summaryrefslogtreecommitdiffstats
path: root/src/vulkan/anv_pipeline.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/vulkan/anv_pipeline.c')
-rw-r--r--src/vulkan/anv_pipeline.c1158
1 files changed, 1158 insertions, 0 deletions
diff --git a/src/vulkan/anv_pipeline.c b/src/vulkan/anv_pipeline.c
new file mode 100644
index 00000000000..3d9e0705626
--- /dev/null
+++ b/src/vulkan/anv_pipeline.c
@@ -0,0 +1,1158 @@
+/*
+ * Copyright © 2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <string.h>
+#include <unistd.h>
+#include <fcntl.h>
+
+#include "anv_private.h"
+#include "brw_nir.h"
+#include "anv_nir.h"
+#include "glsl/nir/nir_spirv.h"
+
+/* Needed for SWIZZLE macros */
+#include "program/prog_instruction.h"
+
+// Shader functions
+
+VkResult anv_CreateShaderModule(
+ VkDevice _device,
+ const VkShaderModuleCreateInfo* pCreateInfo,
+ VkShaderModule* pShaderModule)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ struct anv_shader_module *module;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
+ assert(pCreateInfo->flags == 0);
+
+ module = anv_device_alloc(device, sizeof(*module) + pCreateInfo->codeSize, 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (module == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ module->nir = NULL;
+ module->size = pCreateInfo->codeSize;
+ memcpy(module->data, pCreateInfo->pCode, module->size);
+
+ *pShaderModule = anv_shader_module_to_handle(module);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyShaderModule(
+ VkDevice _device,
+ VkShaderModule _module)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_shader_module, module, _module);
+
+ anv_device_free(device, module);
+}
+
+VkResult anv_CreateShader(
+ VkDevice _device,
+ const VkShaderCreateInfo* pCreateInfo,
+ VkShader* pShader)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->module);
+ struct anv_shader *shader;
+
+ assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_CREATE_INFO);
+ assert(pCreateInfo->flags == 0);
+
+ const char *name = pCreateInfo->pName ? pCreateInfo->pName : "main";
+ size_t name_len = strlen(name);
+
+ shader = anv_device_alloc(device, sizeof(*shader) + name_len + 1, 8,
+ VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
+ if (shader == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ shader->module = module,
+ memcpy(shader->entrypoint, name, name_len + 1);
+
+ *pShader = anv_shader_to_handle(shader);
+
+ return VK_SUCCESS;
+}
+
+void anv_DestroyShader(
+ VkDevice _device,
+ VkShader _shader)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_shader, shader, _shader);
+
+ anv_device_free(device, shader);
+}
+
+#define SPIR_V_MAGIC_NUMBER 0x07230203
+
+static const gl_shader_stage vk_shader_stage_to_mesa_stage[] = {
+ [VK_SHADER_STAGE_VERTEX] = MESA_SHADER_VERTEX,
+ [VK_SHADER_STAGE_TESS_CONTROL] = -1,
+ [VK_SHADER_STAGE_TESS_EVALUATION] = -1,
+ [VK_SHADER_STAGE_GEOMETRY] = MESA_SHADER_GEOMETRY,
+ [VK_SHADER_STAGE_FRAGMENT] = MESA_SHADER_FRAGMENT,
+ [VK_SHADER_STAGE_COMPUTE] = MESA_SHADER_COMPUTE,
+};
+
+bool
+anv_is_scalar_shader_stage(const struct brw_compiler *compiler,
+ VkShaderStage stage)
+{
+ return compiler->scalar_stage[vk_shader_stage_to_mesa_stage[stage]];
+}
+
+/* Eventually, this will become part of anv_CreateShader. Unfortunately,
+ * we can't do that yet because we don't have the ability to copy nir.
+ */
+static nir_shader *
+anv_shader_compile_to_nir(struct anv_device *device,
+ struct anv_shader *shader, VkShaderStage vk_stage)
+{
+ if (strcmp(shader->entrypoint, "main") != 0) {
+ anv_finishme("Multiple shaders per module not really supported");
+ }
+
+ gl_shader_stage stage = vk_shader_stage_to_mesa_stage[vk_stage];
+ const struct brw_compiler *compiler =
+ device->instance->physicalDevice.compiler;
+ const nir_shader_compiler_options *nir_options =
+ compiler->glsl_compiler_options[stage].NirOptions;
+
+ nir_shader *nir;
+ if (shader->module->nir) {
+ /* Some things such as our meta clear/blit code will give us a NIR
+ * shader directly. In that case, we just ignore the SPIR-V entirely
+ * and just use the NIR shader */
+ nir = shader->module->nir;
+ nir->options = nir_options;
+ } else {
+ uint32_t *spirv = (uint32_t *) shader->module->data;
+ assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
+ assert(shader->module->size % 4 == 0);
+
+ nir = spirv_to_nir(spirv, shader->module->size / 4, stage, nir_options);
+ }
+ nir_validate_shader(nir);
+
+ /* Vulkan uses the separate-shader linking model */
+ nir->info.separate_shader = true;
+
+ /* Make sure the provided shader has exactly one entrypoint and that the
+ * name matches the name that came in from the VkShader.
+ */
+ nir_function_impl *entrypoint = NULL;
+ nir_foreach_overload(nir, overload) {
+ if (strcmp(shader->entrypoint, overload->function->name) == 0 &&
+ overload->impl) {
+ assert(entrypoint == NULL);
+ entrypoint = overload->impl;
+ }
+ }
+ assert(entrypoint != NULL);
+
+ nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
+
+ nir_shader_gather_info(nir, entrypoint);
+
+ return nir;
+}
+
+VkResult anv_CreatePipelineCache(
+ VkDevice device,
+ const VkPipelineCacheCreateInfo* pCreateInfo,
+ VkPipelineCache* pPipelineCache)
+{
+ pPipelineCache->handle = 1;
+
+ stub_return(VK_SUCCESS);
+}
+
+void anv_DestroyPipelineCache(
+ VkDevice _device,
+ VkPipelineCache _cache)
+{
+}
+
+size_t anv_GetPipelineCacheSize(
+ VkDevice device,
+ VkPipelineCache pipelineCache)
+{
+ stub_return(0);
+}
+
+VkResult anv_GetPipelineCacheData(
+ VkDevice device,
+ VkPipelineCache pipelineCache,
+ void* pData)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+VkResult anv_MergePipelineCaches(
+ VkDevice device,
+ VkPipelineCache destCache,
+ uint32_t srcCacheCount,
+ const VkPipelineCache* pSrcCaches)
+{
+ stub_return(VK_UNSUPPORTED);
+}
+
+void anv_DestroyPipeline(
+ VkDevice _device,
+ VkPipeline _pipeline)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+ ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
+
+ anv_reloc_list_finish(&pipeline->batch_relocs, pipeline->device);
+ anv_state_stream_finish(&pipeline->program_stream);
+ if (pipeline->blend_state.map)
+ anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
+ anv_device_free(pipeline->device, pipeline);
+}
+
+static const uint32_t vk_to_gen_primitive_type[] = {
+ [VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_ADJ] = _3DPRIM_LINELIST_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_ADJ] = _3DPRIM_LINESTRIP_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_ADJ] = _3DPRIM_TRILIST_ADJ,
+ [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_ADJ] = _3DPRIM_TRISTRIP_ADJ,
+/* [VK_PRIMITIVE_TOPOLOGY_PATCH] = _3DPRIM_PATCHLIST_1 */
+};
+
+static void
+populate_sampler_prog_key(const struct brw_device_info *devinfo,
+ struct brw_sampler_prog_key_data *key)
+{
+ /* XXX: Handle texture swizzle on HSW- */
+ for (int i = 0; i < MAX_SAMPLERS; i++) {
+ /* Assume color sampler, no swizzling. (Works for BDW+) */
+ key->swizzles[i] = SWIZZLE_XYZW;
+ }
+}
+
+static void
+populate_vs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_vs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+
+ /* XXX: Handle vertex input work-arounds */
+
+ /* XXX: Handle sampler_prog_key */
+}
+
+static void
+populate_gs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_gs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+}
+
+static void
+populate_wm_prog_key(const struct brw_device_info *devinfo,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct brw_wm_prog_key *key)
+{
+ ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
+
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+
+ /* TODO: Fill out key->input_slots_valid */
+
+ /* Vulkan doesn't specify a default */
+ key->high_quality_derivatives = false;
+
+ /* XXX Vulkan doesn't appear to specify */
+ key->clamp_fragment_color = false;
+
+ /* Vulkan always specifies upper-left coordinates */
+ key->drawable_height = 0;
+ key->render_to_fbo = false;
+
+ key->nr_color_regions = render_pass->subpasses[info->subpass].color_count;
+
+ key->replicate_alpha = key->nr_color_regions > 1 &&
+ info->pColorBlendState->alphaToCoverageEnable;
+
+ if (info->pMultisampleState && info->pMultisampleState->rasterSamples > 1) {
+ /* We should probably pull this out of the shader, but it's fairly
+ * harmless to compute it and then let dead-code take care of it.
+ */
+ key->persample_shading = info->pMultisampleState->sampleShadingEnable;
+ if (key->persample_shading)
+ key->persample_2x = info->pMultisampleState->rasterSamples == 2;
+
+ key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
+ key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
+ }
+}
+
+static void
+populate_cs_prog_key(const struct brw_device_info *devinfo,
+ struct brw_cs_prog_key *key)
+{
+ memset(key, 0, sizeof(*key));
+
+ populate_sampler_prog_key(devinfo, &key->tex);
+}
+
+static nir_shader *
+anv_pipeline_compile(struct anv_pipeline *pipeline,
+ struct anv_shader *shader,
+ VkShaderStage stage,
+ struct brw_stage_prog_data *prog_data)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+
+ nir_shader *nir = anv_shader_compile_to_nir(pipeline->device, shader, stage);
+ if (nir == NULL)
+ return NULL;
+
+ anv_nir_lower_push_constants(nir, anv_is_scalar_shader_stage(compiler, stage));
+
+ /* Figure out the number of parameters */
+ prog_data->nr_params = 0;
+
+ if (nir->num_uniforms > 0) {
+ /* If the shader uses any push constants at all, we'll just give
+ * them the maximum possible number
+ */
+ prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
+ }
+
+ if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
+ prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
+
+ if (prog_data->nr_params > 0) {
+ prog_data->param = (const gl_constant_value **)
+ anv_device_alloc(pipeline->device,
+ prog_data->nr_params * sizeof(gl_constant_value *),
+ 8, VK_SYSTEM_ALLOC_TYPE_INTERNAL_SHADER);
+
+ /* We now set the param values to be offsets into a
+ * anv_push_constant_data structure. Since the compiler doesn't
+ * actually dereference any of the gl_constant_value pointers in the
+ * params array, it doesn't really matter what we put here.
+ */
+ struct anv_push_constants *null_data = NULL;
+ if (nir->num_uniforms > 0) {
+ /* Fill out the push constants section of the param array */
+ for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
+ prog_data->param[i] = (const gl_constant_value *)
+ &null_data->client_data[i * sizeof(float)];
+ }
+ }
+
+ /* Set up dynamic offsets */
+ anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
+
+ /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
+ anv_nir_apply_pipeline_layout(nir, pipeline->layout);
+
+ /* All binding table offsets provided by apply_pipeline_layout() are
+ * relative to the start of the bindint table (plus MAX_RTS for VS).
+ */
+ unsigned bias = stage == VK_SHADER_STAGE_FRAGMENT ? MAX_RTS : 0;
+ prog_data->binding_table.size_bytes = 0;
+ prog_data->binding_table.texture_start = bias;
+ prog_data->binding_table.ubo_start = bias;
+ prog_data->binding_table.ssbo_start = bias;
+ prog_data->binding_table.image_start = bias;
+
+ /* Finish the optimization and compilation process */
+ nir = brw_lower_nir(nir, &pipeline->device->info, NULL,
+ anv_is_scalar_shader_stage(compiler, stage));
+
+ /* nir_lower_io will only handle the push constants; we need to set this
+ * to the full number of possible uniforms.
+ */
+ nir->num_uniforms = prog_data->nr_params;
+
+ return nir;
+}
+
+static uint32_t
+anv_pipeline_upload_kernel(struct anv_pipeline *pipeline,
+ const void *data, size_t size)
+{
+ struct anv_state state =
+ anv_state_stream_alloc(&pipeline->program_stream, size, 64);
+
+ assert(size < pipeline->program_stream.block_pool->block_size);
+
+ memcpy(state.map, data, size);
+
+ return state.offset;
+}
+static void
+anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
+ VkShaderStage stage,
+ struct brw_stage_prog_data *prog_data)
+{
+ struct brw_device_info *devinfo = &pipeline->device->info;
+ uint32_t max_threads[] = {
+ [VK_SHADER_STAGE_VERTEX] = devinfo->max_vs_threads,
+ [VK_SHADER_STAGE_TESS_CONTROL] = 0,
+ [VK_SHADER_STAGE_TESS_EVALUATION] = 0,
+ [VK_SHADER_STAGE_GEOMETRY] = devinfo->max_gs_threads,
+ [VK_SHADER_STAGE_FRAGMENT] = devinfo->max_wm_threads,
+ [VK_SHADER_STAGE_COMPUTE] = devinfo->max_cs_threads,
+ };
+
+ pipeline->prog_data[stage] = prog_data;
+ pipeline->active_stages |= 1 << stage;
+ pipeline->scratch_start[stage] = pipeline->total_scratch;
+ pipeline->total_scratch =
+ align_u32(pipeline->total_scratch, 1024) +
+ prog_data->total_scratch * max_threads[stage];
+}
+
+static VkResult
+anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader *shader)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
+ struct brw_vs_prog_key key;
+
+ populate_vs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, shader,
+ VK_SHADER_STAGE_VERTEX,
+ &prog_data->base.base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (shader->module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ prog_data->inputs_read = nir->info.inputs_read;
+ pipeline->writes_point_size = nir->info.outputs_written & VARYING_SLOT_PSIZ;
+
+ brw_compute_vue_map(&pipeline->device->info,
+ &prog_data->base.vue_map,
+ nir->info.outputs_written,
+ nir->info.separate_shader);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_vs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, false, -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ const uint32_t offset =
+ anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
+ if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
+ pipeline->vs_simd8 = offset;
+ pipeline->vs_vec4 = NO_KERNEL;
+ } else {
+ pipeline->vs_simd8 = NO_KERNEL;
+ pipeline->vs_vec4 = offset;
+ }
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_VERTEX,
+ &prog_data->base.base);
+
+ return VK_SUCCESS;
+}
+
+static VkResult
+anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader *shader)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_gs_prog_data *prog_data = &pipeline->gs_prog_data;
+ struct brw_gs_prog_key key;
+
+ populate_gs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, shader,
+ VK_SHADER_STAGE_GEOMETRY,
+ &prog_data->base.base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (shader->module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ brw_compute_vue_map(&pipeline->device->info,
+ &prog_data->base.vue_map,
+ nir->info.outputs_written,
+ nir->info.separate_shader);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_gs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ /* TODO: SIMD8 GS */
+ pipeline->gs_vec4 =
+ anv_pipeline_upload_kernel(pipeline, shader_code, code_size);
+ pipeline->gs_vertex_count = nir->info.gs.vertices_in;
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_GEOMETRY,
+ &prog_data->base.base);
+
+ return VK_SUCCESS;
+}
+
+static VkResult
+anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *info,
+ struct anv_shader *shader)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
+ struct brw_wm_prog_key key;
+
+ populate_wm_prog_key(&pipeline->device->info, info, &key);
+
+ if (pipeline->use_repclear)
+ key.nr_color_regions = 1;
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ prog_data->binding_table.render_target_start = 0;
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, shader,
+ VK_SHADER_STAGE_FRAGMENT,
+ &prog_data->base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (shader->module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_fs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ uint32_t offset = anv_pipeline_upload_kernel(pipeline,
+ shader_code, code_size);
+ if (prog_data->no_8)
+ pipeline->ps_simd8 = NO_KERNEL;
+ else
+ pipeline->ps_simd8 = offset;
+
+ if (prog_data->no_8 || prog_data->prog_offset_16) {
+ pipeline->ps_simd16 = offset + prog_data->prog_offset_16;
+ } else {
+ pipeline->ps_simd16 = NO_KERNEL;
+ }
+
+ pipeline->ps_ksp2 = 0;
+ pipeline->ps_grf_start2 = 0;
+ if (pipeline->ps_simd8 != NO_KERNEL) {
+ pipeline->ps_ksp0 = pipeline->ps_simd8;
+ pipeline->ps_grf_start0 = prog_data->base.dispatch_grf_start_reg;
+ if (pipeline->ps_simd16 != NO_KERNEL) {
+ pipeline->ps_ksp2 = pipeline->ps_simd16;
+ pipeline->ps_grf_start2 = prog_data->dispatch_grf_start_reg_16;
+ }
+ } else if (pipeline->ps_simd16 != NO_KERNEL) {
+ pipeline->ps_ksp0 = pipeline->ps_simd16;
+ pipeline->ps_grf_start0 = prog_data->dispatch_grf_start_reg_16;
+ }
+
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_FRAGMENT,
+ &prog_data->base);
+
+ return VK_SUCCESS;
+}
+
+VkResult
+anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
+ const VkComputePipelineCreateInfo *info,
+ struct anv_shader *shader)
+{
+ const struct brw_compiler *compiler =
+ pipeline->device->instance->physicalDevice.compiler;
+ struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
+ struct brw_cs_prog_key key;
+
+ populate_cs_prog_key(&pipeline->device->info, &key);
+
+ /* TODO: Look up shader in cache */
+
+ memset(prog_data, 0, sizeof(*prog_data));
+
+ nir_shader *nir = anv_pipeline_compile(pipeline, shader,
+ VK_SHADER_STAGE_COMPUTE,
+ &prog_data->base);
+ if (nir == NULL)
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ if (shader->module->nir == NULL)
+ ralloc_steal(mem_ctx, nir);
+
+ unsigned code_size;
+ const unsigned *shader_code =
+ brw_compile_cs(compiler, NULL, mem_ctx, &key, prog_data, nir,
+ -1, &code_size, NULL);
+ if (shader_code == NULL) {
+ ralloc_free(mem_ctx);
+ return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+ }
+
+ pipeline->cs_simd = anv_pipeline_upload_kernel(pipeline,
+ shader_code, code_size);
+ ralloc_free(mem_ctx);
+
+ anv_pipeline_add_compiled_stage(pipeline, VK_SHADER_STAGE_COMPUTE,
+ &prog_data->base);
+
+ return VK_SUCCESS;
+}
+
+static const int gen8_push_size = 32 * 1024;
+
+static void
+gen7_compute_urb_partition(struct anv_pipeline *pipeline)
+{
+ const struct brw_device_info *devinfo = &pipeline->device->info;
+ bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
+ unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
+ unsigned vs_entry_size_bytes = vs_size * 64;
+ bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
+ unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
+ unsigned gs_entry_size_bytes = gs_size * 64;
+
+ /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
+ *
+ * VS Number of URB Entries must be divisible by 8 if the VS URB Entry
+ * Allocation Size is less than 9 512-bit URB entries.
+ *
+ * Similar text exists for GS.
+ */
+ unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
+ unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
+
+ /* URB allocations must be done in 8k chunks. */
+ unsigned chunk_size_bytes = 8192;
+
+ /* Determine the size of the URB in chunks. */
+ unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
+
+ /* Reserve space for push constants */
+ unsigned push_constant_bytes = gen8_push_size;
+ unsigned push_constant_chunks =
+ push_constant_bytes / chunk_size_bytes;
+
+ /* Initially, assign each stage the minimum amount of URB space it needs,
+ * and make a note of how much additional space it "wants" (the amount of
+ * additional space it could actually make use of).
+ */
+
+ /* VS has a lower limit on the number of URB entries */
+ unsigned vs_chunks =
+ ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes;
+ unsigned vs_wants =
+ ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes - vs_chunks;
+
+ unsigned gs_chunks = 0;
+ unsigned gs_wants = 0;
+ if (gs_present) {
+ /* There are two constraints on the minimum amount of URB space we can
+ * allocate:
+ *
+ * (1) We need room for at least 2 URB entries, since we always operate
+ * the GS in DUAL_OBJECT mode.
+ *
+ * (2) We can't allocate less than nr_gs_entries_granularity.
+ */
+ gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes;
+ gs_wants =
+ ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
+ chunk_size_bytes) / chunk_size_bytes - gs_chunks;
+ }
+
+ /* There should always be enough URB space to satisfy the minimum
+ * requirements of each stage.
+ */
+ unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
+ assert(total_needs <= urb_chunks);
+
+ /* Mete out remaining space (if any) in proportion to "wants". */
+ unsigned total_wants = vs_wants + gs_wants;
+ unsigned remaining_space = urb_chunks - total_needs;
+ if (remaining_space > total_wants)
+ remaining_space = total_wants;
+ if (remaining_space > 0) {
+ unsigned vs_additional = (unsigned)
+ round(vs_wants * (((double) remaining_space) / total_wants));
+ vs_chunks += vs_additional;
+ remaining_space -= vs_additional;
+ gs_chunks += remaining_space;
+ }
+
+ /* Sanity check that we haven't over-allocated. */
+ assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
+
+ /* Finally, compute the number of entries that can fit in the space
+ * allocated to each stage.
+ */
+ unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
+ unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
+
+ /* Since we rounded up when computing *_wants, this may be slightly more
+ * than the maximum allowed amount, so correct for that.
+ */
+ nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
+ nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
+
+ /* Ensure that we program a multiple of the granularity. */
+ nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
+ nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
+
+ /* Finally, sanity check to make sure we have at least the minimum number
+ * of entries needed for each stage.
+ */
+ assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
+ if (gs_present)
+ assert(nr_gs_entries >= 2);
+
+ /* Lay out the URB in the following order:
+ * - push constants
+ * - VS
+ * - GS
+ */
+ pipeline->urb.vs_start = push_constant_chunks;
+ pipeline->urb.vs_size = vs_size;
+ pipeline->urb.nr_vs_entries = nr_vs_entries;
+
+ pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
+ pipeline->urb.gs_size = gs_size;
+ pipeline->urb.nr_gs_entries = nr_gs_entries;
+}
+
+static void
+anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo)
+{
+ anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
+ ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
+ struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
+
+ pipeline->dynamic_state = default_dynamic_state;
+
+ if (pCreateInfo->pDynamicState) {
+ /* Remove all of the states that are marked as dynamic */
+ uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
+ for (uint32_t s = 0; s < count; s++)
+ states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
+ }
+
+ struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
+
+ dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
+ if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
+ typed_memcpy(dynamic->viewport.viewports,
+ pCreateInfo->pViewportState->pViewports,
+ pCreateInfo->pViewportState->viewportCount);
+ }
+
+ dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
+ if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
+ typed_memcpy(dynamic->scissor.scissors,
+ pCreateInfo->pViewportState->pScissors,
+ pCreateInfo->pViewportState->scissorCount);
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
+ assert(pCreateInfo->pRasterState);
+ dynamic->line_width = pCreateInfo->pRasterState->lineWidth;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
+ assert(pCreateInfo->pRasterState);
+ dynamic->depth_bias.bias = pCreateInfo->pRasterState->depthBias;
+ dynamic->depth_bias.clamp = pCreateInfo->pRasterState->depthBiasClamp;
+ dynamic->depth_bias.slope_scaled =
+ pCreateInfo->pRasterState->slopeScaledDepthBias;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
+ assert(pCreateInfo->pColorBlendState);
+ typed_memcpy(dynamic->blend_constants,
+ pCreateInfo->pColorBlendState->blendConst, 4);
+ }
+
+ /* If there is no depthstencil attachment, then don't read
+ * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
+ * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
+ * no need to override the depthstencil defaults in
+ * anv_pipeline::dynamic_state when there is no depthstencil attachment.
+ *
+ * From the Vulkan spec (20 Oct 2015, git-aa308cb):
+ *
+ * pDepthStencilState [...] may only be NULL if renderPass and subpass
+ * specify a subpass that has no depth/stencil attachment.
+ */
+ if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
+ if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->depth_bounds.min =
+ pCreateInfo->pDepthStencilState->minDepthBounds;
+ dynamic->depth_bounds.max =
+ pCreateInfo->pDepthStencilState->maxDepthBounds;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_compare_mask.front =
+ pCreateInfo->pDepthStencilState->front.stencilCompareMask;
+ dynamic->stencil_compare_mask.back =
+ pCreateInfo->pDepthStencilState->back.stencilCompareMask;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_write_mask.front =
+ pCreateInfo->pDepthStencilState->front.stencilWriteMask;
+ dynamic->stencil_write_mask.back =
+ pCreateInfo->pDepthStencilState->back.stencilWriteMask;
+ }
+
+ if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
+ assert(pCreateInfo->pDepthStencilState);
+ dynamic->stencil_reference.front =
+ pCreateInfo->pDepthStencilState->front.stencilReference;
+ dynamic->stencil_reference.back =
+ pCreateInfo->pDepthStencilState->back.stencilReference;
+ }
+ }
+
+ pipeline->dynamic_state_mask = states;
+}
+
+static void
+anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
+{
+ struct anv_render_pass *renderpass = NULL;
+ struct anv_subpass *subpass = NULL;
+
+ /* Assert that all required members of VkGraphicsPipelineCreateInfo are
+ * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
+ * 4.2 Graphics Pipeline.
+ */
+ assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
+
+ renderpass = anv_render_pass_from_handle(info->renderPass);
+ assert(renderpass);
+
+ if (renderpass != &anv_meta_dummy_renderpass) {
+ assert(info->subpass < renderpass->subpass_count);
+ subpass = &renderpass->subpasses[info->subpass];
+ }
+
+ assert(info->stageCount >= 1);
+ assert(info->pVertexInputState);
+ assert(info->pInputAssemblyState);
+ assert(info->pViewportState);
+ assert(info->pRasterState);
+ assert(info->pMultisampleState);
+
+ if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
+ assert(info->pDepthStencilState);
+
+ if (subpass && subpass->color_count > 0)
+ assert(info->pColorBlendState);
+
+ for (uint32_t i = 0; i < info->stageCount; ++i) {
+ switch (info->pStages[i].stage) {
+ case VK_SHADER_STAGE_TESS_CONTROL:
+ case VK_SHADER_STAGE_TESS_EVALUATION:
+ assert(info->pTessellationState);
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+VkResult
+anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo,
+ const struct anv_graphics_pipeline_create_info *extra)
+{
+ VkResult result;
+
+ anv_validate {
+ anv_pipeline_validate_create_info(pCreateInfo);
+ }
+
+ pipeline->device = device;
+ pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
+
+ result = anv_reloc_list_init(&pipeline->batch_relocs, device);
+ if (result != VK_SUCCESS) {
+ anv_device_free(device, pipeline);
+ return result;
+ }
+ pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
+ pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
+ pipeline->batch.relocs = &pipeline->batch_relocs;
+
+ anv_state_stream_init(&pipeline->program_stream,
+ &device->instruction_block_pool);
+
+ anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
+
+ if (pCreateInfo->pTessellationState)
+ anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
+ if (pCreateInfo->pMultisampleState &&
+ pCreateInfo->pMultisampleState->rasterSamples > 1)
+ anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO");
+
+ pipeline->use_repclear = extra && extra->use_repclear;
+ pipeline->writes_point_size = false;
+
+ /* When we free the pipeline, we detect stages based on the NULL status
+ * of various prog_data pointers. Make them NULL by default.
+ */
+ memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
+ memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
+
+ pipeline->vs_simd8 = NO_KERNEL;
+ pipeline->vs_vec4 = NO_KERNEL;
+ pipeline->gs_vec4 = NO_KERNEL;
+
+ pipeline->active_stages = 0;
+ pipeline->total_scratch = 0;
+
+ for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
+ ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->pStages[i].shader);
+
+ switch (pCreateInfo->pStages[i].stage) {
+ case VK_SHADER_STAGE_VERTEX:
+ anv_pipeline_compile_vs(pipeline, pCreateInfo, shader);
+ break;
+ case VK_SHADER_STAGE_GEOMETRY:
+ anv_pipeline_compile_gs(pipeline, pCreateInfo, shader);
+ break;
+ case VK_SHADER_STAGE_FRAGMENT:
+ anv_pipeline_compile_fs(pipeline, pCreateInfo, shader);
+ break;
+ default:
+ anv_finishme("Unsupported shader stage");
+ }
+ }
+
+ if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
+ /* Vertex is only optional if disable_vs is set */
+ assert(extra->disable_vs);
+ memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
+ }
+
+ gen7_compute_urb_partition(pipeline);
+
+ const VkPipelineVertexInputStateCreateInfo *vi_info =
+ pCreateInfo->pVertexInputState;
+ pipeline->vb_used = 0;
+ for (uint32_t i = 0; i < vi_info->bindingCount; i++) {
+ const VkVertexInputBindingDescription *desc =
+ &vi_info->pVertexBindingDescriptions[i];
+
+ pipeline->vb_used |= 1 << desc->binding;
+ pipeline->binding_stride[desc->binding] = desc->strideInBytes;
+
+ /* Step rate is programmed per vertex element (attribute), not
+ * binding. Set up a map of which bindings step per instance, for
+ * reference by vertex element setup. */
+ switch (desc->stepRate) {
+ default:
+ case VK_VERTEX_INPUT_STEP_RATE_VERTEX:
+ pipeline->instancing_enable[desc->binding] = false;
+ break;
+ case VK_VERTEX_INPUT_STEP_RATE_INSTANCE:
+ pipeline->instancing_enable[desc->binding] = true;
+ break;
+ }
+ }
+
+ const VkPipelineInputAssemblyStateCreateInfo *ia_info =
+ pCreateInfo->pInputAssemblyState;
+ pipeline->primitive_restart = ia_info->primitiveRestartEnable;
+ pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
+
+ if (extra && extra->use_rectlist)
+ pipeline->topology = _3DPRIM_RECTLIST;
+
+ return VK_SUCCESS;
+}
+
+VkResult
+anv_graphics_pipeline_create(
+ VkDevice _device,
+ const VkGraphicsPipelineCreateInfo *pCreateInfo,
+ const struct anv_graphics_pipeline_create_info *extra,
+ VkPipeline *pPipeline)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ switch (device->info.gen) {
+ case 7:
+ if (device->info.is_haswell)
+ return gen75_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
+ else
+ return gen7_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
+ case 8:
+ return gen8_graphics_pipeline_create(_device, pCreateInfo, extra, pPipeline);
+ default:
+ unreachable("unsupported gen\n");
+ }
+}
+
+VkResult anv_CreateGraphicsPipelines(
+ VkDevice _device,
+ VkPipelineCache pipelineCache,
+ uint32_t count,
+ const VkGraphicsPipelineCreateInfo* pCreateInfos,
+ VkPipeline* pPipelines)
+{
+ VkResult result = VK_SUCCESS;
+
+ unsigned i = 0;
+ for (; i < count; i++) {
+ result = anv_graphics_pipeline_create(_device, &pCreateInfos[i],
+ NULL, &pPipelines[i]);
+ if (result != VK_SUCCESS) {
+ for (unsigned j = 0; j < i; j++) {
+ anv_DestroyPipeline(_device, pPipelines[j]);
+ }
+
+ return result;
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+static VkResult anv_compute_pipeline_create(
+ VkDevice _device,
+ const VkComputePipelineCreateInfo* pCreateInfo,
+ VkPipeline* pPipeline)
+{
+ ANV_FROM_HANDLE(anv_device, device, _device);
+
+ switch (device->info.gen) {
+ case 7:
+ if (device->info.is_haswell)
+ return gen75_compute_pipeline_create(_device, pCreateInfo, pPipeline);
+ else
+ return gen7_compute_pipeline_create(_device, pCreateInfo, pPipeline);
+ case 8:
+ return gen8_compute_pipeline_create(_device, pCreateInfo, pPipeline);
+ default:
+ unreachable("unsupported gen\n");
+ }
+}
+
+VkResult anv_CreateComputePipelines(
+ VkDevice _device,
+ VkPipelineCache pipelineCache,
+ uint32_t count,
+ const VkComputePipelineCreateInfo* pCreateInfos,
+ VkPipeline* pPipelines)
+{
+ VkResult result = VK_SUCCESS;
+
+ unsigned i = 0;
+ for (; i < count; i++) {
+ result = anv_compute_pipeline_create(_device, &pCreateInfos[i],
+ &pPipelines[i]);
+ if (result != VK_SUCCESS) {
+ for (unsigned j = 0; j < i; j++) {
+ anv_DestroyPipeline(_device, pPipelines[j]);
+ }
+
+ return result;
+ }
+ }
+
+ return VK_SUCCESS;
+}