aboutsummaryrefslogtreecommitdiffstats
path: root/src/mesa/main/nvvertexec.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/main/nvvertexec.c')
-rw-r--r--src/mesa/main/nvvertexec.c839
1 files changed, 0 insertions, 839 deletions
diff --git a/src/mesa/main/nvvertexec.c b/src/mesa/main/nvvertexec.c
deleted file mode 100644
index 9663b38157d..00000000000
--- a/src/mesa/main/nvvertexec.c
+++ /dev/null
@@ -1,839 +0,0 @@
-/*
- * Mesa 3-D graphics library
- * Version: 6.0.1
- *
- * Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file nvvertexec.c
- * Code to execute vertex programs.
- * \author Brian Paul
- */
-
-#include "glheader.h"
-#include "context.h"
-#include "imports.h"
-#include "macros.h"
-#include "mtypes.h"
-#include "nvvertexec.h"
-#include "nvvertprog.h"
-#include "program.h"
-#include "math/m_matrix.h"
-
-
-static const GLfloat zeroVec[4] = { 0, 0, 0, 0 };
-
-
-/**
- * Load/initialize the vertex program registers.
- * This needs to be done per vertex.
- */
-void
-_mesa_init_vp_registers(GLcontext *ctx)
-{
- GLuint i;
-
- /* Input registers get initialized from the current vertex attribs */
- MEMCPY(ctx->VertexProgram.Inputs, ctx->Current.Attrib,
- VERT_ATTRIB_MAX * 4 * sizeof(GLfloat));
-
- /* Output and temp regs are initialized to [0,0,0,1] */
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_OUTPUTS; i++) {
- ASSIGN_4V(ctx->VertexProgram.Outputs[i], 0.0F, 0.0F, 0.0F, 1.0F);
- }
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_TEMPS; i++) {
- ASSIGN_4V(ctx->VertexProgram.Temporaries[i], 0.0F, 0.0F, 0.0F, 1.0F);
- }
-
- /* The program parameters aren't touched */
- /* XXX: This should be moved to glBegin() time, but its safe (and slow!)
- * here - Karl
- */
- if (ctx->VertexProgram.Current->Parameters) {
- /* Grab the state */
- _mesa_load_state_parameters(ctx, ctx->VertexProgram.Current->Parameters);
-
- /* And copy it into the program state */
- for (i=0; i<ctx->VertexProgram.Current->Parameters->NumParameters; i++) {
- MEMCPY(ctx->VertexProgram.Parameters[i],
- &ctx->VertexProgram.Current->Parameters->Parameters[i].Values,
- 4*sizeof(GLfloat));
- }
- }
-}
-
-
-
-/**
- * Copy the 16 elements of a matrix into four consecutive program
- * registers starting at 'pos'.
- */
-static void
-load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
-{
- GLuint i;
- for (i = 0; i < 4; i++) {
- registers[pos + i][0] = mat[0 + i];
- registers[pos + i][1] = mat[4 + i];
- registers[pos + i][2] = mat[8 + i];
- registers[pos + i][3] = mat[12 + i];
- }
-}
-
-
-/**
- * As above, but transpose the matrix.
- */
-static void
-load_transpose_matrix(GLfloat registers[][4], GLuint pos,
- const GLfloat mat[16])
-{
- MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
-}
-
-
-/**
- * Load all currently tracked matrices into the program registers.
- * This needs to be done per glBegin/glEnd.
- */
-void
-_mesa_init_tracked_matrices(GLcontext *ctx)
-{
- GLuint i;
-
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
- /* point 'mat' at source matrix */
- GLmatrix *mat;
- if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
- mat = ctx->ModelviewMatrixStack.Top;
- }
- else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
- mat = ctx->ProjectionMatrixStack.Top;
- }
- else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
- mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
- }
- else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
- mat = ctx->ColorMatrixStack.Top;
- }
- else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
- /* XXX verify the combined matrix is up to date */
- mat = &ctx->_ModelProjectMatrix;
- }
- else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
- ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
- GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
- ASSERT(n < MAX_PROGRAM_MATRICES);
- mat = ctx->ProgramMatrixStack[n].Top;
- }
- else {
- /* no matrix is tracked, but we leave the register values as-is */
- assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
- continue;
- }
-
- /* load the matrix */
- if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
- load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
- }
- else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
- _math_matrix_analyse(mat); /* update the inverse */
- assert((mat->flags & MAT_DIRTY_INVERSE) == 0);
- load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
- }
- else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
- load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
- }
- else {
- assert(ctx->VertexProgram.TrackMatrixTransform[i]
- == GL_INVERSE_TRANSPOSE_NV);
- _math_matrix_analyse(mat); /* update the inverse */
- assert((mat->flags & MAT_DIRTY_INVERSE) == 0);
- load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
- }
- }
-}
-
-
-
-/**
- * For debugging. Dump the current vertex program machine registers.
- */
-void
-_mesa_dump_vp_state( const struct vertex_program_state *state )
-{
- int i;
- _mesa_printf("VertexIn:\n");
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_INPUTS; i++) {
- _mesa_printf("%d: %f %f %f %f ", i,
- state->Inputs[i][0],
- state->Inputs[i][1],
- state->Inputs[i][2],
- state->Inputs[i][3]);
- }
- _mesa_printf("\n");
-
- _mesa_printf("VertexOut:\n");
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_OUTPUTS; i++) {
- _mesa_printf("%d: %f %f %f %f ", i,
- state->Outputs[i][0],
- state->Outputs[i][1],
- state->Outputs[i][2],
- state->Outputs[i][3]);
- }
- _mesa_printf("\n");
-
- _mesa_printf("Registers:\n");
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_TEMPS; i++) {
- _mesa_printf("%d: %f %f %f %f ", i,
- state->Temporaries[i][0],
- state->Temporaries[i][1],
- state->Temporaries[i][2],
- state->Temporaries[i][3]);
- }
- _mesa_printf("\n");
-
- _mesa_printf("Parameters:\n");
- for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS; i++) {
- _mesa_printf("%d: %f %f %f %f ", i,
- state->Parameters[i][0],
- state->Parameters[i][1],
- state->Parameters[i][2],
- state->Parameters[i][3]);
- }
- _mesa_printf("\n");
-}
-
-
-
-/**
- * Return a pointer to the 4-element float vector specified by the given
- * source register.
- */
-static INLINE const GLfloat *
-get_register_pointer( const struct vp_src_register *source,
- const struct vertex_program_state *state )
-{
- if (source->RelAddr) {
- const GLint reg = source->Index + state->AddressReg[0];
- ASSERT( (source->File == PROGRAM_ENV_PARAM) ||
- (source->File == PROGRAM_STATE_VAR) );
- if (reg < 0 || reg > MAX_NV_VERTEX_PROGRAM_PARAMS)
- return zeroVec;
- else
- return state->Parameters[reg];
- }
- else {
- switch (source->File) {
- case PROGRAM_TEMPORARY:
- return state->Temporaries[source->Index];
- case PROGRAM_INPUT:
- return state->Inputs[source->Index];
- case PROGRAM_LOCAL_PARAM:
- /* XXX fix */
- return state->Temporaries[source->Index];
- case PROGRAM_ENV_PARAM:
- return state->Parameters[source->Index];
- case PROGRAM_STATE_VAR:
- return state->Parameters[source->Index];
- default:
- _mesa_problem(NULL,
- "Bad source register file in fetch_vector4(vp)");
- return NULL;
- }
- }
- return NULL;
-}
-
-
-/**
- * Fetch a 4-element float vector from the given source register.
- * Apply swizzling and negating as needed.
- */
-static INLINE void
-fetch_vector4( const struct vp_src_register *source,
- const struct vertex_program_state *state,
- GLfloat result[4] )
-{
- const GLfloat *src = get_register_pointer(source, state);
-
- if (source->Negate) {
- result[0] = -src[source->Swizzle[0]];
- result[1] = -src[source->Swizzle[1]];
- result[2] = -src[source->Swizzle[2]];
- result[3] = -src[source->Swizzle[3]];
- }
- else {
- result[0] = src[source->Swizzle[0]];
- result[1] = src[source->Swizzle[1]];
- result[2] = src[source->Swizzle[2]];
- result[3] = src[source->Swizzle[3]];
- }
-}
-
-
-
-/**
- * As above, but only return result[0] element.
- */
-static INLINE void
-fetch_vector1( const struct vp_src_register *source,
- const struct vertex_program_state *state,
- GLfloat result[4] )
-{
- const GLfloat *src = get_register_pointer(source, state);
-
- if (source->Negate) {
- result[0] = -src[source->Swizzle[0]];
- }
- else {
- result[0] = src[source->Swizzle[0]];
- }
-}
-
-
-/**
- * Store 4 floats into a register.
- */
-static void
-store_vector4( const struct vp_dst_register *dest,
- struct vertex_program_state *state,
- const GLfloat value[4] )
-{
- GLfloat *dst;
- switch (dest->File) {
- case PROGRAM_TEMPORARY:
- dst = state->Temporaries[dest->Index];
- break;
- case PROGRAM_OUTPUT:
- dst = state->Outputs[dest->Index];
- break;
- case PROGRAM_ENV_PARAM:
- {
- /* a slight hack */
- GET_CURRENT_CONTEXT(ctx);
- dst = ctx->VertexProgram.Parameters[dest->Index];
- }
- break;
- default:
- _mesa_problem(NULL, "Invalid register file in store_vector4(file=%d)",
- dest->File);
- return;
- }
-
- if (dest->WriteMask[0])
- dst[0] = value[0];
- if (dest->WriteMask[1])
- dst[1] = value[1];
- if (dest->WriteMask[2])
- dst[2] = value[2];
- if (dest->WriteMask[3])
- dst[3] = value[3];
-}
-
-
-/**
- * Set x to positive or negative infinity.
- */
-#if defined(USE_IEEE) || defined(_WIN32)
-#define SET_POS_INFINITY(x) ( *((GLuint *) &x) = 0x7F800000 )
-#define SET_NEG_INFINITY(x) ( *((GLuint *) &x) = 0xFF800000 )
-#elif defined(VMS)
-#define SET_POS_INFINITY(x) x = __MAXFLOAT
-#define SET_NEG_INFINITY(x) x = -__MAXFLOAT
-#else
-#define SET_POS_INFINITY(x) x = (GLfloat) HUGE_VAL
-#define SET_NEG_INFINITY(x) x = (GLfloat) -HUGE_VAL
-#endif
-
-#define SET_FLOAT_BITS(x, bits) ((fi_type *) &(x))->i = bits
-
-
-/**
- * Execute the given vertex program
- */
-void
-_mesa_exec_vertex_program(GLcontext *ctx, const struct vertex_program *program)
-{
- struct vertex_program_state *state = &ctx->VertexProgram;
- const struct vp_instruction *inst;
-
- ctx->_CurrentProgram = GL_VERTEX_PROGRAM_ARB; /* or NV, doesn't matter */
-
- /* If the program is position invariant, multiply the input
- * position and the MVP matrix and stick it into the output pos slot
- */
- if (ctx->VertexProgram.Current->IsPositionInvariant) {
- TRANSFORM_POINT( ctx->VertexProgram.Outputs[0],
- ctx->_ModelProjectMatrix.m,
- ctx->VertexProgram.Inputs[0]);
-
- /* XXX: This could go elsewhere */
- ctx->VertexProgram.Current->OutputsWritten |= 0x1;
- }
-
- for (inst = program->Instructions; /*inst->Opcode != VP_OPCODE_END*/; inst++) {
-
- if (ctx->VertexProgram.CallbackEnabled &&
- ctx->VertexProgram.Callback) {
- ctx->VertexProgram.CurrentPosition = inst->StringPos;
- ctx->VertexProgram.Callback(program->Base.Target,
- ctx->VertexProgram.CallbackData);
- }
-
- switch (inst->Opcode) {
- case VP_OPCODE_MOV:
- {
- GLfloat t[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_LIT:
- {
- const GLfloat epsilon = 1.0e-5F; /* XXX fix? */
- GLfloat t[4], lit[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- if (t[3] < -(128.0F - epsilon))
- t[3] = - (128.0F - epsilon);
- else if (t[3] > 128.0F - epsilon)
- t[3] = 128.0F - epsilon;
- if (t[0] < 0.0)
- t[0] = 0.0;
- if (t[1] < 0.0)
- t[1] = 0.0;
- lit[0] = 1.0;
- lit[1] = t[0];
- lit[2] = (t[0] > 0.0) ? (GLfloat) exp(t[3] * log(t[1])) : 0.0F;
- lit[3] = 1.0;
- store_vector4( &inst->DstReg, state, lit );
- }
- break;
- case VP_OPCODE_RCP:
- {
- GLfloat t[4];
- fetch_vector1( &inst->SrcReg[0], state, t );
- if (t[0] != 1.0F)
- t[0] = 1.0F / t[0]; /* div by zero is infinity! */
- t[1] = t[2] = t[3] = t[0];
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_RSQ:
- {
- GLfloat t[4];
- fetch_vector1( &inst->SrcReg[0], state, t );
- t[0] = INV_SQRTF(FABSF(t[0]));
- t[1] = t[2] = t[3] = t[0];
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_EXP:
- {
- GLfloat t[4], q[4], floor_t0;
- fetch_vector1( &inst->SrcReg[0], state, t );
- floor_t0 = (float) floor(t[0]);
- if (floor_t0 > FLT_MAX_EXP) {
- SET_POS_INFINITY(q[0]);
- SET_POS_INFINITY(q[2]);
- }
- else if (floor_t0 < FLT_MIN_EXP) {
- q[0] = 0.0F;
- q[2] = 0.0F;
- }
- else {
-#ifdef USE_IEEE
- GLint ii = (GLint) floor_t0;
- ii = (ii < 23) + 0x3f800000;
- SET_FLOAT_BITS(q[0], ii);
- q[0] = *((GLfloat *) &ii);
-#else
- q[0] = (GLfloat) pow(2.0, floor_t0);
-#endif
- q[2] = (GLfloat) (q[0] * LOG2(q[1]));
- }
- q[1] = t[0] - floor_t0;
- q[3] = 1.0F;
- store_vector4( &inst->DstReg, state, q );
- }
- break;
- case VP_OPCODE_LOG:
- {
- GLfloat t[4], q[4], abs_t0;
- fetch_vector1( &inst->SrcReg[0], state, t );
- abs_t0 = (GLfloat) fabs(t[0]);
- if (abs_t0 != 0.0F) {
- /* Since we really can't handle infinite values on VMS
- * like other OSes we'll use __MAXFLOAT to represent
- * infinity. This may need some tweaking.
- */
-#ifdef VMS
- if (abs_t0 == __MAXFLOAT)
-#else
- if (IS_INF_OR_NAN(abs_t0))
-#endif
- {
- SET_POS_INFINITY(q[0]);
- q[1] = 1.0F;
- SET_POS_INFINITY(q[2]);
- }
- else {
- int exponent;
- double mantissa = frexp(t[0], &exponent);
- q[0] = (GLfloat) (exponent - 1);
- q[1] = (GLfloat) (2.0 * mantissa); /* map [.5, 1) -> [1, 2) */
- q[2] = (GLfloat) (q[0] + LOG2(q[1]));
- }
- }
- else {
- SET_NEG_INFINITY(q[0]);
- q[1] = 1.0F;
- SET_NEG_INFINITY(q[2]);
- }
- q[3] = 1.0;
- store_vector4( &inst->DstReg, state, q );
- }
- break;
- case VP_OPCODE_MUL:
- {
- GLfloat t[4], u[4], prod[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- prod[0] = t[0] * u[0];
- prod[1] = t[1] * u[1];
- prod[2] = t[2] * u[2];
- prod[3] = t[3] * u[3];
- store_vector4( &inst->DstReg, state, prod );
- }
- break;
- case VP_OPCODE_ADD:
- {
- GLfloat t[4], u[4], sum[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- sum[0] = t[0] + u[0];
- sum[1] = t[1] + u[1];
- sum[2] = t[2] + u[2];
- sum[3] = t[3] + u[3];
- store_vector4( &inst->DstReg, state, sum );
- }
- break;
- case VP_OPCODE_DP3:
- {
- GLfloat t[4], u[4], dot[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2];
- dot[1] = dot[2] = dot[3] = dot[0];
- store_vector4( &inst->DstReg, state, dot );
- }
- break;
- case VP_OPCODE_DP4:
- {
- GLfloat t[4], u[4], dot[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + t[3] * u[3];
- dot[1] = dot[2] = dot[3] = dot[0];
- store_vector4( &inst->DstReg, state, dot );
- }
- break;
- case VP_OPCODE_DST:
- {
- GLfloat t[4], u[4], dst[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- dst[0] = 1.0F;
- dst[1] = t[1] * u[1];
- dst[2] = t[2];
- dst[3] = u[3];
- store_vector4( &inst->DstReg, state, dst );
- }
- break;
- case VP_OPCODE_MIN:
- {
- GLfloat t[4], u[4], min[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- min[0] = (t[0] < u[0]) ? t[0] : u[0];
- min[1] = (t[1] < u[1]) ? t[1] : u[1];
- min[2] = (t[2] < u[2]) ? t[2] : u[2];
- min[3] = (t[3] < u[3]) ? t[3] : u[3];
- store_vector4( &inst->DstReg, state, min );
- }
- break;
- case VP_OPCODE_MAX:
- {
- GLfloat t[4], u[4], max[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- max[0] = (t[0] > u[0]) ? t[0] : u[0];
- max[1] = (t[1] > u[1]) ? t[1] : u[1];
- max[2] = (t[2] > u[2]) ? t[2] : u[2];
- max[3] = (t[3] > u[3]) ? t[3] : u[3];
- store_vector4( &inst->DstReg, state, max );
- }
- break;
- case VP_OPCODE_SLT:
- {
- GLfloat t[4], u[4], slt[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- slt[0] = (t[0] < u[0]) ? 1.0F : 0.0F;
- slt[1] = (t[1] < u[1]) ? 1.0F : 0.0F;
- slt[2] = (t[2] < u[2]) ? 1.0F : 0.0F;
- slt[3] = (t[3] < u[3]) ? 1.0F : 0.0F;
- store_vector4( &inst->DstReg, state, slt );
- }
- break;
- case VP_OPCODE_SGE:
- {
- GLfloat t[4], u[4], sge[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- sge[0] = (t[0] >= u[0]) ? 1.0F : 0.0F;
- sge[1] = (t[1] >= u[1]) ? 1.0F : 0.0F;
- sge[2] = (t[2] >= u[2]) ? 1.0F : 0.0F;
- sge[3] = (t[3] >= u[3]) ? 1.0F : 0.0F;
- store_vector4( &inst->DstReg, state, sge );
- }
- break;
- case VP_OPCODE_MAD:
- {
- GLfloat t[4], u[4], v[4], sum[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- fetch_vector4( &inst->SrcReg[2], state, v );
- sum[0] = t[0] * u[0] + v[0];
- sum[1] = t[1] * u[1] + v[1];
- sum[2] = t[2] * u[2] + v[2];
- sum[3] = t[3] * u[3] + v[3];
- store_vector4( &inst->DstReg, state, sum );
- }
- break;
- case VP_OPCODE_ARL:
- {
- GLfloat t[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- state->AddressReg[0] = (GLint) floor(t[0]);
- }
- break;
- case VP_OPCODE_DPH:
- {
- GLfloat t[4], u[4], dot[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- dot[0] = t[0] * u[0] + t[1] * u[1] + t[2] * u[2] + u[3];
- dot[1] = dot[2] = dot[3] = dot[0];
- store_vector4( &inst->DstReg, state, dot );
- }
- break;
- case VP_OPCODE_RCC:
- {
- GLfloat t[4], u;
- fetch_vector1( &inst->SrcReg[0], state, t );
- if (t[0] == 1.0F)
- u = 1.0F;
- else
- u = 1.0F / t[0];
- if (u > 0.0F) {
- if (u > 1.884467e+019F) {
- u = 1.884467e+019F; /* IEEE 32-bit binary value 0x5F800000 */
- }
- else if (u < 5.42101e-020F) {
- u = 5.42101e-020F; /* IEEE 32-bit binary value 0x1F800000 */
- }
- }
- else {
- if (u < -1.884467e+019F) {
- u = -1.884467e+019F; /* IEEE 32-bit binary value 0xDF800000 */
- }
- else if (u > -5.42101e-020F) {
- u = -5.42101e-020F; /* IEEE 32-bit binary value 0x9F800000 */
- }
- }
- t[0] = t[1] = t[2] = t[3] = u;
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_SUB: /* GL_NV_vertex_program1_1 */
- {
- GLfloat t[4], u[4], sum[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- sum[0] = t[0] - u[0];
- sum[1] = t[1] - u[1];
- sum[2] = t[2] - u[2];
- sum[3] = t[3] - u[3];
- store_vector4( &inst->DstReg, state, sum );
- }
- break;
- case VP_OPCODE_ABS: /* GL_NV_vertex_program1_1 */
- {
- GLfloat t[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- if (t[0] < 0.0) t[0] = -t[0];
- if (t[1] < 0.0) t[1] = -t[1];
- if (t[2] < 0.0) t[2] = -t[2];
- if (t[3] < 0.0) t[3] = -t[3];
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_FLR: /* GL_ARB_vertex_program */
- {
- GLfloat t[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- t[0] = FLOORF(t[0]);
- t[1] = FLOORF(t[1]);
- t[2] = FLOORF(t[2]);
- t[3] = FLOORF(t[3]);
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_FRC: /* GL_ARB_vertex_program */
- {
- GLfloat t[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- t[0] = t[0] - FLOORF(t[0]);
- t[1] = t[1] - FLOORF(t[1]);
- t[2] = t[2] - FLOORF(t[2]);
- t[3] = t[3] - FLOORF(t[3]);
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_EX2: /* GL_ARB_vertex_program */
- {
- GLfloat t[4];
- fetch_vector1( &inst->SrcReg[0], state, t );
- t[0] = t[1] = t[2] = t[3] = (GLfloat)_mesa_pow(2.0, t[0]);
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_LG2: /* GL_ARB_vertex_program */
- {
- GLfloat t[4];
- fetch_vector1( &inst->SrcReg[0], state, t );
- t[0] = t[1] = t[2] = t[3] = LOG2(t[0]);
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_POW: /* GL_ARB_vertex_program */
- {
- GLfloat t[4], u[4];
- fetch_vector1( &inst->SrcReg[0], state, t );
- fetch_vector1( &inst->SrcReg[1], state, u );
- t[0] = t[1] = t[2] = t[3] = (GLfloat)_mesa_pow(t[0], u[0]);
- store_vector4( &inst->DstReg, state, t );
- }
- break;
- case VP_OPCODE_XPD: /* GL_ARB_vertex_program */
- {
- GLfloat t[4], u[4], cross[4];
- fetch_vector4( &inst->SrcReg[0], state, t );
- fetch_vector4( &inst->SrcReg[1], state, u );
- cross[0] = t[1] * u[2] - t[2] * u[1];
- cross[1] = t[2] * u[0] - t[0] * u[2];
- cross[2] = t[0] * u[1] - t[1] * u[0];
- store_vector4( &inst->DstReg, state, cross );
- }
- break;
- case VP_OPCODE_SWZ: /* GL_ARB_vertex_program */
- {
- const struct vp_src_register *source = &inst->SrcReg[0];
- const GLfloat *src = get_register_pointer(source, state);
- GLfloat result[4];
- GLuint i;
-
- /* do extended swizzling here */
- for (i = 0; i < 3; i++) {
- if (source->Swizzle[i] == SWIZZLE_ZERO)
- result[i] = 0.0;
- else if (source->Swizzle[i] == SWIZZLE_ONE)
- result[i] = -1.0;
- else
- result[i] = -src[source->Swizzle[i]];
- if (source->Negate)
- result[i] = -result[i];
- }
- store_vector4( &inst->DstReg, state, result );
- }
- break;
-
- case VP_OPCODE_END:
- ctx->_CurrentProgram = 0;
- return;
- default:
- /* bad instruction opcode */
- _mesa_problem(ctx, "Bad VP Opcode in _mesa_exec_vertex_program");
- ctx->_CurrentProgram = 0;
- return;
- } /* switch */
- } /* for */
-
- ctx->_CurrentProgram = 0;
-}
-
-
-
-/**
-Thoughts on vertex program optimization:
-
-The obvious thing to do is to compile the vertex program into X86/SSE/3DNow!
-assembly code. That will probably be a lot of work.
-
-Another approach might be to replace the vp_instruction->Opcode field with
-a pointer to a specialized C function which executes the instruction.
-In particular we can write functions which skip swizzling, negating,
-masking, relative addressing, etc. when they're not needed.
-
-For example:
-
-void simple_add( struct vp_instruction *inst )
-{
- GLfloat *sum = machine->Registers[inst->DstReg.Register];
- GLfloat *a = machine->Registers[inst->SrcReg[0].Register];
- GLfloat *b = machine->Registers[inst->SrcReg[1].Register];
- sum[0] = a[0] + b[0];
- sum[1] = a[1] + b[1];
- sum[2] = a[2] + b[2];
- sum[3] = a[3] + b[3];
-}
-
-*/
-
-/*
-
-KW:
-
-A first step would be to 'vectorize' the programs in the same way as
-the normal transformation code in the tnl module. Thus each opcode
-takes zero or more input vectors (registers) and produces one or more
-output vectors.
-
-These operations would intially be coded in C, with machine-specific
-assembly following, as is currently the case for matrix
-transformations in the math/ directory. The preprocessing scheme for
-selecting simpler operations Brian describes above would also work
-here.
-
-This should give reasonable performance without excessive effort.
-
-*/