diff options
Diffstat (limited to 'src/mesa')
-rwxr-xr-x | src/mesa/shader/slang/library/slang_common_builtin.gc | 2359 | ||||
-rw-r--r-- | src/mesa/shader/slang/library/slang_common_builtin_gc.h | 1356 |
2 files changed, 1952 insertions, 1763 deletions
diff --git a/src/mesa/shader/slang/library/slang_common_builtin.gc b/src/mesa/shader/slang/library/slang_common_builtin.gc index 0b3ed0e880c..094bc798846 100755 --- a/src/mesa/shader/slang/library/slang_common_builtin.gc +++ b/src/mesa/shader/slang/library/slang_common_builtin.gc @@ -1,58 +1,34 @@ -// +// // TODO: -// - implement sin, asin, acos, atan, pow, log2, floor, ceil, // - implement texture1D, texture2D, texture3D, textureCube, // - implement shadow1D, shadow2D, // - implement noise1, noise2, noise3, noise4, -// +// -// +// // From Shader Spec, ver. 1.10, rev. 59 -// -// The following built-in constants are provided to vertex and fragment shaders. -// - -// -// Implementation dependent constants. The example values below -// are the minimum values allowed for these maximums. -// - -const int gl_MaxLights = 8; // GL 1.0 -const int gl_MaxClipPlanes = 6; // GL 1.0 -const int gl_MaxTextureUnits = 2; // GL 1.3 -const int gl_MaxTextureCoords = 2; // ARB_fragment_program -const int gl_MaxVertexAttribs = 16; // ARB_vertex_shader -const int gl_MaxVertexUniformComponents = 512; // ARB_vertex_shader -const int gl_MaxVaryingFloats = 32; // ARB_vertex_shader -const int gl_MaxVertexTextureImageUnits = 0; // ARB_vertex_shader -const int gl_MaxCombinedTextureImageUnits = 2; // ARB_vertex_shader -const int gl_MaxTextureImageUnits = 2; // ARB_fragment_shader -const int gl_MaxFragmentUniformComponents = 64; // ARB_fragment_shader -const int gl_MaxDrawBuffers = 1; // proposed ARB_draw_buffers - -// -// As an aid to accessing OpenGL processing state, the following uniform variables are built into -// the OpenGL Shading Language. All page numbers and notations are references to the 1.4 -// specification. -// - -// -// Matrix state. p. 31, 32, 37, 39, 40. -// +// + +const int gl_MaxLights = 8; +const int gl_MaxClipPlanes = 6; +const int gl_MaxTextureUnits = 8; +const int gl_MaxTextureCoords = 8; +const int gl_MaxVertexAttribs = 16; +const int gl_MaxVertexUniformComponents = 512; +const int gl_MaxVaryingFloats = 32; +const int gl_MaxVertexTextureImageUnits = 0; +const int gl_MaxCombinedTextureImageUnits = 2; +const int gl_MaxTextureImageUnits = 2; +const int gl_MaxFragmentUniformComponents = 64; +const int gl_MaxDrawBuffers = 1; uniform mat4 gl_ModelViewMatrix; uniform mat4 gl_ProjectionMatrix; uniform mat4 gl_ModelViewProjectionMatrix; uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords]; -// -// Derived matrix state that provides inverse and transposed versions -// of the matrices above. Poorly conditioned matrices may result -// in unpredictable values in their inverse forms. -// -uniform mat3 gl_NormalMatrix; // transpose of the inverse of the - // upper leftmost 3x3 of gl_ModelViewMatrix +uniform mat3 gl_NormalMatrix; uniform mat4 gl_ModelViewMatrixInverse; uniform mat4 gl_ProjectionMatrixInverse; @@ -69,34 +45,18 @@ uniform mat4 gl_ProjectionMatrixInverseTranspose; uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose; uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords]; -// -// Normal scaling p. 39. -// - uniform float gl_NormalScale; -// -// Depth range in window coordinates, p. 33 -// - struct gl_DepthRangeParameters { - float near; // n - float far; // f - float diff; // f - n + float near; + float far; + float diff; }; uniform gl_DepthRangeParameters gl_DepthRange; -// -// Clip planes p. 42. -// - uniform vec4 gl_ClipPlane[gl_MaxClipPlanes]; -// -// Point Size, p. 66, 67. -// - struct gl_PointParameters { float size; float sizeMin; @@ -109,74 +69,56 @@ struct gl_PointParameters { uniform gl_PointParameters gl_Point; -// -// Material State p. 50, 55. -// - struct gl_MaterialParameters { - vec4 emission; // Ecm - vec4 ambient; // Acm - vec4 diffuse; // Dcm - vec4 specular; // Scm - float shininess; // Srm + vec4 emission; + vec4 ambient; + vec4 diffuse; + vec4 specular; + float shininess; }; uniform gl_MaterialParameters gl_FrontMaterial; uniform gl_MaterialParameters gl_BackMaterial; -// -// Light State p 50, 53, 55. -// - struct gl_LightSourceParameters { - vec4 ambient; // Acli - vec4 diffuse; // Dcli - vec4 specular; // Scli - vec4 position; // Ppli - vec4 halfVector; // Derived: Hi - vec3 spotDirection; // Sdli - float spotExponent; // Srli - float spotCutoff; // Crli - // (range: [0.0,90.0], 180.0) - float spotCosCutoff; // Derived: cos(Crli) - // (range: [1.0,0.0],-1.0) - float constantAttenuation; // K0 - float linearAttenuation; // K1 - float quadraticAttenuation; // K2 + vec4 ambient; + vec4 diffuse; + vec4 specular; + vec4 position; + vec4 halfVector; + vec3 spotDirection; + float spotExponent; + float spotCutoff; + float spotCosCutoff; + float constantAttenuation; + float linearAttenuation; + float quadraticAttenuation; }; uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights]; struct gl_LightModelParameters { - vec4 ambient; // Acs + vec4 ambient; }; uniform gl_LightModelParameters gl_LightModel; -// -// Derived state from products of light and material. -// - struct gl_LightModelProducts { - vec4 sceneColor; // Derived. Ecm + Acm * Acs + vec4 sceneColor; }; uniform gl_LightModelProducts gl_FrontLightModelProduct; uniform gl_LightModelProducts gl_BackLightModelProduct; struct gl_LightProducts { - vec4 ambient; // Acm * Acli - vec4 diffuse; // Dcm * Dcli - vec4 specular; // Scm * Scli + vec4 ambient; + vec4 diffuse; + vec4 specular; }; uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights]; uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights]; -// -// Texture Environment and Generation, p. 152, p. 40-42. -// - uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits]; uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords]; uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords]; @@ -187,1224 +129,1469 @@ uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords]; uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords]; uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords]; -// -// Fog p. 161 -// - struct gl_FogParameters { vec4 color; float density; float start; float end; - float scale; // Derived: 1.0 / (end - start) + float scale; }; uniform gl_FogParameters gl_Fog; -// -// The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar -// and vector operations. Many of these built-in functions can be used in more than one type -// of shader, but some are intended to provide a direct mapping to hardware and so are available -// only for a specific type of shader. -// -// The built-in functions basically fall into three categories: -// -// * They expose some necessary hardware functionality in a convenient way such as accessing -// a texture map. There is no way in the language for these functions to be emulated by a shader. -// -// * They represent a trivial operation (clamp, mix, etc.) that is very simple for the user -// to write, but they are very common and may have direct hardware support. It is a very hard -// problem for the compiler to map expressions to complex assembler instructions. -// -// * They represent an operation graphics hardware is likely to accelerate at some point. The -// trigonometry functions fall into this category. -// -// Many of the functions are similar to the same named ones in common C libraries, but they support -// vector input as well as the more traditional scalar input. -// -// Applications should be encouraged to use the built-in functions rather than do the equivalent -// computations in their own shader code since the built-in functions are assumed to be optimal -// (e.g., perhaps supported directly in hardware). -// -// User code can replace built-in functions with their own if they choose, by simply re-declaring -// and defining the same name and argument list. -// - -// +// // 8.1 Angle and Trigonometry Functions -// -// Function parameters specified as angle are assumed to be in units of radians. In no case will -// any of these functions result in a divide by zero error. If the divisor of a ratio is 0, then -// results will be undefined. -// -// These all operate component-wise. The description is per component. -// - -// -// Converts degrees to radians and returns the result, i.e., result = PI*deg/180. -// +// float radians (float deg) { return 3.141593 * deg / 180.0; -} +}
+ vec2 radians (vec2 deg) { - return vec2 (radians (deg.x), radians (deg.y)); -} + return vec2 (3.141593) * deg / vec2 (180.0); +}
+ vec3 radians (vec3 deg) { - return vec3 (radians (deg.x), radians (deg.y), radians (deg.z)); -} + return vec3 (3.141593) * deg / vec3 (180.0); +}
+ vec4 radians (vec4 deg) { - return vec4 (radians (deg.x), radians (deg.y), radians (deg.z), radians (deg.w)); + return vec4 (3.141593) * deg / vec4 (180.0); } -// -// Converts radians to degrees and returns the result, i.e., result = 180*rad/PI. -// - float degrees (float rad) { return 180.0 * rad / 3.141593; -} +}
+ vec2 degrees (vec2 rad) { - return vec2 (degrees (rad.x), degrees (rad.y)); -} + return vec2 (180.0) * rad / vec2 (3.141593); +}
+ vec3 degrees (vec3 rad) { - return vec3 (degrees (rad.x), degrees (rad.y), degrees (rad.z)); -} + return vec3 (180.0) * rad / vec3 (3.141593); +}
+ vec4 degrees (vec4 rad) { - return vec4 (degrees (rad.x), degrees (rad.y), degrees (rad.z), degrees (rad.w)); + return vec4 (180.0) * rad / vec4 (3.141593); } -// -// The standard trigonometric sine function. -// -// XXX -float sin (float angle) { - return 0.0; -} +float sin (float angle) {
+ float x;
+ __asm float_sine x, angle; + return x; +}
+ vec2 sin (vec2 angle) { - return vec2 (sin (angle.x), sin (angle.y)); -} + vec2 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ return u;
+}
+ vec3 sin (vec3 angle) { - return vec3 (sin (angle.x), sin (angle.y), sin (angle.z)); -} + vec3 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ u.z = sin (angle.z);
+ return u; +}
+ vec4 sin (vec4 angle) { - return vec4 (sin (angle.x), sin (angle.y), sin (angle.z), sin (angle.w)); + vec4 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ u.z = sin (angle.z);
+ u.w = sin (angle.w);
+ return u; } -// -// The standard trigonometric cosine function. -// - float cos (float angle) { return sin (angle + 1.5708); -} +}
+ vec2 cos (vec2 angle) { - return vec2 (cos (angle.x), cos (angle.y)); -} + vec2 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ return u; +}
+ vec3 cos (vec3 angle) { - return vec3 (cos (angle.x), cos (angle.y), cos (angle.z)); -} + vec3 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ u.z = cos (angle.z);
+ return u; +}
+ vec4 cos (vec4 angle) { - return vec4 (cos (angle.x), cos (angle.y), cos (angle.z), cos (angle.w)); + vec4 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ u.z = cos (angle.z);
+ u.w = cos (angle.w);
+ return u; } -// -// The standard trigonometric tangent. -// - float tan (float angle) { return sin (angle) / cos (angle); -} +}
+ vec2 tan (vec2 angle) { - return vec2 (tan (angle.x), tan (angle.y)); -} + vec2 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ return u; +}
+ vec3 tan (vec3 angle) { - return vec3 (tan (angle.x), tan (angle.y), tan (angle.z)); -} + vec3 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ u.z = tan (angle.z);
+ return u; +}
+ vec4 tan (vec4 angle) { - return vec4 (tan (angle.x), tan (angle.y), tan (angle.z), tan (angle.w)); + vec4 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ u.z = tan (angle.z);
+ u.w = tan (angle.w);
+ return u; } -// -// Arc sine. Returns an angle whose sine is x. The range of values returned by this function is -// [�PI/2, PI/2]. Results are undefined if |x| > 1. -// -// XXX float asin (float x) { - return 0.0; -} -vec2 asin (vec2 x) { - return vec2 (asin (x.x), asin (x.y)); -} -vec3 asin (vec3 x) { - return vec3 (asin (x.x), asin (x.y), asin (x.z)); -} -vec4 asin (vec4 x) { - return vec4 (asin (x.x), asin (x.y), asin (x.z), asin (x.w)); + float y;
+ __asm float_arcsine y, x;
+ return y; +}
+ +vec2 asin (vec2 v) { + vec2 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ return u; +}
+ +vec3 asin (vec3 v) { + vec3 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ u.z = asin (v.z);
+ return u; +}
+ +vec4 asin (vec4 v) { + vec4 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ u.z = asin (v.z);
+ u.w = asin (v.w);
+ return u; } -// -// Arc cosine. Returns an angle whose cosine is x. The range of values returned by this function is -// [0, PI]. Results are undefined if |x| > 1. -// -// XXX float acos (float x) { - return 0.0; -} -vec2 acos (vec2 x) { - return vec2 (acos (x.x), acos (x.y)); -} -vec3 acos (vec3 x) { - return vec3 (acos (x.x), acos (x.y), acos (x.z)); -} -vec4 acos (vec4 x) { - return vec4 (acos (x.x), acos (x.y), acos (x.z), acos (x.w)); + return 1.5708 - asin (x); +}
+ +vec2 acos (vec2 v) { + vec2 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ return u; +}
+ +vec3 acos (vec3 v) { + vec3 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ u.z = acos (v.z);
+ return u; +}
+ +vec4 acos (vec4 v) { + vec4 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ u.z = acos (v.z);
+ u.w = acos (v.w);
+ return u; +} + +float atan (float y_over_x) {
+ float z;
+ __asm float_arctan z, y_over_x;
+ return z;
+}
+
+vec2 atan (vec2 y_over_x) {
+ vec2 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ return u;
+}
+
+vec3 atan (vec3 y_over_x) {
+ vec3 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ u.z = atan (y_over_x.z);
+ return u;
+}
+
+vec4 atan (vec4 y_over_x) {
+ vec4 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ u.z = atan (y_over_x.z);
+ u.w = atan (y_over_x.w);
+ return u;
+}
+
+float atan (float y, float x) {
+ float z;
+ z = atan (y / x); + if (x < 0.0)
+ {
+ if (y < 0.0)
+ return z - 3.141593;
+ return z + 3.141593;
+ }
+ return z; +}
+ +vec2 atan (vec2 u, vec2 v) { + vec2 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ return t; +}
+ +vec3 atan (vec3 u, vec3 v) { + vec3 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ t.z = atan (u.z, v.z);
+ return t; +}
+ +vec4 atan (vec4 u, vec4 v) { + vec4 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ t.z = atan (u.z, v.z);
+ t.w = atan (u.w, v.w);
+ return t; } -// -// Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine -// what quadrant the angle is in. The range of values returned by this function is [�PI, PI]. -// Results are undefined if x and y are both 0. -// -// XXX -float atan (float x, float y) { - return 0.0; -} -vec2 atan (vec2 x, vec2 y) { - return vec2 (atan (x.x, y.x), atan (x.y, y.y)); -} -vec3 atan (vec3 x, vec3 y) { - return vec3 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z)); -} -vec4 atan (vec4 x, vec4 y) { - return vec4 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z), atan (x.w, y.w)); -} - -// -// Arc tangent. Returns an angle whose tangent is y_over_x. The range of values returned by this -// function is [�PI/2, PI/2]. -// -// XXX -float atan (float y_over_x) { - return 0.0; -} -vec2 atan (vec2 y_over_x) { - return vec2 (atan (y_over_x.x), atan (y_over_x.y)); -} -vec3 atan (vec3 y_over_x) { - return vec3 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z)); -} -vec4 atan (vec4 y_over_x) { - return vec4 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z), atan (y_over_x.w)); -} - -// +// // 8.2 Exponential Functions -// -// These all operate component-wise. The description is per component. -// - -// -// Returns x raised to the y power, i.e., x^y. -// Results are undefined if x < 0. -// Results are undefined if x = 0 and y <= 0. -// -// XXX -float pow (float x, float y) { - return 0.0; -} -vec2 pow (vec2 x, vec2 y) { - return vec2 (pow (x.x, y.x), pow (x.y, y.y)); -} -vec3 pow (vec3 x, vec3 y) { - return vec3 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z)); -} -vec4 pow (vec4 x, vec4 y) { - return vec4 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z), pow (x.w, y.w)); -} +// -// -// Returns the natural exponentiation of x, i.e., e^x. -// +float pow (float x, float y) {
+ float p;
+ __asm float_power p, x, y; + return p; +}
+ +vec2 pow (vec2 v, vec2 u) { + vec2 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ return t; +}
+ +vec3 pow (vec3 v, vec3 u) { + vec3 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ t.z = pow (v.z, u.z);
+ return t; +}
+ +vec4 pow (vec4 v, vec4 u) { + vec4 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ t.z = pow (v.z, u.z);
+ t.w = pow (v.w, u.w);
+ return t; +} float exp (float x) { return pow (2.71828183, x); -} -vec2 exp (vec2 x) { - return vec2 (exp (x.x), exp (x.y)); -} -vec3 exp (vec3 x) { - return vec3 (exp (x.x), exp (x.y), exp (x.z)); -} -vec4 exp (vec4 x) { - return vec4 (exp (x.x), exp (x.y), exp (x.z), exp (x.w)); -} - -// -// Returns the natural logarithm of x, i.e., returns the value y which satisfies the equation -// x = e^y. -// Results are undefined if x <= 0. -// - +}
+ +vec2 exp (vec2 v) { + return pow (vec2 (2.71828183), v); +}
+ +vec3 exp (vec3 v) { + return pow (vec3 (2.71828183), v); +}
+ +vec4 exp (vec4 v) { + return pow (vec4 (2.71828183), v); +} + +float log2 (float x) {
+ float y;
+ __asm float_log2 y, x;
+ return y;
+}
+
+vec2 log2 (vec2 v) {
+ vec2 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ return u;
+}
+
+vec3 log2 (vec3 v) {
+ vec3 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ u.z = log2 (v.z);
+ return u;
+}
+
+vec4 log2 (vec4 v) {
+ vec4 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ u.z = log2 (v.z);
+ u.w = log2 (v.w);
+ return u;
+}
+
float log (float x) { return log2 (x) / log2 (2.71828183); -} -vec2 log (vec2 x) { - return vec2 (log (x.x), log (x.y)); -} -vec3 log (vec3 x) { - return vec3 (log (x.x), log (x.y), log (x.z)); -} -vec4 log (vec4 x) { - return vec4 (log (x.x), log (x.y), log (x.z), log (x.w)); -} +}
+ +vec2 log (vec2 v) { + return log2 (v) / log2 (vec2 (2.71828183)); +}
+ +vec3 log (vec3 v) { + return log2 (v) / log2 (vec3 (2.71828183)); +}
-// -// Returns 2 raised to the x power, i.e., 2^x -// +vec4 log (vec4 v) { + return log2 (v) / log2 (vec4 (2.71828183)); +} float exp2 (float x) { return pow (2.0, x); -} -vec2 exp2 (vec2 x) { - return vec2 (exp2 (x.x), exp2 (x.y)); -} -vec3 exp2 (vec3 x) { - return vec3 (exp2 (x.x), exp2 (x.y), exp2 (x.z)); -} -vec4 exp2 (vec4 x) { - return vec4 (exp2 (x.x), exp2 (x.y), exp2 (x.z), exp2 (x.w)); -} +}
-// -// Returns the base 2 logarithm of x, i.e., returns the value y which satisfies the equation -// x = 2^y. -// Results are undefined if x <= 0. -// -// XXX -float log2 (float x) { - return 0.0; -} -vec2 log2 (vec2 x) { - return vec2 (log2 (x.x), log2 (x.y)); -} -vec3 log2 (vec3 x) { - return vec3 (log2 (x.x), log2 (x.y), log2 (x.z)); -} -vec4 log2 (vec4 x) { - return vec4 (log2 (x.x), log2 (x.y), log2 (x.z), log2 (x.w)); -} +vec2 exp2 (vec2 v) { + return pow (vec2 (2.0), v); +}
-// -// Returns the positive square root of x. -// Results are undefined if x < 0. -// +vec3 exp2 (vec3 v) { + return pow (vec3 (2.0), v); +}
+ +vec4 exp2 (vec4 v) { + return pow (vec4 (2.0), v); +} float sqrt (float x) { return pow (x, 0.5); -} -vec2 sqrt (vec2 x) { - return vec2 (sqrt (x.x), sqrt (x.y)); -} -vec3 sqrt (vec3 x) { - return vec3 (sqrt (x.x), sqrt (x.y), sqrt (x.z)); -} -vec4 sqrt (vec4 x) { - return vec4 (sqrt (x.x), sqrt (x.y), sqrt (x.z), sqrt (x.w)); -} +}
-// -// Returns the reciprocal of the positive square root of x. -// Results are undefined if x <= 0. -// +vec2 sqrt (vec2 v) { + return pow (v, vec2 (0.5)); +}
+ +vec3 sqrt (vec3 v) { + return pow (v, vec3 (0.5)); +}
+ +vec4 sqrt (vec4 v) { + return pow (v, vec4 (0.5)); +} float inversesqrt (float x) { return 1.0 / sqrt (x); -} -vec2 inversesqrt (vec2 x) { - return vec2 (inversesqrt (x.x), inversesqrt (x.y)); -} -vec3 inversesqrt (vec3 x) { - return vec3 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z)); -} -vec4 inversesqrt (vec4 x) { - return vec4 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z), inversesqrt (x.w)); +}
+ +vec2 inversesqrt (vec2 v) { + return vec2 (1.0) / sqrt (v); +}
+ +vec3 inversesqrt (vec3 v) { + return vec3 (1.0) / sqrt (v); +}
+ +vec4 inversesqrt (vec4 v) { + return vec4 (1.0) / sqrt (v); } -// +// // 8.3 Common Functions -// -// These all operate component-wise. The description is per component. -// - -// -// Returns x if x >= 0, otherwise it returns �x -// +// float abs (float x) { return x >= 0.0 ? x : -x; -} -vec2 abs (vec2 x) { - return vec2 (abs (x.x), abs (x.y)); -} -vec3 abs (vec3 x) { - return vec3 (abs (x.x), abs (x.y), abs (x.z)); -} -vec4 abs (vec4 x) { - return vec4 (abs (x.x), abs (x.y), abs (x.z), abs (x.w)); +}
+ +vec2 abs (vec2 v) {
+ vec2 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y); + return u; +}
+ +vec3 abs (vec3 v) { + vec3 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y);
+ u.z = abs (v.z);
+ return u; +}
+ +vec4 abs (vec4 v) { + vec4 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y);
+ u.z = abs (v.z);
+ u.w = abs (v.w);
+ return u; } -// -// Returns 1.0 if x > 0, 0.0 if x = 0, or �1.0 if x < 0 -// - float sign (float x) { return x > 0.0 ? 1.0 : x < 0.0 ? -1.0 : 0.0; -} -vec2 sign (vec2 x) { - return vec2 (sign (x.x), sign (x.y)); -} -vec3 sign (vec3 x) { - return vec3 (sign (x.x), sign (x.y), sign (x.z)); -} -vec4 sign (vec4 x) { - return vec4 (sign (x.x), sign (x.y), sign (x.z), sign (x.w)); -} - -// -// Returns a value equal to the nearest integer that is less than or equal to x -// -// XXX -float floor (float x) { - return 0.0; -} -vec2 floor (vec2 x) { - return vec2 (floor (x.x), floor (x.y)); -} -vec3 floor (vec3 x) { - return vec3 (floor (x.x), floor (x.y), floor (x.z)); -} -vec4 floor (vec4 x) { - return vec4 (floor (x.x), floor (x.y), floor (x.z), floor (x.w)); -} +}
+ +vec2 sign (vec2 v) { + vec2 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ return u; +}
+ +vec3 sign (vec3 v) { + vec3 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ u.z = sign (v.z);
+ return u; +}
+ +vec4 sign (vec4 v) { + vec4 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ u.z = sign (v.z);
+ u.w = sign (v.w);
+ return u; +} + +float floor (float x) {
+ float y;
+ __asm float_floor y, x;
+ return y;
+}
+
+vec2 floor (vec2 v) {
+ vec2 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ return u;
+}
+
+vec3 floor (vec3 v) {
+ vec3 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ u.z = floor (v.z);
+ return u;
+}
+
+vec4 floor (vec4 v) {
+ vec4 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ u.z = floor (v.z);
+ u.w = floor (v.w);
+ return u;
+}
+
+float ceil (float x) {
+ float y;
+ __asm float_ceil y, x;
+ return y;
+}
+
+vec2 ceil (vec2 v) {
+ vec2 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ return u;
+}
+
+vec3 ceil (vec3 v) {
+ vec3 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ u.z = ceil (v.z);
+ return u;
+}
+
+vec4 ceil (vec4 v) {
+ vec4 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ u.z = ceil (v.z);
+ u.w = ceil (v.w);
+ return u;
+} +
+float fract (float x) {
+ return x - floor (x);
+}
+
+vec2 fract (vec2 v) {
+ return v - floor (v);
+}
+
+vec3 fract (vec3 v) {
+ return v - floor (v);
+}
+
+vec4 fract (vec4 v) {
+ return v - floor (v);
+}
-// -// Returns a value equal to the nearest integer that is greater than or equal to x -// -// XXX -float ceil (float x) { - return 0.0; -} -vec2 ceil (vec2 x) { - return vec2 (ceil (x.x), ceil (x.y)); -} -vec3 ceil (vec3 x) { - return vec3 (ceil (x.x), ceil (x.y), ceil (x.z)); -} -vec4 ceil (vec4 x) { - return vec4 (ceil (x.x), ceil (x.y), ceil (x.z), ceil (x.w)); -} +float mod (float x, float y) { + return x - y * floor (x / y); +}
-// -// Returns x � floor (x) -// +vec2 mod (vec2 v, float u) { + return v - u * floor (v / u); +}
-float fract (float x) { - return x - floor (x); -} -vec2 fract (vec2 x) { - return vec2 (fract (x.x), fract (x.y)); -} -vec3 fract (vec3 x) { - return vec3 (fract (x.x), fract (x.y), fract (x.z)); -} -vec4 fract (vec4 x) { - return vec4 (fract (x.x), fract (x.y), fract (x.z), fract (x.w)); -} +vec3 mod (vec3 v, float u) { + return v - u * floor (v / u); +}
-// -// Modulus. Returns x � y * floor (x/y) -// +vec4 mod (vec4 v, float u) { + return v - u * floor (v / u); +}
-float mod (float x, float y) { - return x - y * floor (x / y); -} -vec2 mod (vec2 x, float y) { - return vec2 (mod (x.x, y), mod (x.y, y)); -} -vec3 mod (vec3 x, float y) { - return vec3 (mod (x.x, y), mod (x.y, y), mod (x.z, y)); -} -vec4 mod (vec4 x, float y) { - return vec4 (mod (x.x, y), mod (x.y, y), mod (x.z, y), mod (x.w, y)); -} -vec2 mod (vec2 x, vec2 y) { - return vec2 (mod (x.x, y.x), mod (x.y, y.y)); -} -vec3 mod (vec3 x, vec3 y) { - return vec3 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z)); -} -vec4 mod (vec4 x, vec4 y) { - return vec4 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z), mod (x.w, y.w)); -} +vec2 mod (vec2 v, vec2 u) { + return v - u * floor (v / u); +}
-// -// Returns y if y < x, otherwise it returns x -// +vec3 mod (vec3 v, vec3 u) { + return v - u * floor (v / u); +}
-float min (float x, float y) { - return y < x ? y : x; -} -vec2 min (vec2 x, float y) { - return vec2 (min (x.x, y), min (x.y, y)); -} -vec3 min (vec3 x, float y) { - return vec3 (min (x.x, y), min (x.y, y), min (x.z, y)); -} -vec4 min (vec4 x, float y) { - return vec4 (min (x.x, y), min (x.y, y), min (x.z, y), min (x.w, y)); -} -vec2 min (vec2 x, vec2 y) { - return vec2 (min (x.x, y.x), min (x.y, y.y)); -} -vec3 min (vec3 x, vec3 y) { - return vec3 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z)); -} -vec4 min (vec4 x, vec4 y) { - return vec4 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z), min (x.w, y.w)); +vec4 mod (vec4 v, vec4 u) { + return v - u * floor (v / u); } -// -// Returns y if x < y, otherwise it returns x -// +float min (float x, float y) { + return x < y ? x : y; +}
+ +vec2 min (vec2 v, vec2 u) {
+ vec2 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ return t;
+}
+
+vec3 min (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ t.z = min (v.z, u.z);
+ return t;
+}
+
+vec4 min (vec4 v, vec4 u) {
+ vec4 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ t.z = min (v.z, u.z);
+ t.w = min (v.w, u.w);
+ return t;
+}
+
+vec2 min (vec2 v, float y) { + return min (v, vec2 (y)); +}
+ +vec3 min (vec3 v, float y) { + return min (v, vec3 (y)); +}
+ +vec4 min (vec4 v, float y) { + return min (v, vec4 (y)); +}
float max (float x, float y) { - return min (y, x); -} -vec2 max (vec2 x, float y) { - return vec2 (max (x.x, y), max (x.y, y)); -} -vec3 max (vec3 x, float y) { - return vec3 (max (x.x, y), max (x.y, y), max (x.z, y)); -} -vec4 max (vec4 x, float y) { - return vec4 (max (x.x, y), max (x.y, y), max (x.z, y), max (x.w, y)); -} -vec2 max (vec2 x, vec2 y) { - return vec2 (max (x.x, y.x), max (x.y, y.y)); -} -vec3 max (vec3 x, vec3 y) { - return vec3 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z)); -} -vec4 max (vec4 x, vec4 y) { - return vec4 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z), max (x.w, y.w)); -} - -// -// Returns min (max (x, minVal), maxVal) -// -// Note that colors and depths written by fragment shaders will be clamped by the implementation -// after the fragment shader runs. -// + return x < y ? y : x; +}
+ +vec2 max (vec2 v, vec2 u) {
+ vec2 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ return t;
+}
+
+vec3 max (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ t.z = max (v.z, u.z);
+ return t;
+}
+
+vec4 max (vec4 v, vec4 u) {
+ vec4 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ t.z = max (v.z, u.z);
+ t.w = max (v.w, u.w);
+ return t;
+}
+
+vec2 max (vec2 v, float y) { + return max (v, vec2 (y)); +}
+ +vec3 max (vec3 v, float y) { + return max (v, vec3 (y)); +}
+ +vec4 max (vec4 v, float y) { + return max (v, vec4 (y)); +}
float clamp (float x, float minVal, float maxVal) { return min (max (x, minVal), maxVal); -} +}
+ vec2 clamp (vec2 x, float minVal, float maxVal) { - return vec2 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal)); -} + return min (max (x, minVal), maxVal); +}
+ vec3 clamp (vec3 x, float minVal, float maxVal) { - return vec3 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal), - clamp (x.z, minVal, maxVal)); -} + return min (max (x, minVal), maxVal); +}
+ vec4 clamp (vec4 x, float minVal, float maxVal) { - return vec4 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal), - clamp (x.z, minVal, maxVal), clamp (x.w, minVal, maxVal)); -} + return min (max (x, minVal), maxVal); +}
+ vec2 clamp (vec2 x, vec2 minVal, vec2 maxVal) { - return vec2 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y)); -} + return min (max (x, minVal), maxVal); +}
+ vec3 clamp (vec3 x, vec3 minVal, vec3 maxVal) { - return vec3 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y), - clamp (x.z, minVal.z, maxVal.z)); -} + return min (max (x, minVal), maxVal); +}
+ vec4 clamp (vec4 x, vec4 minVal, vec4 maxVal) { - return vec4 (clamp (x.x, minVal.x, maxVal.y), clamp (x.y, minVal.y, maxVal.y), - clamp (x.z, minVal.z, maxVal.z), clamp (x.w, minVal.w, maxVal.w)); + return min (max (x, minVal), maxVal); } -// -// Returns x * (1 � a) + y * a, i.e., the linear blend of x and y -// - float mix (float x, float y, float a) { return x * (1.0 - a) + y * a; -} +}
+ vec2 mix (vec2 x, vec2 y, float a) { - return vec2 (mix (x.x, y.x, a), mix (x.y, y.y, a)); -} + return x * (1.0 - a) + y * a; +}
+ vec3 mix (vec3 x, vec3 y, float a) { - return vec3 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a)); -} + return x * (1.0 - a) + y * a; +}
+ vec4 mix (vec4 x, vec4 y, float a) { - return vec4 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a), mix (x.w, y.w, a)); -} + return x * (1.0 - a) + y * a; +}
+ vec2 mix (vec2 x, vec2 y, vec2 a) { - return vec2 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y)); -} + return x * (1.0 - a) + y * a; +}
+ vec3 mix (vec3 x, vec3 y, vec3 a) { - return vec3 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z)); -} + return x * (1.0 - a) + y * a; +}
+ vec4 mix (vec4 x, vec4 y, vec4 a) { - return vec4 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z), - mix (x.w, y.w, a.w)); + return x * (1.0 - a) + y * a; } -// -// Returns 0.0 if x < edge, otherwise it returns 1.0 -// - float step (float edge, float x) { return x < edge ? 0.0 : 1.0; -} -vec2 step (float edge, vec2 x) { - return vec2 (step (edge, x.x), step (edge, x.y)); -} -vec3 step (float edge, vec3 x) { - return vec3 (step (edge, x.x), step (edge, x.y), step (edge, x.z)); -} -vec4 step (float edge, vec4 x) { - return vec4 (step (edge, x.x), step (edge, x.y), step (edge, x.z), step (edge, x.w)); -} -vec2 step (vec2 edge, vec2 x) { - return vec2 (step (edge.x, x.x), step (edge.y, x.y)); -} -vec3 step (vec3 edge, vec3 x) { - return vec3 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z)); -} -vec4 step (vec4 edge, vec4 x) { - return vec4 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z), step (edge.w, x.w)); -} - -// -// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation -// between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would want a threshold -// function with a smooth transition. This is equivalent to: -// <type> t; -// t = clamp ((x � edge0) / (edge1 � edge0), 0, 1); -// return t * t * (3 � 2 * t); -// +}
+ +vec2 step (vec2 edge, vec2 v) {
+ vec2 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ return u;
+}
+
+vec3 step (vec3 edge, vec3 v) {
+ vec3 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ u.z = step (edge.z, v.z);
+ return u;
+}
+
+vec4 step (vec4 edge, vec4 v) {
+ vec4 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ u.z = step (edge.z, v.z);
+ u.w = step (edge.w, v.w);
+ return u;
+}
+
+vec2 step (float edge, vec2 v) { + return step (vec2 (edge), v); +} +
+vec3 step (float edge, vec3 v) { + return step (vec3 (edge), v); +}
+ +vec4 step (float edge, vec4 v) { + return step (vec4 (edge), v); +}
float smoothstep (float edge0, float edge1, float x) { - const float t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0); + float t;
+ t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0); return t * t * (3.0 - 2.0 * t); -} -vec2 smoothstep (float edge0, float edge1, vec2 x) { - return vec2 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y)); -} -vec3 smoothstep (float edge0, float edge1, vec3 x) { - return vec3 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y), - smoothstep (edge0, edge1, x.z)); -} -vec4 smoothstep (float edge0, float edge1, vec4 x) { - return vec4 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y), - smoothstep (edge0, edge1, x.z), smoothstep (edge0, edge1, x.w)); -} -vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 x) { - return vec2 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y)); -} -vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 x) { - return vec3 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y), - smoothstep (edge0.z, edge1.z, x.z)); -} -vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 x) { - return vec4 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y), - smoothstep (edge0.z, edge1.z, x.z), smoothstep (edge0.w, edge1.w, x.w)); -} +}
+ +vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 v) {
+ vec2 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ return u;
+}
+
+vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 v) {
+ vec3 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ u.z = smoothstep (edge0.z, edge1.z, v.z);
+ return u;
+}
+
+vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 v) {
+ vec4 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ u.z = smoothstep (edge0.z, edge1.z, v.z);
+ u.w = smoothstep (edge0.w, edge1.w, v.w);
+ return u;
+}
+
+vec2 smoothstep (float edge0, float edge1, vec2 v) { + vec2 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ return u; +}
+ +vec3 smoothstep (float edge0, float edge1, vec3 v) { + vec3 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ u.z = smoothstep (edge0, edge1, v.z);
+ return u; +}
+ +vec4 smoothstep (float edge0, float edge1, vec4 v) { + vec4 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ u.z = smoothstep (edge0, edge1, v.z);
+ u.w = smoothstep (edge0, edge1, v.w);
+ return u; +}
-// +// // 8.4 Geometric Functions -// -// These operate on vectors as vectors, not component-wise. -// - -// -// Returns the dot product of x and y, i.e., result = x[0] * y[0] + x[1] * y[1] + ... -// +// float dot (float x, float y) { return x * y; -} -float dot (vec2 x, vec2 y) { - return dot (x.x, y.x) + dot (x.y, y.y); -} -float dot (vec3 x, vec3 y) { - return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z); -} -float dot (vec4 x, vec4 y) { - return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z) + dot (x.w, y.w); -} +}
-// -// Returns the length of vector x, i.e., sqrt (x[0] * x[0] + x[1] * x[1] + ...) -// +float dot (vec2 v, vec2 u) { + return v.x * u.x + v.y * u.y; +}
-float length (float x) { - return sqrt (dot (x, x)); -} -float length (vec2 x) { - return sqrt (dot (x, x)); -} -float length (vec3 x) { - return sqrt (dot (x, x)); +float dot (vec3 v, vec3 u) { + return v.x * u.x + v.y * u.y + v.z * u.z; +}
+ +float dot (vec4 v, vec4 u) { + return v.x * u.x + v.y * u.y + v.z * u.z + v.w * u.w; } -float length (vec4 x) { + +float length (float x) { return sqrt (dot (x, x)); -} +}
-// -// Returns the distance between p0 and p1, i.e. length (p0 � p1) -// +float length (vec2 v) { + return sqrt (dot (v, v)); +}
-float distance (float x, float y) { - return length (x - y); -} -float distance (vec2 x, vec2 y) { - return length (x - y); -} -float distance (vec3 x, vec3 y) { - return length (x - y); +float length (vec3 v) { + return sqrt (dot (v, v)); +}
+ +float length (vec4 v) { + return sqrt (dot (v, v)); } -float distance (vec4 x, vec4 y) { + +float distance (float x, float y) { return length (x - y); -} +}
+ +float distance (vec2 v, vec2 u) { + return length (v - u); +}
-// -// Returns the cross product of x and y, i.e. -// result.0 = x[1] * y[2] - y[1] * x[2] -// result.1 = x[2] * y[0] - y[2] * x[0] -// result.2 = x[0] * y[1] - y[0] * x[1] -// +float distance (vec3 v, vec3 u) { + return length (v - u); +}
-vec3 cross (vec3 x, vec3 y) { - return vec3 (x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y); +float distance (vec4 v, vec4 u) { + return length (v - u); } -// -// Returns a vector in the same direction as x but with a length of 1. -// +vec3 cross (vec3 v, vec3 u) { + vec3 t;
+ t.x = v.y * u.z - u.y * v.z;
+ t.y = v.z * u.x - u.z * v.x;
+ t.z = v.x * u.y - u.x * v.y;
+ return t; +} float normalize (float x) { return 1.0; -} -vec2 normalize (vec2 x) { - return x / length (x); -} -vec3 normalize (vec3 x) { - return x / length (x); -} -vec4 normalize (vec4 x) { - return x / length (x); -} +}
+ +vec2 normalize (vec2 v) { + return v / length (v); +}
-// -// If dot (Nref, I) < 0 return N otherwise return �N -// +vec3 normalize (vec3 v) { + return v / length (v); +}
+ +vec4 normalize (vec4 v) { + return v / length (v); +} float faceforward (float N, float I, float Nref) { return dot (Nref, I) < 0.0 ? N : -N; -} +}
+ vec2 faceforward (vec2 N, vec2 I, vec2 Nref) { return dot (Nref, I) < 0.0 ? N : -N; -} +}
+ vec3 faceforward (vec3 N, vec3 I, vec3 Nref) { return dot (Nref, I) < 0.0 ? N : -N; -} +}
+ vec4 faceforward (vec4 N, vec4 I, vec4 Nref) { return dot (Nref, I) < 0.0 ? N : -N; } -// -// For the incident vector I and surface orientation N, returns the reflection direction: -// result = I - 2 * dot (N, I) * N -// N must already be normalized in order to achieve the desired result.
-// - float reflect (float I, float N) { return I - 2.0 * dot (N, I) * N; -} +}
+ vec2 reflect (vec2 I, vec2 N) { return I - 2.0 * dot (N, I) * N; -} +}
+ vec3 reflect (vec3 I, vec3 N) { return I - 2.0 * dot (N, I) * N; -} +}
+ vec4 reflect (vec4 I, vec4 N) { return I - 2.0 * dot (N, I) * N; } -// -// For the incident vector I and surface normal N, and the ratio of inidices of refraction eta, -// return the refraction vector. The returned result is computed by -// -// k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)) -// if (k < 0.0) -// result = genType (0.0) -// else -// result = eta * I - (eta * dot (N, I) + sqrt (k)) * N -// -// The input parameters for the incident vector I and the surface normal N must already be -// normalized to get the desired results. -// - float refract (float I, float N, float eta) { - const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); + float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); if (k < 0.0) - return 0.0;
+ return 0.0; return eta * I - (eta * dot (N, I) + sqrt (k)) * N; -} +}
+ vec2 refract (vec2 I, vec2 N, float eta) { - const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); - if (k < 0.0) - return vec2 (0.0); + float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N; -} +}
+ vec3 refract (vec3 I, vec3 N, float eta) { - const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); - if (k < 0.0) - return vec3 (0.0); + float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N; -} +}
+ vec4 refract (vec4 I, vec4 N, float eta) { - const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); - if (k < 0.0) - return vec4 (0.0); + float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N; } -// +// // 8.5 Matrix Functions -// - -// -// Multiply matrix x by matrix y component-wise, i.e., result[i][j] is the scalar product -// of x[i][j] and y[i][j]. -// Note: to get linear algebraic matrix multiplication, use the multiply operator (*). -// - -mat2 matrixCompMult (mat2 x, mat2 y) { - return mat2 ( - x[0].x * y[0].x, x[0].y * y[0].y, - x[1].x * y[1].x, x[1].y * y[1].y - ); -} -mat3 matrixCompMult (mat3 x, mat3 y) { - return mat4 ( - x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z, - x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z, - x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z - ); -} -mat4 matrixCompMult (mat4 x, mat4 y) { - return mat4 ( - x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z + x[0].w * y[0].w, - x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z + x[1].w * y[1].w, - x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z + x[2].w * y[2].w, - x[3].x * y[3].x, x[3].y * y[3].y, x[3].z * y[3].z + x[3].w * y[3].w - ); -} - -// -// 8.6 Vector Relational Functions -// -// Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce -// scalar Boolean results. -// - -// -// Returns the component-wise compare of x < y. -// +// -bvec2 lessThan (vec2 x, vec2 y) { - return bvec2 (x.x < y.x, x.y < y.y); -} -bvec3 lessThan (vec3 x, vec3 y) { - return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z); -} -bvec4 lessThan (vec4 x, vec4 y) { - return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w); -} -bvec2 lessThan (ivec2 x, ivec2 y) { - return bvec2 (x.x < y.x, x.y < y.y); -} -bvec3 lessThan (ivec3 x, ivec3 y) { - return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z); -} -bvec4 lessThan (ivec4 x, ivec4 y) { - return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w); +mat2 matrixCompMult (mat2 m, mat2 n) { + mat2 o; + o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1]; + return o; +}
+ +mat3 matrixCompMult (mat3 m, mat3 n) { + mat3 o; + o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1];
+ o[2] = m[2] * n[2]; + return o; +}
+ +mat4 matrixCompMult (mat4 m, mat4 n) { + mat4 o; + o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1];
+ o[2] = m[2] * n[2];
+ o[3] = m[3] * n[3]; + return o; } -// -// Returns the component-wise compare of x <= y. -// - -bvec2 lessThanEqual (vec2 x, vec2 y) { - return bvec2 (x.x <= y.x, x.y <= y.y); -} -bvec3 lessThanEqual (vec3 x, vec3 y) { - return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z); -} -bvec4 lessThanEqual (vec4 x, vec4 y) { - return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w); -} -bvec2 lessThanEqual (ivec2 x, ivec2 y) { - return bvec2 (x.x <= y.x, x.y <= y.y); -} -bvec3 lessThanEqual (ivec3 x, ivec3 y) { - return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z); -} -bvec4 lessThanEqual (ivec4 x, ivec4 y) { - return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w); -} - -// -// Returns the component-wise compare of x > y. -// - -bvec2 greaterThan (vec2 x, vec2 y) { - return bvec2 (x.x > y.x, x.y > y.y); -} -bvec3 greaterThan (vec3 x, vec3 y) { - return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z); -} -bvec4 greaterThan (vec4 x, vec4 y) { - return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w); -} -bvec2 greaterThan (ivec2 x, ivec2 y) { - return bvec2 (x.x > y.x, x.y > y.y); -} -bvec3 greaterThan (ivec3 x, ivec3 y) { - return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z); -} -bvec4 greaterThan (ivec4 x, ivec4 y) { - return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w); -} - -// -// Returns the component-wise compare of x >= y. -// +// +// 8.6 Vector Relational Functions +// -bvec2 greaterThanEqual (vec2 x, vec2 y) { - return bvec2 (x.x >= y.x, x.y >= y.y); -} -bvec3 greaterThanEqual (vec3 x, vec3 y) { - return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z); -} -bvec4 greaterThanEqual (vec4 x, vec4 y) { - return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w); -} -bvec2 greaterThanEqual (ivec2 x, ivec2 y) { - return bvec2 (x.x >= y.x, x.y >= y.y); -} -bvec3 greaterThanEqual (ivec3 x, ivec3 y) { - return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z); -} -bvec4 greaterThanEqual (ivec4 x, ivec4 y) { - return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w); +bvec2 lessThan (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ return b; +}
+ +bvec3 lessThan (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ return b; +}
+ +bvec4 lessThan (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ b.w = v.w < u.w;
+ return b; +}
+ +bvec2 lessThan (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ return b; +}
+ +bvec3 lessThan (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ return b; +}
+ +bvec4 lessThan (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ b.w = v.w < u.w;
+ return b; +} + +bvec2 lessThanEqual (vec2 v, vec2 u) { + bvec2 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ return b; +}
+ +bvec3 lessThanEqual (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ return b; +}
+ +bvec4 lessThanEqual (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ b.w = v.w <= u.w;
+ return b; +}
+ +bvec2 lessThanEqual (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ return b; +}
+ +bvec3 lessThanEqual (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ return b; +}
+ +bvec4 lessThanEqual (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ b.w = v.w <= u.w;
+ return b; +} + +bvec2 greaterThan (vec2 v, vec2 u) { + bvec2 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ return b; +}
+ +bvec3 greaterThan (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ return b; +}
+ +bvec4 greaterThan (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ b.w = v.w > u.w;
+ return b; +}
+ +bvec2 greaterThan (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ return b; +}
+ +bvec3 greaterThan (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ return b; +}
+ +bvec4 greaterThan (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ b.w = v.w > u.w;
+ return b; +} + +bvec2 greaterThanEqual (vec2 v, vec2 u) { + bvec2 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ return b; +}
+ +bvec3 greaterThanEqual (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ return b; +}
+ +bvec4 greaterThanEqual (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ b.w = v.w >= u.w;
+ return b; +}
+ +bvec2 greaterThanEqual (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ return b; +}
+ +bvec3 greaterThanEqual (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ return b; +}
+ +bvec4 greaterThanEqual (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ b.w = v.w >= u.w;
+ return b; +} + +bvec2 equal (vec2 v, vec2 u) { + bvec2 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ return b; +}
+ +bvec3 equal (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ return b; +}
+ +bvec4 equal (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ b.w = v.w == u.w;
+ return b; +}
+ +bvec2 equal (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ return b; +}
+ +bvec3 equal (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ return b; +}
+ +bvec4 equal (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ b.w = v.w == u.w;
+ return b; +} + +bvec2 notEqual (vec2 v, vec2 u) { + bvec2 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ return b; +}
+ +bvec3 notEqual (vec3 v, vec3 u) { + bvec3 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ return b; +}
+ +bvec4 notEqual (vec4 v, vec4 u) { + bvec4 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ b.w = v.w != u.w;
+ return b; +}
+ +bvec2 notEqual (ivec2 v, ivec2 u) { + bvec2 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ return b; +}
+ +bvec3 notEqual (ivec3 v, ivec3 u) { + bvec3 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ return b; +}
+ +bvec4 notEqual (ivec4 v, ivec4 u) { + bvec4 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ b.w = v.w != u.w;
+ return b; +} + +bool any (bvec2 v) { + return v.x || v.y; +}
+ +bool any (bvec3 v) { + return v.x || v.y || v.z; +}
+ +bool any (bvec4 v) { + return v.x || v.y || v.z || v.w; +} + +bool all (bvec2 v) { + return v.x && v.y; +}
+ +bool all (bvec3 v) { + return v.x && v.y && v.z; +}
+ +bool all (bvec4 v) { + return v.x && v.y && v.z && v.w; +} + +bvec2 not (bvec2 v) {
+ bvec2 u;
+ u.x = !v.x;
+ u.y = !v.y; + return u; +}
+ +bvec3 not (bvec3 v) { + bvec3 u;
+ u.x = !v.x;
+ u.y = !v.y;
+ u.z = !v.z;
+ return u; +}
+ +bvec4 not (bvec4 v) { + bvec4 u;
+ u.x = !v.x;
+ u.y = !v.y;
+ u.z = !v.z;
+ u.w = !v.w;
+ return u; } -// -// Returns the component-wise compare of x == y. -// +// +// 8.7 Texture Lookup Functions +// -bvec2 equal (vec2 x, vec2 y) { - return bvec2 (x.x == y.x, x.y == y.y); -} -bvec3 equal (vec3 x, vec3 y) { - return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z); -} -bvec4 equal (vec4 x, vec4 y) { - return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w); -} -bvec2 equal (ivec2 x, ivec2 y) { - return bvec2 (x.x == y.x, x.y == y.y); -} -bvec3 equal (ivec3 x, ivec3 y) { - return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z); -} -bvec4 equal (ivec4 x, ivec4 y) { - return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w); -} +vec4 texture1D (sampler1D sampler, float coord) {
+ // XXX: + return vec4 (0.0); +}
-// -// Returns the component-wise compare of x != y. -// +vec4 texture1DProj (sampler1D sampler, vec2 coord) { + return texture1D (sampler, coord.s / coord.t); +}
-bvec2 notEqual (vec2 x, vec2 y) { - return bvec2 (x.x != y.x, x.y != y.y); -} -bvec3 notEqual (vec3 x, vec3 y) { - return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z); -} -bvec4 notEqual (vec4 x, vec4 y) { - return bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w); -} -bvec2 notEqual (ivec2 x, ivec2 y) { - return bvec2 (x.x != y.x, x.y != y.y); -} -bvec3 notEqual (ivec3 x, ivec3 y) { - return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z); -} -bvec4 notEqual (ivec4 x, ivec4 y) { - return bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w); +vec4 texture1DProj (sampler1D sampler, vec4 coord) { + return texture1D (sampler, coord.s / coord.q); } -// -// Returns true if any component of x is true. -// - -bool any (bvec2 x) { - return x.x || x.y; -} -bool any (bvec3 x) { - return x.x || x.y || x.z; -} -bool any (bvec4 x) { - return x.x || x.y || x.z || x.w; -} +vec4 texture2D (sampler2D sampler, vec2 coord) {
+ // XXX: + return vec4 (0.0); +}
-// -// Returns true only if all components of x are true. -// +vec4 texture2DProj (sampler2D sampler, vec3 coord) {
+ vec2 u;
+ u.s = coord.s / coord.p;
+ u.t = coord.t / coord.p; + return texture2D (sampler, u); +}
-bool all (bvec2 x) { - return x.x && x.y; -} -bool all (bvec3 x) { - return x.x && x.y && x.z; -} -bool all (bvec4 x) { - return x.x && x.y && x.z && x.w; +vec4 texture2DProj (sampler2D sampler, vec4 coord) {
+ vec2 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q; + return texture2D (sampler, u); } -// -// Returns the component-wise logical complement of x. -// +vec4 texture3D (sampler3D sampler, vec3 coord) {
+ // XXX: + return vec4 (0.0); +}
-bvec2 not (bvec2 x) { - return bvec2 (!x.x, !x.y); -} -bvec3 not (bvec3 x) { - return bvec3 (!x.x, !x.y, !x.z); -} -bvec4 not (bvec4 x) { - return bvec4 (!x.x, !x.y, !x.z, !x.w); +vec4 texture3DProj (sampler3D sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q;
+ u.p = coord.p / coord.q; + return texture3D (sampler, u); } -// -// 8.7 Texture Lookup Functions -// -// Texture lookup functions are available to both vertex and fragment shaders. However, level -// of detail is not computed by fixed functionality for vertex shaders, so there are some -// differences in operation between vertex and fragment texture lookups. The functions in the table -// below provide access to textures through samplers, as set up through the OpenGL API. Texture -// properties such as size, pixel format, number of dimensions, filtering method, number of mip-map -// levels, depth comparison, and so on are also defined by OpenGL API calls. Such properties are -// taken into account as the texture is accessed via the built-in functions defined below. -// -// If a non-shadow texture call is made to a sampler that represents a depth texture with depth -// comparisons turned on, then results are undefined. If a shadow texture call is made to a sampler -// that represents a depth texture with depth comparisions turned off, the results are undefined. -// If a shadow texture call is made to a sampler that does not represent a depth texture, then -// results are undefined. -// -// In all functions below, the bias parameter is optional for fragment shaders. The bias parameter -// is not accepted in a vertex shader. For a fragment shader, if bias is present, it is added to -// the calculated level of detail prior to performing the texture access operation. If the bias -// parameter is not provided, then the implementation automatically selects level of detail: -// For a texture that is not mip-mapped, the texture is used directly. If it is mip-mapped and -// running in a fragment shader, the LOD computed by the implementation is used to do the texture -// lookup. If it is mip-mapped and running on the vertex shader, then the base texture is used. -// -// The built-ins suffixed with "Lod" are allowed only in a vertex shader. For the "Lod" functions, -// lod is directly used as the level of detail. -// - -// -// Use the texture coordinate coord to do a texture lookup in the 1D texture currently bound -// to sampler. For the projective ("Proj") versions, the texture coordinate coord.s is divided by -// the last component of coord. -// -// XXX -vec4 texture1D (sampler1D sampler, float coord) { +vec4 textureCube (samplerCube sampler, vec3 coord) {
+ // XXX: return vec4 (0.0); } -vec4 texture1DProj (sampler1D sampler, vec2 coord) { - return texture1D (sampler, coord.s / coord.t); -} -vec4 texture1DProj (sampler1D sampler, vec4 coord) { - return texture1D (sampler, coord.s / coord.q); -} -// -// Use the texture coordinate coord to do a texture lookup in the 2D texture currently bound -// to sampler. For the projective ("Proj") versions, the texture coordinate (coord.s, coord.t) is -// divided by the last component of coord. The third component of coord is ignored for the vec4 -// coord variant. -// -// XXX -vec4 texture2D (sampler2D sampler, vec2 coord) { +vec4 shadow1D (sampler1DShadow sampler, vec3 coord) {
+ // XXX: return vec4 (0.0); } -vec4 texture2DProj (sampler2D sampler, vec3 coord) { - return texture2D (sampler, vec2 (coord.s / coord.p, coord.t / coord.p)); -} -vec4 texture2DProj (sampler2D sampler, vec4 coord) { - return texture2D (sampler, vec2 (coord.s / coord.q, coord.t / coord.q)); -} -// -// Use the texture coordinate coord to do a texture lookup in the 3D texture currently bound -// to sampler. For the projective ("Proj") versions, the texture coordinate is divided by coord.q. -// -// XXX -vec4 texture3D (sampler3D sampler, vec3 coord) { +vec4 shadow2D (sampler2DShadow sampler, vec3 coord) {
+ // XXX: return vec4 (0.0); -} -vec4 texture3DProj (sampler3D sampler, vec4 coord) { - return texture3D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q)); -} +}
-// -// Use the texture coordinate coord to do a texture lookup in the cube map texture currently bound -// to sampler. The direction of coord is used to select which face to do a 2-dimensional texture -// lookup in, as described in section 3.8.6 in version 1.4 of the OpenGL specification. -// -// XXX -vec4 textureCube (samplerCube sampler, vec3 coord) { - return vec4 (0.0); -} +vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = 0.0;
+ u.p = coord.p / coord.q; + return shadow1D (sampler, u); +}
-// -// Use texture coordinate coord to do a depth comparison lookup on the depth texture bound -// to sampler, as described in section 3.8.14 of version 1.4 of the OpenGL specification. The 3rd -// component of coord (coord.p) is used as the R value. The texture bound to sampler must be a -// depth texture, or results are undefined. For the projective ("Proj") version of each built-in, -// the texture coordinate is divide by coord.q, giving a depth value R of coord.p/coord.q. The -// second component of coord is ignored for the "1D" variants. -// -// XXX -vec4 shadow1D (sampler1DShadow sampler, vec3 coord) { - return vec4 (0.0); -} -// XXX -vec4 shadow2D (sampler2DShadow sampler, vec3 coord) { - return vec4 (0.0); -} -vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) { - return shadow1D (sampler, vec3 (coord.s / coord.q, 0.0, coord.p / coord.q)); -} -vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) { - return shadow2D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q)); +vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q;
+ u.p = coord.p / coord.q; + return shadow2D (sampler, u); } -// +// // 8.9 Noise Functions -// -// Noise functions are available to both fragment and vertex shaders. They are stochastic functions -// that can be used to increase visual complexity. Values returned by the following noise functions -// give the appearance of randomness, but are not truly random. The noise functions below are -// defined to have the following characteristics: -// -// - The return value(s) are always in the range [-1,1], and cover at least the range [-0.6, 0.6], -// with a gaussian-like distribution. -// * The return value(s) have an overall average of 0.0 -// * They are repeatable, in that a particular input value will always produce the same return value -// * They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it -// has the same statistical character) -// * They have a statistical invariance under translation (i.e., no matter how the domain is -// translated, it has the same statistical character) -// * They typically give different results under translation. -// - The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0. -// - -// -// Returns a 1D noise value based on the input value x. -// -// XXX -float noise1 (float x) { +// + +float noise1 (float x) {
+ // XXX: return 0.0; } -// XXX -float noise1 (vec2 x) { + +float noise1 (vec2 x) {
+ // XXX: return 0.0; } -// XXX -float noise1 (vec3 x) { + +float noise1 (vec3 x) {
+ // XXX: return 0.0; } -// XXX -float noise1 (vec4 x) { + +float noise1 (vec4 x) {
+ // XXX: return 0.0; } -// -// Returns a 2D noise value based on the input value x. -// -// XXX -vec2 noise2 (float x) { +vec2 noise2 (float x) {
+ // XXX: return vec2 (0.0); } -// XXX -vec2 noise2 (vec2 x) { + +vec2 noise2 (vec2 x) {
+ // XXX: return vec2 (0.0); } -// XXX -vec2 noise2 (vec3 x) { + +vec2 noise2 (vec3 x) {
+ // XXX: return vec2 (0.0); } -// XXX -vec2 noise2 (vec4 x) { + +vec2 noise2 (vec4 x) {
+ // XXX: return vec2 (0.0); } -// -// Returns a 3D noise value based on the input value x. -// -// XXX -vec3 noise3 (float x) { +vec3 noise3 (float x) {
+ // XXX: return vec3 (0.0); } -// XXX -vec3 noise3 (vec2 x) { + +vec3 noise3 (vec2 x) {
+ // XXX: return vec3 (0.0); } -// XXX -vec3 noise3 (vec3 x) { + +vec3 noise3 (vec3 x) {
+ // XXX: return vec3 (0.0); } -// XXX -vec3 noise3 (vec4 x) { + +vec3 noise3 (vec4 x) {
+ // XXX: return vec3 (0.0); } -// -// Returns a 4D noise value based on the input value x. -// -// XXX -vec4 noise4 (float x) { +vec4 noise4 (float x) {
+ // XXX: return vec4 (0.0); } -// XXX -vec4 noise4 (vec2 x) { + +vec4 noise4 (vec2 x) {
+ // XXX: return vec4 (0.0); } -// XXX -vec4 noise4 (vec3 x) { + +vec4 noise4 (vec3 x) {
+ // XXX: return vec4 (0.0); } -// XXX -vec4 noise4 (vec4 x) { + +vec4 noise4 (vec4 x) {
+ // XXX: return vec4 (0.0); } - +
diff --git a/src/mesa/shader/slang/library/slang_common_builtin_gc.h b/src/mesa/shader/slang/library/slang_common_builtin_gc.h index e1f22527ce2..f72da4407b4 100644 --- a/src/mesa/shader/slang/library/slang_common_builtin_gc.h +++ b/src/mesa/shader/slang/library/slang_common_builtin_gc.h @@ -1,677 +1,679 @@ - -/* DO NOT EDIT - THIS FILE AUTOMATICALLY GENERATED FROM THE FOLLOWING FILE: */ -/* slang_common_builtin.gc */ - -2,2,2,1,5,1,103,108,95,77,97,120,76,105,103,104,116,115,0,2,16,10,56,0,0,0,2,2,1,5,1,103,108,95,77, -97,120,67,108,105,112,80,108,97,110,101,115,0,2,16,10,54,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84, -101,120,116,117,114,101,85,110,105,116,115,0,2,16,10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84, -101,120,116,117,114,101,67,111,111,114,100,115,0,2,16,10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120, -86,101,114,116,101,120,65,116,116,114,105,98,115,0,2,16,10,49,54,0,0,0,2,2,1,5,1,103,108,95,77,97, -120,86,101,114,116,101,120,85,110,105,102,111,114,109,67,111,109,112,111,110,101,110,116,115,0,2, -16,10,53,49,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,86,97,114,121,105,110,103,70,108,111,97,116, -115,0,2,16,10,51,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,86,101,114,116,101,120,84,101,120,116,117, -114,101,73,109,97,103,101,85,110,105,116,115,0,2,16,8,48,0,0,0,2,2,1,5,1,103,108,95,77,97,120,67, -111,109,98,105,110,101,100,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105,116,115,0,2,16, -10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105, -116,115,0,2,16,10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,70,114,97,103,109,101,110,116,85,110,105, -102,111,114,109,67,111,109,112,111,110,101,110,116,115,0,2,16,10,54,52,0,0,0,2,2,1,5,1,103,108,95, -77,97,120,68,114,97,119,66,117,102,102,101,114,115,0,2,16,10,49,0,0,0,2,2,4,15,1,103,108,95,77,111, -100,101,108,86,105,101,119,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99, -116,105,111,110,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101, -119,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,84,101, -120,116,117,114,101,77,97,116,114,105,120,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101, -67,111,111,114,100,115,0,0,0,2,2,4,14,1,103,108,95,78,111,114,109,97,108,77,97,116,114,105,120,0,0, -0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,77,97,116,114,105,120,73,110,118,101,114, -115,101,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73, -110,118,101,114,115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,80,114,111, -106,101,99,116,105,111,110,77,97,116,114,105,120,73,110,118,101,114,115,101,0,0,0,2,2,4,15,1,103, -108,95,84,101,120,116,117,114,101,77,97,116,114,105,120,73,110,118,101,114,115,101,0,3,18,103,108, -95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,15,1,103,108,95,77,111, -100,101,108,86,105,101,119,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15, -1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,84,114,97,110,115,112,111, -115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,80,114,111,106,101,99,116, -105,111,110,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,84, -101,120,116,117,114,101,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,3,18,103,108,95, -77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,15,1,103,108,95,77,111,100, -101,108,86,105,101,119,77,97,116,114,105,120,73,110,118,101,114,115,101,84,114,97,110,115,112,111, -115,101,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73, -110,118,101,114,115,101,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100, -101,108,86,105,101,119,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73,110,118,101, -114,115,101,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,84,101,120,116,117,114, -101,77,97,116,114,105,120,73,110,118,101,114,115,101,84,114,97,110,115,112,111,115,101,0,3,18,103, -108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,9,1,103,108,95,78, -111,114,109,97,108,83,99,97,108,101,0,0,0,2,2,0,22,103,108,95,68,101,112,116,104,82,97,110,103,101, -80,97,114,97,109,101,116,101,114,115,0,9,110,101,97,114,0,0,0,1,9,102,97,114,0,0,0,1,9,100,105,102, -102,0,0,0,0,0,0,2,2,4,23,103,108,95,68,101,112,116,104,82,97,110,103,101,80,97,114,97,109,101,116, -101,114,115,0,1,103,108,95,68,101,112,116,104,82,97,110,103,101,0,0,0,2,2,4,12,1,103,108,95,67,108, -105,112,80,108,97,110,101,0,3,18,103,108,95,77,97,120,67,108,105,112,80,108,97,110,101,115,0,0,0,2, -2,0,22,103,108,95,80,111,105,110,116,80,97,114,97,109,101,116,101,114,115,0,9,115,105,122,101,0,0, -0,1,9,115,105,122,101,77,105,110,0,0,0,1,9,115,105,122,101,77,97,120,0,0,0,1,9,102,97,100,101,84, -104,114,101,115,104,111,108,100,83,105,122,101,0,0,0,1,9,100,105,115,116,97,110,99,101,67,111,110, -115,116,97,110,116,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,100,105,115,116,97,110,99, -101,76,105,110,101,97,114,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,100,105,115,116,97, -110,99,101,81,117,97,100,114,97,116,105,99,65,116,116,101,110,117,97,116,105,111,110,0,0,0,0,0,0,2, -2,4,23,103,108,95,80,111,105,110,116,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,80,111, -105,110,116,0,0,0,2,2,0,22,103,108,95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116,101, -114,115,0,12,101,109,105,115,115,105,111,110,0,0,0,1,12,97,109,98,105,101,110,116,0,0,0,1,12,100, -105,102,102,117,115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,1,9,115,104,105,110,105,110, -101,115,115,0,0,0,0,0,0,2,2,4,23,103,108,95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116, -101,114,115,0,1,103,108,95,70,114,111,110,116,77,97,116,101,114,105,97,108,0,0,0,2,2,4,23,103,108, -95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,66,97,99,107, -77,97,116,101,114,105,97,108,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,83,111,117,114,99,101,80, -97,114,97,109,101,116,101,114,115,0,12,97,109,98,105,101,110,116,0,0,0,1,12,100,105,102,102,117, -115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,1,12,112,111,115,105,116,105,111,110,0,0,0, -1,12,104,97,108,102,86,101,99,116,111,114,0,0,0,1,11,115,112,111,116,68,105,114,101,99,116,105,111, -110,0,0,0,1,9,115,112,111,116,69,120,112,111,110,101,110,116,0,0,0,1,9,115,112,111,116,67,117,116, -111,102,102,0,0,0,1,9,115,112,111,116,67,111,115,67,117,116,111,102,102,0,0,0,1,9,99,111,110,115, -116,97,110,116,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,108,105,110,101,97,114,65,116, -116,101,110,117,97,116,105,111,110,0,0,0,1,9,113,117,97,100,114,97,116,105,99,65,116,116,101,110, -117,97,116,105,111,110,0,0,0,0,0,0,2,2,4,23,103,108,95,76,105,103,104,116,83,111,117,114,99,101,80, -97,114,97,109,101,116,101,114,115,0,1,103,108,95,76,105,103,104,116,83,111,117,114,99,101,0,3,18, -103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,77,111, -100,101,108,80,97,114,97,109,101,116,101,114,115,0,12,97,109,98,105,101,110,116,0,0,0,0,0,0,2,2,4, -23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,97,114,97,109,101,116,101,114,115,0,1,103, -108,95,76,105,103,104,116,77,111,100,101,108,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,77,111, -100,101,108,80,114,111,100,117,99,116,115,0,12,115,99,101,110,101,67,111,108,111,114,0,0,0,0,0,0,2, -2,4,23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,115,0,1,103,108, -95,70,114,111,110,116,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,0,0,0,2,2,4, -23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,115,0,1,103,108,95, -66,97,99,107,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,0,0,0,2,2,0,22,103, -108,95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,12,97,109,98,105,101,110,116,0,0,0,1,12, -100,105,102,102,117,115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,0,0,0,2,2,4,23,103,108, -95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,1,103,108,95,70,114,111,110,116,76,105,103, -104,116,80,114,111,100,117,99,116,0,3,18,103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2,4, -23,103,108,95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,1,103,108,95,66,97,99,107,76,105, -103,104,116,80,114,111,100,117,99,116,0,3,18,103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2, -4,12,1,103,108,95,84,101,120,116,117,114,101,69,110,118,67,111,108,111,114,0,3,18,103,108,95,77,97, -120,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105,116,115,0,0,0,2,2,4,12,1,103,108,95,69, -121,101,80,108,97,110,101,83,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114, -100,115,0,0,0,2,2,4,12,1,103,108,95,69,121,101,80,108,97,110,101,84,0,3,18,103,108,95,77,97,120,84, -101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,69,121,101,80,108,97, -110,101,82,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2, -4,12,1,103,108,95,69,121,101,80,108,97,110,101,81,0,3,18,103,108,95,77,97,120,84,101,120,116,117, -114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,79,98,106,101,99,116,80,108,97,110,101, -83,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1, -103,108,95,79,98,106,101,99,116,80,108,97,110,101,84,0,3,18,103,108,95,77,97,120,84,101,120,116, -117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,79,98,106,101,99,116,80,108,97,110, -101,82,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4, -12,1,103,108,95,79,98,106,101,99,116,80,108,97,110,101,81,0,3,18,103,108,95,77,97,120,84,101,120, -116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,0,22,103,108,95,70,111,103,80,97,114,97,109,101, -116,101,114,115,0,12,99,111,108,111,114,0,0,0,1,9,100,101,110,115,105,116,121,0,0,0,1,9,115,116,97, -114,116,0,0,0,1,9,101,110,100,0,0,0,1,9,115,99,97,108,101,0,0,0,0,0,0,2,2,4,23,103,108,95,70,111, -103,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,70,111,103,0,0,0,1,0,9,0,114,97,100,105,97, -110,115,0,1,0,0,9,100,101,103,0,0,0,1,8,17,51,0,49,52,49,53,57,51,0,0,18,100,101,103,0,48,17,49,56, -48,0,48,0,0,49,0,0,1,0,10,0,114,97,100,105,97,110,115,0,1,0,0,10,100,101,103,0,0,0,1,8,58,118,101, -99,50,0,58,114,97,100,105,97,110,115,0,18,100,101,103,0,59,120,0,0,0,0,58,114,97,100,105,97,110, -115,0,18,100,101,103,0,59,121,0,0,0,0,0,0,0,1,0,11,0,114,97,100,105,97,110,115,0,1,0,0,11,100,101, -103,0,0,0,1,8,58,118,101,99,51,0,58,114,97,100,105,97,110,115,0,18,100,101,103,0,59,120,0,0,0,0,58, -114,97,100,105,97,110,115,0,18,100,101,103,0,59,121,0,0,0,0,58,114,97,100,105,97,110,115,0,18,100, -101,103,0,59,122,0,0,0,0,0,0,0,1,0,12,0,114,97,100,105,97,110,115,0,1,0,0,12,100,101,103,0,0,0,1,8, -58,118,101,99,52,0,58,114,97,100,105,97,110,115,0,18,100,101,103,0,59,120,0,0,0,0,58,114,97,100, -105,97,110,115,0,18,100,101,103,0,59,121,0,0,0,0,58,114,97,100,105,97,110,115,0,18,100,101,103,0, -59,122,0,0,0,0,58,114,97,100,105,97,110,115,0,18,100,101,103,0,59,119,0,0,0,0,0,0,0,1,0,9,0,100, -101,103,114,101,101,115,0,1,0,0,9,114,97,100,0,0,0,1,8,17,49,56,48,0,48,0,0,18,114,97,100,0,48,17, -51,0,49,52,49,53,57,51,0,0,49,0,0,1,0,10,0,100,101,103,114,101,101,115,0,1,0,0,10,114,97,100,0,0,0, -1,8,58,118,101,99,50,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0,59,120,0,0,0,0,58,100,101, -103,114,101,101,115,0,18,114,97,100,0,59,121,0,0,0,0,0,0,0,1,0,11,0,100,101,103,114,101,101,115,0, -1,0,0,11,114,97,100,0,0,0,1,8,58,118,101,99,51,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0, -59,120,0,0,0,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0,59,121,0,0,0,0,58,100,101,103,114, -101,101,115,0,18,114,97,100,0,59,122,0,0,0,0,0,0,0,1,0,12,0,100,101,103,114,101,101,115,0,1,0,0,12, -114,97,100,0,0,0,1,8,58,118,101,99,52,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0,59,120,0, -0,0,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0,59,121,0,0,0,0,58,100,101,103,114,101,101, -115,0,18,114,97,100,0,59,122,0,0,0,0,58,100,101,103,114,101,101,115,0,18,114,97,100,0,59,119,0,0,0, -0,0,0,0,1,0,9,0,115,105,110,0,1,0,0,9,97,110,103,108,101,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,115, -105,110,0,1,0,0,10,97,110,103,108,101,0,0,0,1,8,58,118,101,99,50,0,58,115,105,110,0,18,97,110,103, -108,101,0,59,120,0,0,0,0,58,115,105,110,0,18,97,110,103,108,101,0,59,121,0,0,0,0,0,0,0,1,0,11,0, -115,105,110,0,1,0,0,11,97,110,103,108,101,0,0,0,1,8,58,118,101,99,51,0,58,115,105,110,0,18,97,110, -103,108,101,0,59,120,0,0,0,0,58,115,105,110,0,18,97,110,103,108,101,0,59,121,0,0,0,0,58,115,105, -110,0,18,97,110,103,108,101,0,59,122,0,0,0,0,0,0,0,1,0,12,0,115,105,110,0,1,0,0,12,97,110,103,108, -101,0,0,0,1,8,58,118,101,99,52,0,58,115,105,110,0,18,97,110,103,108,101,0,59,120,0,0,0,0,58,115, -105,110,0,18,97,110,103,108,101,0,59,121,0,0,0,0,58,115,105,110,0,18,97,110,103,108,101,0,59,122,0, -0,0,0,58,115,105,110,0,18,97,110,103,108,101,0,59,119,0,0,0,0,0,0,0,1,0,9,0,99,111,115,0,1,0,0,9, -97,110,103,108,101,0,0,0,1,8,58,115,105,110,0,18,97,110,103,108,101,0,17,49,0,53,55,48,56,0,0,46,0, -0,0,0,1,0,10,0,99,111,115,0,1,0,0,10,97,110,103,108,101,0,0,0,1,8,58,118,101,99,50,0,58,99,111,115, -0,18,97,110,103,108,101,0,59,120,0,0,0,0,58,99,111,115,0,18,97,110,103,108,101,0,59,121,0,0,0,0,0, -0,0,1,0,11,0,99,111,115,0,1,0,0,11,97,110,103,108,101,0,0,0,1,8,58,118,101,99,51,0,58,99,111,115,0, -18,97,110,103,108,101,0,59,120,0,0,0,0,58,99,111,115,0,18,97,110,103,108,101,0,59,121,0,0,0,0,58, -99,111,115,0,18,97,110,103,108,101,0,59,122,0,0,0,0,0,0,0,1,0,12,0,99,111,115,0,1,0,0,12,97,110, -103,108,101,0,0,0,1,8,58,118,101,99,52,0,58,99,111,115,0,18,97,110,103,108,101,0,59,120,0,0,0,0,58, -99,111,115,0,18,97,110,103,108,101,0,59,121,0,0,0,0,58,99,111,115,0,18,97,110,103,108,101,0,59,122, -0,0,0,0,58,99,111,115,0,18,97,110,103,108,101,0,59,119,0,0,0,0,0,0,0,1,0,9,0,116,97,110,0,1,0,0,9, -97,110,103,108,101,0,0,0,1,8,58,115,105,110,0,18,97,110,103,108,101,0,0,0,58,99,111,115,0,18,97, -110,103,108,101,0,0,0,49,0,0,1,0,10,0,116,97,110,0,1,0,0,10,97,110,103,108,101,0,0,0,1,8,58,118, -101,99,50,0,58,116,97,110,0,18,97,110,103,108,101,0,59,120,0,0,0,0,58,116,97,110,0,18,97,110,103, -108,101,0,59,121,0,0,0,0,0,0,0,1,0,11,0,116,97,110,0,1,0,0,11,97,110,103,108,101,0,0,0,1,8,58,118, -101,99,51,0,58,116,97,110,0,18,97,110,103,108,101,0,59,120,0,0,0,0,58,116,97,110,0,18,97,110,103, -108,101,0,59,121,0,0,0,0,58,116,97,110,0,18,97,110,103,108,101,0,59,122,0,0,0,0,0,0,0,1,0,12,0,116, -97,110,0,1,0,0,12,97,110,103,108,101,0,0,0,1,8,58,118,101,99,52,0,58,116,97,110,0,18,97,110,103, -108,101,0,59,120,0,0,0,0,58,116,97,110,0,18,97,110,103,108,101,0,59,121,0,0,0,0,58,116,97,110,0,18, -97,110,103,108,101,0,59,122,0,0,0,0,58,116,97,110,0,18,97,110,103,108,101,0,59,119,0,0,0,0,0,0,0,1, -0,9,0,97,115,105,110,0,1,0,0,9,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,97,115,105,110,0,1,0,0,10, -120,0,0,0,1,8,58,118,101,99,50,0,58,97,115,105,110,0,18,120,0,59,120,0,0,0,0,58,97,115,105,110,0, -18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,97,115,105,110,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0, -58,97,115,105,110,0,18,120,0,59,120,0,0,0,0,58,97,115,105,110,0,18,120,0,59,121,0,0,0,0,58,97,115, -105,110,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,97,115,105,110,0,1,0,0,12,120,0,0,0,1,8,58,118, -101,99,52,0,58,97,115,105,110,0,18,120,0,59,120,0,0,0,0,58,97,115,105,110,0,18,120,0,59,121,0,0,0, -0,58,97,115,105,110,0,18,120,0,59,122,0,0,0,0,58,97,115,105,110,0,18,120,0,59,119,0,0,0,0,0,0,0,1, -0,9,0,97,99,111,115,0,1,0,0,9,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,97,99,111,115,0,1,0,0,10, -120,0,0,0,1,8,58,118,101,99,50,0,58,97,99,111,115,0,18,120,0,59,120,0,0,0,0,58,97,99,111,115,0,18, -120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,97,99,111,115,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58, -97,99,111,115,0,18,120,0,59,120,0,0,0,0,58,97,99,111,115,0,18,120,0,59,121,0,0,0,0,58,97,99,111, -115,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,97,99,111,115,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99, -52,0,58,97,99,111,115,0,18,120,0,59,120,0,0,0,0,58,97,99,111,115,0,18,120,0,59,121,0,0,0,0,58,97, -99,111,115,0,18,120,0,59,122,0,0,0,0,58,97,99,111,115,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,97, -116,97,110,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,97,116,97,110,0,1,0, -0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,118,101,99,50,0,58,97,116,97,110,0,18,120,0,59,120,0,0,18, -121,0,59,120,0,0,0,0,58,97,116,97,110,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,0,0,0,1,0,11,0, -97,116,97,110,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,118,101,99,51,0,58,97,116,97,110,0,18, -120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,97,116,97,110,0,18,120,0,59,121,0,0,18,121,0,59,121,0, -0,0,0,58,97,116,97,110,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,0,0,0,1,0,12,0,97,116,97,110, -0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,118,101,99,52,0,58,97,116,97,110,0,18,120,0,59,120,0, -0,18,121,0,59,120,0,0,0,0,58,97,116,97,110,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,58,97,116, -97,110,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,58,97,116,97,110,0,18,120,0,59,119,0,0,18,121, -0,59,119,0,0,0,0,0,0,0,1,0,9,0,97,116,97,110,0,1,0,0,9,121,95,111,118,101,114,95,120,0,0,0,1,8,17, -48,0,48,0,0,0,0,1,0,10,0,97,116,97,110,0,1,0,0,10,121,95,111,118,101,114,95,120,0,0,0,1,8,58,118, -101,99,50,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,120,0,0,0,0,58,97,116,97,110, -0,18,121,95,111,118,101,114,95,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,97,116,97,110,0,1,0,0,11,121,95, -111,118,101,114,95,120,0,0,0,1,8,58,118,101,99,51,0,58,97,116,97,110,0,18,121,95,111,118,101,114, -95,120,0,59,120,0,0,0,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,121,0,0,0,0,58,97, -116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,97,116,97,110,0,1,0, -0,12,121,95,111,118,101,114,95,120,0,0,0,1,8,58,118,101,99,52,0,58,97,116,97,110,0,18,121,95,111, -118,101,114,95,120,0,59,120,0,0,0,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,121,0, -0,0,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,122,0,0,0,0,58,97,116,97,110,0,18, -121,95,111,118,101,114,95,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,112,111,119,0,1,0,0,9,120,0,0,1,0,0,9, -121,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,112,111,119,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58, -118,101,99,50,0,58,112,111,119,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,112,111,119,0,18, -120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,0,0,0,1,0,11,0,112,111,119,0,1,0,0,11,120,0,0,1,0,0,11, -121,0,0,0,1,8,58,118,101,99,51,0,58,112,111,119,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58, -112,111,119,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,58,112,111,119,0,18,120,0,59,122,0,0,18, -121,0,59,122,0,0,0,0,0,0,0,1,0,12,0,112,111,119,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,118, -101,99,52,0,58,112,111,119,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,112,111,119,0,18,120,0, -59,121,0,0,18,121,0,59,121,0,0,0,0,58,112,111,119,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,58, -112,111,119,0,18,120,0,59,119,0,0,18,121,0,59,119,0,0,0,0,0,0,0,1,0,9,0,101,120,112,0,1,0,0,9,120, -0,0,0,1,8,58,112,111,119,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,18,120,0,0,0,0,0,1,0,10,0,101,120, -112,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,101,120,112,0,18,120,0,59,120,0,0,0,0,58,101, -120,112,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,101,120,112,0,1,0,0,11,120,0,0,0,1,8,58,118,101, -99,51,0,58,101,120,112,0,18,120,0,59,120,0,0,0,0,58,101,120,112,0,18,120,0,59,121,0,0,0,0,58,101, -120,112,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,101,120,112,0,1,0,0,12,120,0,0,0,1,8,58,118,101, -99,52,0,58,101,120,112,0,18,120,0,59,120,0,0,0,0,58,101,120,112,0,18,120,0,59,121,0,0,0,0,58,101, -120,112,0,18,120,0,59,122,0,0,0,0,58,101,120,112,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,108,111, -103,0,1,0,0,9,120,0,0,0,1,8,58,108,111,103,50,0,18,120,0,0,0,58,108,111,103,50,0,17,50,0,55,49,56, -50,56,49,56,51,0,0,0,0,49,0,0,1,0,10,0,108,111,103,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58, -108,111,103,0,18,120,0,59,120,0,0,0,0,58,108,111,103,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,108, -111,103,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,108,111,103,0,18,120,0,59,120,0,0,0,0,58, -108,111,103,0,18,120,0,59,121,0,0,0,0,58,108,111,103,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,108, -111,103,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,108,111,103,0,18,120,0,59,120,0,0,0,0,58, -108,111,103,0,18,120,0,59,121,0,0,0,0,58,108,111,103,0,18,120,0,59,122,0,0,0,0,58,108,111,103,0,18, -120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,101,120,112,50,0,1,0,0,9,120,0,0,0,1,8,58,112,111,119,0,17,50,0, -48,0,0,0,18,120,0,0,0,0,0,1,0,10,0,101,120,112,50,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58, -101,120,112,50,0,18,120,0,59,120,0,0,0,0,58,101,120,112,50,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11, -0,101,120,112,50,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,101,120,112,50,0,18,120,0,59,120,0, -0,0,0,58,101,120,112,50,0,18,120,0,59,121,0,0,0,0,58,101,120,112,50,0,18,120,0,59,122,0,0,0,0,0,0, -0,1,0,12,0,101,120,112,50,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,101,120,112,50,0,18,120,0, -59,120,0,0,0,0,58,101,120,112,50,0,18,120,0,59,121,0,0,0,0,58,101,120,112,50,0,18,120,0,59,122,0,0, -0,0,58,101,120,112,50,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,108,111,103,50,0,1,0,0,9,120,0,0,0,1, -8,17,48,0,48,0,0,0,0,1,0,10,0,108,111,103,50,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,108, -111,103,50,0,18,120,0,59,120,0,0,0,0,58,108,111,103,50,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0, -108,111,103,50,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,108,111,103,50,0,18,120,0,59,120,0,0, -0,0,58,108,111,103,50,0,18,120,0,59,121,0,0,0,0,58,108,111,103,50,0,18,120,0,59,122,0,0,0,0,0,0,0, -1,0,12,0,108,111,103,50,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,108,111,103,50,0,18,120,0, -59,120,0,0,0,0,58,108,111,103,50,0,18,120,0,59,121,0,0,0,0,58,108,111,103,50,0,18,120,0,59,122,0,0, -0,0,58,108,111,103,50,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,115,113,114,116,0,1,0,0,9,120,0,0,0, -1,8,58,112,111,119,0,18,120,0,0,17,48,0,53,0,0,0,0,0,0,1,0,10,0,115,113,114,116,0,1,0,0,10,120,0,0, -0,1,8,58,118,101,99,50,0,58,115,113,114,116,0,18,120,0,59,120,0,0,0,0,58,115,113,114,116,0,18,120, -0,59,121,0,0,0,0,0,0,0,1,0,11,0,115,113,114,116,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,115, -113,114,116,0,18,120,0,59,120,0,0,0,0,58,115,113,114,116,0,18,120,0,59,121,0,0,0,0,58,115,113,114, -116,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,115,113,114,116,0,1,0,0,12,120,0,0,0,1,8,58,118,101, -99,52,0,58,115,113,114,116,0,18,120,0,59,120,0,0,0,0,58,115,113,114,116,0,18,120,0,59,121,0,0,0,0, -58,115,113,114,116,0,18,120,0,59,122,0,0,0,0,58,115,113,114,116,0,18,120,0,59,119,0,0,0,0,0,0,0,1, -0,9,0,105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,9,120,0,0,0,1,8,17,49,0,48,0,0,58,115, -113,114,116,0,18,120,0,0,0,49,0,0,1,0,10,0,105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,10, -120,0,0,0,1,8,58,118,101,99,50,0,58,105,110,118,101,114,115,101,115,113,114,116,0,18,120,0,59,120, -0,0,0,0,58,105,110,118,101,114,115,101,115,113,114,116,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0, -105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,105,110, -118,101,114,115,101,115,113,114,116,0,18,120,0,59,120,0,0,0,0,58,105,110,118,101,114,115,101,115, -113,114,116,0,18,120,0,59,121,0,0,0,0,58,105,110,118,101,114,115,101,115,113,114,116,0,18,120,0,59, -122,0,0,0,0,0,0,0,1,0,12,0,105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,12,120,0,0,0,1,8,58, -118,101,99,52,0,58,105,110,118,101,114,115,101,115,113,114,116,0,18,120,0,59,120,0,0,0,0,58,105, -110,118,101,114,115,101,115,113,114,116,0,18,120,0,59,121,0,0,0,0,58,105,110,118,101,114,115,101, -115,113,114,116,0,18,120,0,59,122,0,0,0,0,58,105,110,118,101,114,115,101,115,113,114,116,0,18,120, -0,59,119,0,0,0,0,0,0,0,1,0,9,0,97,98,115,0,1,0,0,9,120,0,0,0,1,8,18,120,0,17,48,0,48,0,0,43,18,120, -0,18,120,0,54,31,0,0,1,0,10,0,97,98,115,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,97,98,115,0, -18,120,0,59,120,0,0,0,0,58,97,98,115,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,97,98,115,0,1,0,0,11, -120,0,0,0,1,8,58,118,101,99,51,0,58,97,98,115,0,18,120,0,59,120,0,0,0,0,58,97,98,115,0,18,120,0,59, -121,0,0,0,0,58,97,98,115,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,97,98,115,0,1,0,0,12,120,0,0,0,1, -8,58,118,101,99,52,0,58,97,98,115,0,18,120,0,59,120,0,0,0,0,58,97,98,115,0,18,120,0,59,121,0,0,0,0, -58,97,98,115,0,18,120,0,59,122,0,0,0,0,58,97,98,115,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,115, -105,103,110,0,1,0,0,9,120,0,0,0,1,8,18,120,0,17,48,0,48,0,0,41,17,49,0,48,0,0,18,120,0,17,48,0,48, -0,0,40,17,49,0,48,0,0,54,17,48,0,48,0,0,31,31,0,0,1,0,10,0,115,105,103,110,0,1,0,0,10,120,0,0,0,1, -8,58,118,101,99,50,0,58,115,105,103,110,0,18,120,0,59,120,0,0,0,0,58,115,105,103,110,0,18,120,0,59, -121,0,0,0,0,0,0,0,1,0,11,0,115,105,103,110,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,115,105, -103,110,0,18,120,0,59,120,0,0,0,0,58,115,105,103,110,0,18,120,0,59,121,0,0,0,0,58,115,105,103,110, -0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,115,105,103,110,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52, -0,58,115,105,103,110,0,18,120,0,59,120,0,0,0,0,58,115,105,103,110,0,18,120,0,59,121,0,0,0,0,58,115, -105,103,110,0,18,120,0,59,122,0,0,0,0,58,115,105,103,110,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0, -102,108,111,111,114,0,1,0,0,9,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,102,108,111,111,114,0,1,0, -0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,102,108,111,111,114,0,18,120,0,59,120,0,0,0,0,58,102,108, -111,111,114,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,102,108,111,111,114,0,1,0,0,11,120,0,0,0,1,8, -58,118,101,99,51,0,58,102,108,111,111,114,0,18,120,0,59,120,0,0,0,0,58,102,108,111,111,114,0,18, -120,0,59,121,0,0,0,0,58,102,108,111,111,114,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,102,108,111, -111,114,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,102,108,111,111,114,0,18,120,0,59,120,0,0,0, -0,58,102,108,111,111,114,0,18,120,0,59,121,0,0,0,0,58,102,108,111,111,114,0,18,120,0,59,122,0,0,0, -0,58,102,108,111,111,114,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,99,101,105,108,0,1,0,0,9,120,0,0, -0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,99,101,105,108,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,99, -101,105,108,0,18,120,0,59,120,0,0,0,0,58,99,101,105,108,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0, -99,101,105,108,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,99,101,105,108,0,18,120,0,59,120,0,0, -0,0,58,99,101,105,108,0,18,120,0,59,121,0,0,0,0,58,99,101,105,108,0,18,120,0,59,122,0,0,0,0,0,0,0, -1,0,12,0,99,101,105,108,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,99,101,105,108,0,18,120,0, -59,120,0,0,0,0,58,99,101,105,108,0,18,120,0,59,121,0,0,0,0,58,99,101,105,108,0,18,120,0,59,122,0,0, -0,0,58,99,101,105,108,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,102,114,97,99,116,0,1,0,0,9,120,0,0, -0,1,8,18,120,0,58,102,108,111,111,114,0,18,120,0,0,0,47,0,0,1,0,10,0,102,114,97,99,116,0,1,0,0,10, -120,0,0,0,1,8,58,118,101,99,50,0,58,102,114,97,99,116,0,18,120,0,59,120,0,0,0,0,58,102,114,97,99, -116,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,102,114,97,99,116,0,1,0,0,11,120,0,0,0,1,8,58,118,101, -99,51,0,58,102,114,97,99,116,0,18,120,0,59,120,0,0,0,0,58,102,114,97,99,116,0,18,120,0,59,121,0,0, -0,0,58,102,114,97,99,116,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,102,114,97,99,116,0,1,0,0,12,120, -0,0,0,1,8,58,118,101,99,52,0,58,102,114,97,99,116,0,18,120,0,59,120,0,0,0,0,58,102,114,97,99,116,0, -18,120,0,59,121,0,0,0,0,58,102,114,97,99,116,0,18,120,0,59,122,0,0,0,0,58,102,114,97,99,116,0,18, -120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,109,111,100,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1,8,18,120,0,18, -121,0,58,102,108,111,111,114,0,18,120,0,18,121,0,49,0,0,48,47,0,0,1,0,10,0,109,111,100,0,1,0,0,10, -120,0,0,1,0,0,9,121,0,0,0,1,8,58,118,101,99,50,0,58,109,111,100,0,18,120,0,59,120,0,0,18,121,0,0,0, -0,58,109,111,100,0,18,120,0,59,121,0,0,18,121,0,0,0,0,0,0,0,1,0,11,0,109,111,100,0,1,0,0,11,120,0, -0,1,0,0,9,121,0,0,0,1,8,58,118,101,99,51,0,58,109,111,100,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58, -109,111,100,0,18,120,0,59,121,0,0,18,121,0,0,0,0,58,109,111,100,0,18,120,0,59,122,0,0,18,121,0,0,0, -0,0,0,0,1,0,12,0,109,111,100,0,1,0,0,12,120,0,0,1,0,0,9,121,0,0,0,1,8,58,118,101,99,52,0,58,109, -111,100,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58,109,111,100,0,18,120,0,59,121,0,0,18,121,0,0,0,0, -58,109,111,100,0,18,120,0,59,122,0,0,18,121,0,0,0,0,58,109,111,100,0,18,120,0,59,119,0,0,18,121,0, -0,0,0,0,0,0,1,0,10,0,109,111,100,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,118,101,99,50,0,58, -109,111,100,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,109,111,100,0,18,120,0,59,121,0,0,18, -121,0,59,121,0,0,0,0,0,0,0,1,0,11,0,109,111,100,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,118, -101,99,51,0,58,109,111,100,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,109,111,100,0,18,120,0, -59,121,0,0,18,121,0,59,121,0,0,0,0,58,109,111,100,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,0, -0,0,1,0,12,0,109,111,100,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,118,101,99,52,0,58,109,111, -100,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,109,111,100,0,18,120,0,59,121,0,0,18,121,0,59, -121,0,0,0,0,58,109,111,100,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,58,109,111,100,0,18,120,0, -59,119,0,0,18,121,0,59,119,0,0,0,0,0,0,0,1,0,9,0,109,105,110,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1, -8,18,121,0,18,120,0,40,18,121,0,18,120,0,31,0,0,1,0,10,0,109,105,110,0,1,0,0,10,120,0,0,1,0,0,9, -121,0,0,0,1,8,58,118,101,99,50,0,58,109,105,110,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58,109,105, -110,0,18,120,0,59,121,0,0,18,121,0,0,0,0,0,0,0,1,0,11,0,109,105,110,0,1,0,0,11,120,0,0,1,0,0,9,121, -0,0,0,1,8,58,118,101,99,51,0,58,109,105,110,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58,109,105,110,0, -18,120,0,59,121,0,0,18,121,0,0,0,0,58,109,105,110,0,18,120,0,59,122,0,0,18,121,0,0,0,0,0,0,0,1,0, -12,0,109,105,110,0,1,0,0,12,120,0,0,1,0,0,9,121,0,0,0,1,8,58,118,101,99,52,0,58,109,105,110,0,18, -120,0,59,120,0,0,18,121,0,0,0,0,58,109,105,110,0,18,120,0,59,121,0,0,18,121,0,0,0,0,58,109,105,110, -0,18,120,0,59,122,0,0,18,121,0,0,0,0,58,109,105,110,0,18,120,0,59,119,0,0,18,121,0,0,0,0,0,0,0,1,0, -10,0,109,105,110,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,118,101,99,50,0,58,109,105,110,0,18, -120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,109,105,110,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0, -0,0,0,0,0,1,0,11,0,109,105,110,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,118,101,99,51,0,58,109, -105,110,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58,109,105,110,0,18,120,0,59,121,0,0,18,121, -0,59,121,0,0,0,0,58,109,105,110,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,0,0,0,1,0,12,0,109, -105,110,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,118,101,99,52,0,58,109,105,110,0,18,120,0,59, -120,0,0,18,121,0,59,120,0,0,0,0,58,109,105,110,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,58, -109,105,110,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,58,109,105,110,0,18,120,0,59,119,0,0,18, -121,0,59,119,0,0,0,0,0,0,0,1,0,9,0,109,97,120,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1,8,58,109,105, -110,0,18,121,0,0,18,120,0,0,0,0,0,1,0,10,0,109,97,120,0,1,0,0,10,120,0,0,1,0,0,9,121,0,0,0,1,8,58, -118,101,99,50,0,58,109,97,120,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58,109,97,120,0,18,120,0,59,121, -0,0,18,121,0,0,0,0,0,0,0,1,0,11,0,109,97,120,0,1,0,0,11,120,0,0,1,0,0,9,121,0,0,0,1,8,58,118,101, -99,51,0,58,109,97,120,0,18,120,0,59,120,0,0,18,121,0,0,0,0,58,109,97,120,0,18,120,0,59,121,0,0,18, -121,0,0,0,0,58,109,97,120,0,18,120,0,59,122,0,0,18,121,0,0,0,0,0,0,0,1,0,12,0,109,97,120,0,1,0,0, -12,120,0,0,1,0,0,9,121,0,0,0,1,8,58,118,101,99,52,0,58,109,97,120,0,18,120,0,59,120,0,0,18,121,0,0, -0,0,58,109,97,120,0,18,120,0,59,121,0,0,18,121,0,0,0,0,58,109,97,120,0,18,120,0,59,122,0,0,18,121, -0,0,0,0,58,109,97,120,0,18,120,0,59,119,0,0,18,121,0,0,0,0,0,0,0,1,0,10,0,109,97,120,0,1,0,0,10, -120,0,0,1,0,0,10,121,0,0,0,1,8,58,118,101,99,50,0,58,109,97,120,0,18,120,0,59,120,0,0,18,121,0,59, -120,0,0,0,0,58,109,97,120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,0,0,0,1,0,11,0,109,97,120, -0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,118,101,99,51,0,58,109,97,120,0,18,120,0,59,120,0,0, -18,121,0,59,120,0,0,0,0,58,109,97,120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,58,109,97,120, -0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,0,0,0,0,1,0,12,0,109,97,120,0,1,0,0,12,120,0,0,1,0,0, -12,121,0,0,0,1,8,58,118,101,99,52,0,58,109,97,120,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,0,58, -109,97,120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,0,58,109,97,120,0,18,120,0,59,122,0,0,18, -121,0,59,122,0,0,0,0,58,109,97,120,0,18,120,0,59,119,0,0,18,121,0,59,119,0,0,0,0,0,0,0,1,0,9,0,99, -108,97,109,112,0,1,0,0,9,120,0,0,1,0,0,9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,97,108,0, -0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,108,0,0,0,0,18,109,97,120, -86,97,108,0,0,0,0,0,1,0,10,0,99,108,97,109,112,0,1,0,0,10,120,0,0,1,0,0,9,109,105,110,86,97,108,0, -0,1,0,0,9,109,97,120,86,97,108,0,0,0,1,8,58,118,101,99,50,0,58,99,108,97,109,112,0,18,120,0,59,120, -0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97,108,0,0,0,0,58,99,108,97,109,112,0,18,120,0, -59,121,0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97,108,0,0,0,0,0,0,0,1,0,11,0,99,108,97, -109,112,0,1,0,0,11,120,0,0,1,0,0,9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,97,108,0,0,0,1, -8,58,118,101,99,51,0,58,99,108,97,109,112,0,18,120,0,59,120,0,0,18,109,105,110,86,97,108,0,0,18, -109,97,120,86,97,108,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59,121,0,0,18,109,105,110,86,97,108,0, -0,18,109,97,120,86,97,108,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59,122,0,0,18,109,105,110,86,97, -108,0,0,18,109,97,120,86,97,108,0,0,0,0,0,0,0,1,0,12,0,99,108,97,109,112,0,1,0,0,12,120,0,0,1,0,0, -9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,97,108,0,0,0,1,8,58,118,101,99,52,0,58,99,108,97, -109,112,0,18,120,0,59,120,0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97,108,0,0,0,0,58,99, -108,97,109,112,0,18,120,0,59,121,0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97,108,0,0,0,0, -58,99,108,97,109,112,0,18,120,0,59,122,0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97,108,0, -0,0,0,58,99,108,97,109,112,0,18,120,0,59,119,0,0,18,109,105,110,86,97,108,0,0,18,109,97,120,86,97, -108,0,0,0,0,0,0,0,1,0,10,0,99,108,97,109,112,0,1,0,0,10,120,0,0,1,0,0,10,109,105,110,86,97,108,0,0, -1,0,0,10,109,97,120,86,97,108,0,0,0,1,8,58,118,101,99,50,0,58,99,108,97,109,112,0,18,120,0,59,120, -0,0,18,109,105,110,86,97,108,0,59,120,0,0,18,109,97,120,86,97,108,0,59,120,0,0,0,0,58,99,108,97, -109,112,0,18,120,0,59,121,0,0,18,109,105,110,86,97,108,0,59,121,0,0,18,109,97,120,86,97,108,0,59, -121,0,0,0,0,0,0,0,1,0,11,0,99,108,97,109,112,0,1,0,0,11,120,0,0,1,0,0,11,109,105,110,86,97,108,0,0, -1,0,0,11,109,97,120,86,97,108,0,0,0,1,8,58,118,101,99,51,0,58,99,108,97,109,112,0,18,120,0,59,120, -0,0,18,109,105,110,86,97,108,0,59,120,0,0,18,109,97,120,86,97,108,0,59,120,0,0,0,0,58,99,108,97, -109,112,0,18,120,0,59,121,0,0,18,109,105,110,86,97,108,0,59,121,0,0,18,109,97,120,86,97,108,0,59, -121,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59,122,0,0,18,109,105,110,86,97,108,0,59,122,0,0,18, -109,97,120,86,97,108,0,59,122,0,0,0,0,0,0,0,1,0,12,0,99,108,97,109,112,0,1,0,0,12,120,0,0,1,0,0,12, -109,105,110,86,97,108,0,0,1,0,0,12,109,97,120,86,97,108,0,0,0,1,8,58,118,101,99,52,0,58,99,108,97, -109,112,0,18,120,0,59,120,0,0,18,109,105,110,86,97,108,0,59,120,0,0,18,109,97,120,86,97,108,0,59, -121,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59,121,0,0,18,109,105,110,86,97,108,0,59,121,0,0,18, -109,97,120,86,97,108,0,59,121,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59,122,0,0,18,109,105,110,86, -97,108,0,59,122,0,0,18,109,97,120,86,97,108,0,59,122,0,0,0,0,58,99,108,97,109,112,0,18,120,0,59, -119,0,0,18,109,105,110,86,97,108,0,59,119,0,0,18,109,97,120,86,97,108,0,59,119,0,0,0,0,0,0,0,1,0,9, -0,109,105,120,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,1,0,0,9,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97, -0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,10,0,109,105,120,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,1,0,0, -9,97,0,0,0,1,8,58,118,101,99,50,0,58,109,105,120,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,18,97,0, -0,0,0,58,109,105,120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,18,97,0,0,0,0,0,0,0,1,0,11,0,109, -105,120,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,1,0,0,9,97,0,0,0,1,8,58,118,101,99,51,0,58,109,105,120, -0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,18,97,0,0,0,0,58,109,105,120,0,18,120,0,59,121,0,0,18, -121,0,59,121,0,0,18,97,0,0,0,0,58,109,105,120,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,18,97,0,0, -0,0,0,0,0,1,0,12,0,109,105,120,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,1,0,0,9,97,0,0,0,1,8,58,118,101, -99,52,0,58,109,105,120,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,18,97,0,0,0,0,58,109,105,120,0,18, -120,0,59,121,0,0,18,121,0,59,121,0,0,18,97,0,0,0,0,58,109,105,120,0,18,120,0,59,122,0,0,18,121,0, -59,122,0,0,18,97,0,0,0,0,58,109,105,120,0,18,120,0,59,119,0,0,18,121,0,59,119,0,0,18,97,0,0,0,0,0, -0,0,1,0,10,0,109,105,120,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,1,0,0,10,97,0,0,0,1,8,58,118,101,99, -50,0,58,109,105,120,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,18,97,0,59,120,0,0,0,0,58,109,105, -120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,18,97,0,59,121,0,0,0,0,0,0,0,1,0,11,0,109,105,120,0, -1,0,0,11,120,0,0,1,0,0,11,121,0,0,1,0,0,11,97,0,0,0,1,8,58,118,101,99,51,0,58,109,105,120,0,18,120, -0,59,120,0,0,18,121,0,59,120,0,0,18,97,0,59,120,0,0,0,0,58,109,105,120,0,18,120,0,59,121,0,0,18, -121,0,59,121,0,0,18,97,0,59,121,0,0,0,0,58,109,105,120,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0, -18,97,0,59,122,0,0,0,0,0,0,0,1,0,12,0,109,105,120,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,1,0,0,12,97, -0,0,0,1,8,58,118,101,99,52,0,58,109,105,120,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,18,97,0,59, -120,0,0,0,0,58,109,105,120,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,18,97,0,59,121,0,0,0,0,58,109, -105,120,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,18,97,0,59,122,0,0,0,0,58,109,105,120,0,18,120,0, -59,119,0,0,18,121,0,59,119,0,0,18,97,0,59,119,0,0,0,0,0,0,0,1,0,9,0,115,116,101,112,0,1,0,0,9,101, -100,103,101,0,0,1,0,0,9,120,0,0,0,1,8,18,120,0,18,101,100,103,101,0,40,17,48,0,48,0,0,17,49,0,48,0, -0,31,0,0,1,0,10,0,115,116,101,112,0,1,0,0,9,101,100,103,101,0,0,1,0,0,10,120,0,0,0,1,8,58,118,101, -99,50,0,58,115,116,101,112,0,18,101,100,103,101,0,0,18,120,0,59,120,0,0,0,0,58,115,116,101,112,0, -18,101,100,103,101,0,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,115,116,101,112,0,1,0,0,9,101,100, -103,101,0,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,115,116,101,112,0,18,101,100,103,101,0,0, -18,120,0,59,120,0,0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,0,18,120,0,59,121,0,0,0,0,58,115, -116,101,112,0,18,101,100,103,101,0,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,115,116,101,112,0,1,0, -0,9,101,100,103,101,0,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,115,116,101,112,0,18,101,100, -103,101,0,0,18,120,0,59,120,0,0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,0,18,120,0,59,121,0, -0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,0,18,120,0,59,122,0,0,0,0,58,115,116,101,112,0,18, -101,100,103,101,0,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,10,0,115,116,101,112,0,1,0,0,10,101,100,103, -101,0,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,115,116,101,112,0,18,101,100,103,101,0,59,120, -0,0,18,120,0,59,120,0,0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,59,121,0,0,18,120,0,59,121,0, -0,0,0,0,0,0,1,0,11,0,115,116,101,112,0,1,0,0,11,101,100,103,101,0,0,1,0,0,11,120,0,0,0,1,8,58,118, -101,99,51,0,58,115,116,101,112,0,18,101,100,103,101,0,59,120,0,0,18,120,0,59,120,0,0,0,0,58,115, -116,101,112,0,18,101,100,103,101,0,59,121,0,0,18,120,0,59,121,0,0,0,0,58,115,116,101,112,0,18,101, -100,103,101,0,59,122,0,0,18,120,0,59,122,0,0,0,0,0,0,0,1,0,12,0,115,116,101,112,0,1,0,0,12,101,100, -103,101,0,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,115,116,101,112,0,18,101,100,103,101,0,59, -120,0,0,18,120,0,59,120,0,0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,59,121,0,0,18,120,0,59, -121,0,0,0,0,58,115,116,101,112,0,18,101,100,103,101,0,59,122,0,0,18,120,0,59,122,0,0,0,0,58,115, -116,101,112,0,18,101,100,103,101,0,59,119,0,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,115,109,111, -111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,49,0,0,1,0,0, -9,120,0,0,0,1,3,2,1,9,1,116,0,2,58,99,108,97,109,112,0,18,120,0,18,101,100,103,101,48,0,47,18,101, -100,103,101,49,0,18,101,100,103,101,48,0,47,49,0,17,48,0,48,0,0,0,17,49,0,48,0,0,0,0,0,0,8,18,116, -0,18,116,0,48,17,51,0,48,0,0,17,50,0,48,0,0,18,116,0,48,47,48,0,0,1,0,10,0,115,109,111,111,116,104, -115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,49,0,0,1,0,0,10,120,0,0,0, -1,8,58,118,101,99,50,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18, -101,100,103,101,49,0,0,18,120,0,59,120,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101, -100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,115,109,111, -111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,49,0,0,1,0,0, -11,120,0,0,0,1,8,58,118,101,99,51,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103, -101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59,120,0,0,0,0,58,115,109,111,111,116,104,115,116, -101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59,121,0,0,0,0,58,115,109, -111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59, -122,0,0,0,0,0,0,0,1,0,12,0,115,109,111,111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0, -0,1,0,0,9,101,100,103,101,49,0,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,115,109,111,111,116, -104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59,120,0,0,0,0, -58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0, -18,120,0,59,121,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18, -101,100,103,101,49,0,0,18,120,0,59,122,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101, -100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,10,0,115,109,111, -111,116,104,115,116,101,112,0,1,0,0,10,101,100,103,101,48,0,0,1,0,0,10,101,100,103,101,49,0,0,1,0, -0,10,120,0,0,0,1,8,58,118,101,99,50,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103, -101,48,0,59,120,0,0,18,101,100,103,101,49,0,59,120,0,0,18,120,0,59,120,0,0,0,0,58,115,109,111,111, -116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,121,0,0,18,101,100,103,101,49,0,59,121,0,0,18, -120,0,59,121,0,0,0,0,0,0,0,1,0,11,0,115,109,111,111,116,104,115,116,101,112,0,1,0,0,11,101,100,103, -101,48,0,0,1,0,0,11,101,100,103,101,49,0,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,58,115,109, -111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,120,0,0,18,101,100,103,101,49,0,59, -120,0,0,18,120,0,59,120,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48, -0,59,121,0,0,18,101,100,103,101,49,0,59,121,0,0,18,120,0,59,121,0,0,0,0,58,115,109,111,111,116,104, -115,116,101,112,0,18,101,100,103,101,48,0,59,122,0,0,18,101,100,103,101,49,0,59,122,0,0,18,120,0, -59,122,0,0,0,0,0,0,0,1,0,12,0,115,109,111,111,116,104,115,116,101,112,0,1,0,0,12,101,100,103,101, -48,0,0,1,0,0,12,101,100,103,101,49,0,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,58,115,109,111, -111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,120,0,0,18,101,100,103,101,49,0,59,120,0, -0,18,120,0,59,120,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59, -121,0,0,18,101,100,103,101,49,0,59,121,0,0,18,120,0,59,121,0,0,0,0,58,115,109,111,111,116,104,115, -116,101,112,0,18,101,100,103,101,48,0,59,122,0,0,18,101,100,103,101,49,0,59,122,0,0,18,120,0,59, -122,0,0,0,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,119,0,0,18,101, -100,103,101,49,0,59,119,0,0,18,120,0,59,119,0,0,0,0,0,0,0,1,0,9,0,100,111,116,0,1,0,0,9,120,0,0,1, -0,0,9,121,0,0,0,1,8,18,120,0,18,121,0,48,0,0,1,0,9,0,100,111,116,0,1,0,0,10,120,0,0,1,0,0,10,121,0, -0,0,1,8,58,100,111,116,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,58,100,111,116,0,18,120,0,59, -121,0,0,18,121,0,59,121,0,0,0,46,0,0,1,0,9,0,100,111,116,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8, -58,100,111,116,0,18,120,0,59,120,0,0,18,121,0,59,120,0,0,0,58,100,111,116,0,18,120,0,59,121,0,0,18, -121,0,59,121,0,0,0,46,58,100,111,116,0,18,120,0,59,122,0,0,18,121,0,59,122,0,0,0,46,0,0,1,0,9,0, -100,111,116,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,100,111,116,0,18,120,0,59,120,0,0,18,121, -0,59,120,0,0,0,58,100,111,116,0,18,120,0,59,121,0,0,18,121,0,59,121,0,0,0,46,58,100,111,116,0,18, -120,0,59,122,0,0,18,121,0,59,122,0,0,0,46,58,100,111,116,0,18,120,0,59,119,0,0,18,121,0,59,119,0,0, -0,46,0,0,1,0,9,0,108,101,110,103,116,104,0,1,0,0,9,120,0,0,0,1,8,58,115,113,114,116,0,58,100,111, -116,0,18,120,0,0,18,120,0,0,0,0,0,0,0,1,0,9,0,108,101,110,103,116,104,0,1,0,0,10,120,0,0,0,1,8,58, -115,113,114,116,0,58,100,111,116,0,18,120,0,0,18,120,0,0,0,0,0,0,0,1,0,9,0,108,101,110,103,116,104, -0,1,0,0,11,120,0,0,0,1,8,58,115,113,114,116,0,58,100,111,116,0,18,120,0,0,18,120,0,0,0,0,0,0,0,1,0, -9,0,108,101,110,103,116,104,0,1,0,0,12,120,0,0,0,1,8,58,115,113,114,116,0,58,100,111,116,0,18,120, -0,0,18,120,0,0,0,0,0,0,0,1,0,9,0,100,105,115,116,97,110,99,101,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0, -1,8,58,108,101,110,103,116,104,0,18,120,0,18,121,0,47,0,0,0,0,1,0,9,0,100,105,115,116,97,110,99, -101,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,108,101,110,103,116,104,0,18,120,0,18,121,0,47,0, -0,0,0,1,0,9,0,100,105,115,116,97,110,99,101,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,108,101, -110,103,116,104,0,18,120,0,18,121,0,47,0,0,0,0,1,0,9,0,100,105,115,116,97,110,99,101,0,1,0,0,12, -120,0,0,1,0,0,12,121,0,0,0,1,8,58,108,101,110,103,116,104,0,18,120,0,18,121,0,47,0,0,0,0,1,0,11,0, -99,114,111,115,115,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,118,101,99,51,0,18,120,0,59,121,0, -18,121,0,59,122,0,48,18,121,0,59,121,0,18,120,0,59,122,0,48,47,0,18,120,0,59,122,0,18,121,0,59,120, -0,48,18,121,0,59,122,0,18,120,0,59,120,0,48,47,0,18,120,0,59,120,0,18,121,0,59,121,0,48,18,121,0, -59,120,0,18,120,0,59,121,0,48,47,0,0,0,0,1,0,9,0,110,111,114,109,97,108,105,122,101,0,1,0,0,9,120, -0,0,0,1,8,17,49,0,48,0,0,0,0,1,0,10,0,110,111,114,109,97,108,105,122,101,0,1,0,0,10,120,0,0,0,1,8, -18,120,0,58,108,101,110,103,116,104,0,18,120,0,0,0,49,0,0,1,0,11,0,110,111,114,109,97,108,105,122, -101,0,1,0,0,11,120,0,0,0,1,8,18,120,0,58,108,101,110,103,116,104,0,18,120,0,0,0,49,0,0,1,0,12,0, -110,111,114,109,97,108,105,122,101,0,1,0,0,12,120,0,0,0,1,8,18,120,0,58,108,101,110,103,116,104,0, -18,120,0,0,0,49,0,0,1,0,9,0,102,97,99,101,102,111,114,119,97,114,100,0,1,0,0,9,78,0,0,1,0,0,9,73,0, -0,1,0,0,9,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101,102,0,0,18,73,0,0,0,17,48,0,48,0, -0,40,18,78,0,18,78,0,54,31,0,0,1,0,10,0,102,97,99,101,102,111,114,119,97,114,100,0,1,0,0,10,78,0,0, -1,0,0,10,73,0,0,1,0,0,10,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101,102,0,0,18,73,0,0, -0,17,48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,11,0,102,97,99,101,102,111,114,119,97,114,100,0, -1,0,0,11,78,0,0,1,0,0,11,73,0,0,1,0,0,11,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101, -102,0,0,18,73,0,0,0,17,48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,12,0,102,97,99,101,102,111,114, -119,97,114,100,0,1,0,0,12,78,0,0,1,0,0,12,73,0,0,1,0,0,12,78,114,101,102,0,0,0,1,8,58,100,111,116, -0,18,78,114,101,102,0,0,18,73,0,0,0,17,48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,9,0,114,101, -102,108,101,99,116,0,1,0,0,9,73,0,0,1,0,0,9,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0, -18,78,0,0,18,73,0,0,0,48,18,78,0,48,47,0,0,1,0,10,0,114,101,102,108,101,99,116,0,1,0,0,10,73,0,0,1, -0,0,10,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,18,78,0,48,47, -0,0,1,0,11,0,114,101,102,108,101,99,116,0,1,0,0,11,73,0,0,1,0,0,11,78,0,0,0,1,8,18,73,0,17,50,0,48, -0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,18,78,0,48,47,0,0,1,0,12,0,114,101,102,108,101,99, -116,0,1,0,0,12,73,0,0,1,0,0,12,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0,18,78,0,0,18, -73,0,0,0,48,18,78,0,48,47,0,0,1,0,9,0,114,101,102,114,97,99,116,0,1,0,0,9,73,0,0,1,0,0,9,78,0,0,1, -0,0,9,101,116,97,0,0,0,1,3,2,1,9,1,107,0,2,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49, -0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47, -0,0,10,18,107,0,17,48,0,48,0,0,40,0,8,17,48,0,48,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18,101, -116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78,0,48, -47,0,0,1,0,10,0,114,101,102,114,97,99,116,0,1,0,0,10,73,0,0,1,0,0,10,78,0,0,1,0,0,9,101,116,97,0,0, -0,1,3,2,1,9,1,107,0,2,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,0,48,0,0,58,100,111, -116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,0,0,10,18,107,0,17, -48,0,48,0,0,40,0,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18, -101,116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78, -0,48,47,0,0,1,0,11,0,114,101,102,114,97,99,116,0,1,0,0,11,73,0,0,1,0,0,11,78,0,0,1,0,0,9,101,116, -97,0,0,0,1,3,2,1,9,1,107,0,2,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,0,48,0,0,58, -100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,0,0,10,18, -107,0,17,48,0,48,0,0,40,0,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,9,14,0,8,18,101,116,97,0,18,73, -0,48,18,101,116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0, -46,18,78,0,48,47,0,0,1,0,12,0,114,101,102,114,97,99,116,0,1,0,0,12,73,0,0,1,0,0,12,78,0,0,1,0,0,9, -101,116,97,0,0,0,1,3,2,1,9,1,107,0,2,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,0,48, -0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,0,0, -10,18,107,0,17,48,0,48,0,0,40,0,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,9,14,0,8,18,101,116,97,0, -18,73,0,48,18,101,116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0, -0,0,46,18,78,0,48,47,0,0,1,0,13,0,109,97,116,114,105,120,67,111,109,112,77,117,108,116,0,1,0,0,13, -120,0,0,1,0,0,13,121,0,0,0,1,8,58,109,97,116,50,0,18,120,0,16,8,48,0,57,59,120,0,18,121,0,16,8,48, -0,57,59,120,0,48,0,18,120,0,16,8,48,0,57,59,121,0,18,121,0,16,8,48,0,57,59,121,0,48,0,18,120,0,16, -10,49,0,57,59,120,0,18,121,0,16,10,49,0,57,59,120,0,48,0,18,120,0,16,10,49,0,57,59,121,0,18,121,0, -16,10,49,0,57,59,121,0,48,0,0,0,0,1,0,14,0,109,97,116,114,105,120,67,111,109,112,77,117,108,116,0, -1,0,0,14,120,0,0,1,0,0,14,121,0,0,0,1,8,58,109,97,116,52,0,18,120,0,16,8,48,0,57,59,120,0,18,121,0, -16,8,48,0,57,59,120,0,48,0,18,120,0,16,8,48,0,57,59,121,0,18,121,0,16,8,48,0,57,59,121,0,48,0,18, -120,0,16,8,48,0,57,59,122,0,18,121,0,16,8,48,0,57,59,122,0,48,0,18,120,0,16,10,49,0,57,59,120,0,18, -121,0,16,10,49,0,57,59,120,0,48,0,18,120,0,16,10,49,0,57,59,121,0,18,121,0,16,10,49,0,57,59,121,0, -48,0,18,120,0,16,10,49,0,57,59,122,0,18,121,0,16,10,49,0,57,59,122,0,48,0,18,120,0,16,10,50,0,57, -59,120,0,18,121,0,16,10,50,0,57,59,120,0,48,0,18,120,0,16,10,50,0,57,59,121,0,18,121,0,16,10,50,0, -57,59,121,0,48,0,18,120,0,16,10,50,0,57,59,122,0,18,121,0,16,10,50,0,57,59,122,0,48,0,0,0,0,1,0,15, -0,109,97,116,114,105,120,67,111,109,112,77,117,108,116,0,1,0,0,15,120,0,0,1,0,0,15,121,0,0,0,1,8, -58,109,97,116,52,0,18,120,0,16,8,48,0,57,59,120,0,18,121,0,16,8,48,0,57,59,120,0,48,0,18,120,0,16, -8,48,0,57,59,121,0,18,121,0,16,8,48,0,57,59,121,0,48,0,18,120,0,16,8,48,0,57,59,122,0,18,121,0,16, -8,48,0,57,59,122,0,48,18,120,0,16,8,48,0,57,59,119,0,18,121,0,16,8,48,0,57,59,119,0,48,46,0,18,120, -0,16,10,49,0,57,59,120,0,18,121,0,16,10,49,0,57,59,120,0,48,0,18,120,0,16,10,49,0,57,59,121,0,18, -121,0,16,10,49,0,57,59,121,0,48,0,18,120,0,16,10,49,0,57,59,122,0,18,121,0,16,10,49,0,57,59,122,0, -48,18,120,0,16,10,49,0,57,59,119,0,18,121,0,16,10,49,0,57,59,119,0,48,46,0,18,120,0,16,10,50,0,57, -59,120,0,18,121,0,16,10,50,0,57,59,120,0,48,0,18,120,0,16,10,50,0,57,59,121,0,18,121,0,16,10,50,0, -57,59,121,0,48,0,18,120,0,16,10,50,0,57,59,122,0,18,121,0,16,10,50,0,57,59,122,0,48,18,120,0,16,10, -50,0,57,59,119,0,18,121,0,16,10,50,0,57,59,119,0,48,46,0,18,120,0,16,10,51,0,57,59,120,0,18,121,0, -16,10,51,0,57,59,120,0,48,0,18,120,0,16,10,51,0,57,59,121,0,18,121,0,16,10,51,0,57,59,121,0,48,0, -18,120,0,16,10,51,0,57,59,122,0,18,121,0,16,10,51,0,57,59,122,0,48,18,120,0,16,10,51,0,57,59,119,0, -18,121,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,0,1,0,0,10,120, -0,0,1,0,0,10,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18,121,0,59,120,0,40,0,18,120,0, -59,121,0,18,121,0,59,121,0,40,0,0,0,0,1,0,3,0,108,101,115,115,84,104,97,110,0,1,0,0,11,120,0,0,1,0, -0,11,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,18,121,0,59,120,0,40,0,18,120,0,59,121, -0,18,121,0,59,121,0,40,0,18,120,0,59,122,0,18,121,0,59,122,0,40,0,0,0,0,1,0,4,0,108,101,115,115,84, -104,97,110,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18, -121,0,59,120,0,40,0,18,120,0,59,121,0,18,121,0,59,121,0,40,0,18,120,0,59,122,0,18,121,0,59,122,0, -40,0,18,120,0,59,119,0,18,121,0,59,119,0,40,0,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,0,1,0,0, -6,120,0,0,1,0,0,6,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18,121,0,59,120,0,40,0,18, -120,0,59,121,0,18,121,0,59,121,0,40,0,0,0,0,1,0,3,0,108,101,115,115,84,104,97,110,0,1,0,0,7,120,0, -0,1,0,0,7,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,18,121,0,59,120,0,40,0,18,120,0,59, -121,0,18,121,0,59,121,0,40,0,18,120,0,59,122,0,18,121,0,59,122,0,40,0,0,0,0,1,0,4,0,108,101,115, -115,84,104,97,110,0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0, -18,121,0,59,120,0,40,0,18,120,0,59,121,0,18,121,0,59,121,0,40,0,18,120,0,59,122,0,18,121,0,59,122, -0,40,0,18,120,0,59,119,0,18,121,0,59,119,0,40,0,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,69,113, -117,97,108,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18, -121,0,59,120,0,42,0,18,120,0,59,121,0,18,121,0,59,121,0,42,0,0,0,0,1,0,3,0,108,101,115,115,84,104, -97,110,69,113,117,97,108,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0, -59,120,0,18,121,0,59,120,0,42,0,18,120,0,59,121,0,18,121,0,59,121,0,42,0,18,120,0,59,122,0,18,121, -0,59,122,0,42,0,0,0,0,1,0,4,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,12,120,0,0,1, -0,0,12,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0,42,0,18,120,0,59, -121,0,18,121,0,59,121,0,42,0,18,120,0,59,122,0,18,121,0,59,122,0,42,0,18,120,0,59,119,0,18,121,0, -59,119,0,42,0,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,6,120,0,0,1,0, -0,6,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18,121,0,59,120,0,42,0,18,120,0,59,121,0, -18,121,0,59,121,0,42,0,0,0,0,1,0,3,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,7,120, -0,0,1,0,0,7,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,18,121,0,59,120,0,42,0,18,120,0, -59,121,0,18,121,0,59,121,0,42,0,18,120,0,59,122,0,18,121,0,59,122,0,42,0,0,0,0,1,0,4,0,108,101,115, -115,84,104,97,110,69,113,117,97,108,0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8,58,98,118,101,99,52,0, -18,120,0,59,120,0,18,121,0,59,120,0,42,0,18,120,0,59,121,0,18,121,0,59,121,0,42,0,18,120,0,59,122, -0,18,121,0,59,122,0,42,0,18,120,0,59,119,0,18,121,0,59,119,0,42,0,0,0,0,1,0,2,0,103,114,101,97,116, -101,114,84,104,97,110,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59, -120,0,18,121,0,59,120,0,41,0,18,120,0,59,121,0,18,121,0,59,121,0,41,0,0,0,0,1,0,3,0,103,114,101,97, -116,101,114,84,104,97,110,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0, -59,120,0,18,121,0,59,120,0,41,0,18,120,0,59,121,0,18,121,0,59,121,0,41,0,18,120,0,59,122,0,18,121, -0,59,122,0,41,0,0,0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,12,120,0,0,1,0,0,12, -121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0,41,0,18,120,0,59,121,0,18, -121,0,59,121,0,41,0,18,120,0,59,122,0,18,121,0,59,122,0,41,0,18,120,0,59,119,0,18,121,0,59,119,0, -41,0,0,0,0,1,0,2,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,6,120,0,0,1,0,0,6,121,0,0,0,1, -8,58,98,118,101,99,50,0,18,120,0,59,120,0,18,121,0,59,120,0,41,0,18,120,0,59,121,0,18,121,0,59,121, -0,41,0,0,0,0,1,0,3,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,7,120,0,0,1,0,0,7,121,0,0,0, -1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,18,121,0,59,120,0,41,0,18,120,0,59,121,0,18,121,0,59, -121,0,41,0,18,120,0,59,122,0,18,121,0,59,122,0,41,0,0,0,0,1,0,4,0,103,114,101,97,116,101,114,84, -104,97,110,0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121, -0,59,120,0,41,0,18,120,0,59,121,0,18,121,0,59,121,0,41,0,18,120,0,59,122,0,18,121,0,59,122,0,41,0, -18,120,0,59,119,0,18,121,0,59,119,0,41,0,0,0,0,1,0,2,0,103,114,101,97,116,101,114,84,104,97,110,69, -113,117,97,108,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0, -18,121,0,59,120,0,43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,0,0,0,1,0,3,0,103,114,101,97,116, -101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,98,118,101,99, -51,0,18,120,0,59,120,0,18,121,0,59,120,0,43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,18,120,0,59, -122,0,18,121,0,59,122,0,43,0,0,0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97, -108,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59, -120,0,43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,18,120,0,59,122,0,18,121,0,59,122,0,43,0,18, -120,0,59,119,0,18,121,0,59,119,0,43,0,0,0,0,1,0,2,0,103,114,101,97,116,101,114,84,104,97,110,69, -113,117,97,108,0,1,0,0,6,120,0,0,1,0,0,6,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18, -121,0,59,120,0,43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,0,0,0,1,0,3,0,103,114,101,97,116,101, -114,84,104,97,110,69,113,117,97,108,0,1,0,0,7,120,0,0,1,0,0,7,121,0,0,0,1,8,58,98,118,101,99,51,0, -18,120,0,59,120,0,18,121,0,59,120,0,43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,18,120,0,59,122, -0,18,121,0,59,122,0,43,0,0,0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97,108, -0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0, -43,0,18,120,0,59,121,0,18,121,0,59,121,0,43,0,18,120,0,59,122,0,18,121,0,59,122,0,43,0,18,120,0,59, -119,0,18,121,0,59,119,0,43,0,0,0,0,1,0,2,0,101,113,117,97,108,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0, -0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0,18,121,0,59,120,0,38,0,18,120,0,59,121,0,18,121,0,59, -121,0,38,0,0,0,0,1,0,3,0,101,113,117,97,108,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,98,118, -101,99,51,0,18,120,0,59,120,0,18,121,0,59,120,0,38,0,18,120,0,59,121,0,18,121,0,59,121,0,38,0,18, -120,0,59,122,0,18,121,0,59,122,0,38,0,0,0,0,1,0,4,0,101,113,117,97,108,0,1,0,0,12,120,0,0,1,0,0,12, -121,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0,38,0,18,120,0,59,121,0,18, -121,0,59,121,0,38,0,18,120,0,59,122,0,18,121,0,59,122,0,38,0,18,120,0,59,119,0,18,121,0,59,119,0, -38,0,0,0,0,1,0,2,0,101,113,117,97,108,0,1,0,0,6,120,0,0,1,0,0,6,121,0,0,0,1,8,58,98,118,101,99,50, -0,18,120,0,59,120,0,18,121,0,59,120,0,38,0,18,120,0,59,121,0,18,121,0,59,121,0,38,0,0,0,0,1,0,3,0, -101,113,117,97,108,0,1,0,0,7,120,0,0,1,0,0,7,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0, -18,121,0,59,120,0,38,0,18,120,0,59,121,0,18,121,0,59,121,0,38,0,18,120,0,59,122,0,18,121,0,59,122, -0,38,0,0,0,0,1,0,4,0,101,113,117,97,108,0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8,58,98,118,101,99, -52,0,18,120,0,59,120,0,18,121,0,59,120,0,38,0,18,120,0,59,121,0,18,121,0,59,121,0,38,0,18,120,0,59, -122,0,18,121,0,59,122,0,38,0,18,120,0,59,119,0,18,121,0,59,119,0,38,0,0,0,0,1,0,2,0,110,111,116,69, -113,117,97,108,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120,0,59,120,0, -18,121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0,39,0,0,0,0,1,0,3,0,110,111,116,69,113, -117,97,108,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,18, -121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0,39,0,18,120,0,59,122,0,18,121,0,59,122,0, -39,0,0,0,0,1,0,4,0,110,111,116,69,113,117,97,108,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,0,1,8,58,98, -118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0,39,0, -18,120,0,59,122,0,18,121,0,59,122,0,39,0,18,120,0,59,119,0,18,121,0,59,119,0,39,0,0,0,0,1,0,2,0, -110,111,116,69,113,117,97,108,0,1,0,0,6,120,0,0,1,0,0,6,121,0,0,0,1,8,58,98,118,101,99,50,0,18,120, -0,59,120,0,18,121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0,39,0,0,0,0,1,0,3,0,110,111, -116,69,113,117,97,108,0,1,0,0,7,120,0,0,1,0,0,7,121,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59, -120,0,18,121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0,39,0,18,120,0,59,122,0,18,121,0, -59,122,0,39,0,0,0,0,1,0,4,0,110,111,116,69,113,117,97,108,0,1,0,0,8,120,0,0,1,0,0,8,121,0,0,0,1,8, -58,98,118,101,99,52,0,18,120,0,59,120,0,18,121,0,59,120,0,39,0,18,120,0,59,121,0,18,121,0,59,121,0, -39,0,18,120,0,59,122,0,18,121,0,59,122,0,39,0,18,120,0,59,119,0,18,121,0,59,119,0,39,0,0,0,0,1,0,1, -0,97,110,121,0,1,0,0,2,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0,32,0,0,1,0,1,0,97,110,121, -0,1,0,0,3,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0,32,18,120,0,59,122,0,32,0,0,1,0,1,0,97, -110,121,0,1,0,0,4,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0,32,18,120,0,59,122,0,32,18,120, -0,59,119,0,32,0,0,1,0,1,0,97,108,108,0,1,0,0,2,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0, -34,0,0,1,0,1,0,97,108,108,0,1,0,0,3,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0,34,18,120,0, -59,122,0,34,0,0,1,0,1,0,97,108,108,0,1,0,0,4,120,0,0,0,1,8,18,120,0,59,120,0,18,120,0,59,121,0,34, -18,120,0,59,122,0,34,18,120,0,59,119,0,34,0,0,1,0,2,0,110,111,116,0,1,0,0,2,120,0,0,0,1,8,58,98, -118,101,99,50,0,18,120,0,59,120,0,56,0,18,120,0,59,121,0,56,0,0,0,0,1,0,3,0,110,111,116,0,1,0,0,3, -120,0,0,0,1,8,58,98,118,101,99,51,0,18,120,0,59,120,0,56,0,18,120,0,59,121,0,56,0,18,120,0,59,122, -0,56,0,0,0,0,1,0,4,0,110,111,116,0,1,0,0,4,120,0,0,0,1,8,58,98,118,101,99,52,0,18,120,0,59,120,0, -56,0,18,120,0,59,121,0,56,0,18,120,0,59,122,0,56,0,18,120,0,59,119,0,56,0,0,0,0,1,0,12,0,116,101, -120,116,117,114,101,49,68,0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,9,99,111,111,114,100,0,0, -0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,49,68,80,114, -111,106,0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,10,99,111,111,114,100,0,0,0,1,8,58,116,101, -120,116,117,114,101,49,68,0,18,115,97,109,112,108,101,114,0,0,18,99,111,111,114,100,0,59,115,0,18, -99,111,111,114,100,0,59,116,0,49,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,49,68,80,114,111,106, -0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,8,58,116,101,120,116, -117,114,101,49,68,0,18,115,97,109,112,108,101,114,0,0,18,99,111,111,114,100,0,59,115,0,18,99,111, -111,114,100,0,59,113,0,49,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,50,68,0,1,0,0,17,115,97,109, -112,108,101,114,0,0,1,0,0,10,99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0, -0,1,0,12,0,116,101,120,116,117,114,101,50,68,80,114,111,106,0,1,0,0,17,115,97,109,112,108,101,114, -0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,116,101,120,116,117,114,101,50,68,0,18,115,97,109,112, -108,101,114,0,0,58,118,101,99,50,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100,0,59,112, -0,49,0,18,99,111,111,114,100,0,59,116,0,18,99,111,111,114,100,0,59,112,0,49,0,0,0,0,0,0,1,0,12,0, -116,101,120,116,117,114,101,50,68,80,114,111,106,0,1,0,0,17,115,97,109,112,108,101,114,0,0,1,0,0, -12,99,111,111,114,100,0,0,0,1,8,58,116,101,120,116,117,114,101,50,68,0,18,115,97,109,112,108,101, -114,0,0,58,118,101,99,50,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100,0,59,113,0,49,0, -18,99,111,111,114,100,0,59,116,0,18,99,111,111,114,100,0,59,113,0,49,0,0,0,0,0,0,1,0,12,0,116,101, -120,116,117,114,101,51,68,0,1,0,0,18,115,97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114,100,0, -0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,51,68,80, -114,111,106,0,1,0,0,18,115,97,109,112,108,101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,8,58,116, -101,120,116,117,114,101,51,68,0,18,115,97,109,112,108,101,114,0,0,58,118,101,99,51,0,18,99,111,111, -114,100,0,59,115,0,18,99,111,111,114,100,0,59,113,0,49,0,18,99,111,111,114,100,0,59,116,0,18,99, -111,111,114,100,0,59,113,0,49,0,18,99,111,111,114,100,0,59,112,0,18,99,111,111,114,100,0,59,113,0, -49,0,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,67,117,98,101,0,1,0,0,19,115,97,109,112,108, -101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12, -0,115,104,97,100,111,119,49,68,0,1,0,0,20,115,97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114, -100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,115,104,97,100,111,119,50,68,0,1, -0,0,21,115,97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17, -48,0,48,0,0,0,0,0,0,1,0,12,0,115,104,97,100,111,119,49,68,80,114,111,106,0,1,0,0,20,115,97,109,112, -108,101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,8,58,115,104,97,100,111,119,49,68,0,18,115,97, -109,112,108,101,114,0,0,58,118,101,99,51,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100, -0,59,113,0,49,0,17,48,0,48,0,0,0,18,99,111,111,114,100,0,59,112,0,18,99,111,111,114,100,0,59,113,0, -49,0,0,0,0,0,0,1,0,12,0,115,104,97,100,111,119,50,68,80,114,111,106,0,1,0,0,21,115,97,109,112,108, -101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,8,58,115,104,97,100,111,119,50,68,0,18,115,97,109, -112,108,101,114,0,0,58,118,101,99,51,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100,0,59, -113,0,49,0,18,99,111,111,114,100,0,59,116,0,18,99,111,111,114,100,0,59,113,0,49,0,18,99,111,111, -114,100,0,59,112,0,18,99,111,111,114,100,0,59,113,0,49,0,0,0,0,0,0,1,0,9,0,110,111,105,115,101,49, -0,1,0,0,9,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,9,0,110,111,105,115,101,49,0,1,0,0,10,120,0,0,0,1,8, -17,48,0,48,0,0,0,0,1,0,9,0,110,111,105,115,101,49,0,1,0,0,11,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0, -9,0,110,111,105,115,101,49,0,1,0,0,12,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,110,111,105,115, -101,50,0,1,0,0,9,120,0,0,0,1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115, -101,50,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115, -101,50,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115, -101,50,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115, -101,51,0,1,0,0,9,120,0,0,0,1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115, -101,51,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115, -101,51,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115, -101,51,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115, -101,52,0,1,0,0,9,120,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115, -101,52,0,1,0,0,10,120,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115, -101,52,0,1,0,0,11,120,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115, -101,52,0,1,0,0,12,120,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,0 +
+/* DO NOT EDIT - THIS FILE AUTOMATICALLY GENERATED FROM THE FOLLOWING FILE: */
+/* slang_common_builtin.gc */
+
+3,2,2,1,5,1,103,108,95,77,97,120,76,105,103,104,116,115,0,2,16,10,56,0,0,0,2,2,1,5,1,103,108,95,77,
+97,120,67,108,105,112,80,108,97,110,101,115,0,2,16,10,54,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84,
+101,120,116,117,114,101,85,110,105,116,115,0,2,16,10,56,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84,
+101,120,116,117,114,101,67,111,111,114,100,115,0,2,16,10,56,0,0,0,2,2,1,5,1,103,108,95,77,97,120,
+86,101,114,116,101,120,65,116,116,114,105,98,115,0,2,16,10,49,54,0,0,0,2,2,1,5,1,103,108,95,77,97,
+120,86,101,114,116,101,120,85,110,105,102,111,114,109,67,111,109,112,111,110,101,110,116,115,0,2,
+16,10,53,49,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,86,97,114,121,105,110,103,70,108,111,97,116,
+115,0,2,16,10,51,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,86,101,114,116,101,120,84,101,120,116,117,
+114,101,73,109,97,103,101,85,110,105,116,115,0,2,16,8,48,0,0,0,2,2,1,5,1,103,108,95,77,97,120,67,
+111,109,98,105,110,101,100,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105,116,115,0,2,16,
+10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105,
+116,115,0,2,16,10,50,0,0,0,2,2,1,5,1,103,108,95,77,97,120,70,114,97,103,109,101,110,116,85,110,105,
+102,111,114,109,67,111,109,112,111,110,101,110,116,115,0,2,16,10,54,52,0,0,0,2,2,1,5,1,103,108,95,
+77,97,120,68,114,97,119,66,117,102,102,101,114,115,0,2,16,10,49,0,0,0,2,2,4,15,1,103,108,95,77,111,
+100,101,108,86,105,101,119,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99,
+116,105,111,110,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,
+119,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,0,0,0,2,2,4,15,1,103,108,95,84,101,
+120,116,117,114,101,77,97,116,114,105,120,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,
+67,111,111,114,100,115,0,0,0,2,2,4,14,1,103,108,95,78,111,114,109,97,108,77,97,116,114,105,120,0,0,
+0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,77,97,116,114,105,120,73,110,118,101,114,
+115,101,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73,
+110,118,101,114,115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,80,114,111,
+106,101,99,116,105,111,110,77,97,116,114,105,120,73,110,118,101,114,115,101,0,0,0,2,2,4,15,1,103,
+108,95,84,101,120,116,117,114,101,77,97,116,114,105,120,73,110,118,101,114,115,101,0,3,18,103,108,
+95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,15,1,103,108,95,77,111,
+100,101,108,86,105,101,119,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,
+1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,84,114,97,110,115,112,111,
+115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100,101,108,86,105,101,119,80,114,111,106,101,99,116,
+105,111,110,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,84,
+101,120,116,117,114,101,77,97,116,114,105,120,84,114,97,110,115,112,111,115,101,0,3,18,103,108,95,
+77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,15,1,103,108,95,77,111,100,
+101,108,86,105,101,119,77,97,116,114,105,120,73,110,118,101,114,115,101,84,114,97,110,115,112,111,
+115,101,0,0,0,2,2,4,15,1,103,108,95,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73,
+110,118,101,114,115,101,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,77,111,100,
+101,108,86,105,101,119,80,114,111,106,101,99,116,105,111,110,77,97,116,114,105,120,73,110,118,101,
+114,115,101,84,114,97,110,115,112,111,115,101,0,0,0,2,2,4,15,1,103,108,95,84,101,120,116,117,114,
+101,77,97,116,114,105,120,73,110,118,101,114,115,101,84,114,97,110,115,112,111,115,101,0,3,18,103,
+108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,9,1,103,108,95,78,
+111,114,109,97,108,83,99,97,108,101,0,0,0,2,2,0,22,103,108,95,68,101,112,116,104,82,97,110,103,101,
+80,97,114,97,109,101,116,101,114,115,0,9,110,101,97,114,0,0,0,1,9,102,97,114,0,0,0,1,9,100,105,102,
+102,0,0,0,0,0,0,2,2,4,23,103,108,95,68,101,112,116,104,82,97,110,103,101,80,97,114,97,109,101,116,
+101,114,115,0,1,103,108,95,68,101,112,116,104,82,97,110,103,101,0,0,0,2,2,4,12,1,103,108,95,67,108,
+105,112,80,108,97,110,101,0,3,18,103,108,95,77,97,120,67,108,105,112,80,108,97,110,101,115,0,0,0,2,
+2,0,22,103,108,95,80,111,105,110,116,80,97,114,97,109,101,116,101,114,115,0,9,115,105,122,101,0,0,
+0,1,9,115,105,122,101,77,105,110,0,0,0,1,9,115,105,122,101,77,97,120,0,0,0,1,9,102,97,100,101,84,
+104,114,101,115,104,111,108,100,83,105,122,101,0,0,0,1,9,100,105,115,116,97,110,99,101,67,111,110,
+115,116,97,110,116,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,100,105,115,116,97,110,99,
+101,76,105,110,101,97,114,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,100,105,115,116,97,
+110,99,101,81,117,97,100,114,97,116,105,99,65,116,116,101,110,117,97,116,105,111,110,0,0,0,0,0,0,2,
+2,4,23,103,108,95,80,111,105,110,116,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,80,111,
+105,110,116,0,0,0,2,2,0,22,103,108,95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116,101,
+114,115,0,12,101,109,105,115,115,105,111,110,0,0,0,1,12,97,109,98,105,101,110,116,0,0,0,1,12,100,
+105,102,102,117,115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,1,9,115,104,105,110,105,110,
+101,115,115,0,0,0,0,0,0,2,2,4,23,103,108,95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116,
+101,114,115,0,1,103,108,95,70,114,111,110,116,77,97,116,101,114,105,97,108,0,0,0,2,2,4,23,103,108,
+95,77,97,116,101,114,105,97,108,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,66,97,99,107,
+77,97,116,101,114,105,97,108,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,83,111,117,114,99,101,80,
+97,114,97,109,101,116,101,114,115,0,12,97,109,98,105,101,110,116,0,0,0,1,12,100,105,102,102,117,
+115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,1,12,112,111,115,105,116,105,111,110,0,0,0,
+1,12,104,97,108,102,86,101,99,116,111,114,0,0,0,1,11,115,112,111,116,68,105,114,101,99,116,105,111,
+110,0,0,0,1,9,115,112,111,116,69,120,112,111,110,101,110,116,0,0,0,1,9,115,112,111,116,67,117,116,
+111,102,102,0,0,0,1,9,115,112,111,116,67,111,115,67,117,116,111,102,102,0,0,0,1,9,99,111,110,115,
+116,97,110,116,65,116,116,101,110,117,97,116,105,111,110,0,0,0,1,9,108,105,110,101,97,114,65,116,
+116,101,110,117,97,116,105,111,110,0,0,0,1,9,113,117,97,100,114,97,116,105,99,65,116,116,101,110,
+117,97,116,105,111,110,0,0,0,0,0,0,2,2,4,23,103,108,95,76,105,103,104,116,83,111,117,114,99,101,80,
+97,114,97,109,101,116,101,114,115,0,1,103,108,95,76,105,103,104,116,83,111,117,114,99,101,0,3,18,
+103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,77,111,
+100,101,108,80,97,114,97,109,101,116,101,114,115,0,12,97,109,98,105,101,110,116,0,0,0,0,0,0,2,2,4,
+23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,97,114,97,109,101,116,101,114,115,0,1,103,
+108,95,76,105,103,104,116,77,111,100,101,108,0,0,0,2,2,0,22,103,108,95,76,105,103,104,116,77,111,
+100,101,108,80,114,111,100,117,99,116,115,0,12,115,99,101,110,101,67,111,108,111,114,0,0,0,0,0,0,2,
+2,4,23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,115,0,1,103,108,
+95,70,114,111,110,116,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,0,0,0,2,2,4,
+23,103,108,95,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,115,0,1,103,108,95,
+66,97,99,107,76,105,103,104,116,77,111,100,101,108,80,114,111,100,117,99,116,0,0,0,2,2,0,22,103,
+108,95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,12,97,109,98,105,101,110,116,0,0,0,1,12,
+100,105,102,102,117,115,101,0,0,0,1,12,115,112,101,99,117,108,97,114,0,0,0,0,0,0,2,2,4,23,103,108,
+95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,1,103,108,95,70,114,111,110,116,76,105,103,
+104,116,80,114,111,100,117,99,116,0,3,18,103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2,4,
+23,103,108,95,76,105,103,104,116,80,114,111,100,117,99,116,115,0,1,103,108,95,66,97,99,107,76,105,
+103,104,116,80,114,111,100,117,99,116,0,3,18,103,108,95,77,97,120,76,105,103,104,116,115,0,0,0,2,2,
+4,12,1,103,108,95,84,101,120,116,117,114,101,69,110,118,67,111,108,111,114,0,3,18,103,108,95,77,97,
+120,84,101,120,116,117,114,101,73,109,97,103,101,85,110,105,116,115,0,0,0,2,2,4,12,1,103,108,95,69,
+121,101,80,108,97,110,101,83,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,
+100,115,0,0,0,2,2,4,12,1,103,108,95,69,121,101,80,108,97,110,101,84,0,3,18,103,108,95,77,97,120,84,
+101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,69,121,101,80,108,97,
+110,101,82,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,
+4,12,1,103,108,95,69,121,101,80,108,97,110,101,81,0,3,18,103,108,95,77,97,120,84,101,120,116,117,
+114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,79,98,106,101,99,116,80,108,97,110,101,
+83,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,
+103,108,95,79,98,106,101,99,116,80,108,97,110,101,84,0,3,18,103,108,95,77,97,120,84,101,120,116,
+117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,12,1,103,108,95,79,98,106,101,99,116,80,108,97,110,
+101,82,0,3,18,103,108,95,77,97,120,84,101,120,116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,4,
+12,1,103,108,95,79,98,106,101,99,116,80,108,97,110,101,81,0,3,18,103,108,95,77,97,120,84,101,120,
+116,117,114,101,67,111,111,114,100,115,0,0,0,2,2,0,22,103,108,95,70,111,103,80,97,114,97,109,101,
+116,101,114,115,0,12,99,111,108,111,114,0,0,0,1,9,100,101,110,115,105,116,121,0,0,0,1,9,115,116,97,
+114,116,0,0,0,1,9,101,110,100,0,0,0,1,9,115,99,97,108,101,0,0,0,0,0,0,2,2,4,23,103,108,95,70,111,
+103,80,97,114,97,109,101,116,101,114,115,0,1,103,108,95,70,111,103,0,0,0,1,0,9,0,114,97,100,105,97,
+110,115,0,1,0,0,9,100,101,103,0,0,0,1,8,17,51,0,49,52,49,53,57,51,0,0,18,100,101,103,0,48,17,49,56,
+48,0,48,0,0,49,0,0,1,0,10,0,114,97,100,105,97,110,115,0,1,0,0,10,100,101,103,0,0,0,1,8,58,118,101,
+99,50,0,17,51,0,49,52,49,53,57,51,0,0,0,0,18,100,101,103,0,48,58,118,101,99,50,0,17,49,56,48,0,48,
+0,0,0,0,49,0,0,1,0,11,0,114,97,100,105,97,110,115,0,1,0,0,11,100,101,103,0,0,0,1,8,58,118,101,99,
+51,0,17,51,0,49,52,49,53,57,51,0,0,0,0,18,100,101,103,0,48,58,118,101,99,51,0,17,49,56,48,0,48,0,0,
+0,0,49,0,0,1,0,12,0,114,97,100,105,97,110,115,0,1,0,0,12,100,101,103,0,0,0,1,8,58,118,101,99,52,0,
+17,51,0,49,52,49,53,57,51,0,0,0,0,18,100,101,103,0,48,58,118,101,99,52,0,17,49,56,48,0,48,0,0,0,0,
+49,0,0,1,0,9,0,100,101,103,114,101,101,115,0,1,0,0,9,114,97,100,0,0,0,1,8,17,49,56,48,0,48,0,0,18,
+114,97,100,0,48,17,51,0,49,52,49,53,57,51,0,0,49,0,0,1,0,10,0,100,101,103,114,101,101,115,0,1,0,0,
+10,114,97,100,0,0,0,1,8,58,118,101,99,50,0,17,49,56,48,0,48,0,0,0,0,18,114,97,100,0,48,58,118,101,
+99,50,0,17,51,0,49,52,49,53,57,51,0,0,0,0,49,0,0,1,0,11,0,100,101,103,114,101,101,115,0,1,0,0,11,
+114,97,100,0,0,0,1,8,58,118,101,99,51,0,17,49,56,48,0,48,0,0,0,0,18,114,97,100,0,48,58,118,101,99,
+51,0,17,51,0,49,52,49,53,57,51,0,0,0,0,49,0,0,1,0,12,0,100,101,103,114,101,101,115,0,1,0,0,12,114,
+97,100,0,0,0,1,8,58,118,101,99,52,0,17,49,56,48,0,48,0,0,0,0,18,114,97,100,0,48,58,118,101,99,52,0,
+17,51,0,49,52,49,53,57,51,0,0,0,0,49,0,0,1,0,9,0,115,105,110,0,1,0,0,9,97,110,103,108,101,0,0,0,1,
+3,2,0,9,1,120,0,0,0,4,102,108,111,97,116,95,115,105,110,101,0,18,120,0,0,18,97,110,103,108,101,0,0,
+0,8,18,120,0,0,0,1,0,10,0,115,105,110,0,1,0,0,10,97,110,103,108,101,0,0,0,1,3,2,0,10,1,117,0,0,0,9,
+18,117,0,59,120,0,58,115,105,110,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,
+58,115,105,110,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,115,105,110,0,1,
+0,0,11,97,110,103,108,101,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,115,105,110,0,18,97,
+110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,105,110,0,18,97,110,103,108,101,0,
+59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,105,110,0,18,97,110,103,108,101,0,59,122,0,0,0,20,0,8,
+18,117,0,0,0,1,0,12,0,115,105,110,0,1,0,0,12,97,110,103,108,101,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,
+117,0,59,120,0,58,115,105,110,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,
+115,105,110,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,105,110,0,18,97,
+110,103,108,101,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,115,105,110,0,18,97,110,103,108,101,0,
+59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,99,111,115,0,1,0,0,9,97,110,103,108,101,0,0,0,1,8,58,115,
+105,110,0,18,97,110,103,108,101,0,17,49,0,53,55,48,56,0,0,46,0,0,0,0,1,0,10,0,99,111,115,0,1,0,0,
+10,97,110,103,108,101,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,99,111,115,0,18,97,110,
+103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,99,111,115,0,18,97,110,103,108,101,0,59,121,
+0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,99,111,115,0,1,0,0,11,97,110,103,108,101,0,0,0,1,3,2,0,11,1,117,
+0,0,0,9,18,117,0,59,120,0,58,99,111,115,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,
+121,0,58,99,111,115,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,99,111,115,
+0,18,97,110,103,108,101,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,99,111,115,0,1,0,0,12,97,110,
+103,108,101,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,99,111,115,0,18,97,110,103,108,101,
+0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,99,111,115,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,
+9,18,117,0,59,122,0,58,99,111,115,0,18,97,110,103,108,101,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,
+58,99,111,115,0,18,97,110,103,108,101,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,116,97,110,0,1,0,
+0,9,97,110,103,108,101,0,0,0,1,8,58,115,105,110,0,18,97,110,103,108,101,0,0,0,58,99,111,115,0,18,
+97,110,103,108,101,0,0,0,49,0,0,1,0,10,0,116,97,110,0,1,0,0,10,97,110,103,108,101,0,0,0,1,3,2,0,10,
+1,117,0,0,0,9,18,117,0,59,120,0,58,116,97,110,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,
+0,59,121,0,58,116,97,110,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,116,
+97,110,0,1,0,0,11,97,110,103,108,101,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,116,97,
+110,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,116,97,110,0,18,97,110,103,
+108,101,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,116,97,110,0,18,97,110,103,108,101,0,59,122,0,0,
+0,20,0,8,18,117,0,0,0,1,0,12,0,116,97,110,0,1,0,0,12,97,110,103,108,101,0,0,0,1,3,2,0,12,1,117,0,0,
+0,9,18,117,0,59,120,0,58,116,97,110,0,18,97,110,103,108,101,0,59,120,0,0,0,20,0,9,18,117,0,59,121,
+0,58,116,97,110,0,18,97,110,103,108,101,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,116,97,110,0,18,
+97,110,103,108,101,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,116,97,110,0,18,97,110,103,108,101,0,
+59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,97,115,105,110,0,1,0,0,9,120,0,0,0,1,3,2,0,9,1,121,0,0,0,
+4,102,108,111,97,116,95,97,114,99,115,105,110,101,0,18,121,0,0,18,120,0,0,0,8,18,121,0,0,0,1,0,10,
+0,97,115,105,110,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,97,115,105,110,
+0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,115,105,110,0,18,118,0,59,121,0,0,0,20,0,8,
+18,117,0,0,0,1,0,11,0,97,115,105,110,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,
+0,58,97,115,105,110,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,115,105,110,0,18,118,0,
+59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,97,115,105,110,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,
+0,1,0,12,0,97,115,105,110,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,97,
+115,105,110,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,115,105,110,0,18,118,0,59,121,0,
+0,0,20,0,9,18,117,0,59,122,0,58,97,115,105,110,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,
+97,115,105,110,0,18,118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,97,99,111,115,0,1,0,0,9,120,0,0,
+0,1,8,17,49,0,53,55,48,56,0,0,58,97,115,105,110,0,18,120,0,0,0,47,0,0,1,0,10,0,97,99,111,115,0,1,0,
+0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,97,99,111,115,0,18,118,0,59,120,0,0,0,
+20,0,9,18,117,0,59,121,0,58,97,99,111,115,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,97,
+99,111,115,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,97,99,111,115,0,18,
+118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,99,111,115,0,18,118,0,59,121,0,0,0,20,0,9,18,117,
+0,59,122,0,58,97,99,111,115,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,97,99,111,115,0,1,
+0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,97,99,111,115,0,18,118,0,59,120,0,0,
+0,20,0,9,18,117,0,59,121,0,58,97,99,111,115,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,97,
+99,111,115,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,97,99,111,115,0,18,118,0,59,119,0,0,
+0,20,0,8,18,117,0,0,0,1,0,9,0,97,116,97,110,0,1,0,0,9,121,95,111,118,101,114,95,120,0,0,0,1,3,2,0,
+9,1,122,0,0,0,4,102,108,111,97,116,95,97,114,99,116,97,110,0,18,122,0,0,18,121,95,111,118,101,114,
+95,120,0,0,0,8,18,122,0,0,0,1,0,10,0,97,116,97,110,0,1,0,0,10,121,95,111,118,101,114,95,120,0,0,0,
+1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,
+59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,121,
+0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,97,116,97,110,0,1,0,0,11,121,95,111,118,101,114,95,120,0,0,0,1,
+3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,
+120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,121,0,
+0,0,20,0,9,18,117,0,59,122,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,122,0,0,0,20,
+0,8,18,117,0,0,0,1,0,12,0,97,116,97,110,0,1,0,0,12,121,95,111,118,101,114,95,120,0,0,0,1,3,2,0,12,
+1,117,0,0,0,9,18,117,0,59,120,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,120,0,0,0,
+20,0,9,18,117,0,59,121,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,121,0,0,0,20,0,9,
+18,117,0,59,122,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,122,0,0,0,20,0,9,18,117,
+0,59,119,0,58,97,116,97,110,0,18,121,95,111,118,101,114,95,120,0,59,119,0,0,0,20,0,8,18,117,0,0,0,
+1,0,9,0,97,116,97,110,0,1,0,0,9,121,0,0,1,0,0,9,120,0,0,0,1,3,2,0,9,1,122,0,0,0,9,18,122,0,58,97,
+116,97,110,0,18,121,0,18,120,0,49,0,0,20,0,10,18,120,0,17,48,0,48,0,0,40,0,2,10,18,121,0,17,48,0,
+48,0,0,40,0,8,18,122,0,17,51,0,49,52,49,53,57,51,0,0,47,0,9,14,0,8,18,122,0,17,51,0,49,52,49,53,57,
+51,0,0,46,0,0,9,14,0,8,18,122,0,0,0,1,0,10,0,97,116,97,110,0,1,0,0,10,117,0,0,1,0,0,10,118,0,0,0,1,
+3,2,0,10,1,116,0,0,0,9,18,116,0,59,120,0,58,97,116,97,110,0,18,117,0,59,120,0,0,18,118,0,59,120,0,
+0,0,20,0,9,18,116,0,59,121,0,58,97,116,97,110,0,18,117,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,8,
+18,116,0,0,0,1,0,11,0,97,116,97,110,0,1,0,0,11,117,0,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,116,0,0,0,9,
+18,116,0,59,120,0,58,97,116,97,110,0,18,117,0,59,120,0,0,18,118,0,59,120,0,0,0,20,0,9,18,116,0,59,
+121,0,58,97,116,97,110,0,18,117,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,116,0,59,122,0,58,97,
+116,97,110,0,18,117,0,59,122,0,0,18,118,0,59,122,0,0,0,20,0,8,18,116,0,0,0,1,0,12,0,97,116,97,110,
+0,1,0,0,12,117,0,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,116,0,0,0,9,18,116,0,59,120,0,58,97,116,97,110,
+0,18,117,0,59,120,0,0,18,118,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,58,97,116,97,110,0,18,117,0,
+59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,116,0,59,122,0,58,97,116,97,110,0,18,117,0,59,122,0,0,
+18,118,0,59,122,0,0,0,20,0,9,18,116,0,59,119,0,58,97,116,97,110,0,18,117,0,59,119,0,0,18,118,0,59,
+119,0,0,0,20,0,8,18,116,0,0,0,1,0,9,0,112,111,119,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1,3,2,0,9,1,
+112,0,0,0,4,102,108,111,97,116,95,112,111,119,101,114,0,18,112,0,0,18,120,0,0,18,121,0,0,0,8,18,
+112,0,0,0,1,0,10,0,112,111,119,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,10,1,116,0,0,0,9,18,
+116,0,59,120,0,58,112,111,119,0,18,118,0,59,120,0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,
+58,112,111,119,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,8,18,116,0,0,0,1,0,11,0,112,111,
+119,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,11,1,116,0,0,0,9,18,116,0,59,120,0,58,112,111,
+119,0,18,118,0,59,120,0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,58,112,111,119,0,18,118,0,
+59,121,0,0,18,117,0,59,121,0,0,0,20,0,9,18,116,0,59,122,0,58,112,111,119,0,18,118,0,59,122,0,0,18,
+117,0,59,122,0,0,0,20,0,8,18,116,0,0,0,1,0,12,0,112,111,119,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,
+1,3,2,0,12,1,116,0,0,0,9,18,116,0,59,120,0,58,112,111,119,0,18,118,0,59,120,0,0,18,117,0,59,120,0,
+0,0,20,0,9,18,116,0,59,121,0,58,112,111,119,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,9,18,
+116,0,59,122,0,58,112,111,119,0,18,118,0,59,122,0,0,18,117,0,59,122,0,0,0,20,0,9,18,116,0,59,119,0,
+58,112,111,119,0,18,118,0,59,119,0,0,18,117,0,59,119,0,0,0,20,0,8,18,116,0,0,0,1,0,9,0,101,120,112,
+0,1,0,0,9,120,0,0,0,1,8,58,112,111,119,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,18,120,0,0,0,0,0,1,
+0,10,0,101,120,112,0,1,0,0,10,118,0,0,0,1,8,58,112,111,119,0,58,118,101,99,50,0,17,50,0,55,49,56,
+50,56,49,56,51,0,0,0,0,0,18,118,0,0,0,0,0,1,0,11,0,101,120,112,0,1,0,0,11,118,0,0,0,1,8,58,112,111,
+119,0,58,118,101,99,51,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,0,0,18,118,0,0,0,0,0,1,0,12,0,101,
+120,112,0,1,0,0,12,118,0,0,0,1,8,58,112,111,119,0,58,118,101,99,52,0,17,50,0,55,49,56,50,56,49,56,
+51,0,0,0,0,0,18,118,0,0,0,0,0,1,0,9,0,108,111,103,50,0,1,0,0,9,120,0,0,0,1,3,2,0,9,1,121,0,0,0,4,
+102,108,111,97,116,95,108,111,103,50,0,18,121,0,0,18,120,0,0,0,8,18,121,0,0,0,1,0,10,0,108,111,103,
+50,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,108,111,103,50,0,18,118,0,59,
+120,0,0,0,20,0,9,18,117,0,59,121,0,58,108,111,103,50,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,
+0,11,0,108,111,103,50,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,108,111,
+103,50,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,108,111,103,50,0,18,118,0,59,121,0,0,0,
+20,0,9,18,117,0,59,122,0,58,108,111,103,50,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,
+108,111,103,50,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,108,111,103,50,0,
+18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,108,111,103,50,0,18,118,0,59,121,0,0,0,20,0,9,18,
+117,0,59,122,0,58,108,111,103,50,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,108,111,103,
+50,0,18,118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,108,111,103,0,1,0,0,9,120,0,0,0,1,8,58,108,
+111,103,50,0,18,120,0,0,0,58,108,111,103,50,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,0,49,0,0,1,0,
+10,0,108,111,103,0,1,0,0,10,118,0,0,0,1,8,58,108,111,103,50,0,18,118,0,0,0,58,108,111,103,50,0,58,
+118,101,99,50,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,0,0,0,49,0,0,1,0,11,0,108,111,103,0,1,0,0,11,
+118,0,0,0,1,8,58,108,111,103,50,0,18,118,0,0,0,58,108,111,103,50,0,58,118,101,99,51,0,17,50,0,55,
+49,56,50,56,49,56,51,0,0,0,0,0,0,49,0,0,1,0,12,0,108,111,103,0,1,0,0,12,118,0,0,0,1,8,58,108,111,
+103,50,0,18,118,0,0,0,58,108,111,103,50,0,58,118,101,99,52,0,17,50,0,55,49,56,50,56,49,56,51,0,0,0,
+0,0,0,49,0,0,1,0,9,0,101,120,112,50,0,1,0,0,9,120,0,0,0,1,8,58,112,111,119,0,17,50,0,48,0,0,0,18,
+120,0,0,0,0,0,1,0,10,0,101,120,112,50,0,1,0,0,10,118,0,0,0,1,8,58,112,111,119,0,58,118,101,99,50,0,
+17,50,0,48,0,0,0,0,0,18,118,0,0,0,0,0,1,0,11,0,101,120,112,50,0,1,0,0,11,118,0,0,0,1,8,58,112,111,
+119,0,58,118,101,99,51,0,17,50,0,48,0,0,0,0,0,18,118,0,0,0,0,0,1,0,12,0,101,120,112,50,0,1,0,0,12,
+118,0,0,0,1,8,58,112,111,119,0,58,118,101,99,52,0,17,50,0,48,0,0,0,0,0,18,118,0,0,0,0,0,1,0,9,0,
+115,113,114,116,0,1,0,0,9,120,0,0,0,1,8,58,112,111,119,0,18,120,0,0,17,48,0,53,0,0,0,0,0,0,1,0,10,
+0,115,113,114,116,0,1,0,0,10,118,0,0,0,1,8,58,112,111,119,0,18,118,0,0,58,118,101,99,50,0,17,48,0,
+53,0,0,0,0,0,0,0,0,1,0,11,0,115,113,114,116,0,1,0,0,11,118,0,0,0,1,8,58,112,111,119,0,18,118,0,0,
+58,118,101,99,51,0,17,48,0,53,0,0,0,0,0,0,0,0,1,0,12,0,115,113,114,116,0,1,0,0,12,118,0,0,0,1,8,58,
+112,111,119,0,18,118,0,0,58,118,101,99,52,0,17,48,0,53,0,0,0,0,0,0,0,0,1,0,9,0,105,110,118,101,114,
+115,101,115,113,114,116,0,1,0,0,9,120,0,0,0,1,8,17,49,0,48,0,0,58,115,113,114,116,0,18,120,0,0,0,
+49,0,0,1,0,10,0,105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,10,118,0,0,0,1,8,58,118,101,99,
+50,0,17,49,0,48,0,0,0,0,58,115,113,114,116,0,18,118,0,0,0,49,0,0,1,0,11,0,105,110,118,101,114,115,
+101,115,113,114,116,0,1,0,0,11,118,0,0,0,1,8,58,118,101,99,51,0,17,49,0,48,0,0,0,0,58,115,113,114,
+116,0,18,118,0,0,0,49,0,0,1,0,12,0,105,110,118,101,114,115,101,115,113,114,116,0,1,0,0,12,118,0,0,
+0,1,8,58,118,101,99,52,0,17,49,0,48,0,0,0,0,58,115,113,114,116,0,18,118,0,0,0,49,0,0,1,0,9,0,97,98,
+115,0,1,0,0,9,120,0,0,0,1,8,18,120,0,17,48,0,48,0,0,43,18,120,0,18,120,0,54,31,0,0,1,0,10,0,97,98,
+115,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,97,98,115,0,18,118,0,59,120,
+0,0,0,20,0,9,18,117,0,59,121,0,58,97,98,115,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,
+97,98,115,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,97,98,115,0,18,118,0,
+59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,97,98,115,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,
+0,58,97,98,115,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,97,98,115,0,1,0,0,12,118,0,0,0,
+1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,97,98,115,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,
+121,0,58,97,98,115,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,97,98,115,0,18,118,0,59,122,
+0,0,0,20,0,9,18,117,0,59,119,0,58,97,98,115,0,18,118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,
+115,105,103,110,0,1,0,0,9,120,0,0,0,1,8,18,120,0,17,48,0,48,0,0,41,17,49,0,48,0,0,18,120,0,17,48,0,
+48,0,0,40,17,49,0,48,0,0,54,17,48,0,48,0,0,31,31,0,0,1,0,10,0,115,105,103,110,0,1,0,0,10,118,0,0,0,
+1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,115,105,103,110,0,18,118,0,59,120,0,0,0,20,0,9,18,
+117,0,59,121,0,58,115,105,103,110,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,115,105,103,
+110,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,115,105,103,110,0,18,118,0,
+59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,105,103,110,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,
+59,122,0,58,115,105,103,110,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,115,105,103,110,0,
+1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,115,105,103,110,0,18,118,0,59,120,
+0,0,0,20,0,9,18,117,0,59,121,0,58,115,105,103,110,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,
+58,115,105,103,110,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,115,105,103,110,0,18,118,0,
+59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,102,108,111,111,114,0,1,0,0,9,120,0,0,0,1,3,2,0,9,1,121,0,
+0,0,4,102,108,111,97,116,95,102,108,111,111,114,0,18,121,0,0,18,120,0,0,0,8,18,121,0,0,0,1,0,10,0,
+102,108,111,111,114,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,102,108,111,
+111,114,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,102,108,111,111,114,0,18,118,0,59,121,
+0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,102,108,111,111,114,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,
+9,18,117,0,59,120,0,58,102,108,111,111,114,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,102,
+108,111,111,114,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,102,108,111,111,114,0,18,118,0,
+59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,102,108,111,111,114,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,
+117,0,0,0,9,18,117,0,59,120,0,58,102,108,111,111,114,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,
+121,0,58,102,108,111,111,114,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,102,108,111,111,
+114,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,102,108,111,111,114,0,18,118,0,59,119,0,0,
+0,20,0,8,18,117,0,0,0,1,0,9,0,99,101,105,108,0,1,0,0,9,120,0,0,0,1,3,2,0,9,1,121,0,0,0,4,102,108,
+111,97,116,95,99,101,105,108,0,18,121,0,0,18,120,0,0,0,8,18,121,0,0,0,1,0,10,0,99,101,105,108,0,1,
+0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,99,101,105,108,0,18,118,0,59,120,0,
+0,0,20,0,9,18,117,0,59,121,0,58,99,101,105,108,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,
+0,99,101,105,108,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,99,101,105,108,
+0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,99,101,105,108,0,18,118,0,59,121,0,0,0,20,0,9,
+18,117,0,59,122,0,58,99,101,105,108,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,99,101,
+105,108,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,99,101,105,108,0,18,118,
+0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,99,101,105,108,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,
+59,122,0,58,99,101,105,108,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,99,101,105,108,0,18,
+118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,102,114,97,99,116,0,1,0,0,9,120,0,0,0,1,8,18,120,0,
+58,102,108,111,111,114,0,18,120,0,0,0,47,0,0,1,0,10,0,102,114,97,99,116,0,1,0,0,10,118,0,0,0,1,8,
+18,118,0,58,102,108,111,111,114,0,18,118,0,0,0,47,0,0,1,0,11,0,102,114,97,99,116,0,1,0,0,11,118,0,
+0,0,1,8,18,118,0,58,102,108,111,111,114,0,18,118,0,0,0,47,0,0,1,0,12,0,102,114,97,99,116,0,1,0,0,
+12,118,0,0,0,1,8,18,118,0,58,102,108,111,111,114,0,18,118,0,0,0,47,0,0,1,0,9,0,109,111,100,0,1,0,0,
+9,120,0,0,1,0,0,9,121,0,0,0,1,8,18,120,0,18,121,0,58,102,108,111,111,114,0,18,120,0,18,121,0,49,0,
+0,48,47,0,0,1,0,10,0,109,111,100,0,1,0,0,10,118,0,0,1,0,0,9,117,0,0,0,1,8,18,118,0,18,117,0,58,102,
+108,111,111,114,0,18,118,0,18,117,0,49,0,0,48,47,0,0,1,0,11,0,109,111,100,0,1,0,0,11,118,0,0,1,0,0,
+9,117,0,0,0,1,8,18,118,0,18,117,0,58,102,108,111,111,114,0,18,118,0,18,117,0,49,0,0,48,47,0,0,1,0,
+12,0,109,111,100,0,1,0,0,12,118,0,0,1,0,0,9,117,0,0,0,1,8,18,118,0,18,117,0,58,102,108,111,111,114,
+0,18,118,0,18,117,0,49,0,0,48,47,0,0,1,0,10,0,109,111,100,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,
+8,18,118,0,18,117,0,58,102,108,111,111,114,0,18,118,0,18,117,0,49,0,0,48,47,0,0,1,0,11,0,109,111,
+100,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,8,18,118,0,18,117,0,58,102,108,111,111,114,0,18,118,0,
+18,117,0,49,0,0,48,47,0,0,1,0,12,0,109,111,100,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,8,18,118,0,
+18,117,0,58,102,108,111,111,114,0,18,118,0,18,117,0,49,0,0,48,47,0,0,1,0,9,0,109,105,110,0,1,0,0,9,
+120,0,0,1,0,0,9,121,0,0,0,1,8,18,120,0,18,121,0,40,18,120,0,18,121,0,31,0,0,1,0,10,0,109,105,110,0,
+1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,10,1,116,0,0,0,9,18,116,0,59,120,0,58,109,105,110,0,18,
+118,0,59,120,0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,58,109,105,110,0,18,118,0,59,121,0,
+0,18,117,0,59,121,0,0,0,20,0,8,18,116,0,0,0,1,0,11,0,109,105,110,0,1,0,0,11,118,0,0,1,0,0,11,117,0,
+0,0,1,3,2,0,11,1,116,0,0,0,9,18,116,0,59,120,0,58,109,105,110,0,18,118,0,59,120,0,0,18,117,0,59,
+120,0,0,0,20,0,9,18,116,0,59,121,0,58,109,105,110,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,
+9,18,116,0,59,122,0,58,109,105,110,0,18,118,0,59,122,0,0,18,117,0,59,122,0,0,0,20,0,8,18,116,0,0,0,
+1,0,12,0,109,105,110,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,12,1,116,0,0,0,9,18,116,0,59,
+120,0,58,109,105,110,0,18,118,0,59,120,0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,58,109,
+105,110,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,9,18,116,0,59,122,0,58,109,105,110,0,18,
+118,0,59,122,0,0,18,117,0,59,122,0,0,0,20,0,9,18,116,0,59,119,0,58,109,105,110,0,18,118,0,59,119,0,
+0,18,117,0,59,119,0,0,0,20,0,8,18,116,0,0,0,1,0,10,0,109,105,110,0,1,0,0,10,118,0,0,1,0,0,9,121,0,
+0,0,1,8,58,109,105,110,0,18,118,0,0,58,118,101,99,50,0,18,121,0,0,0,0,0,0,0,1,0,11,0,109,105,110,0,
+1,0,0,11,118,0,0,1,0,0,9,121,0,0,0,1,8,58,109,105,110,0,18,118,0,0,58,118,101,99,51,0,18,121,0,0,0,
+0,0,0,0,1,0,12,0,109,105,110,0,1,0,0,12,118,0,0,1,0,0,9,121,0,0,0,1,8,58,109,105,110,0,18,118,0,0,
+58,118,101,99,52,0,18,121,0,0,0,0,0,0,0,1,0,9,0,109,97,120,0,1,0,0,9,120,0,0,1,0,0,9,121,0,0,0,1,8,
+18,120,0,18,121,0,40,18,121,0,18,120,0,31,0,0,1,0,10,0,109,97,120,0,1,0,0,10,118,0,0,1,0,0,10,117,
+0,0,0,1,3,2,0,10,1,116,0,0,0,9,18,116,0,59,120,0,58,109,97,120,0,18,118,0,59,120,0,0,18,117,0,59,
+120,0,0,0,20,0,9,18,116,0,59,121,0,58,109,97,120,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,
+8,18,116,0,0,0,1,0,11,0,109,97,120,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,11,1,116,0,0,0,9,
+18,116,0,59,120,0,58,109,97,120,0,18,118,0,59,120,0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,
+0,58,109,97,120,0,18,118,0,59,121,0,0,18,117,0,59,121,0,0,0,20,0,9,18,116,0,59,122,0,58,109,97,120,
+0,18,118,0,59,122,0,0,18,117,0,59,122,0,0,0,20,0,8,18,116,0,0,0,1,0,12,0,109,97,120,0,1,0,0,12,118,
+0,0,1,0,0,12,117,0,0,0,1,3,2,0,12,1,116,0,0,0,9,18,116,0,59,120,0,58,109,97,120,0,18,118,0,59,120,
+0,0,18,117,0,59,120,0,0,0,20,0,9,18,116,0,59,121,0,58,109,97,120,0,18,118,0,59,121,0,0,18,117,0,59,
+121,0,0,0,20,0,9,18,116,0,59,122,0,58,109,97,120,0,18,118,0,59,122,0,0,18,117,0,59,122,0,0,0,20,0,
+9,18,116,0,59,119,0,58,109,97,120,0,18,118,0,59,119,0,0,18,117,0,59,119,0,0,0,20,0,8,18,116,0,0,0,
+1,0,10,0,109,97,120,0,1,0,0,10,118,0,0,1,0,0,9,121,0,0,0,1,8,58,109,97,120,0,18,118,0,0,58,118,101,
+99,50,0,18,121,0,0,0,0,0,0,0,1,0,11,0,109,97,120,0,1,0,0,11,118,0,0,1,0,0,9,121,0,0,0,1,8,58,109,
+97,120,0,18,118,0,0,58,118,101,99,51,0,18,121,0,0,0,0,0,0,0,1,0,12,0,109,97,120,0,1,0,0,12,118,0,0,
+1,0,0,9,121,0,0,0,1,8,58,109,97,120,0,18,118,0,0,58,118,101,99,52,0,18,121,0,0,0,0,0,0,0,1,0,9,0,
+99,108,97,109,112,0,1,0,0,9,120,0,0,1,0,0,9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,97,108,
+0,0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,108,0,0,0,0,18,109,97,
+120,86,97,108,0,0,0,0,0,1,0,10,0,99,108,97,109,112,0,1,0,0,10,120,0,0,1,0,0,9,109,105,110,86,97,
+108,0,0,1,0,0,9,109,97,120,86,97,108,0,0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,18,109,
+105,110,86,97,108,0,0,0,0,18,109,97,120,86,97,108,0,0,0,0,0,1,0,11,0,99,108,97,109,112,0,1,0,0,11,
+120,0,0,1,0,0,9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,97,108,0,0,0,1,8,58,109,105,110,0,
+58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,108,0,0,0,0,18,109,97,120,86,97,108,0,0,0,0,0,1,0,
+12,0,99,108,97,109,112,0,1,0,0,12,120,0,0,1,0,0,9,109,105,110,86,97,108,0,0,1,0,0,9,109,97,120,86,
+97,108,0,0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,108,0,0,0,0,18,
+109,97,120,86,97,108,0,0,0,0,0,1,0,10,0,99,108,97,109,112,0,1,0,0,10,120,0,0,1,0,0,10,109,105,110,
+86,97,108,0,0,1,0,0,10,109,97,120,86,97,108,0,0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,
+18,109,105,110,86,97,108,0,0,0,0,18,109,97,120,86,97,108,0,0,0,0,0,1,0,11,0,99,108,97,109,112,0,1,
+0,0,11,120,0,0,1,0,0,11,109,105,110,86,97,108,0,0,1,0,0,11,109,97,120,86,97,108,0,0,0,1,8,58,109,
+105,110,0,58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,108,0,0,0,0,18,109,97,120,86,97,108,0,0,
+0,0,0,1,0,12,0,99,108,97,109,112,0,1,0,0,12,120,0,0,1,0,0,12,109,105,110,86,97,108,0,0,1,0,0,12,
+109,97,120,86,97,108,0,0,0,1,8,58,109,105,110,0,58,109,97,120,0,18,120,0,0,18,109,105,110,86,97,
+108,0,0,0,0,18,109,97,120,86,97,108,0,0,0,0,0,1,0,9,0,109,105,120,0,1,0,0,9,120,0,0,1,0,0,9,121,0,
+0,1,0,0,9,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,10,0,
+109,105,120,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,1,0,0,9,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,
+0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,11,0,109,105,120,0,1,0,0,11,120,0,0,1,0,0,11,121,0,0,1,0,0,
+9,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,12,0,109,105,
+120,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,1,0,0,9,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,0,47,48,
+18,121,0,18,97,0,48,46,0,0,1,0,10,0,109,105,120,0,1,0,0,10,120,0,0,1,0,0,10,121,0,0,1,0,0,10,97,0,
+0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,11,0,109,105,120,0,1,
+0,0,11,120,0,0,1,0,0,11,121,0,0,1,0,0,11,97,0,0,0,1,8,18,120,0,17,49,0,48,0,0,18,97,0,47,48,18,121,
+0,18,97,0,48,46,0,0,1,0,12,0,109,105,120,0,1,0,0,12,120,0,0,1,0,0,12,121,0,0,1,0,0,12,97,0,0,0,1,8,
+18,120,0,17,49,0,48,0,0,18,97,0,47,48,18,121,0,18,97,0,48,46,0,0,1,0,9,0,115,116,101,112,0,1,0,0,9,
+101,100,103,101,0,0,1,0,0,9,120,0,0,0,1,8,18,120,0,18,101,100,103,101,0,40,17,48,0,48,0,0,17,49,0,
+48,0,0,31,0,0,1,0,10,0,115,116,101,112,0,1,0,0,10,101,100,103,101,0,0,1,0,0,10,118,0,0,0,1,3,2,0,
+10,1,117,0,0,0,9,18,117,0,59,120,0,58,115,116,101,112,0,18,101,100,103,101,0,59,120,0,0,18,118,0,
+59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,116,101,112,0,18,101,100,103,101,0,59,121,0,0,18,118,
+0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,115,116,101,112,0,1,0,0,11,101,100,103,101,0,0,1,0,0,
+11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,115,116,101,112,0,18,101,100,103,101,0,
+59,120,0,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,116,101,112,0,18,101,100,103,101,
+0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,116,101,112,0,18,101,100,103,
+101,0,59,122,0,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,115,116,101,112,0,1,0,0,12,101,
+100,103,101,0,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,115,116,101,112,0,
+18,101,100,103,101,0,59,120,0,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,116,101,112,
+0,18,101,100,103,101,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,116,101,
+112,0,18,101,100,103,101,0,59,122,0,0,18,118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,115,116,
+101,112,0,18,101,100,103,101,0,59,119,0,0,18,118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,10,0,115,
+116,101,112,0,1,0,0,9,101,100,103,101,0,0,1,0,0,10,118,0,0,0,1,8,58,115,116,101,112,0,58,118,101,
+99,50,0,18,101,100,103,101,0,0,0,0,18,118,0,0,0,0,0,1,0,11,0,115,116,101,112,0,1,0,0,9,101,100,103,
+101,0,0,1,0,0,11,118,0,0,0,1,8,58,115,116,101,112,0,58,118,101,99,51,0,18,101,100,103,101,0,0,0,0,
+18,118,0,0,0,0,0,1,0,12,0,115,116,101,112,0,1,0,0,9,101,100,103,101,0,0,1,0,0,12,118,0,0,0,1,8,58,
+115,116,101,112,0,58,118,101,99,52,0,18,101,100,103,101,0,0,0,0,18,118,0,0,0,0,0,1,0,9,0,115,109,
+111,111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,49,0,0,1,
+0,0,9,120,0,0,0,1,3,2,0,9,1,116,0,0,0,9,18,116,0,58,99,108,97,109,112,0,18,120,0,18,101,100,103,
+101,48,0,47,18,101,100,103,101,49,0,18,101,100,103,101,48,0,47,49,0,17,48,0,48,0,0,0,17,49,0,48,0,
+0,0,0,20,0,8,18,116,0,18,116,0,48,17,51,0,48,0,0,17,50,0,48,0,0,18,116,0,48,47,48,0,0,1,0,10,0,115,
+109,111,111,116,104,115,116,101,112,0,1,0,0,10,101,100,103,101,48,0,0,1,0,0,10,101,100,103,101,49,
+0,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,111,111,116,104,115,
+116,101,112,0,18,101,100,103,101,48,0,59,120,0,0,18,101,100,103,101,49,0,59,120,0,0,18,118,0,59,
+120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,
+48,0,59,121,0,0,18,101,100,103,101,49,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,
+11,0,115,109,111,111,116,104,115,116,101,112,0,1,0,0,11,101,100,103,101,48,0,0,1,0,0,11,101,100,
+103,101,49,0,0,1,0,0,11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,111,111,
+116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,120,0,0,18,101,100,103,101,49,0,59,120,0,0,18,
+118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,
+100,103,101,48,0,59,121,0,0,18,101,100,103,101,49,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,117,
+0,59,122,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,122,0,0,18,101,
+100,103,101,49,0,59,122,0,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,115,109,111,111,116,
+104,115,116,101,112,0,1,0,0,12,101,100,103,101,48,0,0,1,0,0,12,101,100,103,101,49,0,0,1,0,0,12,118,
+0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,111,111,116,104,115,116,101,112,0,18,
+101,100,103,101,48,0,59,120,0,0,18,101,100,103,101,49,0,59,120,0,0,18,118,0,59,120,0,0,0,20,0,9,18,
+117,0,59,121,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,121,0,0,18,
+101,100,103,101,49,0,59,121,0,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,109,111,111,
+116,104,115,116,101,112,0,18,101,100,103,101,48,0,59,122,0,0,18,101,100,103,101,49,0,59,122,0,0,18,
+118,0,59,122,0,0,0,20,0,9,18,117,0,59,119,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,
+100,103,101,48,0,59,119,0,0,18,101,100,103,101,49,0,59,119,0,0,18,118,0,59,119,0,0,0,20,0,8,18,117,
+0,0,0,1,0,10,0,115,109,111,111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,
+101,100,103,101,49,0,0,1,0,0,10,118,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,
+111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,
+120,0,0,0,20,0,9,18,117,0,59,121,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,
+48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,121,0,0,0,20,0,8,18,117,0,0,0,1,0,11,0,115,109,111,
+111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,49,0,0,1,0,0,
+11,118,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,111,111,116,104,115,116,101,112,
+0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,120,0,0,0,20,0,9,18,117,0,59,121,
+0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,
+18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,
+100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,122,0,0,0,20,0,8,18,117,0,0,0,1,0,12,0,
+115,109,111,111,116,104,115,116,101,112,0,1,0,0,9,101,100,103,101,48,0,0,1,0,0,9,101,100,103,101,
+49,0,0,1,0,0,12,118,0,0,0,1,3,2,0,12,1,117,0,0,0,9,18,117,0,59,120,0,58,115,109,111,111,116,104,
+115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,120,0,0,0,20,0,9,
+18,117,0,59,121,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,
+100,103,101,49,0,0,18,118,0,59,121,0,0,0,20,0,9,18,117,0,59,122,0,58,115,109,111,111,116,104,115,
+116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,103,101,49,0,0,18,118,0,59,122,0,0,0,20,0,9,18,
+117,0,59,119,0,58,115,109,111,111,116,104,115,116,101,112,0,18,101,100,103,101,48,0,0,18,101,100,
+103,101,49,0,0,18,118,0,59,119,0,0,0,20,0,8,18,117,0,0,0,1,0,9,0,100,111,116,0,1,0,0,9,120,0,0,1,0,
+0,9,121,0,0,0,1,8,18,120,0,18,121,0,48,0,0,1,0,9,0,100,111,116,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,
+0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,48,18,118,0,59,121,0,18,117,0,59,121,0,48,46,0,0,1,0,9,0,
+100,111,116,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,48,18,
+118,0,59,121,0,18,117,0,59,121,0,48,46,18,118,0,59,122,0,18,117,0,59,122,0,48,46,0,0,1,0,9,0,100,
+111,116,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,48,18,118,0,
+59,121,0,18,117,0,59,121,0,48,46,18,118,0,59,122,0,18,117,0,59,122,0,48,46,18,118,0,59,119,0,18,
+117,0,59,119,0,48,46,0,0,1,0,9,0,108,101,110,103,116,104,0,1,0,0,9,120,0,0,0,1,8,58,115,113,114,
+116,0,58,100,111,116,0,18,120,0,0,18,120,0,0,0,0,0,0,0,1,0,9,0,108,101,110,103,116,104,0,1,0,0,10,
+118,0,0,0,1,8,58,115,113,114,116,0,58,100,111,116,0,18,118,0,0,18,118,0,0,0,0,0,0,0,1,0,9,0,108,
+101,110,103,116,104,0,1,0,0,11,118,0,0,0,1,8,58,115,113,114,116,0,58,100,111,116,0,18,118,0,0,18,
+118,0,0,0,0,0,0,0,1,0,9,0,108,101,110,103,116,104,0,1,0,0,12,118,0,0,0,1,8,58,115,113,114,116,0,58,
+100,111,116,0,18,118,0,0,18,118,0,0,0,0,0,0,0,1,0,9,0,100,105,115,116,97,110,99,101,0,1,0,0,9,120,
+0,0,1,0,0,9,121,0,0,0,1,8,58,108,101,110,103,116,104,0,18,120,0,18,121,0,47,0,0,0,0,1,0,9,0,100,
+105,115,116,97,110,99,101,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,8,58,108,101,110,103,116,104,0,
+18,118,0,18,117,0,47,0,0,0,0,1,0,9,0,100,105,115,116,97,110,99,101,0,1,0,0,11,118,0,0,1,0,0,11,117,
+0,0,0,1,8,58,108,101,110,103,116,104,0,18,118,0,18,117,0,47,0,0,0,0,1,0,9,0,100,105,115,116,97,110,
+99,101,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,8,58,108,101,110,103,116,104,0,18,118,0,18,117,0,47,
+0,0,0,0,1,0,11,0,99,114,111,115,115,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,11,1,116,0,0,0,9,
+18,116,0,59,120,0,18,118,0,59,121,0,18,117,0,59,122,0,48,18,117,0,59,121,0,18,118,0,59,122,0,48,47,
+20,0,9,18,116,0,59,121,0,18,118,0,59,122,0,18,117,0,59,120,0,48,18,117,0,59,122,0,18,118,0,59,120,
+0,48,47,20,0,9,18,116,0,59,122,0,18,118,0,59,120,0,18,117,0,59,121,0,48,18,117,0,59,120,0,18,118,0,
+59,121,0,48,47,20,0,8,18,116,0,0,0,1,0,9,0,110,111,114,109,97,108,105,122,101,0,1,0,0,9,120,0,0,0,
+1,8,17,49,0,48,0,0,0,0,1,0,10,0,110,111,114,109,97,108,105,122,101,0,1,0,0,10,118,0,0,0,1,8,18,118,
+0,58,108,101,110,103,116,104,0,18,118,0,0,0,49,0,0,1,0,11,0,110,111,114,109,97,108,105,122,101,0,1,
+0,0,11,118,0,0,0,1,8,18,118,0,58,108,101,110,103,116,104,0,18,118,0,0,0,49,0,0,1,0,12,0,110,111,
+114,109,97,108,105,122,101,0,1,0,0,12,118,0,0,0,1,8,18,118,0,58,108,101,110,103,116,104,0,18,118,0,
+0,0,49,0,0,1,0,9,0,102,97,99,101,102,111,114,119,97,114,100,0,1,0,0,9,78,0,0,1,0,0,9,73,0,0,1,0,0,
+9,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101,102,0,0,18,73,0,0,0,17,48,0,48,0,0,40,18,
+78,0,18,78,0,54,31,0,0,1,0,10,0,102,97,99,101,102,111,114,119,97,114,100,0,1,0,0,10,78,0,0,1,0,0,
+10,73,0,0,1,0,0,10,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101,102,0,0,18,73,0,0,0,17,
+48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,11,0,102,97,99,101,102,111,114,119,97,114,100,0,1,0,0,
+11,78,0,0,1,0,0,11,73,0,0,1,0,0,11,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,114,101,102,0,0,
+18,73,0,0,0,17,48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,12,0,102,97,99,101,102,111,114,119,97,
+114,100,0,1,0,0,12,78,0,0,1,0,0,12,73,0,0,1,0,0,12,78,114,101,102,0,0,0,1,8,58,100,111,116,0,18,78,
+114,101,102,0,0,18,73,0,0,0,17,48,0,48,0,0,40,18,78,0,18,78,0,54,31,0,0,1,0,9,0,114,101,102,108,
+101,99,116,0,1,0,0,9,73,0,0,1,0,0,9,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0,18,78,0,0,
+18,73,0,0,0,48,18,78,0,48,47,0,0,1,0,10,0,114,101,102,108,101,99,116,0,1,0,0,10,73,0,0,1,0,0,10,78,
+0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,18,78,0,48,47,0,0,1,0,
+11,0,114,101,102,108,101,99,116,0,1,0,0,11,73,0,0,1,0,0,11,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,
+100,111,116,0,18,78,0,0,18,73,0,0,0,48,18,78,0,48,47,0,0,1,0,12,0,114,101,102,108,101,99,116,0,1,0,
+0,12,73,0,0,1,0,0,12,78,0,0,0,1,8,18,73,0,17,50,0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,
+18,78,0,48,47,0,0,1,0,9,0,114,101,102,114,97,99,116,0,1,0,0,9,73,0,0,1,0,0,9,78,0,0,1,0,0,9,101,
+116,97,0,0,0,1,3,2,0,9,1,107,0,0,0,9,18,107,0,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,
+49,0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,
+47,20,0,10,18,107,0,17,48,0,48,0,0,40,0,8,17,48,0,48,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18,
+101,116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78,
+0,48,47,0,0,1,0,10,0,114,101,102,114,97,99,116,0,1,0,0,10,73,0,0,1,0,0,10,78,0,0,1,0,0,9,101,116,
+97,0,0,0,1,3,2,0,9,1,107,0,0,0,9,18,107,0,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,
+0,48,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,
+20,0,10,18,107,0,17,48,0,48,0,0,40,0,8,17,48,0,48,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18,101,
+116,97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78,0,48,
+47,0,0,1,0,11,0,114,101,102,114,97,99,116,0,1,0,0,11,73,0,0,1,0,0,11,78,0,0,1,0,0,9,101,116,97,0,0,
+0,1,3,2,0,9,1,107,0,0,0,9,18,107,0,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,0,48,0,
+0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,20,0,
+10,18,107,0,17,48,0,48,0,0,40,0,8,17,48,0,48,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18,101,116,
+97,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78,0,48,47,
+0,0,1,0,12,0,114,101,102,114,97,99,116,0,1,0,0,12,73,0,0,1,0,0,12,78,0,0,1,0,0,9,101,116,97,0,0,0,
+1,3,2,0,9,1,107,0,0,0,9,18,107,0,17,49,0,48,0,0,18,101,116,97,0,18,101,116,97,0,48,17,49,0,48,0,0,
+58,100,111,116,0,18,78,0,0,18,73,0,0,0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,47,48,47,20,0,10,
+18,107,0,17,48,0,48,0,0,40,0,8,17,48,0,48,0,0,0,9,14,0,8,18,101,116,97,0,18,73,0,48,18,101,116,97,
+0,58,100,111,116,0,18,78,0,0,18,73,0,0,0,48,58,115,113,114,116,0,18,107,0,0,0,46,18,78,0,48,47,0,0,
+1,0,13,0,109,97,116,114,105,120,67,111,109,112,77,117,108,116,0,1,0,0,13,109,0,0,1,0,0,13,110,0,0,
+0,1,3,2,0,13,1,111,0,0,0,9,18,111,0,16,8,48,0,57,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,48,20,
+0,9,18,111,0,16,10,49,0,57,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,48,20,0,8,18,111,0,0,0,1,
+0,14,0,109,97,116,114,105,120,67,111,109,112,77,117,108,116,0,1,0,0,14,109,0,0,1,0,0,14,110,0,0,0,
+1,3,2,0,14,1,111,0,0,0,9,18,111,0,16,8,48,0,57,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,48,20,0,
+9,18,111,0,16,10,49,0,57,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,48,20,0,9,18,111,0,16,10,50,
+0,57,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,48,20,0,8,18,111,0,0,0,1,0,15,0,109,97,116,114,
+105,120,67,111,109,112,77,117,108,116,0,1,0,0,15,109,0,0,1,0,0,15,110,0,0,0,1,3,2,0,15,1,111,0,0,0,
+9,18,111,0,16,8,48,0,57,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,48,20,0,9,18,111,0,16,10,49,0,
+57,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,48,20,0,9,18,111,0,16,10,50,0,57,18,109,0,16,10,
+50,0,57,18,110,0,16,10,50,0,57,48,20,0,9,18,111,0,16,10,51,0,57,18,109,0,16,10,51,0,57,18,110,0,16,
+10,51,0,57,48,20,0,8,18,111,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,0,1,0,0,10,118,0,0,1,0,0,
+10,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,40,20,0,9,
+18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,40,20,0,8,18,98,0,0,0,1,0,3,0,108,101,115,115,
+84,104,97,110,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,18,98,0,59,120,0,18,118,
+0,59,120,0,18,117,0,59,120,0,40,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,40,20,
+0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,40,20,0,8,18,98,0,0,0,1,0,4,0,108,101,115,
+115,84,104,97,110,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,
+118,0,59,120,0,18,117,0,59,120,0,40,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,40,
+20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,40,20,0,9,18,98,0,59,119,0,18,118,0,59,
+119,0,18,117,0,59,119,0,40,20,0,8,18,98,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,0,1,0,0,6,118,
+0,0,1,0,0,6,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,
+40,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,40,20,0,8,18,98,0,0,0,1,0,3,0,108,
+101,115,115,84,104,97,110,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,18,98,0,59,
+120,0,18,118,0,59,120,0,18,117,0,59,120,0,40,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,
+121,0,40,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,40,20,0,8,18,98,0,0,0,1,0,4,0,
+108,101,115,115,84,104,97,110,0,1,0,0,8,118,0,0,1,0,0,8,117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,
+59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,40,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,
+59,121,0,40,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,40,20,0,9,18,98,0,59,119,0,
+18,118,0,59,119,0,18,117,0,59,119,0,40,20,0,8,18,98,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,69,
+113,117,97,108,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,
+118,0,59,120,0,18,117,0,59,120,0,42,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,42,
+20,0,8,18,98,0,0,0,1,0,3,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,11,118,0,0,1,0,
+0,11,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,42,20,0,
+9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,42,20,0,9,18,98,0,59,122,0,18,118,0,59,122,
+0,18,117,0,59,122,0,42,20,0,8,18,98,0,0,0,1,0,4,0,108,101,115,115,84,104,97,110,69,113,117,97,108,
+0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,
+117,0,59,120,0,42,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,42,20,0,9,18,98,0,59,
+122,0,18,118,0,59,122,0,18,117,0,59,122,0,42,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,
+119,0,42,20,0,8,18,98,0,0,0,1,0,2,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,6,118,
+0,0,1,0,0,6,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,
+42,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,42,20,0,8,18,98,0,0,0,1,0,3,0,108,
+101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,3,1,98,0,0,
+0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,42,20,0,9,18,98,0,59,121,0,18,118,0,59,
+121,0,18,117,0,59,121,0,42,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,42,20,0,8,
+18,98,0,0,0,1,0,4,0,108,101,115,115,84,104,97,110,69,113,117,97,108,0,1,0,0,8,118,0,0,1,0,0,8,117,
+0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,42,20,0,9,18,98,
+0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,42,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,
+0,59,122,0,42,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,42,20,0,8,18,98,0,0,0,1,
+0,2,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,2,1,
+98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,41,20,0,9,18,98,0,59,121,0,18,118,
+0,59,121,0,18,117,0,59,121,0,41,20,0,8,18,98,0,0,0,1,0,3,0,103,114,101,97,116,101,114,84,104,97,
+110,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,
+0,18,117,0,59,120,0,41,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,41,20,0,9,18,98,
+0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,41,20,0,8,18,98,0,0,0,1,0,4,0,103,114,101,97,116,
+101,114,84,104,97,110,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,
+0,18,118,0,59,120,0,18,117,0,59,120,0,41,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,
+0,41,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,41,20,0,9,18,98,0,59,119,0,18,118,
+0,59,119,0,18,117,0,59,119,0,41,20,0,8,18,98,0,0,0,1,0,2,0,103,114,101,97,116,101,114,84,104,97,
+110,0,1,0,0,6,118,0,0,1,0,0,6,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,
+18,117,0,59,120,0,41,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,41,20,0,8,18,98,0,
+0,0,1,0,3,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,3,
+1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,41,20,0,9,18,98,0,59,121,0,18,
+118,0,59,121,0,18,117,0,59,121,0,41,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,41,
+20,0,8,18,98,0,0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,0,1,0,0,8,118,0,0,1,0,0,8,117,
+0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,41,20,0,9,18,98,
+0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,41,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,
+0,59,122,0,41,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,41,20,0,8,18,98,0,0,0,1,
+0,2,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,10,118,0,0,1,0,0,10,117,0,
+0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,98,0,
+59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,43,20,0,8,18,98,0,0,0,1,0,3,0,103,114,101,97,116,101,
+114,84,104,97,110,69,113,117,97,108,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,
+18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,
+18,117,0,59,121,0,43,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,43,20,0,8,18,98,0,
+0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,12,118,0,0,1,0,0,12,
+117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,
+98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,43,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,
+117,0,59,122,0,43,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,43,20,0,8,18,98,0,0,
+0,1,0,2,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,6,118,0,0,1,0,0,6,117,
+0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,98,
+0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,43,20,0,8,18,98,0,0,0,1,0,3,0,103,114,101,97,116,
+101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,
+18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,
+18,117,0,59,121,0,43,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,43,20,0,8,18,98,0,
+0,0,1,0,4,0,103,114,101,97,116,101,114,84,104,97,110,69,113,117,97,108,0,1,0,0,8,118,0,0,1,0,0,8,
+117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,43,20,0,9,18,
+98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,43,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,
+117,0,59,122,0,43,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,43,20,0,8,18,98,0,0,
+0,1,0,2,0,101,113,117,97,108,0,1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,
+59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,
+59,121,0,38,20,0,8,18,98,0,0,0,1,0,3,0,101,113,117,97,108,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,
+3,2,0,3,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,
+0,18,118,0,59,121,0,18,117,0,59,121,0,38,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,
+0,38,20,0,8,18,98,0,0,0,1,0,4,0,101,113,117,97,108,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,4,
+1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,0,18,
+118,0,59,121,0,18,117,0,59,121,0,38,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,38,
+20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,38,20,0,8,18,98,0,0,0,1,0,2,0,101,113,
+117,97,108,0,1,0,0,6,118,0,0,1,0,0,6,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,
+120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,38,20,0,8,
+18,98,0,0,0,1,0,3,0,101,113,117,97,108,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,3,1,98,0,0,0,9,
+18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,
+18,117,0,59,121,0,38,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,38,20,0,8,18,98,0,
+0,0,1,0,4,0,101,113,117,97,108,0,1,0,0,8,118,0,0,1,0,0,8,117,0,0,0,1,3,2,0,4,1,98,0,0,0,9,18,98,0,
+59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,38,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,
+59,121,0,38,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,38,20,0,9,18,98,0,59,119,0,
+18,118,0,59,119,0,18,117,0,59,119,0,38,20,0,8,18,98,0,0,0,1,0,2,0,110,111,116,69,113,117,97,108,0,
+1,0,0,10,118,0,0,1,0,0,10,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,
+117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,39,20,0,8,18,98,0,0,
+0,1,0,3,0,110,111,116,69,113,117,97,108,0,1,0,0,11,118,0,0,1,0,0,11,117,0,0,0,1,3,2,0,3,1,98,0,0,0,
+9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,18,118,0,59,121,
+0,18,117,0,59,121,0,39,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,39,20,0,8,18,98,
+0,0,0,1,0,4,0,110,111,116,69,113,117,97,108,0,1,0,0,12,118,0,0,1,0,0,12,117,0,0,0,1,3,2,0,4,1,98,0,
+0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,18,118,0,59,
+121,0,18,117,0,59,121,0,39,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,39,20,0,9,
+18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,39,20,0,8,18,98,0,0,0,1,0,2,0,110,111,116,69,
+113,117,97,108,0,1,0,0,6,118,0,0,1,0,0,6,117,0,0,0,1,3,2,0,2,1,98,0,0,0,9,18,98,0,59,120,0,18,118,
+0,59,120,0,18,117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,18,118,0,59,121,0,18,117,0,59,121,0,39,20,
+0,8,18,98,0,0,0,1,0,3,0,110,111,116,69,113,117,97,108,0,1,0,0,7,118,0,0,1,0,0,7,117,0,0,0,1,3,2,0,
+3,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,18,
+118,0,59,121,0,18,117,0,59,121,0,39,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,39,
+20,0,8,18,98,0,0,0,1,0,4,0,110,111,116,69,113,117,97,108,0,1,0,0,8,118,0,0,1,0,0,8,117,0,0,0,1,3,2,
+0,4,1,98,0,0,0,9,18,98,0,59,120,0,18,118,0,59,120,0,18,117,0,59,120,0,39,20,0,9,18,98,0,59,121,0,
+18,118,0,59,121,0,18,117,0,59,121,0,39,20,0,9,18,98,0,59,122,0,18,118,0,59,122,0,18,117,0,59,122,0,
+39,20,0,9,18,98,0,59,119,0,18,118,0,59,119,0,18,117,0,59,119,0,39,20,0,8,18,98,0,0,0,1,0,1,0,97,
+110,121,0,1,0,0,2,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,32,0,0,1,0,1,0,97,110,121,0,1,
+0,0,3,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,32,18,118,0,59,122,0,32,0,0,1,0,1,0,97,110,
+121,0,1,0,0,4,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,32,18,118,0,59,122,0,32,18,118,0,
+59,119,0,32,0,0,1,0,1,0,97,108,108,0,1,0,0,2,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,34,
+0,0,1,0,1,0,97,108,108,0,1,0,0,3,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,34,18,118,0,59,
+122,0,34,0,0,1,0,1,0,97,108,108,0,1,0,0,4,118,0,0,0,1,8,18,118,0,59,120,0,18,118,0,59,121,0,34,18,
+118,0,59,122,0,34,18,118,0,59,119,0,34,0,0,1,0,2,0,110,111,116,0,1,0,0,2,118,0,0,0,1,3,2,0,2,1,117,
+0,0,0,9,18,117,0,59,120,0,18,118,0,59,120,0,56,20,0,9,18,117,0,59,121,0,18,118,0,59,121,0,56,20,0,
+8,18,117,0,0,0,1,0,3,0,110,111,116,0,1,0,0,3,118,0,0,0,1,3,2,0,3,1,117,0,0,0,9,18,117,0,59,120,0,
+18,118,0,59,120,0,56,20,0,9,18,117,0,59,121,0,18,118,0,59,121,0,56,20,0,9,18,117,0,59,122,0,18,118,
+0,59,122,0,56,20,0,8,18,117,0,0,0,1,0,4,0,110,111,116,0,1,0,0,4,118,0,0,0,1,3,2,0,4,1,117,0,0,0,9,
+18,117,0,59,120,0,18,118,0,59,120,0,56,20,0,9,18,117,0,59,121,0,18,118,0,59,121,0,56,20,0,9,18,117,
+0,59,122,0,18,118,0,59,122,0,56,20,0,9,18,117,0,59,119,0,18,118,0,59,119,0,56,20,0,8,18,117,0,0,0,
+1,0,12,0,116,101,120,116,117,114,101,49,68,0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,9,99,
+111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,116,101,120,116,117,
+114,101,49,68,80,114,111,106,0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,10,99,111,111,114,100,
+0,0,0,1,8,58,116,101,120,116,117,114,101,49,68,0,18,115,97,109,112,108,101,114,0,0,18,99,111,111,
+114,100,0,59,115,0,18,99,111,111,114,100,0,59,116,0,49,0,0,0,0,1,0,12,0,116,101,120,116,117,114,
+101,49,68,80,114,111,106,0,1,0,0,16,115,97,109,112,108,101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,
+0,1,8,58,116,101,120,116,117,114,101,49,68,0,18,115,97,109,112,108,101,114,0,0,18,99,111,111,114,
+100,0,59,115,0,18,99,111,111,114,100,0,59,113,0,49,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,50,
+68,0,1,0,0,17,115,97,109,112,108,101,114,0,0,1,0,0,10,99,111,111,114,100,0,0,0,1,8,58,118,101,99,
+52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,50,68,80,114,111,106,0,1,0,0,17,
+115,97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,
+59,115,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100,0,59,112,0,49,20,0,9,18,117,0,59,
+116,0,18,99,111,111,114,100,0,59,116,0,18,99,111,111,114,100,0,59,112,0,49,20,0,8,58,116,101,120,
+116,117,114,101,50,68,0,18,115,97,109,112,108,101,114,0,0,18,117,0,0,0,0,0,1,0,12,0,116,101,120,
+116,117,114,101,50,68,80,114,111,106,0,1,0,0,17,115,97,109,112,108,101,114,0,0,1,0,0,12,99,111,111,
+114,100,0,0,0,1,3,2,0,10,1,117,0,0,0,9,18,117,0,59,115,0,18,99,111,111,114,100,0,59,115,0,18,99,
+111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,116,0,18,99,111,111,114,100,0,59,116,0,18,99,111,
+111,114,100,0,59,113,0,49,20,0,8,58,116,101,120,116,117,114,101,50,68,0,18,115,97,109,112,108,101,
+114,0,0,18,117,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,51,68,0,1,0,0,18,115,97,109,112,108,
+101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,
+0,116,101,120,116,117,114,101,51,68,80,114,111,106,0,1,0,0,18,115,97,109,112,108,101,114,0,0,1,0,0,
+12,99,111,111,114,100,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,115,0,18,99,111,111,114,100,0,59,
+115,0,18,99,111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,116,0,18,99,111,111,114,100,0,59,116,
+0,18,99,111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,112,0,18,99,111,111,114,100,0,59,112,0,18,
+99,111,111,114,100,0,59,113,0,49,20,0,8,58,116,101,120,116,117,114,101,51,68,0,18,115,97,109,112,
+108,101,114,0,0,18,117,0,0,0,0,0,1,0,12,0,116,101,120,116,117,114,101,67,117,98,101,0,1,0,0,19,115,
+97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,
+0,0,0,0,1,0,12,0,115,104,97,100,111,119,49,68,0,1,0,0,20,115,97,109,112,108,101,114,0,0,1,0,0,11,
+99,111,111,114,100,0,0,0,1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,115,104,97,100,111,
+119,50,68,0,1,0,0,21,115,97,109,112,108,101,114,0,0,1,0,0,11,99,111,111,114,100,0,0,0,1,8,58,118,
+101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,115,104,97,100,111,119,49,68,80,114,111,106,0,1,0,0,20,
+115,97,109,112,108,101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,
+59,115,0,18,99,111,111,114,100,0,59,115,0,18,99,111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,
+116,0,17,48,0,48,0,0,20,0,9,18,117,0,59,112,0,18,99,111,111,114,100,0,59,112,0,18,99,111,111,114,
+100,0,59,113,0,49,20,0,8,58,115,104,97,100,111,119,49,68,0,18,115,97,109,112,108,101,114,0,0,18,
+117,0,0,0,0,0,1,0,12,0,115,104,97,100,111,119,50,68,80,114,111,106,0,1,0,0,21,115,97,109,112,108,
+101,114,0,0,1,0,0,12,99,111,111,114,100,0,0,0,1,3,2,0,11,1,117,0,0,0,9,18,117,0,59,115,0,18,99,111,
+111,114,100,0,59,115,0,18,99,111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,116,0,18,99,111,111,
+114,100,0,59,116,0,18,99,111,111,114,100,0,59,113,0,49,20,0,9,18,117,0,59,112,0,18,99,111,111,114,
+100,0,59,112,0,18,99,111,111,114,100,0,59,113,0,49,20,0,8,58,115,104,97,100,111,119,50,68,0,18,115,
+97,109,112,108,101,114,0,0,18,117,0,0,0,0,0,1,0,9,0,110,111,105,115,101,49,0,1,0,0,9,120,0,0,0,1,8,
+17,48,0,48,0,0,0,0,1,0,9,0,110,111,105,115,101,49,0,1,0,0,10,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,
+9,0,110,111,105,115,101,49,0,1,0,0,11,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,9,0,110,111,105,115,101,
+49,0,1,0,0,12,120,0,0,0,1,8,17,48,0,48,0,0,0,0,1,0,10,0,110,111,105,115,101,50,0,1,0,0,9,120,0,0,0,
+1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115,101,50,0,1,0,0,10,120,0,0,0,
+1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115,101,50,0,1,0,0,11,120,0,0,0,
+1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,10,0,110,111,105,115,101,50,0,1,0,0,12,120,0,0,0,
+1,8,58,118,101,99,50,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115,101,51,0,1,0,0,9,120,0,0,0,
+1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115,101,51,0,1,0,0,10,120,0,0,0,
+1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115,101,51,0,1,0,0,11,120,0,0,0,
+1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,11,0,110,111,105,115,101,51,0,1,0,0,12,120,0,0,0,
+1,8,58,118,101,99,51,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115,101,52,0,1,0,0,9,120,0,0,0,
+1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115,101,52,0,1,0,0,10,120,0,0,0,
+1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115,101,52,0,1,0,0,11,120,0,0,0,
+1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,1,0,12,0,110,111,105,115,101,52,0,1,0,0,12,120,0,0,0,
+1,8,58,118,101,99,52,0,17,48,0,48,0,0,0,0,0,0,0
|