diff options
Diffstat (limited to 'src/mesa/drivers/dri')
-rw-r--r-- | src/mesa/drivers/dri/i965/intel_tex_subimage.c | 471 |
1 files changed, 402 insertions, 69 deletions
diff --git a/src/mesa/drivers/dri/i965/intel_tex_subimage.c b/src/mesa/drivers/dri/i965/intel_tex_subimage.c index 05e684cf57b..5cfdbd96824 100644 --- a/src/mesa/drivers/dri/i965/intel_tex_subimage.c +++ b/src/mesa/drivers/dri/i965/intel_tex_subimage.c @@ -43,6 +43,43 @@ #define FILE_DEBUG_FLAG DEBUG_TEXTURE +#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b) +#define ALIGN_UP(a, b) ALIGN(a, b) + +/* Tile dimensions. + * Width and span are in bytes, height is in pixels (i.e. unitless). + * A "span" is the most number of bytes we can copy from linear to tiled + * without needing to calculate a new destination address. + */ +static const uint32_t xtile_width = 512; +static const uint32_t xtile_height = 8; +static const uint32_t xtile_span = 64; +static const uint32_t ytile_width = 128; +static const uint32_t ytile_height = 32; +static const uint32_t ytile_span = 16; + +typedef void *(*mem_copy_fn)(void *dest, const void *src, size_t n); + +/** + * Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3). + * These ranges are in bytes, i.e. pixels * bytes-per-pixel. + * The first and last ranges must be shorter than a "span" (the longest linear + * stretch within a tile) and the middle must equal a whole number of spans. + * Ranges may be empty. The region copied must land entirely within one tile. + * 'dst' is the start of the tile and 'src' is the corresponding + * address to copy from, though copying begins at (x0, y0). + * To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero. + * Swizzling flips bit 6 in the copy destination offset, when certain other + * bits are set in it. + */ +typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, + uint32_t y0, uint32_t y1, + char *dst, const char *src, + uint32_t src_pitch, + uint32_t swizzle_bit, + mem_copy_fn mem_copy); + + static bool intel_blit_texsubimage(struct gl_context * ctx, struct gl_texture_image *texImage, @@ -132,26 +169,351 @@ err: return false; } +#ifdef __SSSE3__ +static const uint8_t rgba8_permutation[16] = + { 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 }; + +typedef char v16 __attribute__((vector_size(16))); + +/* NOTE: dst must be 16 byte aligned */ +#define rgba8_copy_16(dst, src) \ + *(v16*)(dst) = __builtin_ia32_pshufb128( \ + (v16) __builtin_ia32_loadups((float*)(src)), \ + *(v16*) rgba8_permutation \ + ) +#endif + +/** + * Copy RGBA to BGRA - swap R and B. + */ +static inline void * +rgba8_copy(void *dst, const void *src, size_t bytes) +{ + uint8_t *d = dst; + uint8_t const *s = src; + +#ifdef __SSSE3__ + /* Fast copying for tile spans. + * + * As long as the destination texture is 16 aligned, + * any 16 or 64 spans we get here should also be 16 aligned. + */ + + if (bytes == 16) { + assert(!(((uintptr_t)dst) & 0xf)); + rgba8_copy_16(d+ 0, s+ 0); + return dst; + } + + if (bytes == 64) { + assert(!(((uintptr_t)dst) & 0xf)); + rgba8_copy_16(d+ 0, s+ 0); + rgba8_copy_16(d+16, s+16); + rgba8_copy_16(d+32, s+32); + rgba8_copy_16(d+48, s+48); + return dst; + } +#endif + + while (bytes >= 4) { + d[0] = s[2]; + d[1] = s[1]; + d[2] = s[0]; + d[3] = s[3]; + d += 4; + s += 4; + bytes -= 4; + } + return dst; +} + +/** + * Copy texture data from linear to X tile layout. + * + * \copydoc tile_copy_fn + */ +static inline void +xtile_copy(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, + uint32_t y0, uint32_t y1, + char *dst, const char *src, + uint32_t src_pitch, + uint32_t swizzle_bit, + mem_copy_fn mem_copy) +{ + /* The copy destination offset for each range copied is the sum of + * an X offset 'x0' or 'xo' and a Y offset 'yo.' + */ + uint32_t xo, yo; + + src += y0 * src_pitch; + + for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) { + /* Bits 9 and 10 of the copy destination offset control swizzling. + * Only 'yo' contributes to those bits in the total offset, + * so calculate 'swizzle' just once per row. + * Move bits 9 and 10 three and four places respectively down + * to bit 6 and xor them. + */ + uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit; + + mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0); + + for (xo = x1; xo < x2; xo += xtile_span) { + mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span); + } + + mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); + + src += src_pitch; + } +} + +/** + * Copy texture data from linear to Y tile layout. + * + * \copydoc tile_copy_fn + */ +static inline void +ytile_copy( + uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, + uint32_t y0, uint32_t y1, + char *dst, const char *src, + uint32_t src_pitch, + uint32_t swizzle_bit, + mem_copy_fn mem_copy) +{ + /* Y tiles consist of columns that are 'ytile_span' wide (and the same height + * as the tile). Thus the destination offset for (x,y) is the sum of: + * (x % column_width) // position within column + * (x / column_width) * bytes_per_column // column number * bytes per column + * y * column_width + * + * The copy destination offset for each range copied is the sum of + * an X offset 'xo0' or 'xo' and a Y offset 'yo.' + */ + const uint32_t column_width = ytile_span; + const uint32_t bytes_per_column = column_width * ytile_height; + + uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column; + uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column; + + /* Bit 9 of the destination offset control swizzling. + * Only the X offset contributes to bit 9 of the total offset, + * so swizzle can be calculated in advance for these X positions. + * Move bit 9 three places down to bit 6. + */ + uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit; + uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit; + + uint32_t x, yo; + + src += y0 * src_pitch; + + for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) { + uint32_t xo = xo1; + uint32_t swizzle = swizzle1; + + mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0); + + /* Step by spans/columns. As it happens, the swizzle bit flips + * at each step so we don't need to calculate it explicitly. + */ + for (x = x1; x < x2; x += ytile_span) { + mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span); + xo += bytes_per_column; + swizzle ^= swizzle_bit; + } + + mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); + + src += src_pitch; + } +} + +/** + * Copy texture data from linear to X tile layout, faster. + * + * Same as \ref xtile_copy but faster, because it passes constant parameters + * for common cases, allowing the compiler to inline code optimized for those + * cases. + * + * \copydoc tile_copy_fn + */ +static void +xtile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, + uint32_t y0, uint32_t y1, + char *dst, const char *src, + uint32_t src_pitch, + uint32_t swizzle_bit, + mem_copy_fn mem_copy) +{ + if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) { + if (mem_copy == memcpy) + return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height, + dst, src, src_pitch, swizzle_bit, memcpy); + else if (mem_copy == rgba8_copy) + return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height, + dst, src, src_pitch, swizzle_bit, rgba8_copy); + } else { + if (mem_copy == memcpy) + return xtile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, memcpy); + else if (mem_copy == rgba8_copy) + return xtile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, rgba8_copy); + } + xtile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, mem_copy); +} + +/** + * Copy texture data from linear to Y tile layout, faster. + * + * Same as \ref ytile_copy but faster, because it passes constant parameters + * for common cases, allowing the compiler to inline code optimized for those + * cases. + * + * \copydoc tile_copy_fn + */ +static void +ytile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, + uint32_t y0, uint32_t y1, + char *dst, const char *src, + uint32_t src_pitch, + uint32_t swizzle_bit, + mem_copy_fn mem_copy) +{ + if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) { + if (mem_copy == memcpy) + return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height, + dst, src, src_pitch, swizzle_bit, memcpy); + else if (mem_copy == rgba8_copy) + return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height, + dst, src, src_pitch, swizzle_bit, rgba8_copy); + } else { + if (mem_copy == memcpy) + return ytile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, memcpy); + else if (mem_copy == rgba8_copy) + return ytile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, rgba8_copy); + } + ytile_copy(x0, x1, x2, x3, y0, y1, + dst, src, src_pitch, swizzle_bit, mem_copy); +} + +/** + * Copy from linear to tiled texture. + * + * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into + * pieces that do not cross tile boundaries and copy each piece with a tile + * copy function (\ref tile_copy_fn). + * The X range is in bytes, i.e. pixels * bytes-per-pixel. + * The Y range is in pixels (i.e. unitless). + * 'dst' is the start of the texture and 'src' is the corresponding + * address to copy from, though copying begins at (xt1, yt1). + */ +static void +linear_to_tiled(uint32_t xt1, uint32_t xt2, + uint32_t yt1, uint32_t yt2, + char *dst, const char *src, + uint32_t dst_pitch, uint32_t src_pitch, + bool has_swizzling, + uint32_t tiling, + mem_copy_fn mem_copy) +{ + tile_copy_fn tile_copy; + uint32_t xt0, xt3; + uint32_t yt0, yt3; + uint32_t xt, yt; + uint32_t tw, th, span; + uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0; + + if (tiling == I915_TILING_X) { + tw = xtile_width; + th = xtile_height; + span = xtile_span; + tile_copy = xtile_copy_faster; + } else if (tiling == I915_TILING_Y) { + tw = ytile_width; + th = ytile_height; + span = ytile_span; + tile_copy = ytile_copy_faster; + } else { + assert(!"unsupported tiling"); + return; + } + + /* Round out to tile boundaries. */ + xt0 = ALIGN_DOWN(xt1, tw); + xt3 = ALIGN_UP (xt2, tw); + yt0 = ALIGN_DOWN(yt1, th); + yt3 = ALIGN_UP (yt2, th); + + /* Loop over all tiles to which we have something to copy. + * 'xt' and 'yt' are the origin of the destination tile, whether copying + * copying a full or partial tile. + * tile_copy() copies one tile or partial tile. + * Looping x inside y is the faster memory access pattern. + */ + for (yt = yt0; yt < yt3; yt += th) { + for (xt = xt0; xt < xt3; xt += tw) { + /* The area to update is [x0,x3) x [y0,y1). + * May not want the whole tile, hence the min and max. + */ + uint32_t x0 = MAX2(xt1, xt); + uint32_t y0 = MAX2(yt1, yt); + uint32_t x3 = MIN2(xt2, xt + tw); + uint32_t y1 = MIN2(yt2, yt + th); + + /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that + * the middle interval is the longest span-aligned part. + * The sub-ranges could be empty. + */ + uint32_t x1, x2; + x1 = ALIGN_UP(x0, span); + if (x1 > x3) + x1 = x2 = x3; + else + x2 = ALIGN_DOWN(x3, span); + + assert(x0 <= x1 && x1 <= x2 && x2 <= x3); + assert(x1 - x0 < span && x3 - x2 < span); + assert(x3 - x0 <= tw); + assert((x2 - x1) % span == 0); + + /* Translate by (xt,yt) for single-tile copier. */ + tile_copy(x0-xt, x1-xt, x2-xt, x3-xt, + y0-yt, y1-yt, + dst + xt * th + yt * dst_pitch, + src + xt + yt * src_pitch, + src_pitch, + swizzle_bit, + mem_copy); + } + } +} + /** * \brief A fast path for glTexImage and glTexSubImage. * * \param for_glTexImage Was this called from glTexImage or glTexSubImage? * - * This fast path is taken when the hardware natively supports the texture - * format (such as GL_BGRA) and when the texture memory is X-tiled. It uploads + * This fast path is taken when the texture format is BGRA, RGBA, + * A or L and when the texture memory is X- or Y-tiled. It uploads * the texture data by mapping the texture memory without a GTT fence, thus - * acquiring a tiled view of the memory, and then memcpy'ing sucessive - * subspans within each tile. + * acquiring a tiled view of the memory, and then copying sucessive + * spans within each tile. * * This is a performance win over the conventional texture upload path because * it avoids the performance penalty of writing through the write-combine * buffer. In the conventional texture upload path, * texstore.c:store_texsubimage(), the texture memory is mapped through a GTT * fence, thus acquiring a linear view of the memory, then each row in the - * image is memcpy'd. In this fast path, we replace each row's memcpy with - * a sequence of memcpy's over each bit6 swizzle span in the row. + * image is memcpy'd. In this fast path, we replace each row's copy with + * a sequence of copies over each linear span in tile. * - * This fast path's use case is Google Chrome's paint rectangles. Chrome (as + * One use case is Google Chrome's paint rectangles. Chrome (as * of version 21) renders each page as a tiling of 256x256 GL_BGRA textures. * Each page's content is initially uploaded with glTexImage2D and damaged * regions are updated with glTexSubImage2D. On some workloads, the @@ -176,14 +538,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx, int error = 0; - /* This fastpath is restricted to a specific texture type: level 0 of - * a 2D BGRA texture. It could be generalized to support more types by - * varying the arithmetic loop below. + uint32_t cpp; + mem_copy_fn mem_copy = NULL; + + /* This fastpath is restricted to specific texture types: level 0 of + * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support + * more types. */ if (!brw->has_llc || - format != GL_BGRA || type != GL_UNSIGNED_BYTE || - texImage->TexFormat != MESA_FORMAT_ARGB8888 || texImage->TexObject->Target != GL_TEXTURE_2D || texImage->Level != 0 || pixels == NULL || @@ -197,12 +560,28 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx, packing->Invert) return false; + if ((texImage->TexFormat == MESA_FORMAT_L8 && format == GL_LUMINANCE) || + (texImage->TexFormat == MESA_FORMAT_A8 && format == GL_ALPHA)) { + cpp = 1; + mem_copy = memcpy; + } else if (texImage->TexFormat == MESA_FORMAT_ARGB8888) { + cpp = 4; + if (format == GL_BGRA) { + mem_copy = memcpy; + } else if (format == GL_RGBA) { + mem_copy = rgba8_copy; + } + } + if (!mem_copy) + return false; + if (for_glTexImage) ctx->Driver.AllocTextureImageBuffer(ctx, texImage); if (!image->mt || - image->mt->region->tiling != I915_TILING_X) { - /* The algorithm below is written only for X-tiled memory. */ + (image->mt->region->tiling != I915_TILING_X && + image->mt->region->tiling != I915_TILING_Y)) { + /* The algorithm is written only for X- or Y-tiled memory. */ return false; } @@ -236,61 +615,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx, DBG("%s: level=%d offset=(%d,%d) (w,h)=(%d,%d)\n", __FUNCTION__, texImage->Level, xoffset, yoffset, width, height); - /* In the tiling algorithm below, some variables are in units of pixels, - * others are in units of bytes, and others (such as height) are unitless. - * Each variable name is suffixed with its units. - */ - - const uint32_t x_max_pixels = xoffset + width; - const uint32_t y_max_pixels = yoffset + height; - - const uint32_t tile_size_bytes = 4096; - - const uint32_t tile_width_bytes = 512; - const uint32_t tile_width_pixels = 128; - - const uint32_t tile_height = 8; - - const uint32_t cpp = 4; /* chars per pixel of GL_BGRA */ - const uint32_t swizzle_width_pixels = 16; - - const uint32_t stride_bytes = image->mt->region->pitch; - const uint32_t width_tiles = stride_bytes / tile_width_bytes; - - for (uint32_t y_pixels = yoffset; y_pixels < y_max_pixels; ++y_pixels) { - const uint32_t y_offset_bytes = (y_pixels / tile_height) * width_tiles * tile_size_bytes - + (y_pixels % tile_height) * tile_width_bytes; - - for (uint32_t x_pixels = xoffset; x_pixels < x_max_pixels; x_pixels += swizzle_width_pixels) { - const uint32_t x_offset_bytes = (x_pixels / tile_width_pixels) * tile_size_bytes - + (x_pixels % tile_width_pixels) * cpp; - - intptr_t offset_bytes = y_offset_bytes + x_offset_bytes; - if (brw->has_swizzling) { -#if 0 - /* Clear, unoptimized version. */ - bool bit6 = (offset_bytes >> 6) & 1; - bool bit9 = (offset_bytes >> 9) & 1; - bool bit10 = (offset_bytes >> 10) & 1; - - if (bit9 ^ bit10) - offset_bytes ^= (1 << 6); -#else - /* Optimized, obfuscated version. */ - offset_bytes ^= ((offset_bytes >> 3) ^ (offset_bytes >> 4)) - & (1 << 6); -#endif - } - - const uint32_t swizzle_bound_pixels = ALIGN(x_pixels + 1, swizzle_width_pixels); - const uint32_t memcpy_bound_pixels = MIN2(x_max_pixels, swizzle_bound_pixels); - const uint32_t copy_size = cpp * (memcpy_bound_pixels - x_pixels); - - memcpy(bo->virtual + offset_bytes, pixels, copy_size); - pixels += copy_size; - x_pixels -= (x_pixels % swizzle_width_pixels); - } - } + linear_to_tiled( + xoffset * cpp, (xoffset + width) * cpp, + yoffset, yoffset + height, + bo->virtual, pixels - (xoffset + yoffset * width) * cpp, + image->mt->region->pitch, width * cpp, + brw->has_swizzling, + image->mt->region->tiling, + mem_copy + ); drm_intel_bo_unmap(bo); return true; |