summaryrefslogtreecommitdiffstats
path: root/src/mesa/swrast/s_texture.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/swrast/s_texture.c')
-rw-r--r--src/mesa/swrast/s_texture.c3958
1 files changed, 0 insertions, 3958 deletions
diff --git a/src/mesa/swrast/s_texture.c b/src/mesa/swrast/s_texture.c
deleted file mode 100644
index 04a4996d9fc..00000000000
--- a/src/mesa/swrast/s_texture.c
+++ /dev/null
@@ -1,3958 +0,0 @@
-/*
- * Mesa 3-D graphics library
- * Version: 6.5
- *
- * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "glheader.h"
-#include "context.h"
-#include "colormac.h"
-#include "macros.h"
-#include "imports.h"
-#include "pixel.h"
-#include "texformat.h"
-#include "teximage.h"
-
-#include "s_context.h"
-#include "s_texture.h"
-
-
-/**
- * Constants for integer linear interpolation.
- */
-#define ILERP_SCALE 65536.0F
-#define ILERP_SHIFT 16
-
-
-/**
- * Linear interpolation macros
- */
-#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
-#define ILERP(IT, A, B) ( (A) + (((IT) * ((B) - (A))) >> ILERP_SHIFT) )
-
-
-/**
- * Do 2D/biliner interpolation of float values.
- * v00, v10, v01 and v11 are typically four texture samples in a square/box.
- * a and b are the horizontal and vertical interpolants.
- * It's important that this function is inlined when compiled with
- * optimization! If we find that's not true on some systems, convert
- * to a macro.
- */
-static INLINE GLfloat
-lerp_2d(GLfloat a, GLfloat b,
- GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
-{
- const GLfloat temp0 = LERP(a, v00, v10);
- const GLfloat temp1 = LERP(a, v01, v11);
- return LERP(b, temp0, temp1);
-}
-
-
-/**
- * Do 2D/biliner interpolation of integer values.
- * \sa lerp_2d
- */
-static INLINE GLint
-ilerp_2d(GLint ia, GLint ib,
- GLint v00, GLint v10, GLint v01, GLint v11)
-{
- /* fixed point interpolants in [0, ILERP_SCALE] */
- const GLint temp0 = ILERP(ia, v00, v10);
- const GLint temp1 = ILERP(ia, v01, v11);
- return ILERP(ib, temp0, temp1);
-}
-
-
-/**
- * Do 3D/trilinear interpolation of float values.
- * \sa lerp_2d
- */
-static INLINE GLfloat
-lerp_3d(GLfloat a, GLfloat b, GLfloat c,
- GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
- GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
-{
- const GLfloat temp00 = LERP(a, v000, v100);
- const GLfloat temp10 = LERP(a, v010, v110);
- const GLfloat temp01 = LERP(a, v001, v101);
- const GLfloat temp11 = LERP(a, v011, v111);
- const GLfloat temp0 = LERP(b, temp00, temp10);
- const GLfloat temp1 = LERP(b, temp01, temp11);
- return LERP(c, temp0, temp1);
-}
-
-
-/**
- * Do 3D/trilinear interpolation of integer values.
- * \sa lerp_2d
- */
-static INLINE GLint
-ilerp_3d(GLint ia, GLint ib, GLint ic,
- GLint v000, GLint v100, GLint v010, GLint v110,
- GLint v001, GLint v101, GLint v011, GLint v111)
-{
- /* fixed point interpolants in [0, ILERP_SCALE] */
- const GLint temp00 = ILERP(ia, v000, v100);
- const GLint temp10 = ILERP(ia, v010, v110);
- const GLint temp01 = ILERP(ia, v001, v101);
- const GLint temp11 = ILERP(ia, v011, v111);
- const GLint temp0 = ILERP(ib, temp00, temp10);
- const GLint temp1 = ILERP(ib, temp01, temp11);
- return ILERP(ic, temp0, temp1);
-}
-
-
-
-/**
- * Compute the remainder of a divided by b, but be careful with
- * negative values so that GL_REPEAT mode works right.
- */
-static INLINE GLint
-repeat_remainder(GLint a, GLint b)
-{
- if (a >= 0)
- return a % b;
- else
- return (a + 1) % b + b - 1;
-}
-
-
-/**
- * Used to compute texel locations for linear sampling.
- * Input:
- * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
- * S = texcoord in [0,1]
- * SIZE = width (or height or depth) of texture
- * Output:
- * U = texcoord in [0, width]
- * I0, I1 = two nearest texel indexes
- */
-#define COMPUTE_LINEAR_TEXEL_LOCATIONS(wrapMode, S, U, SIZE, I0, I1) \
-{ \
- if (wrapMode == GL_REPEAT) { \
- U = S * SIZE - 0.5F; \
- if (tObj->_IsPowerOfTwo) { \
- I0 = IFLOOR(U) & (SIZE - 1); \
- I1 = (I0 + 1) & (SIZE - 1); \
- } \
- else { \
- I0 = repeat_remainder(IFLOOR(U), SIZE); \
- I1 = repeat_remainder(I0 + 1, SIZE); \
- } \
- } \
- else if (wrapMode == GL_CLAMP_TO_EDGE) { \
- if (S <= 0.0F) \
- U = 0.0F; \
- else if (S >= 1.0F) \
- U = (GLfloat) SIZE; \
- else \
- U = S * SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- if (I0 < 0) \
- I0 = 0; \
- if (I1 >= (GLint) SIZE) \
- I1 = SIZE - 1; \
- } \
- else if (wrapMode == GL_CLAMP_TO_BORDER) { \
- const GLfloat min = -1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- if (S <= min) \
- U = min * SIZE; \
- else if (S >= max) \
- U = max * SIZE; \
- else \
- U = S * SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- } \
- else if (wrapMode == GL_MIRRORED_REPEAT) { \
- const GLint flr = IFLOOR(S); \
- if (flr & 1) \
- U = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \
- else \
- U = S - (GLfloat) flr; /* flr is even */ \
- U = (U * SIZE) - 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- if (I0 < 0) \
- I0 = 0; \
- if (I1 >= (GLint) SIZE) \
- I1 = SIZE - 1; \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_EXT) { \
- U = (GLfloat) fabs(S); \
- if (U >= 1.0F) \
- U = (GLfloat) SIZE; \
- else \
- U *= SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_EXT) { \
- U = (GLfloat) fabs(S); \
- if (U >= 1.0F) \
- U = (GLfloat) SIZE; \
- else \
- U *= SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- if (I0 < 0) \
- I0 = 0; \
- if (I1 >= (GLint) SIZE) \
- I1 = SIZE - 1; \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_TO_BORDER_EXT) { \
- const GLfloat min = -1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- U = (GLfloat) fabs(S); \
- if (U <= min) \
- U = min * SIZE; \
- else if (U >= max) \
- U = max * SIZE; \
- else \
- U *= SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- } \
- else { \
- ASSERT(wrapMode == GL_CLAMP); \
- if (S <= 0.0F) \
- U = 0.0F; \
- else if (S >= 1.0F) \
- U = (GLfloat) SIZE; \
- else \
- U = S * SIZE; \
- U -= 0.5F; \
- I0 = IFLOOR(U); \
- I1 = I0 + 1; \
- } \
-}
-
-
-/**
- * Used to compute texel location for nearest sampling.
- */
-#define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I) \
-{ \
- if (wrapMode == GL_REPEAT) { \
- /* s limited to [0,1) */ \
- /* i limited to [0,size-1] */ \
- I = IFLOOR(S * SIZE); \
- if (tObj->_IsPowerOfTwo) \
- I &= (SIZE - 1); \
- else \
- I = repeat_remainder(I, SIZE); \
- } \
- else if (wrapMode == GL_CLAMP_TO_EDGE) { \
- /* s limited to [min,max] */ \
- /* i limited to [0, size-1] */ \
- const GLfloat min = 1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- if (S < min) \
- I = 0; \
- else if (S > max) \
- I = SIZE - 1; \
- else \
- I = IFLOOR(S * SIZE); \
- } \
- else if (wrapMode == GL_CLAMP_TO_BORDER) { \
- /* s limited to [min,max] */ \
- /* i limited to [-1, size] */ \
- const GLfloat min = -1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- if (S <= min) \
- I = -1; \
- else if (S >= max) \
- I = SIZE; \
- else \
- I = IFLOOR(S * SIZE); \
- } \
- else if (wrapMode == GL_MIRRORED_REPEAT) { \
- const GLfloat min = 1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- const GLint flr = IFLOOR(S); \
- GLfloat u; \
- if (flr & 1) \
- u = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \
- else \
- u = S - (GLfloat) flr; /* flr is even */ \
- if (u < min) \
- I = 0; \
- else if (u > max) \
- I = SIZE - 1; \
- else \
- I = IFLOOR(u * SIZE); \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_EXT) { \
- /* s limited to [0,1] */ \
- /* i limited to [0,size-1] */ \
- const GLfloat u = (GLfloat) fabs(S); \
- if (u <= 0.0F) \
- I = 0; \
- else if (u >= 1.0F) \
- I = SIZE - 1; \
- else \
- I = IFLOOR(u * SIZE); \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_EXT) { \
- /* s limited to [min,max] */ \
- /* i limited to [0, size-1] */ \
- const GLfloat min = 1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- const GLfloat u = (GLfloat) fabs(S); \
- if (u < min) \
- I = 0; \
- else if (u > max) \
- I = SIZE - 1; \
- else \
- I = IFLOOR(u * SIZE); \
- } \
- else if (wrapMode == GL_MIRROR_CLAMP_TO_BORDER_EXT) { \
- /* s limited to [min,max] */ \
- /* i limited to [0, size-1] */ \
- const GLfloat min = -1.0F / (2.0F * SIZE); \
- const GLfloat max = 1.0F - min; \
- const GLfloat u = (GLfloat) fabs(S); \
- if (u < min) \
- I = -1; \
- else if (u > max) \
- I = SIZE; \
- else \
- I = IFLOOR(u * SIZE); \
- } \
- else { \
- ASSERT(wrapMode == GL_CLAMP); \
- /* s limited to [0,1] */ \
- /* i limited to [0,size-1] */ \
- if (S <= 0.0F) \
- I = 0; \
- else if (S >= 1.0F) \
- I = SIZE - 1; \
- else \
- I = IFLOOR(S * SIZE); \
- } \
-}
-
-
-/* Power of two image sizes only */
-#define COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(S, U, SIZE, I0, I1) \
-{ \
- U = S * SIZE - 0.5F; \
- I0 = IFLOOR(U) & (SIZE - 1); \
- I1 = (I0 + 1) & (SIZE - 1); \
-}
-
-
-/*
- * Compute linear mipmap levels for given lambda.
- */
-#define COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level) \
-{ \
- if (lambda < 0.0F) \
- level = tObj->BaseLevel; \
- else if (lambda > tObj->_MaxLambda) \
- level = (GLint) (tObj->BaseLevel + tObj->_MaxLambda); \
- else \
- level = (GLint) (tObj->BaseLevel + lambda); \
-}
-
-
-/*
- * Compute nearest mipmap level for given lambda.
- */
-#define COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level) \
-{ \
- GLfloat l; \
- if (lambda <= 0.5F) \
- l = 0.0F; \
- else if (lambda > tObj->_MaxLambda + 0.4999F) \
- l = tObj->_MaxLambda + 0.4999F; \
- else \
- l = lambda; \
- level = (GLint) (tObj->BaseLevel + l + 0.5F); \
- if (level > tObj->_MaxLevel) \
- level = tObj->_MaxLevel; \
-}
-
-
-
-/*
- * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
- * see 1-pixel bands of improperly weighted linear-sampled texels. The
- * tests/texwrap.c demo is a good test.
- * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
- * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
- */
-#define FRAC(f) ((f) - IFLOOR(f))
-
-
-
-/*
- * Bitflags for texture border color sampling.
- */
-#define I0BIT 1
-#define I1BIT 2
-#define J0BIT 4
-#define J1BIT 8
-#define K0BIT 16
-#define K1BIT 32
-
-
-
-/*
- * The lambda[] array values are always monotonic. Either the whole span
- * will be minified, magnified, or split between the two. This function
- * determines the subranges in [0, n-1] that are to be minified or magnified.
- */
-static INLINE void
-compute_min_mag_ranges( GLfloat minMagThresh, GLuint n, const GLfloat lambda[],
- GLuint *minStart, GLuint *minEnd,
- GLuint *magStart, GLuint *magEnd )
-{
- ASSERT(lambda != NULL);
-#if 0
- /* Verify that lambda[] is monotonous.
- * We can't really use this because the inaccuracy in the LOG2 function
- * causes this test to fail, yet the resulting texturing is correct.
- */
- if (n > 1) {
- GLuint i;
- printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
- if (lambda[0] >= lambda[n-1]) { /* decreasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
- }
- }
- else { /* increasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
- }
- }
- }
-#endif /* DEBUG */
-
- /* since lambda is monotonous-array use this check first */
- if (lambda[0] <= minMagThresh && lambda[n-1] <= minMagThresh) {
- /* magnification for whole span */
- *magStart = 0;
- *magEnd = n;
- *minStart = *minEnd = 0;
- }
- else if (lambda[0] > minMagThresh && lambda[n-1] > minMagThresh) {
- /* minification for whole span */
- *minStart = 0;
- *minEnd = n;
- *magStart = *magEnd = 0;
- }
- else {
- /* a mix of minification and magnification */
- GLuint i;
- if (lambda[0] > minMagThresh) {
- /* start with minification */
- for (i = 1; i < n; i++) {
- if (lambda[i] <= minMagThresh)
- break;
- }
- *minStart = 0;
- *minEnd = i;
- *magStart = i;
- *magEnd = n;
- }
- else {
- /* start with magnification */
- for (i = 1; i < n; i++) {
- if (lambda[i] > minMagThresh)
- break;
- }
- *magStart = 0;
- *magEnd = i;
- *minStart = i;
- *minEnd = n;
- }
- }
-
-#if 0
- /* Verify the min/mag Start/End values
- * We don't use this either (see above)
- */
- {
- GLint i;
- for (i = 0; i < n; i++) {
- if (lambda[i] > minMagThresh) {
- /* minification */
- ASSERT(i >= *minStart);
- ASSERT(i < *minEnd);
- }
- else {
- /* magnification */
- ASSERT(i >= *magStart);
- ASSERT(i < *magEnd);
- }
- }
- }
-#endif
-}
-
-
-/**********************************************************************/
-/* 1-D Texture Sampling Functions */
-/**********************************************************************/
-
-/*
- * Return the texture sample for coordinate (s) using GL_NEAREST filter.
- */
-static void
-sample_1d_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLchan rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- GLint i;
- (void) ctx;
-
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i);
-
- /* skip over the border, if any */
- i += img->Border;
-
- if (i < 0 || i >= (GLint) img->Width) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- COPY_CHAN4(rgba, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i, 0, 0, rgba);
- }
-}
-
-
-
-/*
- * Return the texture sample for coordinate (s) using GL_LINEAR filter.
- */
-static void
-sample_1d_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLchan rgba[4])
-{
- const GLint width = img->Width2;
- GLint i0, i1;
- GLfloat u;
- GLuint useBorderColor;
- (void) ctx;
-
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1);
-
- useBorderColor = 0;
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- }
-
- {
- const GLfloat a = FRAC(u);
- GLchan t0[4], t1[4]; /* texels */
-
- /* fetch texel colors */
- if (useBorderColor & I0BIT) {
- COPY_CHAN4(t0, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, 0, 0, t0);
- }
- if (useBorderColor & I1BIT) {
- COPY_CHAN4(t1, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, 0, 0, t1);
- }
-
- /* do linear interpolation of texel colors */
-#if CHAN_TYPE == GL_FLOAT
- rgba[0] = LERP(a, t0[0], t1[0]);
- rgba[1] = LERP(a, t0[1], t1[1]);
- rgba[2] = LERP(a, t0[2], t1[2]);
- rgba[3] = LERP(a, t0[3], t1[3]);
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (LERP(a, t0[0], t1[0]) + 0.5);
- rgba[1] = (GLchan) (LERP(a, t0[1], t1[1]) + 0.5);
- rgba[2] = (GLchan) (LERP(a, t0[2], t1[2]) + 0.5);
- rgba[3] = (GLchan) (LERP(a, t0[3], t1[3]) + 0.5);
-#else
- ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
- {
- /* fixed point interpolants in [0, ILERP_SCALE] */
- const GLint ia = IROUND_POS(a * ILERP_SCALE);
- rgba[0] = ILERP(ia, t0[0], t1[0]);
- rgba[1] = ILERP(ia, t0[1], t1[1]);
- rgba[2] = ILERP(ia, t0[2], t1[2]);
- rgba[3] = ILERP(ia, t0[3], t1[3]);
- }
-#endif
- }
-}
-
-
-static void
-sample_1d_nearest_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_linear_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-
-/*
- * This is really just needed in order to prevent warnings with some compilers.
- */
-#if CHAN_TYPE == GL_FLOAT
-#define CHAN_CAST
-#else
-#define CHAN_CAST (GLchan) (GLint)
-#endif
-
-
-static void
-sample_1d_nearest_mipmap_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-
-static void
-sample_1d_linear_mipmap_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-
-static void
-sample_nearest_1d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- for (i=0;i<n;i++) {
- sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-
-static void
-sample_linear_1d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- for (i=0;i<n;i++) {
- sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/*
- * Given an (s) texture coordinate and lambda (level of detail) value,
- * return a texture sample.
- *
- */
-static void
-sample_lambda_1d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
- n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* 2-D Texture Sampling Functions */
-/**********************************************************************/
-
-
-/*
- * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
- */
-static INLINE void
-sample_2d_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLchan rgba[])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- GLint i, j;
- (void) ctx;
-
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i);
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j);
-
- /* skip over the border, if any */
- i += img->Border;
- j += img->Border;
-
- if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- COPY_CHAN4(rgba, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i, j, 0, rgba);
- }
-}
-
-
-
-/**
- * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
- * New sampling code contributed by Lynn Quam <[email protected]>.
- */
-static INLINE void
-sample_2d_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLchan rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLuint useBorderColor;
- GLfloat u, v;
- (void) ctx;
-
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1);
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1);
-
- useBorderColor = 0;
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- }
-
- {
- const GLfloat a = FRAC(u);
- const GLfloat b = FRAC(v);
-#if CHAN_TYPE == GL_UNSIGNED_BYTE
- const GLint ia = IROUND_POS(a * ILERP_SCALE);
- const GLint ib = IROUND_POS(b * ILERP_SCALE);
-#endif
- GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- /* fetch four texel colors */
- if (useBorderColor & (I0BIT | J0BIT)) {
- COPY_CHAN4(t00, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j0, 0, t00);
- }
- if (useBorderColor & (I1BIT | J0BIT)) {
- COPY_CHAN4(t10, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j0, 0, t10);
- }
- if (useBorderColor & (I0BIT | J1BIT)) {
- COPY_CHAN4(t01, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j1, 0, t01);
- }
- if (useBorderColor & (I1BIT | J1BIT)) {
- COPY_CHAN4(t11, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j1, 0, t11);
- }
-
- /* do bilinear interpolation of texel colors */
-#if CHAN_TYPE == GL_FLOAT
- rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
- rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
- rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
- rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
- rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
- rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
- rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
-#else
- ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
- rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
- rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
- rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
- rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
-#endif
- }
-}
-
-
-/*
- * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
- */
-static INLINE void
-sample_2d_linear_repeat(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLchan rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLfloat u, v;
- (void) ctx;
- (void) tObj;
-
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- ASSERT(img->Border == 0);
- ASSERT(img->Format != GL_COLOR_INDEX);
- ASSERT(img->_IsPowerOfTwo);
-
- COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[0], u, width, i0, i1);
- COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[1], v, height, j0, j1);
-
- {
- const GLfloat a = FRAC(u);
- const GLfloat b = FRAC(v);
-#if CHAN_TYPE == GL_UNSIGNED_BYTE
- const GLint ia = IROUND_POS(a * ILERP_SCALE);
- const GLint ib = IROUND_POS(b * ILERP_SCALE);
-#endif
- GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- img->FetchTexelc(img, i0, j0, 0, t00);
- img->FetchTexelc(img, i1, j0, 0, t10);
- img->FetchTexelc(img, i0, j1, 0, t01);
- img->FetchTexelc(img, i1, j1, 0, t11);
-
- /* do bilinear interpolation of texel colors */
-#if CHAN_TYPE == GL_FLOAT
- rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
- rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
- rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
- rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
- rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
- rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
- rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
-#else
- ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
- rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
- rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
- rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
- rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
-#endif
- }
-}
-
-
-
-static void
-sample_2d_nearest_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-
-static void
-sample_2d_linear_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-
-static void
-sample_2d_nearest_mipmap_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-
-/* Trilinear filtering */
-static void
-sample_2d_linear_mipmap_linear( GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_linear_repeat( GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- ASSERT(lambda != NULL);
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- ASSERT(tObj->_IsPowerOfTwo);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_nearest_2d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- for (i=0;i<n;i++) {
- sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-
-static void
-sample_linear_2d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- if (tObj->WrapS == GL_REPEAT && tObj->WrapT == GL_REPEAT
- && image->Border == 0) {
- for (i=0;i<n;i++) {
- sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
- else {
- for (i=0;i<n;i++) {
- sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
-}
-
-
-/*
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border,
- * RowStride == Width,
- * Format = GL_RGB
- */
-static void
-opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint k;
- (void) ctx;
- (void) texUnit;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->Format==GL_RGB);
- ASSERT(img->_IsPowerOfTwo);
-
- for (k=0; k<n; k++) {
- GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
- GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
- GLint pos = (j << shift) | i;
- GLchan *texel = ((GLchan *) img->Data) + 3*pos;
- rgba[k][RCOMP] = texel[0];
- rgba[k][GCOMP] = texel[1];
- rgba[k][BCOMP] = texel[2];
- }
-}
-
-
-/*
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border
- * RowStride == Width,
- * Format = GL_RGBA
- */
-static void
-opt_sample_rgba_2d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint i;
- (void) ctx;
- (void) texUnit;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->Format==GL_RGBA);
- ASSERT(img->_IsPowerOfTwo);
-
- for (i = 0; i < n; i++) {
- const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
- const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
- const GLint pos = (row << shift) | col;
- const GLchan *texel = ((GLchan *) img->Data) + (pos << 2); /* pos*4 */
- COPY_CHAN4(rgba[i], texel);
- }
-}
-
-
-/*
- * Given an array of texture coordinate and lambda (level of detail)
- * values, return an array of texture sample.
- */
-static void
-sample_lambda_2d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
- && (tObj->WrapT == GL_REPEAT)
- && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
- && (tImg->Format != GL_COLOR_INDEX)
- && tImg->_IsPowerOfTwo;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
- n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat->MesaFormat) {
- case MESA_FORMAT_RGB:
- case MESA_FORMAT_RGB888:
- /*case MESA_FORMAT_BGR888:*/
- opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case MESA_FORMAT_RGBA:
- case MESA_FORMAT_RGBA8888:
- case MESA_FORMAT_ARGB8888:
- /*case MESA_FORMAT_ABGR8888:*/
- /*case MESA_FORMAT_BGRA8888:*/
- opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- default:
- sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart,
- NULL, rgba + minStart );
- }
- }
- else {
- sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, texUnit, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- if (repeatNoBorderPOT)
- sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
- texcoords + minStart, lambda + minStart, rgba + minStart);
- else
- sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
-
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat->MesaFormat) {
- case MESA_FORMAT_RGB:
- case MESA_FORMAT_RGB888:
- /*case MESA_FORMAT_BGR888:*/
- opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- case MESA_FORMAT_RGBA:
- case MESA_FORMAT_RGBA8888:
- case MESA_FORMAT_ARGB8888:
- /*case MESA_FORMAT_ABGR8888:*/
- /*case MESA_FORMAT_BGRA8888:*/
- opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart,
- NULL, rgba + magStart );
- }
- }
- else {
- sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, texUnit, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
- }
- }
-}
-
-
-
-/**********************************************************************/
-/* 3-D Texture Sampling Functions */
-/**********************************************************************/
-
-/*
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_3d_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLchan rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- const GLint depth = img->Depth2; /* without border, power of two */
- GLint i, j, k;
- (void) ctx;
-
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i);
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j);
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, texcoord[2], depth, k);
-
- if (i < 0 || i >= (GLint) img->Width ||
- j < 0 || j >= (GLint) img->Height ||
- k < 0 || k >= (GLint) img->Depth) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- COPY_CHAN4(rgba, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i, j, k, rgba);
- }
-}
-
-
-
-/*
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_3d_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLchan rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- const GLint depth = img->Depth2;
- GLint i0, j0, k0, i1, j1, k1;
- GLuint useBorderColor;
- GLfloat u, v, w;
- (void) ctx;
-
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1);
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1);
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, texcoord[2], w, depth, k0, k1);
-
- useBorderColor = 0;
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- k0 += img->Border;
- k1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
- if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
- }
-
- {
- const GLfloat a = FRAC(u);
- const GLfloat b = FRAC(v);
- const GLfloat c = FRAC(w);
-#if CHAN_TYPE == GL_UNSIGNED_BYTE
- const GLint ia = IROUND_POS(a * ILERP_SCALE);
- const GLint ib = IROUND_POS(b * ILERP_SCALE);
- const GLint ic = IROUND_POS(c * ILERP_SCALE);
-#endif
- GLchan t000[4], t010[4], t001[4], t011[4];
- GLchan t100[4], t110[4], t101[4], t111[4];
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
- COPY_CHAN4(t000, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j0, k0, t000);
- }
- if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
- COPY_CHAN4(t100, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j0, k0, t100);
- }
- if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
- COPY_CHAN4(t010, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j1, k0, t010);
- }
- if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
- COPY_CHAN4(t110, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j1, k0, t110);
- }
-
- if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
- COPY_CHAN4(t001, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j0, k1, t001);
- }
- if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
- COPY_CHAN4(t101, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j0, k1, t101);
- }
- if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
- COPY_CHAN4(t011, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i0, j1, k1, t011);
- }
- if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
- COPY_CHAN4(t111, tObj->_BorderChan);
- }
- else {
- img->FetchTexelc(img, i1, j1, k1, t111);
- }
-
- /* trilinear interpolation of samples */
-#if CHAN_TYPE == GL_FLOAT
- rgba[0] = lerp_3d(a, b, c,
- t000[0], t100[0], t010[0], t110[0],
- t001[0], t101[0], t011[0], t111[0]);
- rgba[1] = lerp_3d(a, b, c,
- t000[1], t100[1], t010[1], t110[1],
- t001[1], t101[1], t011[1], t111[1]);
- rgba[2] = lerp_3d(a, b, c,
- t000[2], t100[2], t010[2], t110[2],
- t001[2], t101[2], t011[2], t111[2]);
- rgba[3] = lerp_3d(a, b, c,
- t000[3], t100[3], t010[3], t110[3],
- t001[3], t101[3], t011[3], t111[3]);
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[0] = (GLchan) (lerp_3d(a, b, c,
- t000[0], t100[0], t010[0], t110[0],
- t001[0], t101[0], t011[0], t111[0]) + 0.5F);
- rgba[1] = (GLchan) (lerp_3d(a, b, c,
- t000[1], t100[1], t010[1], t110[1],
- t001[1], t101[1], t011[1], t111[1]) + 0.5F);
- rgba[2] = (GLchan) (lerp_3d(a, b, c,
- t000[2], t100[2], t010[2], t110[2],
- t001[2], t101[2], t011[2], t111[2]) + 0.5F);
- rgba[3] = (GLchan) (lerp_3d(a, b, c,
- t000[3], t100[3], t010[3], t110[3],
- t001[3], t101[3], t011[3], t111[3]) + 0.5F);
-#else
- ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
- rgba[0] = ilerp_3d(ia, ib, ic,
- t000[0], t100[0], t010[0], t110[0],
- t001[0], t101[0], t011[0], t111[0]);
- rgba[1] = ilerp_3d(ia, ib, ic,
- t000[1], t100[1], t010[1], t110[1],
- t001[1], t101[1], t011[1], t111[1]);
- rgba[2] = ilerp_3d(ia, ib, ic,
- t000[2], t100[2], t010[2], t110[2],
- t001[2], t101[2], t011[2], t111[2]);
- rgba[3] = ilerp_3d(ia, ib, ic,
- t000[3], t100[3], t010[3], t110[3],
- t001[3], t101[3], t011[3], t111[3]);
-#endif
- }
-}
-
-
-
-static void
-sample_3d_nearest_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_nearest(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_nearest_mipmap_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_linear(GLcontext *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- if (level >= tObj->_MaxLevel) {
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_nearest_3d(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- for (i=0;i<n;i++) {
- sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-
-static void
-sample_linear_3d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) texUnit;
- (void) lambda;
- for (i=0;i<n;i++) {
- sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/*
- * Given an (s,t,r) texture coordinate and lambda (level of detail) value,
- * return a texture sample.
- */
-static void
-sample_lambda_3d( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4] )
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
- n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Cube Map Sampling Functions */
-/**********************************************************************/
-
-/*
- * Choose one of six sides of a texture cube map given the texture
- * coord (rx,ry,rz). Return pointer to corresponding array of texture
- * images.
- */
-static const struct gl_texture_image **
-choose_cube_face(const struct gl_texture_object *texObj,
- const GLfloat texcoord[4], GLfloat newCoord[4])
-{
-/*
- major axis
- direction target sc tc ma
- ---------- ------------------------------- --- --- ---
- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
- -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
- +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
- -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
- +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
- -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
-*/
- const GLfloat rx = texcoord[0];
- const GLfloat ry = texcoord[1];
- const GLfloat rz = texcoord[2];
- const struct gl_texture_image **imgArray;
- const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
- GLfloat sc, tc, ma;
-
- if (arx > ary && arx > arz) {
- if (rx >= 0.0F) {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_X];
- sc = -rz;
- tc = -ry;
- ma = arx;
- }
- else {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_X];
- sc = rz;
- tc = -ry;
- ma = arx;
- }
- }
- else if (ary > arx && ary > arz) {
- if (ry >= 0.0F) {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_Y];
- sc = rx;
- tc = rz;
- ma = ary;
- }
- else {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_Y];
- sc = rx;
- tc = -rz;
- ma = ary;
- }
- }
- else {
- if (rz > 0.0F) {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_Z];
- sc = rx;
- tc = -ry;
- ma = arz;
- }
- else {
- imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_Z];
- sc = -rx;
- tc = -ry;
- ma = arz;
- }
- }
-
- newCoord[0] = ( sc / ma + 1.0F ) * 0.5F;
- newCoord[1] = ( tc / ma + 1.0F ) * 0.5F;
- return imgArray;
-}
-
-
-static void
-sample_nearest_cube(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_cube(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_nearest(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_nearest(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_linear(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLchan t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_linear(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- GLuint i;
- (void) texUnit;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLchan t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
- rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
- rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
- rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
- rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
- }
- }
-}
-
-
-static void
-sample_lambda_cube( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
- n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, texUnit, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_cube_nearest_mipmap_nearest(ctx, texUnit, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_cube_linear_mipmap_nearest(ctx, texUnit, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_cube_nearest_mipmap_linear(ctx, texUnit, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_cube_linear_mipmap_linear(ctx, texUnit, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, texUnit, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Rectangle Sampling Functions */
-/**********************************************************************/
-
-static void
-sample_nearest_rect(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint width_minus_1 = img->Width - 1;
- const GLint height_minus_1 = img->Height - 1;
- GLuint i;
-
- (void) ctx;
- (void) texUnit;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->Format != GL_COLOR_INDEX);
-
- /* XXX move Wrap mode tests outside of loops for common cases */
- for (i = 0; i < n; i++) {
- GLint row, col;
- /* NOTE: we DO NOT use [0, 1] texture coordinates! */
- if (tObj->WrapS == GL_CLAMP) {
- col = IFLOOR( CLAMP(texcoords[i][0], 0.0F, width - 1) );
- }
- else if (tObj->WrapS == GL_CLAMP_TO_EDGE) {
- col = IFLOOR( CLAMP(texcoords[i][0], 0.5F, width - 0.5F) );
- }
- else {
- col = IFLOOR( CLAMP(texcoords[i][0], -0.5F, width + 0.5F) );
- }
- if (tObj->WrapT == GL_CLAMP) {
- row = IFLOOR( CLAMP(texcoords[i][1], 0.0F, height - 1) );
- }
- else if (tObj->WrapT == GL_CLAMP_TO_EDGE) {
- row = IFLOOR( CLAMP(texcoords[i][1], 0.5F, height - 0.5F) );
- }
- else {
- row = IFLOOR( CLAMP(texcoords[i][1], -0.5F, height + 0.5F) );
- }
-
- if (col < 0 || col > width_minus_1 || row < 0 || row > height_minus_1)
- COPY_CHAN4(rgba[i], tObj->_BorderChan);
- else
- img->FetchTexelc(img, col, row, 0, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_rect(GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLchan rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint width_minus_1 = img->Width - 1;
- const GLint height_minus_1 = img->Height - 1;
- GLuint i;
-
- (void) ctx;
- (void) texUnit;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->Format != GL_COLOR_INDEX);
-
- /* XXX lots of opportunity for optimization in this loop */
- for (i = 0; i < n; i++) {
- GLfloat frow, fcol;
- GLint i0, j0, i1, j1;
- GLchan t00[4], t01[4], t10[4], t11[4];
- GLfloat a, b;
- GLuint useBorderColor = 0;
-#if CHAN_TYPE == GL_UNSIGNED_BYTE
- GLint ia, ib;
-#endif
-
- /* NOTE: we DO NOT use [0, 1] texture coordinates! */
- if (tObj->WrapS == GL_CLAMP) {
- /* Not exactly what the spec says, but it matches NVIDIA output */
- fcol = CLAMP(texcoords[i][0] - 0.5F, 0.0, width_minus_1);
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- }
- else if (tObj->WrapS == GL_CLAMP_TO_EDGE) {
- fcol = CLAMP(texcoords[i][0], 0.5F, width - 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- if (i1 > width_minus_1)
- i1 = width_minus_1;
- }
- else {
- ASSERT(tObj->WrapS == GL_CLAMP_TO_BORDER);
- fcol = CLAMP(texcoords[i][0], -0.5F, width + 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- }
-
- if (tObj->WrapT == GL_CLAMP) {
- /* Not exactly what the spec says, but it matches NVIDIA output */
- frow = CLAMP(texcoords[i][1] - 0.5F, 0.0, width_minus_1);
- j0 = IFLOOR(frow);
- j1 = j0 + 1;
- }
- else if (tObj->WrapT == GL_CLAMP_TO_EDGE) {
- frow = CLAMP(texcoords[i][1], 0.5F, height - 0.5F);
- frow -= 0.5F;
- j0 = IFLOOR(frow);
- j1 = j0 + 1;
- if (j1 > height_minus_1)
- j1 = height_minus_1;
- }
- else {
- ASSERT(tObj->WrapT == GL_CLAMP_TO_BORDER);
- frow = CLAMP(texcoords[i][1], -0.5F, height + 0.5F);
- frow -= 0.5F;
- j0 = IFLOOR(frow);
- j1 = j0 + 1;
- }
-
- /* compute integer rows/columns */
- if (i0 < 0 || i0 > width_minus_1) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 > width_minus_1) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 > height_minus_1) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 > height_minus_1) useBorderColor |= J1BIT;
-
- /* get four texel samples */
- if (useBorderColor & (I0BIT | J0BIT))
- COPY_CHAN4(t00, tObj->_BorderChan);
- else
- img->FetchTexelc(img, i0, j0, 0, t00);
-
- if (useBorderColor & (I1BIT | J0BIT))
- COPY_CHAN4(t10, tObj->_BorderChan);
- else
- img->FetchTexelc(img, i1, j0, 0, t10);
-
- if (useBorderColor & (I0BIT | J1BIT))
- COPY_CHAN4(t01, tObj->_BorderChan);
- else
- img->FetchTexelc(img, i0, j1, 0, t01);
-
- if (useBorderColor & (I1BIT | J1BIT))
- COPY_CHAN4(t11, tObj->_BorderChan);
- else
- img->FetchTexelc(img, i1, j1, 0, t11);
-
- /* compute interpolants */
- a = FRAC(fcol);
- b = FRAC(frow);
-#if CHAN_TYPE == GL_UNSIGNED_BYTE
- ia = IROUND_POS(a * ILERP_SCALE);
- ib = IROUND_POS(b * ILERP_SCALE);
-#endif
-
- /* do bilinear interpolation of texel colors */
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
- rgba[i][1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
- rgba[i][2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
- rgba[i][3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
- rgba[i][0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5);
- rgba[i][1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5);
- rgba[i][2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5);
- rgba[i][3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5);
-#else
- ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE);
- rgba[i][0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]);
- rgba[i][1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]);
- rgba[i][2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]);
- rgba[i][3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]);
-#endif
- }
-}
-
-
-static void
-sample_lambda_rect( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- GLuint minStart, minEnd, magStart, magEnd;
-
- /* We only need lambda to decide between minification and magnification.
- * There is no mipmapping with rectangular textures.
- */
- compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
- n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- if (tObj->MinFilter == GL_NEAREST) {
- sample_nearest_rect( ctx, texUnit, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- else {
- sample_linear_rect( ctx, texUnit, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- }
- if (magStart < magEnd) {
- if (tObj->MagFilter == GL_NEAREST) {
- sample_nearest_rect( ctx, texUnit, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- else {
- sample_linear_rect( ctx, texUnit, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- }
-}
-
-
-
-/*
- * Sample a shadow/depth texture.
- */
-static void
-sample_depth_texture( GLcontext *ctx, GLuint unit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan texel[][4] )
-{
- const GLint baseLevel = tObj->BaseLevel;
- const struct gl_texture_image *texImage = tObj->Image[0][baseLevel];
- const GLuint width = texImage->Width;
- const GLuint height = texImage->Height;
- GLchan ambient;
- GLenum function;
- GLchan result;
-
- (void) lambda;
- (void) unit;
-
- ASSERT(tObj->Image[0][tObj->BaseLevel]->Format == GL_DEPTH_COMPONENT);
- ASSERT(tObj->Target == GL_TEXTURE_1D ||
- tObj->Target == GL_TEXTURE_2D ||
- tObj->Target == GL_TEXTURE_RECTANGLE_NV);
-
- UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient);
-
- /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
-
- /* XXX this could be precomputed and saved in the texture object */
- if (tObj->CompareFlag) {
- /* GL_SGIX_shadow */
- if (tObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) {
- function = GL_LEQUAL;
- }
- else {
- ASSERT(tObj->CompareOperator == GL_TEXTURE_GEQUAL_R_SGIX);
- function = GL_GEQUAL;
- }
- }
- else if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
- /* GL_ARB_shadow */
- function = tObj->CompareFunc;
- }
- else {
- function = GL_NONE; /* pass depth through as grayscale */
- }
-
- if (tObj->MagFilter == GL_NEAREST) {
- GLuint i;
- for (i = 0; i < n; i++) {
- GLfloat depthSample;
- GLint col, row;
- /* XXX fix for texture rectangle! */
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoords[i][0], width, col);
- COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoords[i][1], height, row);
- texImage->FetchTexelf(texImage, col, row, 0, &depthSample);
-
- switch (function) {
- case GL_LEQUAL:
- result = (texcoords[i][2] <= depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_GEQUAL:
- result = (texcoords[i][2] >= depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_LESS:
- result = (texcoords[i][2] < depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_GREATER:
- result = (texcoords[i][2] > depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_EQUAL:
- result = (texcoords[i][2] == depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_NOTEQUAL:
- result = (texcoords[i][2] != depthSample) ? CHAN_MAX : ambient;
- break;
- case GL_ALWAYS:
- result = CHAN_MAX;
- break;
- case GL_NEVER:
- result = ambient;
- break;
- case GL_NONE:
- CLAMPED_FLOAT_TO_CHAN(result, depthSample);
- break;
- default:
- _mesa_problem(ctx, "Bad compare func in sample_depth_texture");
- return;
- }
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- texel[i][RCOMP] = result;
- texel[i][GCOMP] = result;
- texel[i][BCOMP] = result;
- texel[i][ACOMP] = CHAN_MAX;
- break;
- case GL_INTENSITY:
- texel[i][RCOMP] = result;
- texel[i][GCOMP] = result;
- texel[i][BCOMP] = result;
- texel[i][ACOMP] = result;
- break;
- case GL_ALPHA:
- texel[i][RCOMP] = 0;
- texel[i][GCOMP] = 0;
- texel[i][BCOMP] = 0;
- texel[i][ACOMP] = result;
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
- }
- }
- else {
- GLuint i;
- ASSERT(tObj->MagFilter == GL_LINEAR);
- for (i = 0; i < n; i++) {
- GLfloat depth00, depth01, depth10, depth11;
- GLint i0, i1, j0, j1;
- GLfloat u, v;
- GLuint useBorderTexel;
-
- /* XXX fix for texture rectangle! */
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoords[i][0], u, width, i0, i1);
- COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoords[i][1], v, height,j0, j1);
-
- useBorderTexel = 0;
- if (texImage->Border) {
- i0 += texImage->Border;
- i1 += texImage->Border;
- j0 += texImage->Border;
- j1 += texImage->Border;
- }
- else {
- if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
- if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
- if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
- if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
- }
-
- /* get four depth samples from the texture */
- if (useBorderTexel & (I0BIT | J0BIT)) {
- depth00 = 1.0;
- }
- else {
- texImage->FetchTexelf(texImage, i0, j0, 0, &depth00);
- }
- if (useBorderTexel & (I1BIT | J0BIT)) {
- depth10 = 1.0;
- }
- else {
- texImage->FetchTexelf(texImage, i1, j0, 0, &depth10);
- }
- if (useBorderTexel & (I0BIT | J1BIT)) {
- depth01 = 1.0;
- }
- else {
- texImage->FetchTexelf(texImage, i0, j1, 0, &depth01);
- }
- if (useBorderTexel & (I1BIT | J1BIT)) {
- depth11 = 1.0;
- }
- else {
- texImage->FetchTexelf(texImage, i1, j1, 0, &depth11);
- }
-
- if (0) {
- /* compute a single weighted depth sample and do one comparison */
- const GLfloat a = FRAC(u + 1.0F);
- const GLfloat b = FRAC(v + 1.0F);
- const GLfloat depthSample
- = lerp_2d(a, b, depth00, depth10, depth01, depth11);
- if ((depthSample <= texcoords[i][2] && function == GL_LEQUAL) ||
- (depthSample >= texcoords[i][2] && function == GL_GEQUAL)) {
- result = ambient;
- }
- else {
- result = CHAN_MAX;
- }
- }
- else {
- /* Do four depth/R comparisons and compute a weighted result.
- * If this touches on somebody's I.P., I'll remove this code
- * upon request.
- */
- const GLfloat d = (CHAN_MAXF - (GLfloat) ambient) * 0.25F;
- GLfloat luminance = CHAN_MAXF;
-
- switch (function) {
- case GL_LEQUAL:
- if (depth00 <= texcoords[i][2]) luminance -= d;
- if (depth01 <= texcoords[i][2]) luminance -= d;
- if (depth10 <= texcoords[i][2]) luminance -= d;
- if (depth11 <= texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_GEQUAL:
- if (depth00 >= texcoords[i][2]) luminance -= d;
- if (depth01 >= texcoords[i][2]) luminance -= d;
- if (depth10 >= texcoords[i][2]) luminance -= d;
- if (depth11 >= texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_LESS:
- if (depth00 < texcoords[i][2]) luminance -= d;
- if (depth01 < texcoords[i][2]) luminance -= d;
- if (depth10 < texcoords[i][2]) luminance -= d;
- if (depth11 < texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_GREATER:
- if (depth00 > texcoords[i][2]) luminance -= d;
- if (depth01 > texcoords[i][2]) luminance -= d;
- if (depth10 > texcoords[i][2]) luminance -= d;
- if (depth11 > texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_EQUAL:
- if (depth00 == texcoords[i][2]) luminance -= d;
- if (depth01 == texcoords[i][2]) luminance -= d;
- if (depth10 == texcoords[i][2]) luminance -= d;
- if (depth11 == texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_NOTEQUAL:
- if (depth00 != texcoords[i][2]) luminance -= d;
- if (depth01 != texcoords[i][2]) luminance -= d;
- if (depth10 != texcoords[i][2]) luminance -= d;
- if (depth11 != texcoords[i][2]) luminance -= d;
- result = (GLchan) luminance;
- break;
- case GL_ALWAYS:
- result = 0;
- break;
- case GL_NEVER:
- result = CHAN_MAX;
- break;
- case GL_NONE:
- /* ordinary bilinear filtering */
- {
- const GLfloat a = FRAC(u + 1.0F);
- const GLfloat b = FRAC(v + 1.0F);
- const GLfloat depthSample
- = lerp_2d(a, b, depth00, depth10, depth01, depth11);
- CLAMPED_FLOAT_TO_CHAN(result, depthSample);
- }
- break;
- default:
- _mesa_problem(ctx, "Bad compare func in sample_depth_texture");
- return;
- }
- }
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- texel[i][RCOMP] = result;
- texel[i][GCOMP] = result;
- texel[i][BCOMP] = result;
- texel[i][ACOMP] = CHAN_MAX;
- break;
- case GL_INTENSITY:
- texel[i][RCOMP] = result;
- texel[i][GCOMP] = result;
- texel[i][BCOMP] = result;
- texel[i][ACOMP] = result;
- break;
- case GL_ALPHA:
- texel[i][RCOMP] = 0;
- texel[i][GCOMP] = 0;
- texel[i][BCOMP] = 0;
- texel[i][ACOMP] = result;
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
- } /* for */
- } /* if filter */
-}
-
-
-#if 0
-/*
- * Experimental depth texture sampling function.
- */
-static void
-sample_depth_texture2(const GLcontext *ctx,
- const struct gl_texture_unit *texUnit,
- GLuint n, const GLfloat texcoords[][4],
- GLchan texel[][4])
-{
- const struct gl_texture_object *texObj = texUnit->_Current;
- const GLint baseLevel = texObj->BaseLevel;
- const struct gl_texture_image *texImage = texObj->Image[0][baseLevel];
- const GLuint width = texImage->Width;
- const GLuint height = texImage->Height;
- GLchan ambient;
- GLboolean lequal, gequal;
-
- if (texObj->Target != GL_TEXTURE_2D) {
- _mesa_problem(ctx, "only 2-D depth textures supported at this time");
- return;
- }
-
- if (texObj->MinFilter != texObj->MagFilter) {
- _mesa_problem(ctx, "mipmapped depth textures not supported at this time");
- return;
- }
-
- /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if
- * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object
- * isn't a depth texture.
- */
- if (texImage->Format != GL_DEPTH_COMPONENT) {
- _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture");
- return;
- }
-
- UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient);
-
- if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) {
- lequal = GL_TRUE;
- gequal = GL_FALSE;
- }
- else {
- lequal = GL_FALSE;
- gequal = GL_TRUE;
- }
-
- {
- GLuint i;
- for (i = 0; i < n; i++) {
- const GLint K = 3;
- GLint col, row, ii, jj, imin, imax, jmin, jmax, samples, count;
- GLfloat w;
- GLchan lum;
- COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, texcoords[i][0],
- width, col);
- COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, texcoords[i][1],
- height, row);
-
- imin = col - K;
- imax = col + K;
- jmin = row - K;
- jmax = row + K;
-
- if (imin < 0) imin = 0;
- if (imax >= width) imax = width - 1;
- if (jmin < 0) jmin = 0;
- if (jmax >= height) jmax = height - 1;
-
- samples = (imax - imin + 1) * (jmax - jmin + 1);
- count = 0;
- for (jj = jmin; jj <= jmax; jj++) {
- for (ii = imin; ii <= imax; ii++) {
- GLfloat depthSample;
- texImage->FetchTexelf(texImage, ii, jj, 0, &depthSample);
- if ((depthSample <= r[i] && lequal) ||
- (depthSample >= r[i] && gequal)) {
- count++;
- }
- }
- }
-
- w = (GLfloat) count / (GLfloat) samples;
- w = CHAN_MAXF - w * (CHAN_MAXF - (GLfloat) ambient);
- lum = (GLint) w;
-
- texel[i][RCOMP] = lum;
- texel[i][GCOMP] = lum;
- texel[i][BCOMP] = lum;
- texel[i][ACOMP] = CHAN_MAX;
- }
- }
-}
-#endif
-
-
-/**
- * We use this function when a texture object is in an "incomplete" state.
- * When a fragment program attempts to sample an incomplete texture we
- * return black (see issue 23 in GL_ARB_fragment_program spec).
- * Note: fragment programss don't observe the texture enable/disable flags.
- */
-static void
-null_sample_func( GLcontext *ctx, GLuint texUnit,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLchan rgba[][4])
-{
- GLuint i;
- (void) ctx;
- (void) texUnit;
- (void) tObj;
- (void) texcoords;
- (void) lambda;
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = 0;
- rgba[i][GCOMP] = 0;
- rgba[i][BCOMP] = 0;
- rgba[i][ACOMP] = CHAN_MAX;
- }
-}
-
-
-/**
- * Setup the texture sampling function for this texture object.
- */
-texture_sample_func
-_swrast_choose_texture_sample_func( GLcontext *ctx,
- const struct gl_texture_object *t )
-{
- if (!t || !t->Complete) {
- return &null_sample_func;
- }
- else {
- const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
- const GLenum format = t->Image[0][t->BaseLevel]->Format;
-
- switch (t->Target) {
- case GL_TEXTURE_1D:
- if (format == GL_DEPTH_COMPONENT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_1d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_1d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_1d;
- }
- case GL_TEXTURE_2D:
- if (format == GL_DEPTH_COMPONENT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_2d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_2d;
- }
- else {
- GLint baseLevel = t->BaseLevel;
- ASSERT(t->MinFilter == GL_NEAREST);
- if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- t->_IsPowerOfTwo &&
- t->Image[0][baseLevel]->Border == 0 &&
- t->Image[0][baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGB) {
- return &opt_sample_rgb_2d;
- }
- else if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- t->_IsPowerOfTwo &&
- t->Image[0][baseLevel]->Border == 0 &&
- t->Image[0][baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGBA) {
- return &opt_sample_rgba_2d;
- }
- else {
- return &sample_nearest_2d;
- }
- }
- case GL_TEXTURE_3D:
- if (needLambda) {
- return &sample_lambda_3d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_3d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_3d;
- }
- case GL_TEXTURE_CUBE_MAP:
- if (needLambda) {
- return &sample_lambda_cube;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_cube;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_cube;
- }
- case GL_TEXTURE_RECTANGLE_NV:
- if (needLambda) {
- return &sample_lambda_rect;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_rect;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_rect;
- }
- default:
- _mesa_problem(ctx,
- "invalid target in _swrast_choose_texture_sample_func");
- return &null_sample_func;
- }
- }
-}
-
-
-/* Fixed-point products */
-#define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) )
-#define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) )
-
-
-/**
- * Do texture application for GL_ARB/EXT_texture_env_combine.
- * This function also supports GL_{EXT,ARB}_texture_env_dot3 and
- * GL_ATI_texture_env_combine3. Since "classic" texture environments are
- * implemented using GL_ARB_texture_env_combine-like state, this same function
- * is used for classic texture environment application as well.
- *
- * \param ctx rendering context
- * \param textureUnit the texture unit to apply
- * \param n number of fragments to process (span width)
- * \param primary_rgba incoming fragment color array
- * \param texelBuffer pointer to texel colors for all texture units
- *
- * \param rgba incoming colors, which get modified here
- */
-static void
-texture_combine( const GLcontext *ctx, GLuint unit, GLuint n,
- CONST GLchan (*primary_rgba)[4],
- CONST GLchan *texelBuffer,
- GLchan (*rgba)[4] )
-{
- const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
- const GLchan (*argRGB [3])[4];
- const GLchan (*argA [3])[4];
- const GLuint RGBshift = textureUnit->_CurrentCombine->ScaleShiftRGB;
- const GLuint Ashift = textureUnit->_CurrentCombine->ScaleShiftA;
-#if CHAN_TYPE == GL_FLOAT
- const GLchan RGBmult = (GLfloat) (1 << RGBshift);
- const GLchan Amult = (GLfloat) (1 << Ashift);
- static const GLchan one[4] = { 1.0, 1.0, 1.0, 1.0 };
- static const GLchan zero[4] = { 0.0, 0.0, 0.0, 0.0 };
-#else
- const GLint half = (CHAN_MAX + 1) / 2;
- static const GLchan one[4] = { CHAN_MAX, CHAN_MAX, CHAN_MAX, CHAN_MAX };
- static const GLchan zero[4] = { 0, 0, 0, 0 };
-#endif
- const GLuint numColorArgs = textureUnit->_CurrentCombine->_NumArgsRGB;
- const GLuint numAlphaArgs = textureUnit->_CurrentCombine->_NumArgsA;
- GLchan ccolor[3][MAX_WIDTH][4];
- GLuint i, j;
-
- ASSERT(ctx->Extensions.EXT_texture_env_combine ||
- ctx->Extensions.ARB_texture_env_combine);
- ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine);
-
- /*
- printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n",
- textureUnit->_CurrentCombine->ModeRGB,
- textureUnit->_CurrentCombine->ModeA,
- textureUnit->_CurrentCombine->SourceRGB[0],
- textureUnit->_CurrentCombine->SourceA[0],
- textureUnit->_CurrentCombine->SourceRGB[1],
- textureUnit->_CurrentCombine->SourceA[1]);
- */
-
- /*
- * Do operand setup for up to 3 operands. Loop over the terms.
- */
- for (j = 0; j < numColorArgs; j++) {
- const GLenum srcRGB = textureUnit->_CurrentCombine->SourceRGB[j];
-
-
- switch (srcRGB) {
- case GL_TEXTURE:
- argRGB[j] = (const GLchan (*)[4])
- (texelBuffer + unit * (n * 4 * sizeof(GLchan)));
- break;
- case GL_PRIMARY_COLOR:
- argRGB[j] = primary_rgba;
- break;
- case GL_PREVIOUS:
- argRGB[j] = (const GLchan (*)[4]) rgba;
- break;
- case GL_CONSTANT:
- {
- GLchan (*c)[4] = ccolor[j];
- GLchan red, green, blue, alpha;
- UNCLAMPED_FLOAT_TO_CHAN(red, textureUnit->EnvColor[0]);
- UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]);
- UNCLAMPED_FLOAT_TO_CHAN(blue, textureUnit->EnvColor[2]);
- UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
- for (i = 0; i < n; i++) {
- c[i][RCOMP] = red;
- c[i][GCOMP] = green;
- c[i][BCOMP] = blue;
- c[i][ACOMP] = alpha;
- }
- argRGB[j] = (const GLchan (*)[4]) ccolor[j];
- }
- break;
- /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
- */
- case GL_ZERO:
- argRGB[j] = & zero;
- break;
- case GL_ONE:
- argRGB[j] = & one;
- break;
- default:
- /* ARB_texture_env_crossbar source */
- {
- const GLuint srcUnit = srcRGB - GL_TEXTURE0;
- ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
- if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
- return;
- argRGB[j] = (const GLchan (*)[4])
- (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
- }
- }
-
- if (textureUnit->_CurrentCombine->OperandRGB[j] != GL_SRC_COLOR) {
- const GLchan (*src)[4] = argRGB[j];
- GLchan (*dst)[4] = ccolor[j];
-
- /* point to new arg[j] storage */
- argRGB[j] = (const GLchan (*)[4]) ccolor[j];
-
- if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) {
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP];
- dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP];
- dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP];
- }
- }
- else if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_SRC_ALPHA) {
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] = src[i][ACOMP];
- dst[i][GCOMP] = src[i][ACOMP];
- dst[i][BCOMP] = src[i][ACOMP];
- }
- }
- else {
- ASSERT(textureUnit->_CurrentCombine->OperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA);
- for (i = 0; i < n; i++) {
- dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP];
- dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP];
- dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP];
- }
- }
- }
- }
-
- /*
- * Set up the argA[i] pointers
- */
- for (j = 0; j < numAlphaArgs; j++) {
- const GLenum srcA = textureUnit->_CurrentCombine->SourceA[j];
-
- switch (srcA) {
- case GL_TEXTURE:
- argA[j] = (const GLchan (*)[4])
- (texelBuffer + unit * (n * 4 * sizeof(GLchan)));
- break;
- case GL_PRIMARY_COLOR:
- argA[j] = primary_rgba;
- break;
- case GL_PREVIOUS:
- argA[j] = (const GLchan (*)[4]) rgba;
- break;
- case GL_CONSTANT:
- {
- GLchan alpha, (*c)[4] = ccolor[j];
- UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
- for (i = 0; i < n; i++)
- c[i][ACOMP] = alpha;
- argA[j] = (const GLchan (*)[4]) ccolor[j];
- }
- break;
- /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources.
- */
- case GL_ZERO:
- argA[j] = & zero;
- break;
- case GL_ONE:
- argA[j] = & one;
- break;
- default:
- /* ARB_texture_env_crossbar source */
- {
- const GLuint srcUnit = srcA - GL_TEXTURE0;
- ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
- if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
- return;
- argA[j] = (const GLchan (*)[4])
- (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
- }
- }
-
- if (textureUnit->_CurrentCombine->OperandA[j] == GL_ONE_MINUS_SRC_ALPHA) {
- const GLchan (*src)[4] = argA[j];
- GLchan (*dst)[4] = ccolor[j];
- argA[j] = (const GLchan (*)[4]) ccolor[j];
- for (i = 0; i < n; i++) {
- dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP];
- }
- }
- }
-
- /*
- * Do the texture combine.
- */
- switch (textureUnit->_CurrentCombine->ModeRGB) {
- case GL_REPLACE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- if (RGBshift) {
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult;
- rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult;
- rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult;
-#else
- GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift;
- GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift;
- GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift;
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-#endif
- }
- }
- else {
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = arg0[i][RCOMP];
- rgba[i][GCOMP] = arg0[i][GCOMP];
- rgba[i][BCOMP] = arg0[i][BCOMP];
- }
- }
- }
- break;
- case GL_MODULATE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - RGBshift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult;
- rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult;
- rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult;
-#else
- GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift;
- GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift;
- GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift;
- rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_ADD:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult;
- rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult;
- rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult;
-#else
- GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift;
- GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift;
- GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift;
- rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_ADD_SIGNED:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult;
- rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult;
- rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult;
-#else
- GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half;
- GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half;
- GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half;
- r = (r < 0) ? 0 : r << RGBshift;
- g = (g < 0) ? 0 : g << RGBshift;
- b = (b < 0) ? 0 : b << RGBshift;
- rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_INTERPOLATE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - RGBshift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
- arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult;
- rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
- arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult;
- rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
- arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult;
-#else
- GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
- + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP]))
- >> shift;
- GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
- + PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP]))
- >> shift;
- GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
- + PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP]))
- >> shift;
- rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_SUBTRACT:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult;
- rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult;
- rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult;
-#else
- GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift;
- GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift;
- GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift;
- rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_DOT3_RGB_EXT:
- case GL_DOT3_RGBA_EXT:
- {
- /* Do not scale the result by 1 2 or 4 */
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
- (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
- (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
- * 4.0F;
- dot = CLAMP(dot, 0.0F, CHAN_MAXF);
-#else
- GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
- (GLint)arg1[i][RCOMP] - half) +
- S_PROD((GLint)arg0[i][GCOMP] - half,
- (GLint)arg1[i][GCOMP] - half) +
- S_PROD((GLint)arg0[i][BCOMP] - half,
- (GLint)arg1[i][BCOMP] - half)) >> 6;
- dot = CLAMP(dot, 0, CHAN_MAX);
-#endif
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
- }
- }
- break;
- case GL_DOT3_RGB:
- case GL_DOT3_RGBA:
- {
- /* DO scale the result by 1 2 or 4 */
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
- (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
- (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
- * 4.0F * RGBmult;
- dot = CLAMP(dot, 0.0, CHAN_MAXF);
-#else
- GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
- (GLint)arg1[i][RCOMP] - half) +
- S_PROD((GLint)arg0[i][GCOMP] - half,
- (GLint)arg1[i][GCOMP] - half) +
- S_PROD((GLint)arg0[i][BCOMP] - half,
- (GLint)arg1[i][BCOMP] - half)) >> 6;
- dot <<= RGBshift;
- dot = CLAMP(dot, 0, CHAN_MAX);
-#endif
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
- }
- }
- break;
- case GL_MODULATE_ADD_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - RGBshift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP]) * RGBmult;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP]) * RGBmult;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP]) * RGBmult;
-#else
- GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
- + ((GLuint) arg1[i][RCOMP] << CHAN_BITS)) >> shift;
- GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
- + ((GLuint) arg1[i][GCOMP] << CHAN_BITS)) >> shift;
- GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
- + ((GLuint) arg1[i][BCOMP] << CHAN_BITS)) >> shift;
- rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_MODULATE_SIGNED_ADD_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - RGBshift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP] - 0.5) * RGBmult;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP] - 0.5) * RGBmult;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP] - 0.5) * RGBmult;
-#else
- GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP])
- + (((GLint) arg1[i][RCOMP] - half) << CHAN_BITS))
- >> shift;
- GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP])
- + (((GLint) arg1[i][GCOMP] - half) << CHAN_BITS))
- >> shift;
- GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP])
- + (((GLint) arg1[i][BCOMP] - half) << CHAN_BITS))
- >> shift;
- rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_MODULATE_SUBTRACT_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - RGBshift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - arg1[i][RCOMP]) * RGBmult;
- rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - arg1[i][GCOMP]) * RGBmult;
- rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - arg1[i][BCOMP]) * RGBmult;
-#else
- GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP])
- - ((GLint) arg1[i][RCOMP] << CHAN_BITS))
- >> shift;
- GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP])
- - ((GLint) arg1[i][GCOMP] << CHAN_BITS))
- >> shift;
- GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP])
- - ((GLint) arg1[i][BCOMP] << CHAN_BITS))
- >> shift;
- rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
- rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
- rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- default:
- _mesa_problem(ctx, "invalid combine mode");
- }
-
- switch (textureUnit->_CurrentCombine->ModeA) {
- case GL_REPLACE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- if (Ashift) {
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- GLchan a = arg0[i][ACOMP] * Amult;
-#else
- GLuint a = (GLuint) arg0[i][ACOMP] << Ashift;
-#endif
- rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
- }
- }
- else {
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = arg0[i][ACOMP];
- }
- }
- }
- break;
- case GL_MODULATE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - Ashift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult;
-#else
- GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift);
- rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_ADD:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult;
-#else
- GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift;
- rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_ADD_SIGNED:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult;
-#else
- GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half;
- a = (a < 0) ? 0 : a << Ashift;
- rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_INTERPOLATE:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - Ashift;
-#endif
- for (i=0; i<n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
- arg1[i][ACOMP] * (CHAN_MAXF - arg2[i][ACOMP]))
- * Amult;
-#else
- GLuint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
- + PROD(arg1[i][ACOMP], CHAN_MAX - arg2[i][ACOMP]))
- >> shift;
- rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_SUBTRACT:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult;
-#else
- GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift;
- rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_MODULATE_ADD_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - Ashift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP]) * Amult;
-#else
- GLint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
- + ((GLuint) arg1[i][ACOMP] << CHAN_BITS))
- >> shift;
- rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_MODULATE_SIGNED_ADD_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - Ashift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP] - 0.5F) * Amult;
-#else
- GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP])
- + (((GLint) arg1[i][ACOMP] - half) << CHAN_BITS))
- >> shift;
- rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- case GL_MODULATE_SUBTRACT_ATI:
- {
- const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
- const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
- const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
-#if CHAN_TYPE != GL_FLOAT
- const GLint shift = CHAN_BITS - Ashift;
-#endif
- for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
- rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - arg1[i][ACOMP]) * Amult;
-#else
- GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP])
- - ((GLint) arg1[i][ACOMP] << CHAN_BITS))
- >> shift;
- rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
-#endif
- }
- }
- break;
- default:
- _mesa_problem(ctx, "invalid combine mode");
- }
-
- /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
- * This is kind of a kludge. It would have been better if the spec
- * were written such that the GL_COMBINE_ALPHA value could be set to
- * GL_DOT3.
- */
- if (textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA_EXT ||
- textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA) {
- for (i = 0; i < n; i++) {
- rgba[i][ACOMP] = rgba[i][RCOMP];
- }
- }
-}
-#undef PROD
-
-
-/**
- * Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND,
- * MODULATE, or DECAL) to an array of fragments.
- * Input: textureUnit - pointer to texture unit to apply
- * format - base internal texture format
- * n - number of fragments
- * primary_rgba - primary colors (may alias rgba for single texture)
- * texels - array of texel colors
- * InOut: rgba - incoming fragment colors modified by texel colors
- * according to the texture environment mode.
- */
-static void
-texture_apply( const GLcontext *ctx,
- const struct gl_texture_unit *texUnit,
- GLuint n,
- CONST GLchan primary_rgba[][4], CONST GLchan texel[][4],
- GLchan rgba[][4] )
-{
- GLint baseLevel;
- GLuint i;
- GLint Rc, Gc, Bc, Ac;
- GLenum format;
- (void) primary_rgba;
-
- ASSERT(texUnit);
- ASSERT(texUnit->_Current);
-
- baseLevel = texUnit->_Current->BaseLevel;
- ASSERT(texUnit->_Current->Image[0][baseLevel]);
-
- format = texUnit->_Current->Image[0][baseLevel]->Format;
-
- if (format == GL_COLOR_INDEX || format == GL_YCBCR_MESA) {
- format = GL_RGBA; /* a bit of a hack */
- }
- else if (format == GL_DEPTH_COMPONENT) {
- format = texUnit->_Current->DepthMode;
- }
-
- switch (texUnit->EnvMode) {
- case GL_REPLACE:
- switch (format) {
- case GL_ALPHA:
- for (i=0;i<n;i++) {
- /* Cv = Cf */
- /* Av = At */
- rgba[i][ACOMP] = texel[i][ACOMP];
- }
- break;
- case GL_LUMINANCE:
- for (i=0;i<n;i++) {
- /* Cv = Lt */
- GLchan Lt = texel[i][RCOMP];
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
- /* Av = Af */
- }
- break;
- case GL_LUMINANCE_ALPHA:
- for (i=0;i<n;i++) {
- GLchan Lt = texel[i][RCOMP];
- /* Cv = Lt */
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
- /* Av = At */
- rgba[i][ACOMP] = texel[i][ACOMP];
- }
- break;
- case GL_INTENSITY:
- for (i=0;i<n;i++) {
- /* Cv = It */
- GLchan It = texel[i][RCOMP];
- rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = It;
- /* Av = It */
- rgba[i][ACOMP] = It;
- }
- break;
- case GL_RGB:
- for (i=0;i<n;i++) {
- /* Cv = Ct */
- rgba[i][RCOMP] = texel[i][RCOMP];
- rgba[i][GCOMP] = texel[i][GCOMP];
- rgba[i][BCOMP] = texel[i][BCOMP];
- /* Av = Af */
- }
- break;
- case GL_RGBA:
- for (i=0;i<n;i++) {
- /* Cv = Ct */
- rgba[i][RCOMP] = texel[i][RCOMP];
- rgba[i][GCOMP] = texel[i][GCOMP];
- rgba[i][BCOMP] = texel[i][BCOMP];
- /* Av = At */
- rgba[i][ACOMP] = texel[i][ACOMP];
- }
- break;
- default:
- _mesa_problem(ctx, "Bad format (GL_REPLACE) in texture_apply");
- return;
- }
- break;
-
- case GL_MODULATE:
- switch (format) {
- case GL_ALPHA:
- for (i=0;i<n;i++) {
- /* Cv = Cf */
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
- }
- break;
- case GL_LUMINANCE:
- for (i=0;i<n;i++) {
- /* Cv = LtCf */
- GLchan Lt = texel[i][RCOMP];
- rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
- rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
- rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
- /* Av = Af */
- }
- break;
- case GL_LUMINANCE_ALPHA:
- for (i=0;i<n;i++) {
- /* Cv = CfLt */
- GLchan Lt = texel[i][RCOMP];
- rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
- rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
- rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
- }
- break;
- case GL_INTENSITY:
- for (i=0;i<n;i++) {
- /* Cv = CfIt */
- GLchan It = texel[i][RCOMP];
- rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], It );
- rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], It );
- rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], It );
- /* Av = AfIt */
- rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], It );
- }
- break;
- case GL_RGB:
- for (i=0;i<n;i++) {
- /* Cv = CfCt */
- rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
- rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
- rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
- /* Av = Af */
- }
- break;
- case GL_RGBA:
- for (i=0;i<n;i++) {
- /* Cv = CfCt */
- rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
- rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
- rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
- }
- break;
- default:
- _mesa_problem(ctx, "Bad format (GL_MODULATE) in texture_apply");
- return;
- }
- break;
-
- case GL_DECAL:
- switch (format) {
- case GL_ALPHA:
- case GL_LUMINANCE:
- case GL_LUMINANCE_ALPHA:
- case GL_INTENSITY:
- /* undefined */
- break;
- case GL_RGB:
- for (i=0;i<n;i++) {
- /* Cv = Ct */
- rgba[i][RCOMP] = texel[i][RCOMP];
- rgba[i][GCOMP] = texel[i][GCOMP];
- rgba[i][BCOMP] = texel[i][BCOMP];
- /* Av = Af */
- }
- break;
- case GL_RGBA:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-At) + CtAt */
- GLint t = texel[i][ACOMP], s = CHAN_MAX - t;
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(texel[i][RCOMP],t);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(texel[i][GCOMP],t);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(texel[i][BCOMP],t);
- /* Av = Af */
- }
- break;
- default:
- _mesa_problem(ctx, "Bad format (GL_DECAL) in texture_apply");
- return;
- }
- break;
-
- case GL_BLEND:
- Rc = (GLint) (texUnit->EnvColor[0] * CHAN_MAXF);
- Gc = (GLint) (texUnit->EnvColor[1] * CHAN_MAXF);
- Bc = (GLint) (texUnit->EnvColor[2] * CHAN_MAXF);
- Ac = (GLint) (texUnit->EnvColor[3] * CHAN_MAXF);
- switch (format) {
- case GL_ALPHA:
- for (i=0;i<n;i++) {
- /* Cv = Cf */
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
- }
- break;
- case GL_LUMINANCE:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-Lt) + CcLt */
- GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
- /* Av = Af */
- }
- break;
- case GL_LUMINANCE_ALPHA:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-Lt) + CcLt */
- GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
- }
- break;
- case GL_INTENSITY:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-It) + CcIt */
- GLchan It = texel[i][RCOMP], s = CHAN_MAX - It;
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, It);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, It);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, It);
- /* Av = Af(1-It) + Ac*It */
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], s) + CHAN_PRODUCT(Ac, It);
- }
- break;
- case GL_RGB:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-Ct) + CcCt */
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
- /* Av = Af */
- }
- break;
- case GL_RGBA:
- for (i=0;i<n;i++) {
- /* Cv = Cf(1-Ct) + CcCt */
- rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
- rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
- rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
- /* Av = AfAt */
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
- }
- break;
- default:
- _mesa_problem(ctx, "Bad format (GL_BLEND) in texture_apply");
- return;
- }
- break;
-
- /* XXX don't clamp results if GLchan is float??? */
-
- case GL_ADD: /* GL_EXT_texture_add_env */
- switch (format) {
- case GL_ALPHA:
- for (i=0;i<n;i++) {
- /* Rv = Rf */
- /* Gv = Gf */
- /* Bv = Bf */
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
- }
- break;
- case GL_LUMINANCE:
- for (i=0;i<n;i++) {
- GLuint Lt = texel[i][RCOMP];
- GLuint r = rgba[i][RCOMP] + Lt;
- GLuint g = rgba[i][GCOMP] + Lt;
- GLuint b = rgba[i][BCOMP] + Lt;
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
- /* Av = Af */
- }
- break;
- case GL_LUMINANCE_ALPHA:
- for (i=0;i<n;i++) {
- GLuint Lt = texel[i][RCOMP];
- GLuint r = rgba[i][RCOMP] + Lt;
- GLuint g = rgba[i][GCOMP] + Lt;
- GLuint b = rgba[i][BCOMP] + Lt;
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
- }
- break;
- case GL_INTENSITY:
- for (i=0;i<n;i++) {
- GLchan It = texel[i][RCOMP];
- GLuint r = rgba[i][RCOMP] + It;
- GLuint g = rgba[i][GCOMP] + It;
- GLuint b = rgba[i][BCOMP] + It;
- GLuint a = rgba[i][ACOMP] + It;
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
- rgba[i][ACOMP] = MIN2(a, CHAN_MAX);
- }
- break;
- case GL_RGB:
- for (i=0;i<n;i++) {
- GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
- GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
- GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
- /* Av = Af */
- }
- break;
- case GL_RGBA:
- for (i=0;i<n;i++) {
- GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
- GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
- GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
- rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
- rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
- rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
- rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
- }
- break;
- default:
- _mesa_problem(ctx, "Bad format (GL_ADD) in texture_apply");
- return;
- }
- break;
-
- default:
- _mesa_problem(ctx, "Bad env mode in texture_apply");
- return;
- }
-}
-
-
-
-/**
- * Apply texture mapping to a span of fragments.
- */
-void
-_swrast_texture_span( GLcontext *ctx, struct sw_span *span )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLchan primary_rgba[MAX_WIDTH][4];
- GLuint unit;
-
- ASSERT(span->end < MAX_WIDTH);
- ASSERT(span->arrayMask & SPAN_TEXTURE);
-
- /*
- * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
- */
- if (swrast->_AnyTextureCombine)
- MEMCPY(primary_rgba, span->array->rgba, 4 * span->end * sizeof(GLchan));
-
- /*
- * Must do all texture sampling before combining in order to
- * accomodate GL_ARB_texture_env_crossbar.
- */
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
- const struct gl_texture_object *curObj = texUnit->_Current;
- GLfloat *lambda = span->array->lambda[unit];
- GLchan (*texels)[4] = (GLchan (*)[4])
- (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan)));
-
- /* adjust texture lod (lambda) */
- if (span->arrayMask & SPAN_LAMBDA) {
- if (texUnit->LodBias + curObj->LodBias != 0.0F) {
- /* apply LOD bias, but don't clamp yet */
- const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
- -ctx->Const.MaxTextureLodBias,
- ctx->Const.MaxTextureLodBias);
- GLuint i;
- for (i = 0; i < span->end; i++) {
- lambda[i] += bias;
- }
- }
-
- if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
- /* apply LOD clamping to lambda */
- const GLfloat min = curObj->MinLod;
- const GLfloat max = curObj->MaxLod;
- GLuint i;
- for (i = 0; i < span->end; i++) {
- GLfloat l = lambda[i];
- lambda[i] = CLAMP(l, min, max);
- }
- }
- }
-
- /* Sample the texture (span->end fragments) */
- swrast->TextureSample[unit]( ctx, unit, texUnit->_Current, span->end,
- (const GLfloat (*)[4]) span->array->texcoords[unit],
- lambda, texels );
-
- /* GL_SGI_texture_color_table */
- if (texUnit->ColorTableEnabled) {
- _mesa_lookup_rgba_chan(&texUnit->ColorTable, span->end, texels);
- }
- }
- }
-
- /*
- * OK, now apply the texture (aka texture combine/blend).
- * We modify the span->color.rgba values.
- */
- for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
- if (ctx->Texture.Unit[unit]._ReallyEnabled) {
- const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
- if (texUnit->_CurrentCombine != &texUnit->_EnvMode ) {
- texture_combine( ctx, unit, span->end,
- (CONST GLchan (*)[4]) primary_rgba,
- swrast->TexelBuffer,
- span->array->rgba );
- }
- else {
- /* conventional texture blend */
- const GLchan (*texels)[4] = (const GLchan (*)[4])
- (swrast->TexelBuffer + unit *
- (span->end * 4 * sizeof(GLchan)));
- texture_apply( ctx, texUnit, span->end,
- (CONST GLchan (*)[4]) primary_rgba, texels,
- span->array->rgba );
- }
- }
- }
-}