summaryrefslogtreecommitdiffstats
path: root/src/mesa/main/matrix.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/main/matrix.c')
-rw-r--r--src/mesa/main/matrix.c1438
1 files changed, 1438 insertions, 0 deletions
diff --git a/src/mesa/main/matrix.c b/src/mesa/main/matrix.c
new file mode 100644
index 00000000000..c6459947fe5
--- /dev/null
+++ b/src/mesa/main/matrix.c
@@ -0,0 +1,1438 @@
+/* $Id: matrix.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 3.1
+ *
+ * Copyright (C) 1999 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+
+
+
+/*
+ * Matrix operations
+ *
+ *
+ * NOTES:
+ * 1. 4x4 transformation matrices are stored in memory in column major order.
+ * 2. Points/vertices are to be thought of as column vectors.
+ * 3. Transformation of a point p by a matrix M is: p' = M * p
+ *
+ */
+
+
+#ifdef PC_HEADER
+#include "all.h"
+#else
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include "context.h"
+#include "enums.h"
+#include "macros.h"
+#include "matrix.h"
+#include "mmath.h"
+#include "types.h"
+#ifdef XFree86Server
+#include "GL/xf86glx.h"
+#endif
+#endif
+
+
+static const char *types[] = {
+ "MATRIX_GENERAL",
+ "MATRIX_IDENTITY",
+ "MATRIX_3D_NO_ROT",
+ "MATRIX_PERSPECTIVE",
+ "MATRIX_2D",
+ "MATRIX_2D_NO_ROT",
+ "MATRIX_3D"
+};
+static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b );
+
+
+static GLfloat Identity[16] = {
+ 1.0, 0.0, 0.0, 0.0,
+ 0.0, 1.0, 0.0, 0.0,
+ 0.0, 0.0, 1.0, 0.0,
+ 0.0, 0.0, 0.0, 1.0
+};
+
+
+static void print_matrix_floats( const GLfloat m[16] )
+{
+ int i;
+ for (i=0;i<4;i++) {
+ fprintf(stderr,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
+ }
+}
+
+void gl_print_matrix( const GLmatrix *m )
+{
+ fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
+ print_matrix_floats(m->m);
+#if 1
+ fprintf(stderr, "Inverse: \n");
+ if (m->inv) {
+ GLfloat prod[16];
+ print_matrix_floats(m->inv);
+ matmul4(prod, m->m, m->inv);
+ fprintf(stderr, "Mat * Inverse:\n");
+ print_matrix_floats(prod);
+ } else
+ fprintf(stderr, " - not available\n");
+#endif
+}
+
+
+
+/*
+ * This matmul was contributed by Thomas Malik
+ *
+ * Perform a 4x4 matrix multiplication (product = a x b).
+ * Input: a, b - matrices to multiply
+ * Output: product - product of a and b
+ * WARNING: (product != b) assumed
+ * NOTE: (product == a) allowed
+ *
+ * KW: 4*16 = 64 muls
+ */
+#define A(row,col) a[(col<<2)+row]
+#define B(row,col) b[(col<<2)+row]
+#define P(row,col) product[(col<<2)+row]
+
+static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
+{
+ GLint i;
+ for (i = 0; i < 4; i++) {
+ GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
+ P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
+ P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
+ P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
+ P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
+ }
+}
+
+
+
+
+/* Multiply two matrices known to occupy only the top three rows,
+ * such as typical modelling matrices, and ortho matrices.
+ *
+ * KW: 3*9 = 27 muls
+ */
+static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
+{
+ GLint i;
+ for (i = 0; i < 3; i++) {
+ GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
+ P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
+ P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
+ P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
+ P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
+ }
+ P(3,0) = 0;
+ P(3,1) = 0;
+ P(3,2) = 0;
+ P(3,3) = 1;
+}
+
+static void matmul4fd( GLfloat *product, const GLfloat *a, const GLdouble *b )
+{
+ GLint i;
+ for (i = 0; i < 4; i++) {
+ GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
+ P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
+ P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
+ P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
+ P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
+ }
+}
+
+#undef A
+#undef B
+#undef P
+
+
+
+#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
+#define MAT(m,r,c) (m)[(c)*4+(r)]
+
+/*
+ * Compute inverse of 4x4 transformation matrix.
+ * Code contributed by Jacques Leroy [email protected]
+ * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
+ */
+static GLboolean invert_matrix_general( GLmatrix *mat )
+{
+ const GLfloat *m = mat->m;
+ GLfloat *out = mat->inv;
+ GLfloat wtmp[4][8];
+ GLfloat m0, m1, m2, m3, s;
+ GLfloat *r0, *r1, *r2, *r3;
+
+ r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
+
+ r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
+ r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
+ r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
+
+ r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
+ r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
+ r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
+
+ r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
+ r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
+ r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
+
+ r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
+ r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
+ r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
+
+ /* choose pivot - or die */
+ if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
+ if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
+ if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
+ if (0.0 == r0[0]) return GL_FALSE;
+
+ /* eliminate first variable */
+ m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
+ s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
+ s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
+ s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
+ s = r0[4];
+ if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
+ s = r0[5];
+ if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
+ s = r0[6];
+ if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
+ s = r0[7];
+ if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
+
+ /* choose pivot - or die */
+ if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
+ if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
+ if (0.0 == r1[1]) return GL_FALSE;
+
+ /* eliminate second variable */
+ m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
+ r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
+ r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
+ s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
+ s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
+ s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
+ s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
+
+ /* choose pivot - or die */
+ if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
+ if (0.0 == r2[2]) return GL_FALSE;
+
+ /* eliminate third variable */
+ m3 = r3[2]/r2[2];
+ r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
+ r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
+ r3[7] -= m3 * r2[7];
+
+ /* last check */
+ if (0.0 == r3[3]) return GL_FALSE;
+
+ s = 1.0/r3[3]; /* now back substitute row 3 */
+ r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
+
+ m2 = r2[3]; /* now back substitute row 2 */
+ s = 1.0/r2[2];
+ r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
+ r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
+ m1 = r1[3];
+ r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
+ r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
+ m0 = r0[3];
+ r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
+ r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
+
+ m1 = r1[2]; /* now back substitute row 1 */
+ s = 1.0/r1[1];
+ r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
+ r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
+ m0 = r0[2];
+ r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
+ r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
+
+ m0 = r0[1]; /* now back substitute row 0 */
+ s = 1.0/r0[0];
+ r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
+ r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
+
+ MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
+ MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
+ MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
+ MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
+ MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
+ MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
+ MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
+ MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
+
+ return GL_TRUE;
+}
+#undef SWAP_ROWS
+
+/* Adapted from graphics gems II.
+ */
+GLboolean invert_matrix_3d_general( GLmatrix *mat )
+{
+ const GLfloat *in = mat->m;
+ GLfloat *out = mat->inv;
+ GLfloat pos, neg, t;
+ GLfloat det;
+
+ /* Calculate the determinant of upper left 3x3 submatrix and
+ * determine if the matrix is singular.
+ */
+ pos = neg = 0.0;
+ t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
+ if (t >= 0.0) pos += t; else neg += t;
+
+ det = pos + neg;
+
+ if (det*det < 1e-25)
+ return GL_FALSE;
+
+ det = 1.0 / det;
+ MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
+ MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
+ MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
+ MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
+ MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
+ MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
+ MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
+ MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
+ MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
+
+ /* Do the translation part */
+ MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
+ MAT(in,1,3) * MAT(out,0,1) +
+ MAT(in,2,3) * MAT(out,0,2) );
+ MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
+ MAT(in,1,3) * MAT(out,1,1) +
+ MAT(in,2,3) * MAT(out,1,2) );
+ MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
+ MAT(in,1,3) * MAT(out,2,1) +
+ MAT(in,2,3) * MAT(out,2,2) );
+
+ return GL_TRUE;
+}
+
+
+static GLboolean invert_matrix_3d( GLmatrix *mat )
+{
+ const GLfloat *in = mat->m;
+ GLfloat *out = mat->inv;
+
+ if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING))
+ {
+ return invert_matrix_3d_general( mat );
+ }
+
+ if (mat->flags & MAT_FLAG_UNIFORM_SCALE)
+ {
+ GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
+ MAT(in,0,1) * MAT(in,0,1) +
+ MAT(in,0,2) * MAT(in,0,2));
+
+ if (scale == 0.0)
+ return GL_FALSE;
+
+ scale = 1.0 / scale;
+
+ /* Transpose and scale the 3 by 3 upper-left submatrix. */
+ MAT(out,0,0) = scale * MAT(in,0,0);
+ MAT(out,1,0) = scale * MAT(in,0,1);
+ MAT(out,2,0) = scale * MAT(in,0,2);
+ MAT(out,0,1) = scale * MAT(in,1,0);
+ MAT(out,1,1) = scale * MAT(in,1,1);
+ MAT(out,2,1) = scale * MAT(in,1,2);
+ MAT(out,0,2) = scale * MAT(in,2,0);
+ MAT(out,1,2) = scale * MAT(in,2,1);
+ MAT(out,2,2) = scale * MAT(in,2,2);
+ }
+ else if (mat->flags & MAT_FLAG_ROTATION)
+ {
+ /* Transpose the 3 by 3 upper-left submatrix. */
+ MAT(out,0,0) = MAT(in,0,0);
+ MAT(out,1,0) = MAT(in,0,1);
+ MAT(out,2,0) = MAT(in,0,2);
+ MAT(out,0,1) = MAT(in,1,0);
+ MAT(out,1,1) = MAT(in,1,1);
+ MAT(out,2,1) = MAT(in,1,2);
+ MAT(out,0,2) = MAT(in,2,0);
+ MAT(out,1,2) = MAT(in,2,1);
+ MAT(out,2,2) = MAT(in,2,2);
+ }
+ else /* pure translation */
+ {
+ MEMCPY( out, Identity, sizeof(Identity) );
+ MAT(out,0,3) = - MAT(in,0,3);
+ MAT(out,1,3) = - MAT(in,1,3);
+ MAT(out,2,3) = - MAT(in,2,3);
+ return GL_TRUE;
+ }
+
+ if (mat->flags & MAT_FLAG_TRANSLATION)
+ {
+ /* Do the translation part */
+ MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
+ MAT(in,1,3) * MAT(out,0,1) +
+ MAT(in,2,3) * MAT(out,0,2) );
+ MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
+ MAT(in,1,3) * MAT(out,1,1) +
+ MAT(in,2,3) * MAT(out,1,2) );
+ MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
+ MAT(in,1,3) * MAT(out,2,1) +
+ MAT(in,2,3) * MAT(out,2,2) );
+ }
+ else
+ {
+ MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
+ }
+
+ return GL_TRUE;
+}
+
+
+
+static GLboolean invert_matrix_identity( GLmatrix *mat )
+{
+ MEMCPY( mat->inv, Identity, sizeof(Identity) );
+ return GL_TRUE;
+}
+
+
+static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
+{
+ const GLfloat *in = mat->m;
+ GLfloat *out = mat->inv;
+
+ if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
+ return GL_FALSE;
+
+ MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
+ MAT(out,0,0) = 1.0 / MAT(in,0,0);
+ MAT(out,1,1) = 1.0 / MAT(in,1,1);
+ MAT(out,2,2) = 1.0 / MAT(in,2,2);
+
+ if (mat->flags & MAT_FLAG_TRANSLATION)
+ {
+ MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
+ MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
+ MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
+ }
+
+ return GL_TRUE;
+}
+
+
+static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
+{
+ const GLfloat *in = mat->m;
+ GLfloat *out = mat->inv;
+
+ if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
+ return GL_FALSE;
+
+ MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
+ MAT(out,0,0) = 1.0 / MAT(in,0,0);
+ MAT(out,1,1) = 1.0 / MAT(in,1,1);
+
+ if (mat->flags & MAT_FLAG_TRANSLATION)
+ {
+ MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
+ MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
+ }
+
+ return GL_TRUE;
+}
+
+
+static GLboolean invert_matrix_perspective( GLmatrix *mat )
+{
+ const GLfloat *in = mat->m;
+ GLfloat *out = mat->inv;
+
+ if (MAT(in,2,3) == 0)
+ return GL_FALSE;
+
+ MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
+
+ MAT(out,0,0) = 1.0 / MAT(in,0,0);
+ MAT(out,1,1) = 1.0 / MAT(in,1,1);
+
+ MAT(out,0,3) = MAT(in,0,2);
+ MAT(out,1,3) = MAT(in,1,2);
+
+ MAT(out,2,2) = 0;
+ MAT(out,2,3) = -1;
+
+ MAT(out,3,2) = 1.0 / MAT(in,2,3);
+ MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
+
+ return GL_TRUE;
+}
+
+
+typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
+
+static inv_mat_func inv_mat_tab[7] = {
+ invert_matrix_general,
+ invert_matrix_identity,
+ invert_matrix_3d_no_rot,
+ invert_matrix_perspective,
+ invert_matrix_3d, /* lazy! */
+ invert_matrix_2d_no_rot,
+ invert_matrix_3d
+};
+
+
+GLboolean gl_matrix_invert( GLmatrix *mat )
+{
+ if (inv_mat_tab[mat->type](mat)) {
+#if 0
+ GLmatrix m; m.inv = 0; m.type = 0; m.flags = 0;
+ matmul4( m.m, mat->m, mat->inv );
+ printf("inverted matrix of type %s:\n", types[mat->type]);
+ gl_print_matrix( mat );
+ gl_print_matrix( &m );
+#endif
+ return GL_TRUE;
+ } else {
+ MEMCPY( mat->inv, Identity, sizeof(Identity) );
+ return GL_FALSE;
+ }
+}
+
+
+
+/*
+ * Generate a 4x4 transformation matrix from glRotate parameters.
+ */
+void gl_rotation_matrix( GLfloat angle, GLfloat x, GLfloat y, GLfloat z,
+ GLfloat m[] )
+{
+ /* This function contributed by Erich Boleyn ([email protected]) */
+ GLfloat mag, s, c;
+ GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
+
+ s = sin( angle * DEG2RAD );
+ c = cos( angle * DEG2RAD );
+
+ mag = GL_SQRT( x*x + y*y + z*z );
+
+ if (mag == 0.0) {
+ /* generate an identity matrix and return */
+ MEMCPY(m, Identity, sizeof(GLfloat)*16);
+ return;
+ }
+
+ x /= mag;
+ y /= mag;
+ z /= mag;
+
+#define M(row,col) m[col*4+row]
+
+ /*
+ * Arbitrary axis rotation matrix.
+ *
+ * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
+ * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
+ * (which is about the X-axis), and the two composite transforms
+ * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
+ * from the arbitrary axis to the X-axis then back. They are
+ * all elementary rotations.
+ *
+ * Rz' is a rotation about the Z-axis, to bring the axis vector
+ * into the x-z plane. Then Ry' is applied, rotating about the
+ * Y-axis to bring the axis vector parallel with the X-axis. The
+ * rotation about the X-axis is then performed. Ry and Rz are
+ * simply the respective inverse transforms to bring the arbitrary
+ * axis back to it's original orientation. The first transforms
+ * Rz' and Ry' are considered inverses, since the data from the
+ * arbitrary axis gives you info on how to get to it, not how
+ * to get away from it, and an inverse must be applied.
+ *
+ * The basic calculation used is to recognize that the arbitrary
+ * axis vector (x, y, z), since it is of unit length, actually
+ * represents the sines and cosines of the angles to rotate the
+ * X-axis to the same orientation, with theta being the angle about
+ * Z and phi the angle about Y (in the order described above)
+ * as follows:
+ *
+ * cos ( theta ) = x / sqrt ( 1 - z^2 )
+ * sin ( theta ) = y / sqrt ( 1 - z^2 )
+ *
+ * cos ( phi ) = sqrt ( 1 - z^2 )
+ * sin ( phi ) = z
+ *
+ * Note that cos ( phi ) can further be inserted to the above
+ * formulas:
+ *
+ * cos ( theta ) = x / cos ( phi )
+ * sin ( theta ) = y / sin ( phi )
+ *
+ * ...etc. Because of those relations and the standard trigonometric
+ * relations, it is pssible to reduce the transforms down to what
+ * is used below. It may be that any primary axis chosen will give the
+ * same results (modulo a sign convention) using thie method.
+ *
+ * Particularly nice is to notice that all divisions that might
+ * have caused trouble when parallel to certain planes or
+ * axis go away with care paid to reducing the expressions.
+ * After checking, it does perform correctly under all cases, since
+ * in all the cases of division where the denominator would have
+ * been zero, the numerator would have been zero as well, giving
+ * the expected result.
+ */
+
+ xx = x * x;
+ yy = y * y;
+ zz = z * z;
+ xy = x * y;
+ yz = y * z;
+ zx = z * x;
+ xs = x * s;
+ ys = y * s;
+ zs = z * s;
+ one_c = 1.0F - c;
+
+ M(0,0) = (one_c * xx) + c;
+ M(0,1) = (one_c * xy) - zs;
+ M(0,2) = (one_c * zx) + ys;
+ M(0,3) = 0.0F;
+
+ M(1,0) = (one_c * xy) + zs;
+ M(1,1) = (one_c * yy) + c;
+ M(1,2) = (one_c * yz) - xs;
+ M(1,3) = 0.0F;
+
+ M(2,0) = (one_c * zx) - ys;
+ M(2,1) = (one_c * yz) + xs;
+ M(2,2) = (one_c * zz) + c;
+ M(2,3) = 0.0F;
+
+ M(3,0) = 0.0F;
+ M(3,1) = 0.0F;
+ M(3,2) = 0.0F;
+ M(3,3) = 1.0F;
+
+#undef M
+}
+
+#define ZERO(x) (1<<x)
+#define ONE(x) (1<<(x+16))
+
+#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
+#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
+
+#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
+ ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
+ ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
+ ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
+
+#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
+ ZERO(1) | ZERO(9) | \
+ ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
+ ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
+
+#define MASK_2D ( ZERO(8) | \
+ ZERO(9) | \
+ ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
+ ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
+
+
+#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
+ ZERO(1) | ZERO(9) | \
+ ZERO(2) | ZERO(6) | \
+ ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
+
+#define MASK_3D ( \
+ \
+ \
+ ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
+
+
+#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
+ ZERO(1) | ZERO(13) |\
+ ZERO(2) | ZERO(6) | \
+ ZERO(3) | ZERO(7) | ZERO(15) )
+
+#define SQ(x) ((x)*(x))
+
+/* Determine type and flags from scratch. This is expensive enough to
+ * only want to do it once.
+ */
+static void analyze_from_scratch( GLmatrix *mat )
+{
+ const GLfloat *m = mat->m;
+ GLuint mask = 0;
+ GLuint i;
+
+ for (i = 0 ; i < 16 ; i++)
+ {
+ if (m[i] == 0.0) mask |= (1<<i);
+ }
+
+ if (m[0] == 1.0F) mask |= (1<<16);
+ if (m[5] == 1.0F) mask |= (1<<21);
+ if (m[10] == 1.0F) mask |= (1<<26);
+ if (m[15] == 1.0F) mask |= (1<<31);
+
+ mat->flags &= ~MAT_FLAGS_GEOMETRY;
+
+ /* Check for translation - no-one really cares
+ */
+ if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
+ mat->flags |= MAT_FLAG_TRANSLATION;
+
+ /* Do the real work
+ */
+ if (mask == MASK_IDENTITY) {
+ mat->type = MATRIX_IDENTITY;
+ }
+ else if ((mask & MASK_2D_NO_ROT) == MASK_2D_NO_ROT)
+ {
+ mat->type = MATRIX_2D_NO_ROT;
+
+ if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
+ mat->flags = MAT_FLAG_GENERAL_SCALE;
+ }
+ else if ((mask & MASK_2D) == MASK_2D)
+ {
+ GLfloat mm = DOT2(m, m);
+ GLfloat m4m4 = DOT2(m+4,m+4);
+ GLfloat mm4 = DOT2(m,m+4);
+
+ mat->type = MATRIX_2D;
+
+ /* Check for scale */
+ if (SQ(mm-1) > SQ(1e-6) ||
+ SQ(m4m4-1) > SQ(1e-6))
+ mat->flags |= MAT_FLAG_GENERAL_SCALE;
+
+ /* Check for rotation */
+ if (SQ(mm4) > SQ(1e-6))
+ mat->flags |= MAT_FLAG_GENERAL_3D;
+ else
+ mat->flags |= MAT_FLAG_ROTATION;
+
+ }
+ else if ((mask & MASK_3D_NO_ROT) == MASK_3D_NO_ROT)
+ {
+ mat->type = MATRIX_3D_NO_ROT;
+
+ /* Check for scale */
+ if (SQ(m[0]-m[5]) < SQ(1e-6) &&
+ SQ(m[0]-m[10]) < SQ(1e-6)) {
+ if (SQ(m[0]-1.0) > SQ(1e-6))
+ mat->flags |= MAT_FLAG_UNIFORM_SCALE;
+ } else
+ mat->flags |= MAT_FLAG_GENERAL_SCALE;
+ }
+ else if ((mask & MASK_3D) == MASK_3D)
+ {
+ GLfloat c1 = DOT3(m,m);
+ GLfloat c2 = DOT3(m+4,m+4);
+ GLfloat c3 = DOT3(m+8,m+8);
+ GLfloat d1 = DOT3(m, m+4);
+ GLfloat cp[3];
+
+ mat->type = MATRIX_3D;
+
+ /* Check for scale */
+ if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
+ if (SQ(c1-1.0) > SQ(1e-6))
+ mat->flags |= MAT_FLAG_UNIFORM_SCALE;
+ /* else no scale at all */
+ } else
+ mat->flags |= MAT_FLAG_GENERAL_SCALE;
+
+ /* Check for rotation */
+ if (SQ(d1) < SQ(1e-6)) {
+ CROSS3( cp, m, m+4 );
+ SUB_3V( cp, cp, (m+8) );
+ if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
+ mat->flags |= MAT_FLAG_ROTATION;
+ else
+ mat->flags |= MAT_FLAG_GENERAL_3D;
+ }
+ else
+ mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
+ }
+ else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F)
+ {
+ mat->type = MATRIX_PERSPECTIVE;
+ mat->flags |= MAT_FLAG_GENERAL;
+ }
+ else {
+ mat->type = MATRIX_GENERAL;
+ mat->flags |= MAT_FLAG_GENERAL;
+ }
+}
+
+
+/* Analyse a matrix given that its flags are accurate - this is the
+ * more common operation, hopefully.
+ */
+static void analyze_from_flags( GLmatrix *mat )
+{
+ const GLfloat *m = mat->m;
+
+ if (TEST_MAT_FLAGS(mat, 0)) {
+ mat->type = MATRIX_IDENTITY;
+ }
+ else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
+ MAT_FLAG_UNIFORM_SCALE |
+ MAT_FLAG_GENERAL_SCALE)))
+ {
+ if ( m[10]==1.0F && m[14]==0.0F ) {
+ mat->type = MATRIX_2D_NO_ROT;
+ }
+ else {
+ mat->type = MATRIX_3D_NO_ROT;
+ }
+ }
+ else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
+ if ( m[ 8]==0.0F
+ && m[ 9]==0.0F
+ && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F)
+ {
+ mat->type = MATRIX_2D;
+ }
+ else
+ {
+ mat->type = MATRIX_3D;
+ }
+ }
+ else if ( m[4]==0.0F && m[12]==0.0F
+ && m[1]==0.0F && m[13]==0.0F
+ && m[2]==0.0F && m[6]==0.0F
+ && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F)
+ {
+ mat->type = MATRIX_PERSPECTIVE;
+ }
+ else {
+ mat->type = MATRIX_GENERAL;
+ }
+
+}
+
+
+void gl_matrix_analyze( GLmatrix *mat )
+{
+ if (mat->flags & MAT_DIRTY_TYPE) {
+ if (mat->flags & MAT_DIRTY_FLAGS)
+ analyze_from_scratch( mat );
+ else
+ analyze_from_flags( mat );
+ }
+
+ if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
+ gl_matrix_invert( mat );
+ }
+
+ mat->flags &= ~(MAT_DIRTY_FLAGS|
+ MAT_DIRTY_TYPE|
+ MAT_DIRTY_INVERSE);
+}
+
+
+#define GET_ACTIVE_MATRIX(ctx, mat, flags, where) \
+do { \
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, where); \
+ if (MESA_VERBOSE&VERBOSE_API) fprintf(stderr, "%s\n", where); \
+ switch (ctx->Transform.MatrixMode) { \
+ case GL_MODELVIEW: \
+ mat = &ctx->ModelView; \
+ flags |= NEW_MODELVIEW; \
+ break; \
+ case GL_PROJECTION: \
+ mat = &ctx->ProjectionMatrix; \
+ flags |= NEW_PROJECTION; \
+ break; \
+ case GL_TEXTURE: \
+ mat = &ctx->TextureMatrix[ctx->Texture.CurrentTransformUnit]; \
+ flags |= NEW_TEXTURE_MATRIX; \
+ break; \
+ default: \
+ gl_problem(ctx, where); \
+ } \
+} while (0)
+
+
+void gl_Frustum( GLcontext *ctx,
+ GLdouble left, GLdouble right,
+ GLdouble bottom, GLdouble top,
+ GLdouble nearval, GLdouble farval )
+{
+ GLfloat x, y, a, b, c, d;
+ GLfloat m[16];
+ GLmatrix *mat = 0;
+
+ GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glFrustrum" );
+
+ if (nearval<=0.0 || farval<=0.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glFrustum(near or far)" );
+ }
+
+ x = (2.0*nearval) / (right-left);
+ y = (2.0*nearval) / (top-bottom);
+ a = (right+left) / (right-left);
+ b = (top+bottom) / (top-bottom);
+ c = -(farval+nearval) / ( farval-nearval);
+ d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
+
+#define M(row,col) m[col*4+row]
+ M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
+ M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
+ M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
+ M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
+#undef M
+
+
+ gl_mat_mul_floats( mat, m, MAT_FLAG_PERSPECTIVE );
+
+
+ if (ctx->Transform.MatrixMode == GL_PROJECTION)
+ {
+ /* Need to keep a stack of near/far values in case the user push/pops
+ * the projection matrix stack so that we can call Driver.NearFar()
+ * after a pop.
+ */
+ ctx->NearFarStack[ctx->ProjectionStackDepth][0] = nearval;
+ ctx->NearFarStack[ctx->ProjectionStackDepth][1] = farval;
+
+ if (ctx->Driver.NearFar) {
+ (*ctx->Driver.NearFar)( ctx, nearval, farval );
+ }
+ }
+}
+
+
+void gl_Ortho( GLcontext *ctx,
+ GLdouble left, GLdouble right,
+ GLdouble bottom, GLdouble top,
+ GLdouble nearval, GLdouble farval )
+{
+ GLfloat x, y, z;
+ GLfloat tx, ty, tz;
+ GLfloat m[16];
+ GLmatrix *mat = 0;
+
+ GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glOrtho" );
+
+ x = 2.0 / (right-left);
+ y = 2.0 / (top-bottom);
+ z = -2.0 / (farval-nearval);
+ tx = -(right+left) / (right-left);
+ ty = -(top+bottom) / (top-bottom);
+ tz = -(farval+nearval) / (farval-nearval);
+
+#define M(row,col) m[col*4+row]
+ M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
+ M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
+ M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
+ M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
+#undef M
+
+ gl_mat_mul_floats( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
+
+ if (ctx->Driver.NearFar) {
+ (*ctx->Driver.NearFar)( ctx, nearval, farval );
+ }
+}
+
+
+void gl_MatrixMode( GLcontext *ctx, GLenum mode )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMatrixMode");
+ switch (mode) {
+ case GL_MODELVIEW:
+ case GL_PROJECTION:
+ case GL_TEXTURE:
+ ctx->Transform.MatrixMode = mode;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glMatrixMode" );
+ }
+}
+
+
+
+void gl_PushMatrix( GLcontext *ctx )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glPushMatrix");
+
+ if (MESA_VERBOSE&VERBOSE_API)
+ fprintf(stderr, "glPushMatrix %s\n",
+ gl_lookup_enum_by_nr(ctx->Transform.MatrixMode));
+
+ switch (ctx->Transform.MatrixMode) {
+ case GL_MODELVIEW:
+ if (ctx->ModelViewStackDepth>=MAX_MODELVIEW_STACK_DEPTH-1) {
+ gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
+ return;
+ }
+ gl_matrix_copy( &ctx->ModelViewStack[ctx->ModelViewStackDepth++],
+ &ctx->ModelView );
+ break;
+ case GL_PROJECTION:
+ if (ctx->ProjectionStackDepth>=MAX_PROJECTION_STACK_DEPTH) {
+ gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
+ return;
+ }
+ gl_matrix_copy( &ctx->ProjectionStack[ctx->ProjectionStackDepth++],
+ &ctx->ProjectionMatrix );
+
+ /* Save near and far projection values */
+ ctx->NearFarStack[ctx->ProjectionStackDepth][0]
+ = ctx->NearFarStack[ctx->ProjectionStackDepth-1][0];
+ ctx->NearFarStack[ctx->ProjectionStackDepth][1]
+ = ctx->NearFarStack[ctx->ProjectionStackDepth-1][1];
+ break;
+ case GL_TEXTURE:
+ {
+ GLuint t = ctx->Texture.CurrentTransformUnit;
+ if (ctx->TextureStackDepth[t] >= MAX_TEXTURE_STACK_DEPTH) {
+ gl_error( ctx, GL_STACK_OVERFLOW, "glPushMatrix");
+ return;
+ }
+ gl_matrix_copy( &ctx->TextureStack[t][ctx->TextureStackDepth[t]++],
+ &ctx->TextureMatrix[t] );
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad matrix mode in gl_PushMatrix");
+ }
+}
+
+
+
+void gl_PopMatrix( GLcontext *ctx )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glPopMatrix");
+
+ if (MESA_VERBOSE&VERBOSE_API)
+ fprintf(stderr, "glPopMatrix %s\n",
+ gl_lookup_enum_by_nr(ctx->Transform.MatrixMode));
+
+ switch (ctx->Transform.MatrixMode) {
+ case GL_MODELVIEW:
+ if (ctx->ModelViewStackDepth==0) {
+ gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
+ return;
+ }
+ gl_matrix_copy( &ctx->ModelView,
+ &ctx->ModelViewStack[--ctx->ModelViewStackDepth] );
+ ctx->NewState |= NEW_MODELVIEW;
+ break;
+ case GL_PROJECTION:
+ if (ctx->ProjectionStackDepth==0) {
+ gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
+ return;
+ }
+
+ gl_matrix_copy( &ctx->ProjectionMatrix,
+ &ctx->ProjectionStack[--ctx->ProjectionStackDepth] );
+ ctx->NewState |= NEW_PROJECTION;
+
+ /* Device driver near/far values */
+ {
+ GLfloat nearVal = ctx->NearFarStack[ctx->ProjectionStackDepth][0];
+ GLfloat farVal = ctx->NearFarStack[ctx->ProjectionStackDepth][1];
+ if (ctx->Driver.NearFar) {
+ (*ctx->Driver.NearFar)( ctx, nearVal, farVal );
+ }
+ }
+ break;
+ case GL_TEXTURE:
+ {
+ GLuint t = ctx->Texture.CurrentTransformUnit;
+ if (ctx->TextureStackDepth[t]==0) {
+ gl_error( ctx, GL_STACK_UNDERFLOW, "glPopMatrix");
+ return;
+ }
+ gl_matrix_copy(&ctx->TextureMatrix[t],
+ &ctx->TextureStack[t][--ctx->TextureStackDepth[t]]);
+ }
+ break;
+ default:
+ gl_problem(ctx, "Bad matrix mode in gl_PopMatrix");
+ }
+}
+
+
+
+void gl_LoadIdentity( GLcontext *ctx )
+{
+ GLmatrix *mat = 0;
+ GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadIdentity");
+
+ MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
+
+ if (mat->inv)
+ MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
+
+ mat->type = MATRIX_IDENTITY;
+
+ /* Have to set this to dirty to make sure we recalculate the
+ * combined matrix later. The update_matrix in this case is a
+ * shortcircuit anyway...
+ */
+ mat->flags = MAT_DIRTY_DEPENDENTS;
+}
+
+
+void gl_LoadMatrixf( GLcontext *ctx, const GLfloat *m )
+{
+ GLmatrix *mat = 0;
+ GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glLoadMatrix");
+
+ MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
+ mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
+
+ if (ctx->Transform.MatrixMode == GL_PROJECTION) {
+
+#define M(row,col) m[col*4+row]
+ GLfloat c = M(2,2);
+ GLfloat d = M(2,3);
+#undef M
+ GLfloat n = (c == 1.0 ? 0.0 : d / (c - 1.0));
+ GLfloat f = (c == -1.0 ? 1.0 : d / (c + 1.0));
+
+ /* Need to keep a stack of near/far values in case the user
+ * push/pops the projection matrix stack so that we can call
+ * Driver.NearFar() after a pop.
+ */
+ ctx->NearFarStack[ctx->ProjectionStackDepth][0] = n;
+ ctx->NearFarStack[ctx->ProjectionStackDepth][1] = f;
+
+ if (ctx->Driver.NearFar) {
+ (*ctx->Driver.NearFar)( ctx, n, f );
+ }
+ }
+}
+
+
+
+/*
+ * Multiply the active matrix by an arbitary matrix.
+ */
+void gl_MultMatrixf( GLcontext *ctx, const GLfloat *m )
+{
+ GLmatrix *mat = 0;
+ GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
+ matmul4( mat->m, mat->m, m );
+ mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
+}
+
+
+/*
+ * Multiply the active matrix by an arbitary matrix.
+ */
+void gl_MultMatrixd( GLcontext *ctx, const GLdouble *m )
+{
+ GLmatrix *mat = 0;
+ GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glMultMatrix" );
+ matmul4fd( mat->m, mat->m, m );
+ mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL_OVER);
+}
+
+
+
+
+/*
+ * Multiply a matrix by an array of floats with known properties.
+ */
+void gl_mat_mul_floats( GLmatrix *mat, const GLfloat *m, GLuint flags )
+{
+ mat->flags |= (flags |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE |
+ MAT_DIRTY_DEPENDENTS);
+
+ if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
+ matmul34( mat->m, mat->m, m );
+ else
+ matmul4( mat->m, mat->m, m );
+
+}
+
+/*
+ * Multiply a matrix by an array of floats with known properties.
+ */
+void gl_mat_mul_mat( GLmatrix *mat, const GLmatrix *m )
+{
+ mat->flags |= (m->flags |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE |
+ MAT_DIRTY_DEPENDENTS);
+
+ if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
+ matmul34( mat->m, mat->m, m->m );
+ else
+ matmul4( mat->m, mat->m, m->m );
+}
+
+
+
+/*
+ * Execute a glRotate call
+ */
+void gl_Rotatef( GLcontext *ctx,
+ GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
+{
+ GLfloat m[16];
+ if (angle != 0.0F) {
+ GLmatrix *mat = 0;
+ GET_ACTIVE_MATRIX( ctx, mat, ctx->NewState, "glRotate" );
+
+ gl_rotation_matrix( angle, x, y, z, m );
+ gl_mat_mul_floats( mat, m, MAT_FLAG_ROTATION );
+ }
+}
+
+/*
+ * Execute a glScale call
+ */
+void gl_Scalef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
+{
+ GLmatrix *mat = 0;
+ GLfloat *m;
+ GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glScale");
+
+ m = mat->m;
+ m[0] *= x; m[4] *= y; m[8] *= z;
+ m[1] *= x; m[5] *= y; m[9] *= z;
+ m[2] *= x; m[6] *= y; m[10] *= z;
+ m[3] *= x; m[7] *= y; m[11] *= z;
+
+ if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
+ mat->flags |= MAT_FLAG_UNIFORM_SCALE;
+ else
+ mat->flags |= MAT_FLAG_GENERAL_SCALE;
+
+ mat->flags |= (MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE |
+ MAT_DIRTY_DEPENDENTS);
+}
+
+/*
+ * Execute a glTranslate call
+ */
+void gl_Translatef( GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z )
+{
+ GLmatrix *mat = 0;
+ GLfloat *m;
+ GET_ACTIVE_MATRIX(ctx, mat, ctx->NewState, "glTranslate");
+ m = mat->m;
+ m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
+ m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
+ m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
+ m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
+
+ mat->flags |= (MAT_FLAG_TRANSLATION |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE |
+ MAT_DIRTY_DEPENDENTS);
+}
+
+
+/*
+ * Define a new viewport and reallocate auxillary buffers if the size of
+ * the window (color buffer) has changed.
+ */
+void gl_Viewport( GLcontext *ctx,
+ GLint x, GLint y, GLsizei width, GLsizei height )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glViewport");
+
+ if (width<0 || height<0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glViewport" );
+ return;
+ }
+
+ if (MESA_VERBOSE & VERBOSE_API)
+ fprintf(stderr, "glViewport %d %d %d %d\n", x, y, width, height);
+
+ /* clamp width, and height to implementation dependent range */
+ width = CLAMP( width, 1, MAX_WIDTH );
+ height = CLAMP( height, 1, MAX_HEIGHT );
+
+ /* Save viewport */
+ ctx->Viewport.X = x;
+ ctx->Viewport.Width = width;
+ ctx->Viewport.Y = y;
+ ctx->Viewport.Height = height;
+
+ /* compute scale and bias values */
+ ctx->Viewport.WindowMap.m[MAT_SX] = (GLfloat) width / 2.0F;
+ ctx->Viewport.WindowMap.m[MAT_TX] = ctx->Viewport.WindowMap.m[MAT_SX] + x;
+ ctx->Viewport.WindowMap.m[MAT_SY] = (GLfloat) height / 2.0F;
+ ctx->Viewport.WindowMap.m[MAT_TY] = ctx->Viewport.WindowMap.m[MAT_SY] + y;
+
+ ctx->ModelProjectWinMatrixUptodate = GL_FALSE;
+ ctx->NewState |= NEW_VIEWPORT;
+
+ /* Check if window/buffer has been resized and if so, reallocate the
+ * ancillary buffers.
+ */
+ gl_ResizeBuffersMESA(ctx);
+
+
+ ctx->RasterMask &= WINCLIP_BIT;
+
+ if ( ctx->Viewport.X<0
+ || ctx->Viewport.X + ctx->Viewport.Width > ctx->Buffer->Width
+ || ctx->Viewport.Y<0
+ || ctx->Viewport.Y + ctx->Viewport.Height > ctx->Buffer->Height) {
+ ctx->RasterMask |= WINCLIP_BIT;
+ }
+
+
+ if (ctx->Driver.Viewport) {
+ (*ctx->Driver.Viewport)( ctx, x, y, width, height );
+ }
+}
+
+
+
+void gl_DepthRange( GLcontext *ctx, GLclampd nearval, GLclampd farval )
+{
+ /*
+ * nearval - specifies mapping of the near clipping plane to window
+ * coordinates, default is 0
+ * farval - specifies mapping of the far clipping plane to window
+ * coordinates, default is 1
+ *
+ * After clipping and div by w, z coords are in -1.0 to 1.0,
+ * corresponding to near and far clipping planes. glDepthRange
+ * specifies a linear mapping of the normalized z coords in
+ * this range to window z coords.
+ */
+ GLfloat n, f;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glDepthRange");
+
+ if (MESA_VERBOSE&VERBOSE_API)
+ fprintf(stderr, "glDepthRange %f %f\n", nearval, farval);
+
+ n = (GLfloat) CLAMP( nearval, 0.0, 1.0 );
+ f = (GLfloat) CLAMP( farval, 0.0, 1.0 );
+
+ ctx->Viewport.Near = n;
+ ctx->Viewport.Far = f;
+ ctx->Viewport.WindowMap.m[MAT_SZ] = DEPTH_SCALE * ((f - n) / 2.0);
+ ctx->Viewport.WindowMap.m[MAT_TZ] = DEPTH_SCALE * ((f - n) / 2.0 + n);
+
+ ctx->ModelProjectWinMatrixUptodate = GL_FALSE;
+
+ if (ctx->Driver.DepthRange) {
+ (*ctx->Driver.DepthRange)( ctx, nearval, farval );
+ }
+}
+
+
+void gl_calculate_model_project_matrix( GLcontext *ctx )
+{
+ gl_matrix_mul( &ctx->ModelProjectMatrix,
+ &ctx->ProjectionMatrix,
+ &ctx->ModelView );
+
+ gl_matrix_analyze( &ctx->ModelProjectMatrix );
+}
+
+
+void gl_matrix_ctr( GLmatrix *m )
+{
+ m->inv = 0;
+ MEMCPY( m->m, Identity, sizeof(Identity));
+ m->type = MATRIX_IDENTITY;
+ m->flags = MAT_DIRTY_DEPENDENTS;
+}
+
+void gl_matrix_dtr( GLmatrix *m )
+{
+ if (m->inv != 0) {
+ free(m->inv);
+ m->inv = 0;
+ }
+}
+
+void gl_matrix_alloc_inv( GLmatrix *m )
+{
+ if (m->inv == 0) {
+ m->inv = (GLfloat *)malloc(16*sizeof(GLfloat));
+ MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) );
+ }
+}
+
+void gl_matrix_copy( GLmatrix *to, const GLmatrix *from )
+{
+ MEMCPY( to->m, from->m, sizeof(Identity));
+ to->flags = from->flags | MAT_DIRTY_DEPENDENTS;
+ to->type = from->type;
+
+ if (to->inv != 0) {
+ if (from->inv == 0) {
+ gl_matrix_invert( to );
+ } else {
+ MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16);
+ }
+ }
+}
+
+void gl_matrix_mul( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
+{
+ dest->flags = (a->flags |
+ b->flags |
+ MAT_DIRTY_TYPE |
+ MAT_DIRTY_INVERSE |
+ MAT_DIRTY_DEPENDENTS);
+
+ if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
+ matmul34( dest->m, a->m, b->m );
+ else
+ matmul4( dest->m, a->m, b->m );
+}