = rhs->constant_expression_value();
         if (!constant_value) {
            /* If ARB_shading_language_420pack is enabled, initializers of
             * const-qualified local variables do not have to be constant
             * expressions. Const-qualified global variables must still be
             * initialized with constant expressions.
             */
            if (!state->ARB_shading_language_420pack_enable
                || state->current_function == NULL) {
               _mesa_glsl_error(& initializer_loc, state,
                                "initializer of %s variable `%s' must be a "
                                "constant expression",
                                (type->qualifier.flags.q.constant)
                                ? "const" : "uniform",
                                decl->identifier);
               if (var->type->is_numeric()) {
                  /* Reduce cascading errors. */
                  var->constant_value = ir_constant::zero(state, var->type);
               }
            }
         } else {
            rhs = constant_value;
            var->constant_value = constant_value;
         }
      } else {
         if (var->type->is_numeric()) {
            /* Reduce cascading errors. */
            var->constant_value = ir_constant::zero(state, var->type);
         }
      }
   }

   if (rhs && !rhs->type->is_error()) {
      bool temp = var->data.read_only;
      if (type->qualifier.flags.q.constant)
         var->data.read_only = false;

      /* Never emit code to initialize a uniform.
       */
      const glsl_type *initializer_type;
      if (!type->qualifier.flags.q.uniform) {
         do_assignment(initializer_instructions, state,
                       NULL,
                       lhs, rhs,
                       &result, true,
                       true,
                       type->get_location());
         initializer_type = result->type;
      } else
         initializer_type = rhs->type;

      var->constant_initializer = rhs->constant_expression_value();
      var->data.has_initializer = true;

      /* If the declared variable is an unsized array, it must inherrit
       * its full type from the initializer.  A declaration such as
       *
       *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
       *
       * becomes
       *
       *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
       *
       * The assignment generated in the if-statement (below) will also
       * automatically handle this case for non-uniforms.
       *
       * If the declared variable is not an array, the types must
       * already match exactly.  As a result, the type assignment
       * here can be done unconditionally.  For non-uniforms the call
       * to do_assignment can change the type of the initializer (via
       * the implicit conversion rules).  For uniforms the initializer
       * must be a constant expression, and the type of that expression
       * was validated above.
       */
      var->type = initializer_type;

      var->data.read_only = temp;
   }

   return result;
}


/**
 * Do additional processing necessary for geometry shader input declarations
 * (this covers both interface blocks arrays and bare input variables).
 */
static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
                                  YYLTYPE loc, ir_variable *var)
{
   unsigned num_vertices = 0;
   if (state->gs_input_prim_type_specified) {
      num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
   }

   /* Geometry shader input variables must be arrays.  Caller should have
    * reported an error for this.
    */
   if (!var->type->is_array()) {
      assert(state->error);

      /* To avoid cascading failures, short circuit the checks below. */
      return;
   }

   if (var->type->is_unsized_array()) {
      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
       *
       *   All geometry shader input unsized array declarations will be
       *   sized by an earlier input layout qualifier, when present, as per
       *   the following table.
       *
       * Followed by a table mapping each allowed input layout qualifier to
       * the corresponding input length.
       */
      if (num_vertices != 0)
         var->type = glsl_type::get_array_instance(var->type->fields.array,
                                                   num_vertices);
   } else {
      /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
       * includes the following examples of compile-time errors:
       *
       *   // code sequence within one shader...
       *   in vec4 Color1[];    // size unknown
       *   ...Color1.length()...// illegal, length() unknown
       *   in vec4 Color2[2];   // size is 2
       *   ...Color1.length()...// illegal, Color1 still has no size
       *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
       *   layout(lines) in;    // legal, input size is 2, matching
       *   in vec4 Color4[3];   // illegal, contradicts layout
       *   ...
       *
       * To detect the case illustrated by Color3, we verify that the size of
       * an explicitly-sized array matches the size of any previously declared
       * explicitly-sized array.  To detect the case illustrated by Color4, we
       * verify that the size of an explicitly-sized array is consistent with
       * any previously declared input layout.
       */
      if (num_vertices != 0 && var->type->length != num_vertices) {
         _mesa_glsl_error(&loc, state,
                          "geometry shader input size contradicts previously"
                          " declared layout (size is %u, but layout requires a"
                          " size of %u)", var->type->length, num_vertices);
      } else if (state->gs_input_size != 0 &&
                 var->type->length != state->gs_input_size) {
         _mesa_glsl_error(&loc, state,
                          "geometry shader input sizes are "
                          "inconsistent (size is %u, but a previous "
                          "declaration has size %u)",
                          var->type->length, state->gs_input_size);
      } else {
         state->gs_input_size = var->type->length;
      }
   }
}


void
validate_identifier(const char *identifier, YYLTYPE loc,
                    struct _mesa_glsl_parse_state *state)
{
   /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
    *
    *   "Identifiers starting with "gl_" are reserved for use by
    *   OpenGL, and may not be declared in a shader as either a
    *   variable or a function."
    */
   if (is_gl_identifier(identifier)) {
      _mesa_glsl_error(&loc, state,
                       "identifier `%s' uses reserved `gl_' prefix",
                       identifier);
   } else if (strstr(identifier, "__")) {
      /* From page 14 (page 20 of the PDF) of the GLSL 1.10
       * spec:
       *
       *     "In addition, all identifiers containing two
       *      consecutive underscores (__) are reserved as
       *      possible future keywords."
       *
       * The intention is that names containing __ are reserved for internal
       * use by the implementation, and names prefixed with GL_ are reserved
       * for use by Khronos.  Names simply containing __ are dangerous to use,
       * but should be allowed.
       *
       * A future version of the GLSL specification will clarify this.
       */
      _mesa_glsl_warning(&loc, state,
                         "identifier `%s' uses reserved `__' string",
                         identifier);
   }
}


ir_rvalue *
ast_declarator_list::hir(exec_list *instructions,
                         struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   const struct glsl_type *decl_type;
   const char *type_name = NULL;
   ir_rvalue *result = NULL;
   YYLTYPE loc = this->get_location();

   /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
    *
    *     "To ensure that a particular output variable is invariant, it is
    *     necessary to use the invariant qualifier. It can either be used to
    *     qualify a previously declared variable as being invariant
    *
    *         invariant gl_Position; // make existing gl_Position be invariant"
    *
    * In these cases the parser will set the 'invariant' flag in the declarator
    * list, and the type will be NULL.
    */
   if (this->invariant) {
      assert(this->type == NULL);

      if (state->current_function != NULL) {
         _mesa_glsl_error(& loc, state,
                          "all uses of `invariant' keyword must be at global "
                          "scope");
      }

      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
         assert(decl->array_specifier == NULL);
         assert(decl->initializer == NULL);

         ir_variable *const earlier =
            state->symbols->get_variable(decl->identifier);
         if (earlier == NULL) {
            _mesa_glsl_error(& loc, state,
                             "undeclared variable `%s' cannot be marked "
                             "invariant", decl->identifier);
         } else if (!is_varying_var(earlier, state->stage)) {
            _mesa_glsl_error(&loc, state,
                             "`%s' cannot be marked invariant; interfaces between "
                             "shader stages only.", decl->identifier);
         } else if (earlier->data.used) {
            _mesa_glsl_error(& loc, state,
                            "variable `%s' may not be redeclared "
                            "`invariant' after being used",
                            earlier->name);
         } else {
            earlier->data.invariant = true;
         }
      }

      /* Invariant redeclarations do not have r-values.
       */
      return NULL;
   }

   if (this->precise) {
      assert(this->type == NULL);

      foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
         assert(decl->array_specifier == NULL);
         assert(decl->initializer == NULL);

         ir_variable *const earlier =
            state->symbols->get_variable(decl->identifier);
         if (earlier == NULL) {
            _mesa_glsl_error(& loc, state,
                             "undeclared variable `%s' cannot be marked "
                             "precise", decl->identifier);
         } else if (state->current_function != NULL &&
                    !state->symbols->name_declared_this_scope(decl->identifier)) {
            /* Note: we have to check if we're in a function, since
             * builtins are treated as having come from another scope.
             */
            _mesa_glsl_error(& loc, state,
                             "variable `%s' from an outer scope may not be "
                             "redeclared `precise' in this scope",
                             earlier->name);
         } else if (earlier->data.used) {
            _mesa_glsl_error(& loc, state,
                             "variable `%s' may not be redeclared "
                             "`precise' after being used",
                             earlier->name);
         } else {
            earlier->data.precise = true;
         }
      }

      /* Precise redeclarations do not have r-values either. */
      return NULL;
   }

   assert(this->type != NULL);
   assert(!this->invariant);
   assert(!this->precise);

   /* The type specifier may contain a structure definition.  Process that
    * before any of the variable declarations.
    */
   (void) this->type->specifier->hir(instructions, state);

   decl_type = this->type->glsl_type(& type_name, state);

   /* An offset-qualified atomic counter declaration sets the default
    * offset for the next declaration within the same atomic counter
    * buffer.
    */
   if (decl_type && decl_type->contains_atomic()) {
      if (type->qualifier.flags.q.explicit_binding &&
          type->qualifier.flags.q.explicit_offset)
         state->atomic_counter_offsets[type->qualifier.binding] =
            type->qualifier.offset;
   }

   if (this->declarations.is_empty()) {
      /* If there is no structure involved in the program text, there are two
       * possible scenarios:
       *
       * - The program text contained something like 'vec4;'.  This is an
       *   empty declaration.  It is valid but weird.  Emit a warning.
       *
       * - The program text contained something like 'S;' and 'S' is not the
       *   name of a known structure type.  This is both invalid and weird.
       *   Emit an error.
       *
       * - The program text contained something like 'mediump float;'
       *   when the programmer probably meant 'precision mediump
       *   float;' Emit a warning with a description of what they
       *   probably meant to do.
       *
       * Note that if decl_type is NULL and there is a structure involved,
       * there must have been some sort of error with the structure.  In this
       * case we assume that an error was already generated on this line of
       * code for the structure.  There is no need to generate an additional,
       * confusing error.
       */
      assert(this->type->specifier->structure == NULL || decl_type != NULL
	     || state->error);

      if (decl_type == NULL) {
         _mesa_glsl_error(&loc, state,
                          "invalid type `%s' in empty declaration",
                          type_name);
      } else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
         /* Empty atomic counter declarations are allowed and useful
          * to set the default offset qualifier.
          */
         return NULL;
      } else if (this->type->qualifier.precision != ast_precision_none) {
         if (this->type->specifier->structure != NULL) {
            _mesa_glsl_error(&loc, state,
                             "precision qualifiers can't be applied "
                             "to structures");
         } else {
            static const char *const precision_names[] = {
               "highp",
               "highp",
               "mediump",
               "lowp"
            };

            _mesa_glsl_warning(&loc, state,
                               "empty declaration with precision qualifier, "
                               "to set the default precision, use "
                               "`precision %s %s;'",
                               precision_names[this->type->qualifier.precision],
                               type_name);
         }
      } else if (this->type->specifier->structure == NULL) {
         _mesa_glsl_warning(&loc, state, "empty declaration");
      }
   }

   foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
      const struct glsl_type *var_type;
      ir_variable *var;

      /* FINISHME: Emit a warning if a variable declaration shadows a
       * FINISHME: declaration at a higher scope.
       */

      if ((decl_type == NULL) || decl_type->is_void()) {
         if (type_name != NULL) {
            _mesa_glsl_error(& loc, state,
                             "invalid type `%s' in declaration of `%s'",
                             type_name, decl->identifier);
         } else {
            _mesa_glsl_error(& loc, state,
                             "invalid type in declaration of `%s'",
                             decl->identifier);
         }
         continue;
      }

      var_type = process_array_type(&loc, decl_type, decl->array_specifier,
                                    state);

      var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);

      /* The 'varying in' and 'varying out' qualifiers can only be used with
       * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
       * yet.
       */
      if (this->type->qualifier.flags.q.varying) {
         if (this->type->qualifier.flags.q.in) {
            _mesa_glsl_error(& loc, state,
                             "`varying in' qualifier in declaration of "
                             "`%s' only valid for geometry shaders using "
                             "ARB_geometry_shader4 or EXT_geometry_shader4",
                             decl->identifier);
         } else if (this->type->qualifier.flags.q.out) {
            _mesa_glsl_error(& loc, state,
                             "`varying out' qualifier in declaration of "
                             "`%s' only valid for geometry shaders using "
                             "ARB_geometry_shader4 or EXT_geometry_shader4",
                             decl->identifier);
         }
      }

      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
       *
       *     "Global variables can only use the qualifiers const,
       *     attribute, uniform, or varying. Only one may be
       *     specified.
       *
       *     Local variables can only use the qualifier const."
       *
       * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
       * any extension that adds the 'layout' keyword.
       */
      if (!state->is_version(130, 300)
          && !state->has_explicit_attrib_location()
          && !state->has_separate_shader_objects()
          && !state->ARB_fragment_coord_conventions_enable) {
         if (this->type->qualifier.flags.q.out) {
            _mesa_glsl_error(& loc, state,
                             "`out' qualifier in declaration of `%s' "
                             "only valid for function parameters in %s",
                             decl->identifier, state->get_version_string());
         }
         if (this->type->qualifier.flags.q.in) {
            _mesa_glsl_error(& loc, state,
                             "`in' qualifier in declaration of `%s' "
                             "only valid for function parameters in %s",
                             decl->identifier, state->get_version_string());
         }
         /* FINISHME: Test for other invalid qualifiers. */
      }

      apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
				       & loc, false);

      if (this->type->qualifier.flags.q.invariant) {
         if (!is_varying_var(var, state->stage)) {
            _mesa_glsl_error(&loc, state,
                             "`%s' cannot be marked invariant; interfaces between "
                             "shader stages only", var->name);
         }
      }

      if (state->current_function != NULL) {
         const char *mode = NULL;
         const char *extra = "";

         /* There is no need to check for 'inout' here because the parser will
          * only allow that in function parameter lists.
          */
         if (this->type->qualifier.flags.q.attribute) {
            mode = "attribute";
         } else if (this->type->qualifier.flags.q.uniform) {
            mode = "uniform";
         } else if (this->type->qualifier.flags.q.varying) {
            mode = "varying";
         } else if (this->type->qualifier.flags.q.in) {
            mode = "in";
            extra = " or in function parameter list";
         } else if (this->type->qualifier.flags.q.out) {
            mode = "out";
            extra = " or in function parameter list";
         }

         if (mode) {
            _mesa_glsl_error(& loc, state,
                             "%s variable `%s' must be declared at "
                             "global scope%s",
                             mode, var->name, extra);
         }
      } else if (var->data.mode == ir_var_shader_in) {
         var->data.read_only = true;

         if (state->stage == MESA_SHADER_VERTEX) {
            bool error_emitted = false;

            /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
             *
             *    "Vertex shader inputs can only be float, floating-point
             *    vectors, matrices, signed and unsigned integers and integer
             *    vectors. Vertex shader inputs can also form arrays of these
             *    types, but not structures."
             *
             * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
             *
             *    "Vertex shader inputs can only be float, floating-point
             *    vectors, matrices, signed and unsigned integers and integer
             *    vectors. They cannot be arrays or structures."
             *
             * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
             *
             *    "The attribute qualifier can be used only with float,
             *    floating-point vectors, and matrices. Attribute variables
             *    cannot be declared as arrays or structures."
             *
             * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
             *
             *    "Vertex shader inputs can only be float, floating-point
             *    vectors, matrices, signed and unsigned integers and integer
             *    vectors. Vertex shader inputs cannot be arrays or
             *    structures."
             */
            const glsl_type *check_type = var->type;
            while (check_type->is_array())
               check_type = check_type->element_type();

            switch (check_type->base_type) {
            case GLSL_TYPE_FLOAT:
            break;
            case GLSL_TYPE_UINT:
            case GLSL_TYPE_INT:
               if (state->is_version(120, 300))
                  break;
            /* FALLTHROUGH */
            default:
               _mesa_glsl_error(& loc, state,
                                "vertex shader input / attribute cannot have "
                                "type %s`%s'",
                                var->type->is_array() ? "array of " : "",
                                check_type->name);
               error_emitted = true;
            }

            if (!error_emitted && var->type->is_array() &&
                !state->check_version(150, 0, &loc,
                                      "vertex shader input / attribute "
                                      "cannot have array type")) {
               error_emitted = true;
            }
         } else if (state->stage == MESA_SHADER_GEOMETRY) {
            /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
             *
             *     Geometry shader input variables get the per-vertex values
             *     written out by vertex shader output variables of the same
             *     names. Since a geometry shader operates on a set of
             *     vertices, each input varying variable (or input block, see
             *     interface blocks below) needs to be declared as an array.
             */
            if (!var->type->is_array()) {
               _mesa_glsl_error(&loc, state,
                                "geometry shader inputs must be arrays");
            }

            handle_geometry_shader_input_decl(state, loc, var);
         }
      }

      /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
       * so must integer vertex outputs.
       *
       * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
       *    "Fragment shader inputs that are signed or unsigned integers or
       *    integer vectors must be qualified with the interpolation qualifier
       *    flat."
       *
       * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
       *    "Fragment shader inputs that are, or contain, signed or unsigned
       *    integers or integer vectors must be qualified with the
       *    interpolation qualifier flat."
       *
       * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
       *    "Vertex shader outputs that are, or contain, signed or unsigned
       *    integers or integer vectors must be qualified with the
       *    interpolation qualifier flat."
       *
       * Note that prior to GLSL 1.50, this requirement applied to vertex
       * outputs rather than fragment inputs.  That creates problems in the
       * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
       * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
       * apply the restriction to both vertex outputs and fragment inputs.
       *
       * Note also that the desktop GLSL specs are missing the text "or
       * contain"; this is presumably an oversight, since there is no
       * reasonable way to interpolate a fragment shader input that contains
       * an integer.
       */
      if (state->is_version(130, 300) &&
          var->type->contains_integer() &&
          var->data.interpolation != INTERP_QUALIFIER_FLAT &&
          ((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
           || (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
               && state->es_shader))) {
         const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
            "vertex output" : "fragment input";
         _mesa_glsl_error(&loc, state, "if a %s is (or contains) "
                          "an integer, then it must be qualified with 'flat'",
                          var_type);
      }


      /* Interpolation qualifiers cannot be applied to 'centroid' and
       * 'centroid varying'.
       *
       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
       *    "interpolation qualifiers may only precede the qualifiers in,
       *    centroid in, out, or centroid out in a declaration. They do not apply
       *    to the deprecated storage qualifiers varying or centroid varying."
       *
       * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
       */
      if (state->is_version(130, 0)
          && this->type->qualifier.has_interpolation()
          && this->type->qualifier.flags.q.varying) {

         const char *i = this->type->qualifier.interpolation_string();
         assert(i != NULL);
         const char *s;
         if (this->type->qualifier.flags.q.centroid)
            s = "centroid varying";
         else
            s = "varying";

         _mesa_glsl_error(&loc, state,
                          "qualifier '%s' cannot be applied to the "
                          "deprecated storage qualifier '%s'", i, s);
      }


      /* Interpolation qualifiers can only apply to vertex shader outputs and
       * fragment shader inputs.
       *
       * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
       *    "Outputs from a vertex shader (out) and inputs to a fragment
       *    shader (in) can be further qualified with one or more of these
       *    interpolation qualifiers"
       *
       * From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
       *    "These interpolation qualifiers may only precede the qualifiers
       *    in, centroid in, out, or centroid out in a declaration. They do
       *    not apply to inputs into a vertex shader or outputs from a
       *    fragment shader."
       */
      if (state->is_version(130, 300)
          && this->type->qualifier.has_interpolation()) {

         const char *i = this->type->qualifier.interpolation_string();
         assert(i != NULL);

         switch (state->stage) {
         case MESA_SHADER_VERTEX:
            if (this->type->qualifier.flags.q.in) {
               _mesa_glsl_error(&loc, state,
                                "qualifier '%s' cannot be applied to vertex "
                                "shader inputs", i);
            }
            break;
         case MESA_SHADER_FRAGMENT:
            if (this->type->qualifier.flags.q.out) {
               _mesa_glsl_error(&loc, state,
                                "qualifier '%s' cannot be applied to fragment "
                                "shader outputs", i);
            }
            break;
         default:
            break;
         }
      }


      /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
       */
      if (this->type->qualifier.precision != ast_precision_none) {
         state->check_precision_qualifiers_allowed(&loc);
      }


      /* Precision qualifiers apply to floating point, integer and sampler
       * types.
       *
       * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
       *    "Any floating point or any integer declaration can have the type
       *    preceded by one of these precision qualifiers [...] Literal
       *    constants do not have precision qualifiers. Neither do Boolean
       *    variables.
       *
       * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
       * spec also says:
       *
       *     "Precision qualifiers are added for code portability with OpenGL
       *     ES, not for functionality. They have the same syntax as in OpenGL
       *     ES."
       *
       * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
       *
       *     "uniform lowp sampler2D sampler;
       *     highp vec2 coord;
       *     ...
       *     lowp vec4 col = texture2D (sampler, coord);
       *                                            // texture2D returns lowp"
       *
       * From this, we infer that GLSL 1.30 (and later) should allow precision
       * qualifiers on sampler types just like float and integer types.
       */
      if (this->type->qualifier.precision != ast_precision_none
          && !var->type->is_float()
          && !var->type->is_integer()
          && !var->type->is_record()
          && !var->type->is_sampler()
          && !(var->type->is_array()
               && (var->type->fields.array->is_float()
                   || var->type->fields.array->is_integer()))) {

         _mesa_glsl_error(&loc, state,
                          "precision qualifiers apply only to floating point"
                          ", integer and sampler types");
      }

      /* From section 4.1.7 of the GLSL 4.40 spec:
       *
       *    "[Opaque types] can only be declared as function
       *     parameters or uniform-qualified variables."
       */
      if (var_type->contains_opaque() &&
          !this->type->qualifier.flags.q.uniform) {
         _mesa_glsl_error(&loc, state,
                          "opaque variables must be declared uniform");
      }

      /* Process the initializer and add its instructions to a temporary
       * list.  This list will be added to the instruction stream (below) after
       * the declaration is added.  This is done because in some cases (such as
       * redeclarations) the declaration may not actually be added to the
       * instruction stream.
       */
      exec_list initializer_instructions;

      /* Examine var name here since var may get deleted in the next call */
      bool var_is_gl_id = is_gl_identifier(var->name);

      ir_variable *earlier =
         get_variable_being_redeclared(var, decl->get_location(), state,
                                       false /* allow_all_redeclarations */);
      if (earlier != NULL) {
         if (var_is_gl_id &&
             earlier->data.how_declared == ir_var_declared_in_block) {
            _mesa_glsl_error(&loc, state,
                             "`%s' has already been redeclared using "
                             "gl_PerVertex", var->name);
         }
         earlier->data.how_declared = ir_var_declared_normally;
      }

      if (decl->initializer != NULL) {
         result = process_initializer((earlier == NULL) ? var : earlier,
                                      decl, this->type,
                                      &initializer_instructions, state);
      }

      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
       *
       *     "It is an error to write to a const variable outside of
       *      its declaration, so they must be initialized when
       *      declared."
       */
      if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
         _mesa_glsl_error(& loc, state,
                          "const declaration of `%s' must be initialized",
                          decl->identifier);
      }

      if (state->es_shader) {
         const glsl_type *const t = (earlier == NULL)
            ? var->type : earlier->type;

         if (t->is_unsized_array())
            /* Section 10.17 of the GLSL ES 1.00 specification states that
             * unsized array declarations have been removed from the language.
             * Arrays that are sized using an initializer are still explicitly
             * sized.  However, GLSL ES 1.00 does not allow array
             * initializers.  That is only allowed in GLSL ES 3.00.
             *
             * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
             *
             *     "An array type can also be formed without specifying a size
             *     if the definition includes an initializer:
             *
             *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
             *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
             *
             *         float a[5];
             *         float b[] = a;"
             */
            _mesa_glsl_error(& loc, state,
                             "unsized array declarations are not allowed in "
                             "GLSL ES");
      }

      /* If the declaration is not a redeclaration, there are a few additional
       * semantic checks that must be applied.  In addition, variable that was
       * created for the declaration should be added to the IR stream.
       */
      if (earlier == NULL) {
         validate_identifier(decl->identifier, loc, state);

         /* Add the variable to the symbol table.  Note that the initializer's
          * IR was already processed earlier (though it hasn't been emitted
          * yet), without the variable in scope.
          *
          * This differs from most C-like languages, but it follows the GLSL
          * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
          * spec:
          *
          *     "Within a declaration, the scope of a name starts immediately
          *     after the initializer if present or immediately after the name
          *     being declared if not."
          */
         if (!state->symbols->add_variable(var)) {
            YYLTYPE loc = this->get_location();
            _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
                             "current scope", decl->identifier);
            continue;
         }

         /* Push the variable declaration to the top.  It means that all the
          * variable declarations will appear in a funny last-to-first order,
          * but otherwise we run into trouble if a function is prototyped, a
          * global var is decled, then the function is defined with usage of
          * the global var.  See glslparsertest's CorrectModule.frag.
          */
         instructions->push_head(var);
      }

      instructions->append_list(&initializer_instructions);
   }


   /* Generally, variable declarations do not have r-values.  However,
    * one is used for the declaration in
    *
    * while (bool b = some_condition()) {
    *   ...
    * }
    *
    * so we return the rvalue from the last seen declaration here.
    */
   return result;
}


ir_rvalue *
ast_parameter_declarator::hir(exec_list *instructions,
                              struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   const struct glsl_type *type;
   const char *name = NULL;
   YYLTYPE loc = this->get_location();

   type = this->type->glsl_type(& name, state);

   if (type == NULL) {
      if (name != NULL) {
         _mesa_glsl_error(& loc, state,
                          "invalid type `%s' in declaration of `%s'",
                          name, this->identifier);
      } else {
         _mesa_glsl_error(& loc, state,
                          "invalid type in declaration of `%s'",
                          this->identifier);
      }

      type = glsl_type::error_type;
   }

   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
    *
    *    "Functions that accept no input arguments need not use void in the
    *    argument list because prototypes (or definitions) are required and
    *    therefore there is no ambiguity when an empty argument list "( )" is
    *    declared. The idiom "(void)" as a parameter list is provided for
    *    convenience."
    *
    * Placing this check here prevents a void parameter being set up
    * for a function, which avoids tripping up checks for main taking
    * parameters and lookups of an unnamed symbol.
    */
   if (type->is_void()) {
      if (this->identifier != NULL)
         _mesa_glsl_error(& loc, state,
                          "named parameter cannot have type `void'");

      is_void = true;
      return NULL;
   }

   if (formal_parameter && (this->identifier == NULL)) {
      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
      return NULL;
   }

   /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
    * call already handled the "vec4[..] foo" case.
    */
   type = process_array_type(&loc, type, this->array_specifier, state);

   if (!type->is_error() && type->is_unsized_array()) {
      _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
                       "a declared size");
      type = glsl_type::error_type;
   }

   is_void = false;
   ir_variable *var = new(ctx)
      ir_variable(type, this->identifier, ir_var_function_in);

   /* Apply any specified qualifiers to the parameter declaration.  Note that
    * for function parameters the default mode is 'in'.
    */
   apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
                                    true);

   /* From section 4.1.7 of the GLSL 4.40 spec:
    *
    *   "Opaque variables cannot be treated as l-values; hence cannot
    *    be used as out or inout function parameters, nor can they be
    *    assigned into."
    */
   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
       && type->contains_opaque()) {
      _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
                       "contain opaque variables");
      type = glsl_type::error_type;
   }

   /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
    *
    *    "When calling a function, expressions that do not evaluate to
    *     l-values cannot be passed to parameters declared as out or inout."
    *
    * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
    *
    *    "Other binary or unary expressions, non-dereferenced arrays,
    *     function names, swizzles with repeated fields, and constants
    *     cannot be l-values."
    *
    * So for GLSL 1.10, passing an array as an out or inout parameter is not
    * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
    */
   if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
       && type->is_array()
       && !state->check_version(120, 100, &loc,
                                "arrays cannot be out or inout parameters")) {
      type = glsl_type::error_type;
   }

   instructions->push_tail(var);

   /* Parameter declarations do not have r-values.
    */
   return NULL;
}


void
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
                                            bool formal,
                                            exec_list *ir_parameters,
                                            _mesa_glsl_parse_state *state)
{
   ast_parameter_declarator *void_param = NULL;
   unsigned count = 0;

   foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
      param->formal_parameter = formal;
      param->hir(ir_parameters, state);

      if (param->is_void)
         void_param = param;

      count++;
   }

   if ((void_param != NULL) && (count > 1)) {
      YYLTYPE loc = void_param->get_location();

      _mesa_glsl_error(& loc, state,
                       "`void' parameter must be only parameter");
   }
}


void
emit_function(_mesa_glsl_parse_state *state, ir_function *f)
{
   /* IR invariants disallow function declarations or definitions
    * nested within other function definitions.  But there is no
    * requirement about the relative order of function declarations
    * and definitions with respect to one another.  So simply insert
    * the new ir_function block at the end of the toplevel instruction
    * list.
    */
   state->toplevel_ir->push_tail(f);
}


ir_rvalue *
ast_function::hir(exec_list *instructions,
                  struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   ir_function *f = NULL;
   ir_function_signature *sig = NULL;
   exec_list hir_parameters;

   const char *const name = identifier;

   /* New functions are always added to the top-level IR instruction stream,
    * so this instruction list pointer is ignored.  See also emit_function
    * (called below).
    */
   (void) instructions;

   /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
    *
    *   "Function declarations (prototypes) cannot occur inside of functions;
    *   they must be at global scope, or for the built-in functions, outside
    *   the global scope."
    *
    * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
    *
    *   "User defined functions may only be defined within the global scope."
    *
    * Note that this language does not appear in GLSL 1.10.
    */
   if ((state->current_function != NULL) &&
       state->is_version(120, 100)) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(&loc, state,
		       "declaration of function `%s' not allowed within "
		       "function body", name);
   }

   validate_identifier(name, this->get_location(), state);

   /* Convert the list of function parameters to HIR now so that they can be
    * used below to compare this function's signature with previously seen
    * signatures for functions with the same name.
    */
   ast_parameter_declarator::parameters_to_hir(& this->parameters,
                                               is_definition,
                                               & hir_parameters, state);

   const char *return_type_name;
   const glsl_type *return_type =
      this->return_type->glsl_type(& return_type_name, state);

   if (!return_type) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(&loc, state,
                       "function `%s' has undeclared return type `%s'",
                       name, return_type_name);
      return_type = glsl_type::error_type;
   }

   /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
    * "No qualifier is allowed on the return type of a function."
    */
   if (this->return_type->has_qualifiers()) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(& loc, state,
                       "function `%s' return type has qualifiers", name);
   }

   /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
    *
    *     "Arrays are allowed as arguments and as the return type. In both
    *     cases, the array must be explicitly sized."
    */
   if (return_type->is_unsized_array()) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(& loc, state,
                       "function `%s' return type array must be explicitly "
                       "sized", name);
   }

   /* From section 4.1.7 of the GLSL 4.40 spec:
    *
    *    "[Opaque types] can only be declared as function parameters
    *     or uniform-qualified variables."
    */
   if (return_type->contains_opaque()) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(&loc, state,
                       "function `%s' return type can't contain an opaque type",
                       name);
   }

   /* Create an ir_function if one doesn't already exist. */
   f = state->symbols->get_function(name);
   if (f == NULL) {
      f = new(ctx) ir_function(name);
      if (!state->symbols->add_function(f)) {
         /* This function name shadows a non-function use of the same name. */
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
                          "non-function", name);
         return NULL;
      }

      emit_function(state, f);
   }

   /* Verify that this function's signature either doesn't match a previously
    * seen signature for a function with the same name, or, if a match is found,
    * that the previously seen signature does not have an associated definition.
    */
   if (state->es_shader || f->has_user_signature()) {
      sig = f->exact_matching_signature(state, &hir_parameters);
      if (sig != NULL) {
         const char *badvar = sig->qualifiers_match(&hir_parameters);
         if (badvar != NULL) {
            YYLTYPE loc = this->get_location();

            _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
                             "qualifiers don't match prototype", name, badvar);
         }

         if (sig->return_type != return_type) {
            YYLTYPE loc = this->get_location();

            _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
                             "match prototype", name);
         }

         if (sig->is_defined) {
            if (is_definition) {
               YYLTYPE loc = this->get_location();
               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
            } else {
               /* We just encountered a prototype that exactly matches a
                * function that's already been defined.  This is redundant,
                * and we should ignore it.
                */
               return NULL;
            }
         }
      }
   }

   /* Verify the return type of main() */
   if (strcmp(name, "main") == 0) {
      if (! return_type->is_void()) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state, "main() must return void");
      }

      if (!hir_parameters.is_empty()) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state, "main() must not take any parameters");
      }
   }

   /* Finish storing the information about this new function in its signature.
    */
   if (sig == NULL) {
      sig = new(ctx) ir_function_signature(return_type);
      f->add_signature(sig);
   }

   sig->replace_parameters(&hir_parameters);
   signature = sig;

   /* Function declarations (prototypes) do not have r-values.
    */
   return NULL;
}


ir_rvalue *
ast_function_definition::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
{
   prototype->is_definition = true;
   prototype->hir(instructions, state);

   ir_function_signature *signature = prototype->signature;
   if (signature == NULL)
      return NULL;

   assert(state->current_function == NULL);
   state->current_function = signature;
   state->found_return = false;

   /* Duplicate parameters declared in the prototype as concrete variables.
    * Add these to the symbol table.
    */
   state->symbols->push_scope();
   foreach_in_list(ir_variable, var, &signature->parameters) {
      assert(var->as_variable() != NULL);

      /* The only way a parameter would "exist" is if two parameters have
       * the same name.
       */
      if (state->symbols->name_declared_this_scope(var->name)) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
      } else {
         state->symbols->add_variable(var);
      }
   }

   /* Convert the body of the function to HIR. */
   this->body->hir(&signature->body, state);
   signature->is_defined = true;

   state->symbols->pop_scope();

   assert(state->current_function == signature);
   state->current_function = NULL;

   if (!signature->return_type->is_void() && !state->found_return) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
                       "%s, but no return statement",
                       signature->function_name(),
                       signature->return_type->name);
   }

   /* Function definitions do not have r-values.
    */
   return NULL;
}


ir_rvalue *
ast_jump_statement::hir(exec_list *instructions,
                        struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   switch (mode) {
   case ast_return: {
      ir_return *inst;
      assert(state->current_function);

      if (opt_return_value) {
         ir_rvalue *ret = opt_return_value->hir(instructions, state);

         /* The value of the return type can be NULL if the shader says
          * 'return foo();' and foo() is a function that returns void.
          *
          * NOTE: The GLSL spec doesn't say that this is an error.  The type
          * of the return value is void.  If the return type of the function is
          * also void, then this should compile without error.  Seriously.
          */
         const glsl_type *const ret_type =
            (ret == NULL) ? glsl_type::void_type : ret->type;

         /* Implicit conversions are not allowed for return values prior to
          * ARB_shading_language_420pack.
          */
         if (state->current_function->return_type != ret_type) {
            YYLTYPE loc = this->get_location();

            if (state->ARB_shading_language_420pack_enable) {
               if (!apply_implicit_conversion(state->current_function->return_type,
                                              ret, state)) {
                  _mesa_glsl_error(& loc, state,
                                   "could not implicitly convert return value "
                                   "to %s, in function `%s'",
                                   state->current_function->return_type->name,
                                   state->current_function->function_name());
               }
            } else {
               _mesa_glsl_error(& loc, state,
                                "`return' with wrong type %s, in function `%s' "
                                "returning %s",
                                ret_type->name,
                                state->current_function->function_name(),
                                state->current_function->return_type->name);
            }
         } else if (state->current_function->return_type->base_type ==
                    GLSL_TYPE_VOID) {
            YYLTYPE loc = this->get_location();

            /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
             * specs add a clarification:
             *
             *    "A void function can only use return without a return argument, even if
             *     the return argument has void type. Return statements only accept values:
             *
             *         void func1() { }
             *         void func2() { return func1(); } // illegal return statement"
             */
            _mesa_glsl_error(& loc, state,
                             "void functions can only use `return' without a "
                             "return argument");
         }

         inst = new(ctx) ir_return(ret);
      } else {
         if (state->current_function->return_type->base_type !=
             GLSL_TYPE_VOID) {
            YYLTYPE loc = this->get_location();

            _mesa_glsl_error(& loc, state,
                             "`return' with no value, in function %s returning "
                             "non-void",
            state->current_function->function_name());
         }
         inst = new(ctx) ir_return;
      }

      state->found_return = true;
      instructions->push_tail(inst);
      break;
   }

   case ast_discard:
      if (state->stage != MESA_SHADER_FRAGMENT) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state,
                          "`discard' may only appear in a fragment shader");
      }
      instructions->push_tail(new(ctx) ir_discard);
      break;

   case ast_break:
   case ast_continue:
      if (mode == ast_continue &&
          state->loop_nesting_ast == NULL) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
      } else if (mode == ast_break &&
         state->loop_nesting_ast == NULL &&
         state->switch_state.switch_nesting_ast == NULL) {
         YYLTYPE loc = this->get_location();

         _mesa_glsl_error(& loc, state,
                          "break may only appear in a loop or a switch");
      } else {
         /* For a loop, inline the for loop expression again, since we don't
          * know where near the end of the loop body the normal copy of it is
          * going to be placed.  Same goes for the condition for a do-while
          * loop.
          */
         if (state->loop_nesting_ast != NULL &&
             mode == ast_continue) {
            if (state->loop_nesting_ast->rest_expression) {
               state->loop_nesting_ast->rest_expression->hir(instructions,
                                                             state);
            }
            if (state->loop_nesting_ast->mode ==
                ast_iteration_statement::ast_do_while) {
               state->loop_nesting_ast->condition_to_hir(instructions, state);
            }
         }

         if (state->switch_state.is_switch_innermost &&
             mode == ast_break) {
            /* Force break out of switch by setting is_break switch state.
             */
            ir_variable *const is_break_var = state->switch_state.is_break_var;
            ir_dereference_variable *const deref_is_break_var =
               new(ctx) ir_dereference_variable(is_break_var);
            ir_constant *const true_val = new(ctx) ir_constant(true);
            ir_assignment *const set_break_var =
               new(ctx) ir_assignment(deref_is_break_var, true_val);
	    
            instructions->push_tail(set_break_var);
         }
         else {
            ir_loop_jump *const jump =
               new(ctx) ir_loop_jump((mode == ast_break)
                  ? ir_loop_jump::jump_break
                  : ir_loop_jump::jump_continue);
            instructions->push_tail(jump);
         }
      }

      break;
   }

   /* Jump instructions do not have r-values.
    */
   return NULL;
}


ir_rvalue *
ast_selection_statement::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   ir_rvalue *const condition = this->condition->hir(instructions, state);

   /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
    *
    *    "Any expression whose type evaluates to a Boolean can be used as the
    *    conditional expression bool-expression. Vector types are not accepted
    *    as the expression to if."
    *
    * The checks are separated so that higher quality diagnostics can be
    * generated for cases where both rules are violated.
    */
   if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
      YYLTYPE loc = this->condition->get_location();

      _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
                       "boolean");
   }

   ir_if *const stmt = new(ctx) ir_if(condition);

   if (then_statement != NULL) {
      state->symbols->push_scope();
      then_statement->hir(& stmt->then_instructions, state);
      state->symbols->pop_scope();
   }

   if (else_statement != NULL) {
      state->symbols->push_scope();
      else_statement->hir(& stmt->else_instructions, state);
      state->symbols->pop_scope();
   }

   instructions->push_tail(stmt);

   /* if-statements do not have r-values.
    */
   return NULL;
}


ir_rvalue *
ast_switch_statement::hir(exec_list *instructions,
                          struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   ir_rvalue *const test_expression =
      this->test_expression->hir(instructions, state);

   /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
    *
    *    "The type of init-expression in a switch statement must be a 
    *     scalar integer." 
    */
   if (!test_expression->type->is_scalar() ||
       !test_expression->type->is_integer()) {
      YYLTYPE loc = this->test_expression->get_location();

      _mesa_glsl_error(& loc,
                       state,
                       "switch-statement expression must be scalar "
                       "integer");
   }

   /* Track the switch-statement nesting in a stack-like manner.
    */
   struct glsl_switch_state saved = state->switch_state;

   state->switch_state.is_switch_innermost = true;
   state->switch_state.switch_nesting_ast = this;
   state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
						   hash_table_pointer_compare);
   state->switch_state.previous_default = NULL;

   /* Initalize is_fallthru state to false.
    */
   ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
   state->switch_state.is_fallthru_var =
      new(ctx) ir_variable(glsl_type::bool_type,
                           "switch_is_fallthru_tmp",
                           ir_var_temporary);
   instructions->push_tail(state->switch_state.is_fallthru_var);

   ir_dereference_variable *deref_is_fallthru_var =
      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
   instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
                                                  is_fallthru_val));

   /* Initalize is_break state to false.
    */
   ir_rvalue *const is_break_val = new (ctx) ir_constant(false);
   state->switch_state.is_break_var =
      new(ctx) ir_variable(glsl_type::bool_type,
                           "switch_is_break_tmp",
                           ir_var_temporary);
   instructions->push_tail(state->switch_state.is_break_var);

   ir_dereference_variable *deref_is_break_var =
      new(ctx) ir_dereference_variable(state->switch_state.is_break_var);
   instructions->push_tail(new(ctx) ir_assignment(deref_is_break_var,
                                                  is_break_val));

   state->switch_state.run_default =
      new(ctx) ir_variable(glsl_type::bool_type,
                             "run_default_tmp",
                             ir_var_temporary);
   instructions->push_tail(state->switch_state.run_default);

   /* Cache test expression.
    */
   test_to_hir(instructions, state);

   /* Emit code for body of switch stmt.
    */
   body->hir(instructions, state);

   hash_table_dtor(state->switch_state.labels_ht);

   state->switch_state = saved;

   /* Switch statements do not have r-values. */
   return NULL;
}


void
ast_switch_statement::test_to_hir(exec_list *instructions,
                                  struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   /* Cache value of test expression. */
   ir_rvalue *const test_val =
      test_expression->hir(instructions,
			   state);

   state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
                                                       "switch_test_tmp",
                                                       ir_var_temporary);
   ir_dereference_variable *deref_test_var =
      new(ctx) ir_dereference_variable(state->switch_state.test_var);

   instructions->push_tail(state->switch_state.test_var);
   instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
}


ir_rvalue *
ast_switch_body::hir(exec_list *instructions,
                     struct _mesa_glsl_parse_state *state)
{
   if (stmts != NULL)
      stmts->hir(instructions, state);

   /* Switch bodies do not have r-values. */
   return NULL;
}

ir_rvalue *
ast_case_statement_list::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
{
   exec_list default_case, after_default, tmp;

   foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
      case_stmt->hir(&tmp, state);

      /* Default case. */
      if (state->switch_state.previous_default && default_case.is_empty()) {
         default_case.append_list(&tmp);
         continue;
      }

      /* If default case found, append 'after_default' list. */
      if (!default_case.is_empty())
         after_default.append_list(&tmp);
      else
         instructions->append_list(&tmp);
   }

   /* Handle the default case. This is done here because default might not be
    * the last case. We need to add checks against following cases first to see
    * if default should be chosen or not.
    */
   if (!default_case.is_empty()) {

      ir_rvalue *const true_val = new (state) ir_constant(true);
      ir_dereference_variable *deref_run_default_var =
         new(state) ir_dereference_variable(state->switch_state.run_default);

      /* Choose to run default case initially, following conditional
       * assignments might change this.
       */
      ir_assignment *const init_var =
         new(state) ir_assignment(deref_run_default_var, true_val);
      instructions->push_tail(init_var);

      /* Default case was the last one, no checks required. */
      if (after_default.is_empty()) {
         instructions->append_list(&default_case);
         return NULL;
      }

      foreach_in_list(ir_instruction, ir, &after_default) {
         ir_assignment *assign = ir->as_assignment();

         if (!assign)
            continue;

         /* Clone the check between case label and init expression. */
         ir_expression *exp = (ir_expression*) assign->condition;
         ir_expression *clone = exp->clone(state, NULL);

         ir_dereference_variable *deref_var =
            new(state) ir_dereference_variable(state->switch_state.run_default);
         ir_rvalue *const false_val = new (state) ir_constant(false);

         ir_assignment *const set_false =
            new(state) ir_assignment(deref_var, false_val, clone);

         instructions->push_tail(set_false);
      }

      /* Append default case and all cases after it. */
      instructions->append_list(&default_case);
      instructions->append_list(&after_default);
   }

   /* Case statements do not have r-values. */
   return NULL;
}

ir_rvalue *
ast_case_statement::hir(exec_list *instructions,
                        struct _mesa_glsl_parse_state *state)
{
   labels->hir(instructions, state);

   /* Conditionally set fallthru state based on break state. */
   ir_constant *const false_val = new(state) ir_constant(false);
   ir_dereference_variable *const deref_is_fallthru_var =
      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
   ir_dereference_variable *const deref_is_break_var =
      new(state) ir_dereference_variable(state->switch_state.is_break_var);
   ir_assignment *const reset_fallthru_on_break =
      new(state) ir_assignment(deref_is_fallthru_var,
                               false_val,
                               deref_is_break_var);
   instructions->push_tail(reset_fallthru_on_break);

   /* Guard case statements depending on fallthru state. */
   ir_dereference_variable *const deref_fallthru_guard =
      new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
   ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);

   foreach_list_typed (ast_node, stmt, link, & this->stmts)
      stmt->hir(& test_fallthru->then_instructions, state);

   instructions->push_tail(test_fallthru);

   /* Case statements do not have r-values. */
   return NULL;
}


ir_rvalue *
ast_case_label_list::hir(exec_list *instructions,
                         struct _mesa_glsl_parse_state *state)
{
   foreach_list_typed (ast_case_label, label, link, & this->labels)
      label->hir(instructions, state);

   /* Case labels do not have r-values. */
   return NULL;
}

ir_rvalue *
ast_case_label::hir(exec_list *instructions,
                    struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   ir_dereference_variable *deref_fallthru_var =
      new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);

   ir_rvalue *const true_val = new(ctx) ir_constant(true);

   /* If not default case, ... */
   if (this->test_value != NULL) {
      /* Conditionally set fallthru state based on
       * comparison of cached test expression value to case label.
       */
      ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
      ir_constant *label_const = label_rval->constant_expression_value();

      if (!label_const) {
         YYLTYPE loc = this->test_value->get_location();

         _mesa_glsl_error(& loc, state,
                          "switch statement case label must be a "
                          "constant expression");

         /* Stuff a dummy value in to allow processing to continue. */
         label_const = new(ctx) ir_constant(0);
      } else {
         ast_expression *previous_label = (ast_expression *)
         hash_table_find(state->switch_state.labels_ht,
                         (void *)(uintptr_t)label_const->value.u[0]);

         if (previous_label) {
            YYLTYPE loc = this->test_value->get_location();
            _mesa_glsl_error(& loc, state, "duplicate case value");

            loc = previous_label->get_location();
            _mesa_glsl_error(& loc, state, "this is the previous case label");
         } else {
            hash_table_insert(state->switch_state.labels_ht,
                              this->test_value,
                              (void *)(uintptr_t)label_const->value.u[0]);
         }
      }

      ir_dereference_variable *deref_test_var =
         new(ctx) ir_dereference_variable(state->switch_state.test_var);

      ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
                                                        label_const,
                                                        deref_test_var);

      /*
       * From GLSL 4.40 specification section 6.2 ("Selection"):
       *
       *     "The type of the init-expression value in a switch statement must
       *     be a scalar int or uint. The type of the constant-expression value
       *     in a case label also must be a scalar int or uint. When any pair
       *     of these values is tested for "equal value" and the types do not
       *     match, an implicit conversion will be done to convert the int to a
       *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
       *     is done."
       */
      if (label_const->type != state->switch_state.test_var->type) {
         YYLTYPE loc = this->test_value->get_location();

         const glsl_type *type_a = label_const->type;
         const glsl_type *type_b = state->switch_state.test_var->type;

         /* Check if int->uint implicit conversion is supported. */
         bool integer_conversion_supported =
            glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
                                                           state);

         if ((!type_a->is_integer() || !type_b->is_integer()) ||
              !integer_conversion_supported) {
            _mesa_glsl_error(&loc, state, "type mismatch with switch "
                             "init-expression and case label (%s != %s)",
                             type_a->name, type_b->name);
         } else {
            /* Conversion of the case label. */
            if (type_a->base_type == GLSL_TYPE_INT) {
               if (!apply_implicit_conversion(glsl_type::uint_type,
                                              test_cond->operands[0], state))
                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
            } else {
               /* Conversion of the init-expression value. */
               if (!apply_implicit_conversion(glsl_type::uint_type,
                                              test_cond->operands[1], state))
                  _mesa_glsl_error(&loc, state, "implicit type conversion error");
            }
         }
      }

      ir_assignment *set_fallthru_on_test =
         new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);

      instructions->push_tail(set_fallthru_on_test);
   } else { /* default case */
      if (state->switch_state.previous_default) {
         YYLTYPE loc = this->get_location();
         _mesa_glsl_error(& loc, state,
                          "multiple default labels in one switch");

         loc = state->switch_state.previous_default->get_location();
         _mesa_glsl_error(& loc, state, "this is the first default label");
      }
      state->switch_state.previous_default = this;

      /* Set fallthru condition on 'run_default' bool. */
      ir_dereference_variable *deref_run_default =
         new(ctx) ir_dereference_variable(state->switch_state.run_default);
      ir_rvalue *const cond_true = new(ctx) ir_constant(true);
      ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
                                                        cond_true,
                                                        deref_run_default);

      /* Set falltrhu state. */
      ir_assignment *set_fallthru =
         new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);

      instructions->push_tail(set_fallthru);
   }

   /* Case statements do not have r-values. */
   return NULL;
}

void
ast_iteration_statement::condition_to_hir(exec_list *instructions,
                                          struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   if (condition != NULL) {
      ir_rvalue *const cond =
         condition->hir(instructions, state);

      if ((cond == NULL)
          || !cond->type->is_boolean() || !cond->type->is_scalar()) {
         YYLTYPE loc = condition->get_location();

         _mesa_glsl_error(& loc, state,
                          "loop condition must be scalar boolean");
      } else {
         /* As the first code in the loop body, generate a block that looks
          * like 'if (!condition) break;' as the loop termination condition.
          */
         ir_rvalue *const not_cond =
            new(ctx) ir_expression(ir_unop_logic_not, cond);

         ir_if *const if_stmt = new(ctx) ir_if(not_cond);

         ir_jump *const break_stmt =
            new(ctx) ir_loop_jump(ir_loop_jump::jump_break);

         if_stmt->then_instructions.push_tail(break_stmt);
         instructions->push_tail(if_stmt);
      }
   }
}


ir_rvalue *
ast_iteration_statement::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   /* For-loops and while-loops start a new scope, but do-while loops do not.
    */
   if (mode != ast_do_while)
      state->symbols->push_scope();

   if (init_statement != NULL)
      init_statement->hir(instructions, state);

   ir_loop *const stmt = new(ctx) ir_loop();
   instructions->push_tail(stmt);

   /* Track the current loop nesting. */
   ast_iteration_statement *nesting_ast = state->loop_nesting_ast;

   state->loop_nesting_ast = this;

   /* Likewise, indicate that following code is closest to a loop,
    * NOT closest to a switch.
    */
   bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
   state->switch_state.is_switch_innermost = false;

   if (mode != ast_do_while)
      condition_to_hir(&stmt->body_instructions, state);

   if (body != NULL)
      body->hir(& stmt->body_instructions, state);

   if (rest_expression != NULL)
      rest_expression->hir(& stmt->body_instructions, state);

   if (mode == ast_do_while)
      condition_to_hir(&stmt->body_instructions, state);

   if (mode != ast_do_while)
      state->symbols->pop_scope();

   /* Restore previous nesting before returning. */
   state->loop_nesting_ast = nesting_ast;
   state->switch_state.is_switch_innermost = saved_is_switch_innermost;

   /* Loops do not have r-values.
    */
   return NULL;
}


/**
 * Determine if the given type is valid for establishing a default precision
 * qualifier.
 *
 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
 *
 *     "The precision statement
 *
 *         precision precision-qualifier type;
 *
 *     can be used to establish a default precision qualifier. The type field
 *     can be either int or float or any of the sampler types, and the
 *     precision-qualifier can be lowp, mediump, or highp."
 *
 * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
 * qualifiers on sampler types, but this seems like an oversight (since the
 * intention of including these in GLSL 1.30 is to allow compatibility with ES
 * shaders).  So we allow int, float, and all sampler types regardless of GLSL
 * version.
 */
static bool
is_valid_default_precision_type(const struct glsl_type *const type)
{
   if (type == NULL)
      return false;

   switch (type->base_type) {
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
      /* "int" and "float" are valid, but vectors and matrices are not. */
      return type->vector_elements == 1 && type->matrix_columns == 1;
   case GLSL_TYPE_SAMPLER:
      return true;
   default:
      return false;
   }
}


ir_rvalue *
ast_type_specifier::hir(exec_list *instructions,
                        struct _mesa_glsl_parse_state *state)
{
   if (this->default_precision == ast_precision_none && this->structure == NULL)
      return NULL;

   YYLTYPE loc = this->get_location();

   /* If this is a precision statement, check that the type to which it is
    * applied is either float or int.
    *
    * From section 4.5.3 of the GLSL 1.30 spec:
    *    "The precision statement
    *       precision precision-qualifier type;
    *    can be used to establish a default precision qualifier. The type
    *    field can be either int or float [...].  Any other types or
    *    qualifiers will result in an error.
    */
   if (this->default_precision != ast_precision_none) {
      if (!state->check_precision_qualifiers_allowed(&loc))
         return NULL;

      if (this->structure != NULL) {
         _mesa_glsl_error(&loc, state,
                          "precision qualifiers do not apply to structures");
         return NULL;
      }

      if (this->array_specifier != NULL) {
         _mesa_glsl_error(&loc, state,
                          "default precision statements do not apply to "
                          "arrays");
         return NULL;
      }

      const struct glsl_type *const type =
         state->symbols->get_type(this->type_name);
      if (!is_valid_default_precision_type(type)) {
         _mesa_glsl_error(&loc, state,
                          "default precision statements apply only to "
                          "float, int, and sampler types");
         return NULL;
      }

      if (type->base_type == GLSL_TYPE_FLOAT
          && state->es_shader
          && state->stage == MESA_SHADER_FRAGMENT) {
         /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
          * spec says:
          *
          *     "The fragment language has no default precision qualifier for
          *     floating point types."
          *
          * As a result, we have to track whether or not default precision has
          * been specified for float in GLSL ES fragment shaders.
          *
          * Earlier in that same section, the spec says:
          *
          *     "Non-precision qualified declarations will use the precision
          *     qualifier specified in the most recent precision statement
          *     that is still in scope. The precision statement has the same
          *     scoping rules as variable declarations. If it is declared
          *     inside a compound statement, its effect stops at the end of
          *     the innermost statement it was declared in. Precision
          *     statements in nested scopes override precision statements in
          *     outer scopes. Multiple precision statements for the same basic
          *     type can appear inside the same scope, with later statements
          *     overriding earlier statements within that scope."
          *
          * Default precision specifications follow the same scope rules as
          * variables.  So, we can track the state of the default float
          * precision in the symbol table, and the rules will just work.  This
          * is a slight abuse of the symbol table, but it has the semantics
          * that we want.
          */
         ir_variable *const junk =
            new(state) ir_variable(type, "#default precision",
                                   ir_var_temporary);

         state->symbols->add_variable(junk);
      }

      /* FINISHME: Translate precision statements into IR. */
      return NULL;
   }

   /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
    * process_record_constructor() can do type-checking on C-style initializer
    * expressions of structs, but ast_struct_specifier should only be translated
    * to HIR if it is declaring the type of a structure.
    *
    * The ->is_declaration field is false for initializers of variables
    * declared separately from the struct's type definition.
    *
    *    struct S { ... };              (is_declaration = true)
    *    struct T { ... } t = { ... };  (is_declaration = true)
    *    S s = { ... };                 (is_declaration = false)
    */
   if (this->structure != NULL && this->structure->is_declaration)
      return this->structure->hir(instructions, state);

   return NULL;
}


/**
 * Process a structure or interface block tree into an array of structure fields
 *
 * After parsing, where there are some syntax differnces, structures and
 * interface blocks are almost identical.  They are similar enough that the
 * AST for each can be processed the same way into a set of
 * \c glsl_struct_field to describe the members.
 *
 * If we're processing an interface block, var_mode should be the type of the
 * interface block (ir_var_shader_in, ir_var_shader_out, or ir_var_uniform).
 * If we're processing a structure, var_mode should be ir_var_auto.
 *
 * \return
 * The number of fields processed.  A pointer to the array structure fields is
 * stored in \c *fields_ret.
 */
unsigned
ast_process_structure_or_interface_block(exec_list *instructions,
                                         struct _mesa_glsl_parse_state *state,
                                         exec_list *declarations,
                                         YYLTYPE &loc,
                                         glsl_struct_field **fields_ret,
                                         bool is_interface,
                                         enum glsl_matrix_layout matrix_layout,
                                         bool allow_reserved_names,
                                         ir_variable_mode var_mode)
{
   unsigned decl_count = 0;

   /* Make an initial pass over the list of fields to determine how
    * many there are.  Each element in this list is an ast_declarator_list.
    * This means that we actually need to count the number of elements in the
    * 'declarations' list in each of the elements.
    */
   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
      decl_count += decl_list->declarations.length();
   }

   /* Allocate storage for the fields and process the field
    * declarations.  As the declarations are processed, try to also convert
    * the types to HIR.  This ensures that structure definitions embedded in
    * other structure definitions or in interface blocks are processed.
    */
   glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
                                                  decl_count);

   unsigned i = 0;
   foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
      const char *type_name;

      decl_list->type->specifier->hir(instructions, state);

      /* Section 10.9 of the GLSL ES 1.00 specification states that
       * embedded structure definitions have been removed from the language.
       */
      if (state->es_shader && decl_list->type->specifier->structure != NULL) {
         _mesa_glsl_error(&loc, state, "embedded structure definitions are "
                          "not allowed in GLSL ES 1.00");
      }

      const glsl_type *decl_type =
         decl_list->type->glsl_type(& type_name, state);

      foreach_list_typed (ast_declaration, decl, link,
                          &decl_list->declarations) {
         if (!allow_reserved_names)
            validate_identifier(decl->identifier, loc, state);

         /* From section 4.3.9 of the GLSL 4.40 spec:
          *
          *    "[In interface blocks] opaque types are not allowed."
          *
          * It should be impossible for decl_type to be NULL here.  Cases that
          * might naturally lead to decl_type being NULL, especially for the
          * is_interface case, will have resulted in compilation having
          * already halted due to a syntax error.
          */
         const struct glsl_type *field_type =
            decl_type != NULL ? decl_type : glsl_type::error_type;

         if (is_interface && field_type->contains_opaque()) {
            YYLTYPE loc = decl_list->get_location();
            _mesa_glsl_error(&loc, state,
                             "uniform in non-default uniform block contains "
                             "opaque variable");
         }

         if (field_type->contains_atomic()) {
            /* FINISHME: Add a spec quotation here once updated spec
             * FINISHME: language is available.  See Khronos bug #10903
             * FINISHME: on whether atomic counters are allowed in
             * FINISHME: structures.
             */
            YYLTYPE loc = decl_list->get_location();
            _mesa_glsl_error(&loc, state, "atomic counter in structure or "
                             "uniform block");
         }

         if (field_type->contains_image()) {
            /* FINISHME: Same problem as with atomic counters.
             * FINISHME: Request clarification from Khronos and add
             * FINISHME: spec quotation here.
             */
            YYLTYPE loc = decl_list->get_location();
            _mesa_glsl_error(&loc, state,
                             "image in structure or uniform block");
         }

         const struct ast_type_qualifier *const qual =
            & decl_list->type->qualifier;
         if (qual->flags.q.std140 ||
             qual->flags.q.packed ||
             qual->flags.q.shared) {
            _mesa_glsl_error(&loc, state,
                             "uniform block layout qualifiers std140, packed, and "
                             "shared can only be applied to uniform blocks, not "
                             "members");
         }

         field_type = process_array_type(&loc, decl_type,
                                         decl->array_specifier, state);
         fields[i].type = field_type;
         fields[i].name = decl->identifier;
         fields[i].location = -1;
         fields[i].interpolation =
            interpret_interpolation_qualifier(qual, var_mode, state, &loc);
         fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
         fields[i].sample = qual->flags.q.sample ? 1 : 0;

         /* Only save explicitly defined streams in block's field */
         fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;

         if (qual->flags.q.row_major || qual->flags.q.column_major) {
            if (!qual->flags.q.uniform) {
               _mesa_glsl_error(&loc, state,
                                "row_major and column_major can only be "
                                "applied to uniform interface blocks");
            } else
               validate_matrix_layout_for_type(state, &loc, field_type, NULL);
         }

         if (qual->flags.q.uniform && qual->has_interpolation()) {
            _mesa_glsl_error(&loc, state,
                             "interpolation qualifiers cannot be used "
                             "with uniform interface blocks");
         }

         if ((qual->flags.q.uniform || !is_interface) &&
             qual->has_auxiliary_storage()) {
            _mesa_glsl_error(&loc, state,
                             "auxiliary storage qualifiers cannot be used "
                             "in uniform blocks or structures.");
         }

         /* Propogate row- / column-major information down the fields of the
          * structure or interface block.  Structures need this data because
          * the structure may contain a structure that contains ... a matrix
          * that need the proper layout.
          */
         if (field_type->without_array()->is_matrix()
             || field_type->without_array()->is_record()) {
            /* If no layout is specified for the field, inherit the layout
             * from the block.
             */
            fields[i].matrix_layout = matrix_layout;

            if (qual->flags.q.row_major)
               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
            else if (qual->flags.q.column_major)
               fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;

            /* If we're processing an interface block, the matrix layout must
             * be decided by this point.
             */
            assert(!is_interface
                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
                   || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
         }

         i++;
      }
   }

   assert(i == decl_count);

   *fields_ret = fields;
   return decl_count;
}


ir_rvalue *
ast_struct_specifier::hir(exec_list *instructions,
                          struct _mesa_glsl_parse_state *state)
{
   YYLTYPE loc = this->get_location();

   /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
    *
    *     "Anonymous structures are not supported; so embedded structures must
    *     have a declarator. A name given to an embedded struct is scoped at
    *     the same level as the struct it is embedded in."
    *
    * The same section of the  GLSL 1.20 spec says:
    *
    *     "Anonymous structures are not supported. Embedded structures are not
    *     supported.
    *
    *         struct S { float f; };
    *         struct T {
    *             S;              // Error: anonymous structures disallowed
    *             struct { ... }; // Error: embedded structures disallowed
    *             S s;            // Okay: nested structures with name are allowed
    *         };"
    *
    * The GLSL ES 1.00 and 3.00 specs have similar langauge and examples.  So,
    * we allow embedded structures in 1.10 only.
    */
   if (state->language_version != 110 && state->struct_specifier_depth != 0)
      _mesa_glsl_error(&loc, state,
		       "embedded structure declarations are not allowed");

   state->struct_specifier_depth++;

   glsl_struct_field *fields;
   unsigned decl_count =
      ast_process_structure_or_interface_block(instructions,
                                               state,
                                               &this->declarations,
                                               loc,
                                               &fields,
                                               false,
                                               GLSL_MATRIX_LAYOUT_INHERITED,
                                               false /* allow_reserved_names */,
                                               ir_var_auto);

   validate_identifier(this->name, loc, state);

   const glsl_type *t =
      glsl_type::get_record_instance(fields, decl_count, this->name);

   if (!state->symbols->add_type(name, t)) {
      _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
   } else {
      const glsl_type **s = reralloc(state, state->user_structures,
                                     const glsl_type *,
                                     state->num_user_structures + 1);
      if (s != NULL) {
         s[state->num_user_structures] = t;
         state->user_structures = s;
         state->num_user_structures++;
      }
   }

   state->struct_specifier_depth--;

   /* Structure type definitions do not have r-values.
    */
   return NULL;
}


/**
 * Visitor class which detects whether a given interface block has been used.
 */
class interface_block_usage_visitor : public ir_hierarchical_visitor
{
public:
   interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
      : mode(mode), block(block), found(false)
   {
   }

   virtual ir_visitor_status visit(ir_dereference_variable *ir)
   {
      if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
         found = true;
         return visit_stop;
      }
      return visit_continue;
   }

   bool usage_found() const
   {
      return this->found;
   }

private:
   ir_variable_mode mode;
   const glsl_type *block;
   bool found;
};


ir_rvalue *
ast_interface_block::hir(exec_list *instructions,
                         struct _mesa_glsl_parse_state *state)
{
   YYLTYPE loc = this->get_location();

   /* The ast_interface_block has a list of ast_declarator_lists.  We
    * need to turn those into ir_variables with an association
    * with this uniform block.
    */
   enum glsl_interface_packing packing;
   if (this->layout.flags.q.shared) {
      packing = GLSL_INTERFACE_PACKING_SHARED;
   } else if (this->layout.flags.q.packed) {
      packing = GLSL_INTERFACE_PACKING_PACKED;
   } else {
      /* The default layout is std140.
       */
      packing = GLSL_INTERFACE_PACKING_STD140;
   }

   ir_variable_mode var_mode;
   const char *iface_type_name;
   if (this->layout.flags.q.in) {
      var_mode = ir_var_shader_in;
      iface_type_name = "in";
   } else if (this->layout.flags.q.out) {
      var_mode = ir_var_shader_out;
      iface_type_name = "out";
   } else if (this->layout.flags.q.uniform) {
      var_mode = ir_var_uniform;
      iface_type_name = "uniform";
   } else {
      var_mode = ir_var_auto;
      iface_type_name = "UNKNOWN";
      assert(!"interface block layout qualifier not found!");
   }

   enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
   if (this->layout.flags.q.row_major)
      matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   else if (this->layout.flags.q.column_major)
      matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;

   bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
   exec_list declared_variables;
   glsl_struct_field *fields;

   /* Treat an interface block as one level of nesting, so that embedded struct
    * specifiers will be disallowed.
    */
   state->struct_specifier_depth++;

   unsigned int num_variables =
      ast_process_structure_or_interface_block(&declared_variables,
                                               state,
                                               &this->declarations,
                                               loc,
                                               &fields,
                                               true,
                                               matrix_layout,
                                               redeclaring_per_vertex,
                                               var_mode);

   state->struct_specifier_depth--;

   if (!redeclaring_per_vertex)
      validate_identifier(this->block_name, loc, state);

   const glsl_type *earlier_per_vertex = NULL;
   if (redeclaring_per_vertex) {
      /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
       * the named interface block gl_in, we can find it by looking at the
       * previous declaration of gl_in.  Otherwise we can find it by looking
       * at the previous decalartion of any of the built-in outputs,
       * e.g. gl_Position.
       *
       * Also check that the instance name and array-ness of the redeclaration
       * are correct.
       */
      switch (var_mode) {
      case ir_var_shader_in:
         if (ir_variable *earlier_gl_in =
             state->symbols->get_variable("gl_in")) {
            earlier_per_vertex = earlier_gl_in->get_interface_type();
         } else {
            _mesa_glsl_error(&loc, state,
                             "redeclaration of gl_PerVertex input not allowed "
                             "in the %s shader",
                             _mesa_shader_stage_to_string(state->stage));
         }
         if (this->instance_name == NULL ||
             strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
            _mesa_glsl_error(&loc, state,
                             "gl_PerVertex input must be redeclared as "
                             "gl_in[]");
         }
         break;
      case ir_var_shader_out:
         if (ir_variable *earlier_gl_Position =
             state->symbols->get_variable("gl_Position")) {
            earlier_per_vertex = earlier_gl_Position->get_interface_type();
         } else {
            _mesa_glsl_error(&loc, state,
                             "redeclaration of gl_PerVertex output not "
                             "allowed in the %s shader",
                             _mesa_shader_stage_to_string(state->stage));
         }
         if (this->instance_name != NULL) {
            _mesa_glsl_error(&loc, state,
                             "gl_PerVertex input may not be redeclared with "
                             "an instance name");
         }
         break;
      default:
         _mesa_glsl_error(&loc, state,
                          "gl_PerVertex must be declared as an input or an "
                          "output");
         break;
      }

      if (earlier_per_vertex == NULL) {
         /* An error has already been reported.  Bail out to avoid null
          * dereferences later in this function.
          */
         return NULL;
      }

      /* Copy locations from the old gl_PerVertex interface block. */
      for (unsigned i = 0; i < num_variables; i++) {
         int j = earlier_per_vertex->field_index(fields[i].name);
         if (j == -1) {
            _mesa_glsl_error(&loc, state,
                             "redeclaration of gl_PerVertex must be a subset "
                             "of the built-in members of gl_PerVertex");
         } else {
            fields[i].location =
               earlier_per_vertex->fields.structure[j].location;
            fields[i].interpolation =
               earlier_per_vertex->fields.structure[j].interpolation;
            fields[i].centroid =
               earlier_per_vertex->fields.structure[j].centroid;
            fields[i].sample =
               earlier_per_vertex->fields.structure[j].sample;
         }
      }

      /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
       * spec:
       *
       *     If a built-in interface block is redeclared, it must appear in
       *     the shader before any use of any member included in the built-in
       *     declaration, or a compilation error will result.
       *
       * This appears to be a clarification to the behaviour established for
       * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
       * regardless of GLSL version.
       */
      interface_block_usage_visitor v(var_mode, earlier_per_vertex);
      v.run(instructions);
      if (v.usage_found()) {
         _mesa_glsl_error(&loc, state,
                          "redeclaration of a built-in interface block must "
                          "appear before any use of any member of the "
                          "interface block");
      }
   }

   const glsl_type *block_type =
      glsl_type::get_interface_instance(fields,
                                        num_variables,
                                        packing,
                                        this->block_name);

   if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
      YYLTYPE loc = this->get_location();
      _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
                       "already taken in the current scope",
                       this->block_name, iface_type_name);
   }

   /* Since interface blocks cannot contain statements, it should be
    * impossible for the block to generate any instructions.
    */
   assert(declared_variables.is_empty());

   /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
    *
    *     Geometry shader input variables get the per-vertex values written
    *     out by vertex shader output variables of the same names. Since a
    *     geometry shader operates on a set of vertices, each input varying
    *     variable (or input block, see interface blocks below) needs to be
    *     declared as an array.
    */
   if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
       var_mode == ir_var_shader_in) {
      _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
   }

   /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
    * says:
    *
    *     "If an instance name (instance-name) is used, then it puts all the
    *     members inside a scope within its own name space, accessed with the
    *     field selector ( . ) operator (analogously to structures)."
    */
   if (this->instance_name) {
      if (redeclaring_per_vertex) {
         /* When a built-in in an unnamed interface block is redeclared,
          * get_variable_being_redeclared() calls
          * check_builtin_array_max_size() to make sure that built-in array
          * variables aren't redeclared to illegal sizes.  But we're looking
          * at a redeclaration of a named built-in interface block.  So we
          * have to manually call check_builtin_array_max_size() for all parts
          * of the interface that are arrays.
          */
         for (unsigned i = 0; i < num_variables; i++) {
            if (fields[i].type->is_array()) {
               const unsigned size = fields[i].type->array_size();
               check_builtin_array_max_size(fields[i].name, size, loc, state);
            }
         }
      } else {
         validate_identifier(this->instance_name, loc, state);
      }

      ir_variable *var;

      if (this->array_specifier != NULL) {
         /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
          *
          *     For uniform blocks declared an array, each individual array
          *     element corresponds to a separate buffer object backing one
          *     instance of the block. As the array size indicates the number
          *     of buffer objects needed, uniform block array declarations
          *     must specify an array size.
          *
          * And a few paragraphs later:
          *
          *     Geometry shader input blocks must be declared as arrays and
          *     follow the array declaration and linking rules for all
          *     geometry shader inputs. All other input and output block
          *     arrays must specify an array size.
          *
          * The upshot of this is that the only circumstance where an
          * interface array size *doesn't* need to be specified is on a
          * geometry shader input.
          */
         if (this->array_specifier->is_unsized_array &&
             (state->stage != MESA_SHADER_GEOMETRY || !this->layout.flags.q.in)) {
            _mesa_glsl_error(&loc, state,
                             "only geometry shader inputs may be unsized "
                             "instance block arrays");

         }

         const glsl_type *block_array_type =
            process_array_type(&loc, block_type, this->array_specifier, state);

         var = new(state) ir_variable(block_array_type,
                                      this->instance_name,
                                      var_mode);
      } else {
         var = new(state) ir_variable(block_type,
                                      this->instance_name,
                                      var_mode);
      }

      var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
         ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;

      if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
         handle_geometry_shader_input_decl(state, loc, var);

      if (ir_variable *earlier =
          state->symbols->get_variable(this->instance_name)) {
         if (!redeclaring_per_vertex) {
            _mesa_glsl_error(&loc, state, "`%s' redeclared",
                             this->instance_name);
         }
         earlier->data.how_declared = ir_var_declared_normally;
         earlier->type = var->type;
         earlier->reinit_interface_type(block_type);
         delete var;
      } else {
         /* Propagate the "binding" keyword into this UBO's fields;
          * the UBO declaration itself doesn't get an ir_variable unless it
          * has an instance name.  This is ugly.
          */
         var->data.explicit_binding = this->layout.flags.q.explicit_binding;
         var->data.binding = this->layout.binding;

         state->symbols->add_variable(var);
         instructions->push_tail(var);
      }
   } else {
      /* In order to have an array size, the block must also be declared with
       * an instance name.
       */
      assert(this->array_specifier == NULL);

      for (unsigned i = 0; i < num_variables; i++) {
         ir_variable *var =
            new(state) ir_variable(fields[i].type,
                                   ralloc_strdup(state, fields[i].name),
                                   var_mode);
         var->data.interpolation = fields[i].interpolation;
         var->data.centroid = fields[i].centroid;
         var->data.sample = fields[i].sample;
         var->init_interface_type(block_type);

         if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
            var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
               ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
         } else {
            var->data.matrix_layout = fields[i].matrix_layout;
         }

         if (fields[i].stream != -1 &&
             ((unsigned)fields[i].stream) != this->layout.stream) {
            _mesa_glsl_error(&loc, state,
                             "stream layout qualifier on "
                             "interface block member `%s' does not match "
                             "the interface block (%d vs %d)",
                             var->name, fields[i].stream, this->layout.stream);
         }

         var->data.stream = this->layout.stream;

         if (redeclaring_per_vertex) {
            ir_variable *earlier =
               get_variable_being_redeclared(var, loc, state,
                                             true /* allow_all_redeclarations */);
            if (!is_gl_identifier(var->name) || earlier == NULL) {
               _mesa_glsl_error(&loc, state,
                                "redeclaration of gl_PerVertex can only "
                                "include built-in variables");
            } else if (earlier->data.how_declared == ir_var_declared_normally) {
               _mesa_glsl_error(&loc, state,
                                "`%s' has already been redeclared", var->name);
            } else {
               earlier->data.how_declared = ir_var_declared_in_block;
               earlier->reinit_interface_type(block_type);
            }
            continue;
         }

         if (state->symbols->get_variable(var->name) != NULL)
            _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);

         /* Propagate the "binding" keyword into this UBO's fields;
          * the UBO declaration itself doesn't get an ir_variable unless it
          * has an instance name.  This is ugly.
          */
         var->data.explicit_binding = this->layout.flags.q.explicit_binding;
         var->data.binding = this->layout.binding;

         state->symbols->add_variable(var);
         instructions->push_tail(var);
      }

      if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
         /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
          *
          *     It is also a compilation error ... to redeclare a built-in
          *     block and then use a member from that built-in block that was
          *     not included in the redeclaration.
          *
          * This appears to be a clarification to the behaviour established
          * for gl_PerVertex by GLSL 1.50, therefore we implement this
          * behaviour regardless of GLSL version.
          *
          * To prevent the shader from using a member that was not included in
          * the redeclaration, we disable any ir_variables that are still
          * associated with the old declaration of gl_PerVertex (since we've
          * already updated all of the variables contained in the new
          * gl_PerVertex to point to it).
          *
          * As a side effect this will prevent
          * validate_intrastage_interface_blocks() from getting confused and
          * thinking there are conflicting definitions of gl_PerVertex in the
          * shader.
          */
         foreach_in_list_safe(ir_instruction, node, instructions) {
            ir_variable *const var = node->as_variable();
            if (var != NULL &&
                var->get_interface_type() == earlier_per_vertex &&
                var->data.mode == var_mode) {
               if (var->data.how_declared == ir_var_declared_normally) {
                  _mesa_glsl_error(&loc, state,
                                   "redeclaration of gl_PerVertex cannot "
                                   "follow a redeclaration of `%s'",
                                   var->name);
               }
               state->symbols->disable_variable(var->name);
               var->remove();
            }
         }
      }
   }

   return NULL;
}


ir_rvalue *
ast_gs_input_layout::hir(exec_list *instructions,
                         struct _mesa_glsl_parse_state *state)
{
   YYLTYPE loc = this->get_location();

   /* If any geometry input layout declaration preceded this one, make sure it
    * was consistent with this one.
    */
   if (state->gs_input_prim_type_specified &&
       state->in_qualifier->prim_type != this->prim_type) {
      _mesa_glsl_error(&loc, state,
                       "geometry shader input layout does not match"
                       " previous declaration");
      return NULL;
   }

   /* If any shader inputs occurred before this declaration and specified an
    * array size, make sure the size they specified is consistent with the
    * primitive type.
    */
   unsigned num_vertices = vertices_per_prim(this->prim_type);
   if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
      _mesa_glsl_error(&loc, state,
                       "this geometry shader input layout implies %u vertices"
                       " per primitive, but a previous input is declared"
                       " with size %u", num_vertices, state->gs_input_size);
      return NULL;
   }

   state->gs_input_prim_type_specified = true;

   /* If any shader inputs occurred before this declaration and did not
    * specify an array size, their size is determined now.
    */
   foreach_in_list(ir_instruction, node, instructions) {
      ir_variable *var = node->as_variable();
      if (var == NULL || var->data.mode != ir_var_shader_in)
         continue;

      /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
       * array; skip it.
       */

      if (var->type->is_unsized_array()) {
         if (var->data.max_array_access >= num_vertices) {
            _mesa_glsl_error(&loc, state,
                             "this geometry shader input layout implies %u"
                             " vertices, but an access to element %u of input"
                             " `%s' already exists", num_vertices,
                             var->data.max_array_access, var->name);
         } else {
            var->type = glsl_type::get_array_instance(var->type->fields.array,
                                                      num_vertices);
         }
      }
   }

   return NULL;
}


ir_rvalue *
ast_cs_input_layout::hir(exec_list *instructions,
                         struct _mesa_glsl_parse_state *state)
{
   YYLTYPE loc = this->get_location();

   /* If any compute input layout declaration preceded this one, make sure it
    * was consistent with this one.
    */
   if (state->cs_input_local_size_specified) {
      for (int i = 0; i < 3; i++) {
         if (state->cs_input_local_size[i] != this->local_size[i]) {
            _mesa_glsl_error(&loc, state,
                             "compute shader input layout does not match"
                             " previous declaration");
            return NULL;
         }
      }
   }

   /* From the ARB_compute_shader specification:
    *
    *     If the local size of the shader in any dimension is greater
    *     than the maximum size supported by the implementation for that
    *     dimension, a compile-time error results.
    *
    * It is not clear from the spec how the error should be reported if
    * the total size of the work group exceeds
    * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
    * report it at compile time as well.
    */
   GLuint64 total_invocations = 1;
   for (int i = 0; i < 3; i++) {
      if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
         _mesa_glsl_error(&loc, state,
                          "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
                          " (%d)", 'x' + i,
                          state->ctx->Const.MaxComputeWorkGroupSize[i]);
         break;
      }
      total_invocations *= this->local_size[i];
      if (total_invocations >
          state->ctx->Const.MaxComputeWorkGroupInvocations) {
         _mesa_glsl_error(&loc, state,
                          "product of local_sizes exceeds "
                          "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
                          state->ctx->Const.MaxComputeWorkGroupInvocations);
         break;
      }
   }

   state->cs_input_local_size_specified = true;
   for (int i = 0; i < 3; i++)
      state->cs_input_local_size[i] = this->local_size[i];

   /* We may now declare the built-in constant gl_WorkGroupSize (see
    * builtin_variable_generator::generate_constants() for why we didn't
    * declare it earlier).
    */
   ir_variable *var = new(state->symbols)
      ir_variable(glsl_type::ivec3_type, "gl_WorkGroupSize", ir_var_auto);
   var->data.how_declared = ir_var_declared_implicitly;
   var->data.read_only = true;
   instructions->push_tail(var);
   state->symbols->add_variable(var);
   ir_constant_data data;
   memset(&data, 0, sizeof(data));
   for (int i = 0; i < 3; i++)
      data.i[i] = this->local_size[i];
   var->constant_value = new(var) ir_constant(glsl_type::ivec3_type, &data);
   var->constant_initializer =
      new(var) ir_constant(glsl_type::ivec3_type, &data);
   var->data.has_initializer = true;

   return NULL;
}


static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
                               exec_list *instructions)
{
   bool gl_FragColor_assigned = false;
   bool gl_FragData_assigned = false;
   bool user_defined_fs_output_assigned = false;
   ir_variable *user_defined_fs_output = NULL;

   /* It would be nice to have proper location information. */
   YYLTYPE loc;
   memset(&loc, 0, sizeof(loc));

   foreach_in_list(ir_instruction, node, instructions) {
      ir_variable *var = node->as_variable();

      if (!var || !var->data.assigned)
         continue;

      if (strcmp(var->name, "gl_FragColor") == 0)
         gl_FragColor_assigned = true;
      else if (strcmp(var->name, "gl_FragData") == 0)
         gl_FragData_assigned = true;
      else if (!is_gl_identifier(var->name)) {
         if (state->stage == MESA_SHADER_FRAGMENT &&
             var->data.mode == ir_var_shader_out) {
            user_defined_fs_output_assigned = true;
            user_defined_fs_output = var;
         }
      }
   }

   /* From the GLSL 1.30 spec:
    *
    *     "If a shader statically assigns a value to gl_FragColor, it
    *      may not assign a value to any element of gl_FragData. If a
    *      shader statically writes a value to any element of
    *      gl_FragData, it may not assign a value to
    *      gl_FragColor. That is, a shader may assign values to either
    *      gl_FragColor or gl_FragData, but not both. Multiple shaders
    *      linked together must also consistently write just one of
    *      these variables.  Similarly, if user declared output
    *      variables are in use (statically assigned to), then the
    *      built-in variables gl_FragColor and gl_FragData may not be
    *      assigned to. These incorrect usages all generate compile
    *      time errors."
    */
   if (gl_FragColor_assigned && gl_FragData_assigned) {
      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
                       "`gl_FragColor' and `gl_FragData'");
   } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
                       "`gl_FragColor' and `%s'",
                       user_defined_fs_output->name);
   } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
      _mesa_glsl_error(&loc, state, "fragment shader writes to both "
                       "`gl_FragData' and `%s'",
                       user_defined_fs_output->name);
   }
}


static void
remove_per_vertex_blocks(exec_list *instructions,
                         _mesa_glsl_parse_state *state, ir_variable_mode mode)
{
   /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
    * if it exists in this shader type.
    */
   const glsl_type *per_vertex = NULL;
   switch (mode) {
   case ir_var_shader_in:
      if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
         per_vertex = gl_in->get_interface_type();
      break;
   case ir_var_shader_out:
      if (ir_variable *gl_Position =
          state->symbols->get_variable("gl_Position")) {
         per_vertex = gl_Position->get_interface_type();
      }
      break;
   default:
      assert(!"Unexpected mode");
      break;
   }

   /* If we didn't find a built-in gl_PerVertex interface block, then we don't
    * need to do anything.
    */
   if (per_vertex == NULL)
      return;

   /* If the interface block is used by the shader, then we don't need to do
    * anything.
    */
   interface_block_usage_visitor v(mode, per_vertex);
   v.run(instructions);
   if (v.usage_found())
      return;

   /* Remove any ir_variable declarations that refer to the interface block
    * we're removing.
    */
   foreach_in_list_safe(ir_instruction, node, instructions) {
      ir_variable *const var = node->as_variable();
      if (var != NULL && var->get_interface_type() == per_vertex &&
          var->data.mode == mode) {
         state->symbols->disable_variable(var->name);
         var->remove();
      }
   }
}