diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/gallium/auxiliary/util/u_sse.h | 92 | ||||
-rw-r--r-- | src/gallium/drivers/llvmpipe/lp_setup_line.c | 16 | ||||
-rw-r--r-- | src/gallium/drivers/llvmpipe/lp_setup_tri.c | 104 |
3 files changed, 150 insertions, 62 deletions
diff --git a/src/gallium/auxiliary/util/u_sse.h b/src/gallium/auxiliary/util/u_sse.h index 7f8e5a1a3cf..cae4138ba01 100644 --- a/src/gallium/auxiliary/util/u_sse.h +++ b/src/gallium/auxiliary/util/u_sse.h @@ -166,14 +166,49 @@ _mm_shuffle_epi8(__m128i a, __m128i mask) #endif /* !PIPE_ARCH_SSSE3 */ +/* + * Provide an SSE implementation of _mm_mul_epi32() in terms of + * _mm_mul_epu32(). + * + * Basically, albeit surprising at first (and second, and third...) look + * if a * b is done signed instead of unsigned, can just + * subtract b from the high bits of the result if a is negative + * (and the same for a if b is negative). Modular arithmetic at its best! + * + * So for int32 a,b in crude pseudo-code ("*" here denoting a widening mul) + * fixupb = (signmask(b) & a) << 32ULL + * fixupa = (signmask(a) & b) << 32ULL + * a * b = (unsigned)a * (unsigned)b - fixupb - fixupa + * = (unsigned)a * (unsigned)b -(fixupb + fixupa) + * + * This does both lo (dwords 0/2) and hi parts (1/3) at the same time due + * to some optimization potential. + */ +static inline __m128i +mm_mullohi_epi32(const __m128i a, const __m128i b, __m128i *res13) +{ + __m128i a13, b13, mul02, mul13; + __m128i anegmask, bnegmask, fixup, fixup02, fixup13; + a13 = _mm_shuffle_epi32(a, _MM_SHUFFLE(2,3,0,1)); + b13 = _mm_shuffle_epi32(b, _MM_SHUFFLE(2,3,0,1)); + anegmask = _mm_srai_epi32(a, 31); + bnegmask = _mm_srai_epi32(b, 31); + fixup = _mm_add_epi32(_mm_and_si128(anegmask, b), + _mm_and_si128(bnegmask, a)); + mul02 = _mm_mul_epu32(a, b); + mul13 = _mm_mul_epu32(a13, b13); + fixup02 = _mm_slli_epi64(fixup, 32); + fixup13 = _mm_and_si128(fixup, _mm_set_epi32(-1,0,-1,0)); + *res13 = _mm_sub_epi64(mul13, fixup13); + return _mm_sub_epi64(mul02, fixup02); +} /* Provide an SSE2 implementation of _mm_mullo_epi32() in terms of * _mm_mul_epu32(). * - * I suspect this works fine for us because one of our operands is - * always positive, but not sure that this can be used for general - * signed integer multiplication. + * This always works regardless the signs of the operands, since + * the high bits (which would be different) aren't used. * * This seems close enough to the speed of SSE4 and the real * _mm_mullo_epi32() intrinsic as to not justify adding an sse4 @@ -188,6 +223,12 @@ static inline __m128i mm_mullo_epi32(const __m128i a, const __m128i b) /* Interleave the results, either with shuffles or (slightly * faster) direct bit operations: + * XXX: might be only true for some cpus (in particular 65nm + * Core 2). On most cpus (including that Core 2, but not Nehalem...) + * using _mm_shuffle_ps/_mm_shuffle_epi32 might also be faster + * than using the 3 instructions below. But logic should be fine + * as well, we can't have optimal solution for all cpus (if anything, + * should just use _mm_mullo_epi32() if sse41 is available...). */ #if 0 __m128i ba8 = _mm_shuffle_epi32(ba, 8); @@ -214,17 +255,44 @@ transpose4_epi32(const __m128i * restrict a, __m128i * restrict q, __m128i * restrict r) { - __m128i t0 = _mm_unpacklo_epi32(*a, *b); - __m128i t1 = _mm_unpacklo_epi32(*c, *d); - __m128i t2 = _mm_unpackhi_epi32(*a, *b); - __m128i t3 = _mm_unpackhi_epi32(*c, *d); - - *o = _mm_unpacklo_epi64(t0, t1); - *p = _mm_unpackhi_epi64(t0, t1); - *q = _mm_unpacklo_epi64(t2, t3); - *r = _mm_unpackhi_epi64(t2, t3); + __m128i t0 = _mm_unpacklo_epi32(*a, *b); + __m128i t1 = _mm_unpacklo_epi32(*c, *d); + __m128i t2 = _mm_unpackhi_epi32(*a, *b); + __m128i t3 = _mm_unpackhi_epi32(*c, *d); + + *o = _mm_unpacklo_epi64(t0, t1); + *p = _mm_unpackhi_epi64(t0, t1); + *q = _mm_unpacklo_epi64(t2, t3); + *r = _mm_unpackhi_epi64(t2, t3); } + +/* + * Same as above, except the first two values are already interleaved + * (i.e. contain 64bit values). + */ +static inline void +transpose2_64_2_32(const __m128i * restrict a01, + const __m128i * restrict a23, + const __m128i * restrict c, + const __m128i * restrict d, + __m128i * restrict o, + __m128i * restrict p, + __m128i * restrict q, + __m128i * restrict r) +{ + __m128i t0 = *a01; + __m128i t1 = _mm_unpacklo_epi32(*c, *d); + __m128i t2 = *a23; + __m128i t3 = _mm_unpackhi_epi32(*c, *d); + + *o = _mm_unpacklo_epi64(t0, t1); + *p = _mm_unpackhi_epi64(t0, t1); + *q = _mm_unpacklo_epi64(t2, t3); + *r = _mm_unpackhi_epi64(t2, t3); +} + + #define SCALAR_EPI32(m, i) _mm_shuffle_epi32((m), _MM_SHUFFLE(i,i,i,i)) diff --git a/src/gallium/drivers/llvmpipe/lp_setup_line.c b/src/gallium/drivers/llvmpipe/lp_setup_line.c index fac1cd61d77..a0de599c9c6 100644 --- a/src/gallium/drivers/llvmpipe/lp_setup_line.c +++ b/src/gallium/drivers/llvmpipe/lp_setup_line.c @@ -644,19 +644,25 @@ try_setup_line( struct lp_setup_context *setup, line->inputs.layer = layer; line->inputs.viewport_index = viewport_index; + /* + * XXX: this code is mostly identical to the one in lp_setup_tri, except it + * uses 4 planes instead of 3. Could share the code (including the sse + * assembly, in fact we'd get the 4th plane for free). + * The only difference apart from storing the 4th plane would be some + * different shuffle for calculating dcdx/dcdy. + */ for (i = 0; i < 4; i++) { - /* half-edge constants, will be interated over the whole render + /* half-edge constants, will be iterated over the whole render * target. */ plane[i].c = IMUL64(plane[i].dcdx, x[i]) - IMUL64(plane[i].dcdy, y[i]); - - /* correct for top-left vs. bottom-left fill convention. - */ + /* correct for top-left vs. bottom-left fill convention. + */ if (plane[i].dcdx < 0) { /* both fill conventions want this - adjust for left edges */ - plane[i].c++; + plane[i].c++; } else if (plane[i].dcdx == 0) { if (setup->pixel_offset == 0) { diff --git a/src/gallium/drivers/llvmpipe/lp_setup_tri.c b/src/gallium/drivers/llvmpipe/lp_setup_tri.c index a1631fdaee9..358da442ea7 100644 --- a/src/gallium/drivers/llvmpipe/lp_setup_tri.c +++ b/src/gallium/drivers/llvmpipe/lp_setup_tri.c @@ -390,26 +390,18 @@ do_triangle_ccw(struct lp_setup_context *setup, plane = GET_PLANES(tri); #if defined(PIPE_ARCH_SSE) - /* - * XXX this code is effectively disabled for all practical purposes, - * as the allowed fb size is tiny if FIXED_ORDER is 8. - */ - if (setup->fb.width <= MAX_FIXED_LENGTH32 && - setup->fb.height <= MAX_FIXED_LENGTH32 && - (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 && - (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) { + if (1) { __m128i vertx, verty; __m128i shufx, shufy; - __m128i dcdx, dcdy, c; - __m128i unused; + __m128i dcdx, dcdy; + __m128i cdx02, cdx13, cdy02, cdy13, c02, c13; + __m128i c01, c23, unused; __m128i dcdx_neg_mask; __m128i dcdy_neg_mask; __m128i dcdx_zero_mask; - __m128i top_left_flag; - __m128i c_inc_mask, c_inc; + __m128i top_left_flag, c_dec; __m128i eo, p0, p1, p2; __m128i zero = _mm_setzero_si128(); - PIPE_ALIGN_VAR(16) int32_t temp_vec[4]; vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */ verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */ @@ -426,48 +418,70 @@ do_triangle_ccw(struct lp_setup_context *setup, top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0); - c_inc_mask = _mm_or_si128(dcdx_neg_mask, - _mm_and_si128(dcdx_zero_mask, - _mm_xor_si128(dcdy_neg_mask, - top_left_flag))); - - c_inc = _mm_srli_epi32(c_inc_mask, 31); - - c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx), - mm_mullo_epi32(dcdy, verty)); + c_dec = _mm_or_si128(dcdx_neg_mask, + _mm_and_si128(dcdx_zero_mask, + _mm_xor_si128(dcdy_neg_mask, + top_left_flag))); - c = _mm_add_epi32(c, c_inc); + /* + * 64 bit arithmetic. + * Note we need _signed_ mul (_mm_mul_epi32) which we emulate. + */ + cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13); + cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13); + c02 = _mm_sub_epi64(cdx02, cdy02); + c13 = _mm_sub_epi64(cdx13, cdy13); + c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec, + _MM_SHUFFLE(2,2,0,0))); + c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec, + _MM_SHUFFLE(3,3,1,1))); + + /* + * Useful for very small fbs/tris (or fewer subpixel bits) only: + * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx), + * mm_mullo_epi32(dcdy, verty)); + * + * c = _mm_sub_epi32(c, c_dec); + */ /* Scale up to match c: */ dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER); dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER); - /* Calculate trivial reject values: + /* + * Calculate trivial reject values: + * Note eo cannot overflow even if dcdx/dcdy would already have + * 31 bits (which they shouldn't have). This is because eo + * is never negative (albeit if we rely on that need to be careful...) */ eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy), _mm_and_si128(dcdx_neg_mask, dcdx)); /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */ - /* Pointless transpose which gets undone immediately in - * rasterization: + /* + * Pointless transpose which gets undone immediately in + * rasterization. + * It is actually difficult to do away with it - would essentially + * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations + * for this then would need to depend on the number of planes. + * The transpose is quite special here due to c being 64bit... + * The store has to be unaligned (unless we'd make the plane size + * a multiple of 128), and of course storing eo separately... */ - transpose4_epi32(&c, &dcdx, &dcdy, &eo, - &p0, &p1, &p2, &unused); - -#define STORE_PLANE(plane, vec) do { \ - _mm_store_si128((__m128i *)&temp_vec, vec); \ - plane.c = (int64_t)temp_vec[0]; \ - plane.dcdx = temp_vec[1]; \ - plane.dcdy = temp_vec[2]; \ - plane.eo = temp_vec[3]; \ - } while(0) - - STORE_PLANE(plane[0], p0); - STORE_PLANE(plane[1], p1); - STORE_PLANE(plane[2], p2); -#undef STORE_PLANE + c01 = _mm_unpacklo_epi64(c02, c13); + c23 = _mm_unpackhi_epi64(c02, c13); + transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy, + &p0, &p1, &p2, &unused); + _mm_storeu_si128((__m128i *)&plane[0], p0); + plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo); + _mm_storeu_si128((__m128i *)&plane[1], p1); + eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1)); + plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo); + _mm_storeu_si128((__m128i *)&plane[2], p2); + eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2)); + plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo); } else #elif defined(_ARCH_PWR8) && defined(PIPE_ARCH_LITTLE_ENDIAN) /* @@ -577,17 +591,17 @@ do_triangle_ccw(struct lp_setup_context *setup, plane[2].dcdx = position->dy20; for (i = 0; i < 3; i++) { - /* half-edge constants, will be interated over the whole render + /* half-edge constants, will be iterated over the whole render * target. */ plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) - - IMUL64(plane[i].dcdy, position->y[i]); + IMUL64(plane[i].dcdy, position->y[i]); /* correct for top-left vs. bottom-left fill convention. - */ + */ if (plane[i].dcdx < 0) { /* both fill conventions want this - adjust for left edges */ - plane[i].c++; + plane[i].c++; } else if (plane[i].dcdx == 0) { if (setup->bottom_edge_rule == 0){ |