diff options
Diffstat (limited to 'src/intel/compiler/brw_vec4_reg_allocate.cpp')
-rw-r--r-- | src/intel/compiler/brw_vec4_reg_allocate.cpp | 558 |
1 files changed, 558 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_vec4_reg_allocate.cpp b/src/intel/compiler/brw_vec4_reg_allocate.cpp new file mode 100644 index 00000000000..e3b46cc2f7f --- /dev/null +++ b/src/intel/compiler/brw_vec4_reg_allocate.cpp @@ -0,0 +1,558 @@ +/* + * Copyright © 2011 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include "util/register_allocate.h" +#include "brw_vec4.h" +#include "brw_cfg.h" + +using namespace brw; + +namespace brw { + +static void +assign(unsigned int *reg_hw_locations, backend_reg *reg) +{ + if (reg->file == VGRF) { + reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; + reg->offset %= REG_SIZE; + } +} + +bool +vec4_visitor::reg_allocate_trivial() +{ + unsigned int hw_reg_mapping[this->alloc.count]; + bool virtual_grf_used[this->alloc.count]; + int next; + + /* Calculate which virtual GRFs are actually in use after whatever + * optimization passes have occurred. + */ + for (unsigned i = 0; i < this->alloc.count; i++) { + virtual_grf_used[i] = false; + } + + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + if (inst->dst.file == VGRF) + virtual_grf_used[inst->dst.nr] = true; + + for (unsigned i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) + virtual_grf_used[inst->src[i].nr] = true; + } + } + + hw_reg_mapping[0] = this->first_non_payload_grf; + next = hw_reg_mapping[0] + this->alloc.sizes[0]; + for (unsigned i = 1; i < this->alloc.count; i++) { + if (virtual_grf_used[i]) { + hw_reg_mapping[i] = next; + next += this->alloc.sizes[i]; + } + } + prog_data->total_grf = next; + + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + assign(hw_reg_mapping, &inst->dst); + assign(hw_reg_mapping, &inst->src[0]); + assign(hw_reg_mapping, &inst->src[1]); + assign(hw_reg_mapping, &inst->src[2]); + } + + if (prog_data->total_grf > max_grf) { + fail("Ran out of regs on trivial allocator (%d/%d)\n", + prog_data->total_grf, max_grf); + return false; + } + + return true; +} + +extern "C" void +brw_vec4_alloc_reg_set(struct brw_compiler *compiler) +{ + int base_reg_count = + compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF; + + /* After running split_virtual_grfs(), almost all VGRFs will be of size 1. + * SEND-from-GRF sources cannot be split, so we also need classes for each + * potential message length. + */ + const int class_count = MAX_VGRF_SIZE; + int class_sizes[MAX_VGRF_SIZE]; + + for (int i = 0; i < class_count; i++) + class_sizes[i] = i + 1; + + /* Compute the total number of registers across all classes. */ + int ra_reg_count = 0; + for (int i = 0; i < class_count; i++) { + ra_reg_count += base_reg_count - (class_sizes[i] - 1); + } + + ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf); + compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count); + ralloc_free(compiler->vec4_reg_set.regs); + compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false); + if (compiler->devinfo->gen >= 6) + ra_set_allocate_round_robin(compiler->vec4_reg_set.regs); + ralloc_free(compiler->vec4_reg_set.classes); + compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count); + + /* Now, add the registers to their classes, and add the conflicts + * between them and the base GRF registers (and also each other). + */ + int reg = 0; + unsigned *q_values[MAX_VGRF_SIZE]; + for (int i = 0; i < class_count; i++) { + int class_reg_count = base_reg_count - (class_sizes[i] - 1); + compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs); + + q_values[i] = new unsigned[MAX_VGRF_SIZE]; + + for (int j = 0; j < class_reg_count; j++) { + ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg); + + compiler->vec4_reg_set.ra_reg_to_grf[reg] = j; + + for (int base_reg = j; + base_reg < j + class_sizes[i]; + base_reg++) { + ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg); + } + + reg++; + } + + for (int j = 0; j < class_count; j++) { + /* Calculate the q values manually because the algorithm used by + * ra_set_finalize() to do it has higher complexity affecting the + * start-up time of some applications. q(i, j) is just the maximum + * number of registers from class i a register from class j can + * conflict with. + */ + q_values[i][j] = class_sizes[i] + class_sizes[j] - 1; + } + } + assert(reg == ra_reg_count); + + for (int reg = 0; reg < base_reg_count; reg++) + ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg); + + ra_set_finalize(compiler->vec4_reg_set.regs, q_values); + + for (int i = 0; i < MAX_VGRF_SIZE; i++) + delete[] q_values[i]; +} + +void +vec4_visitor::setup_payload_interference(struct ra_graph *g, + int first_payload_node, + int reg_node_count) +{ + int payload_node_count = this->first_non_payload_grf; + + for (int i = 0; i < payload_node_count; i++) { + /* Mark each payload reg node as being allocated to its physical register. + * + * The alternative would be to have per-physical register classes, which + * would just be silly. + */ + ra_set_node_reg(g, first_payload_node + i, i); + + /* For now, just mark each payload node as interfering with every other + * node to be allocated. + */ + for (int j = 0; j < reg_node_count; j++) { + ra_add_node_interference(g, first_payload_node + i, j); + } + } +} + +bool +vec4_visitor::reg_allocate() +{ + unsigned int hw_reg_mapping[alloc.count]; + int payload_reg_count = this->first_non_payload_grf; + + /* Using the trivial allocator can be useful in debugging undefined + * register access as a result of broken optimization passes. + */ + if (0) + return reg_allocate_trivial(); + + calculate_live_intervals(); + + int node_count = alloc.count; + int first_payload_node = node_count; + node_count += payload_reg_count; + struct ra_graph *g = + ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count); + + for (unsigned i = 0; i < alloc.count; i++) { + int size = this->alloc.sizes[i]; + assert(size >= 1 && size <= MAX_VGRF_SIZE); + ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]); + + for (unsigned j = 0; j < i; j++) { + if (virtual_grf_interferes(i, j)) { + ra_add_node_interference(g, i, j); + } + } + } + + /* Certain instructions can't safely use the same register for their + * sources and destination. Add interference. + */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) { + for (unsigned i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) { + ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr); + } + } + } + } + + setup_payload_interference(g, first_payload_node, node_count); + + if (!ra_allocate(g)) { + /* Failed to allocate registers. Spill a reg, and the caller will + * loop back into here to try again. + */ + int reg = choose_spill_reg(g); + if (this->no_spills) { + fail("Failure to register allocate. Reduce number of live " + "values to avoid this."); + } else if (reg == -1) { + fail("no register to spill\n"); + } else { + spill_reg(reg); + } + ralloc_free(g); + return false; + } + + /* Get the chosen virtual registers for each node, and map virtual + * regs in the register classes back down to real hardware reg + * numbers. + */ + prog_data->total_grf = payload_reg_count; + for (unsigned i = 0; i < alloc.count; i++) { + int reg = ra_get_node_reg(g, i); + + hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg]; + prog_data->total_grf = MAX2(prog_data->total_grf, + hw_reg_mapping[i] + alloc.sizes[i]); + } + + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + assign(hw_reg_mapping, &inst->dst); + assign(hw_reg_mapping, &inst->src[0]); + assign(hw_reg_mapping, &inst->src[1]); + assign(hw_reg_mapping, &inst->src[2]); + } + + ralloc_free(g); + + return true; +} + +/** + * When we decide to spill a register, instead of blindly spilling every use, + * save unspills when the spill register is used (read) in consecutive + * instructions. This can potentially save a bunch of unspills that would + * have very little impact in register allocation anyway. + * + * Notice that we need to account for this behavior when spilling a register + * and when evaluating spilling costs. This function is designed so it can + * be called from both places and avoid repeating the logic. + * + * - When we call this function from spill_reg(), we pass in scratch_reg the + * actual unspill/spill register that we want to reuse in the current + * instruction. + * + * - When we call this from evaluate_spill_costs(), we pass the register for + * which we are evaluating spilling costs. + * + * In either case, we check if the previous instructions read scratch_reg until + * we find one that writes to it with a compatible mask or does not read/write + * scratch_reg at all. + */ +static bool +can_use_scratch_for_source(const vec4_instruction *inst, unsigned i, + unsigned scratch_reg) +{ + assert(inst->src[i].file == VGRF); + bool prev_inst_read_scratch_reg = false; + + /* See if any previous source in the same instructions reads scratch_reg */ + for (unsigned n = 0; n < i; n++) { + if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg) + prev_inst_read_scratch_reg = true; + } + + /* Now check if previous instructions read/write scratch_reg */ + for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev; + !prev_inst->is_head_sentinel(); + prev_inst = (vec4_instruction *) prev_inst->prev) { + + /* If the previous instruction writes to scratch_reg then we can reuse + * it if the write is not conditional and the channels we write are + * compatible with our read mask + */ + if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) { + return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) && + (brw_mask_for_swizzle(inst->src[i].swizzle) & + ~prev_inst->dst.writemask) == 0; + } + + /* Skip scratch read/writes so that instructions generated by spilling + * other registers (that won't read/write scratch_reg) do not stop us from + * reusing scratch_reg for this instruction. + */ + if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE || + prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ) + continue; + + /* If the previous instruction does not write to scratch_reg, then check + * if it reads it + */ + int n; + for (n = 0; n < 3; n++) { + if (prev_inst->src[n].file == VGRF && + prev_inst->src[n].nr == scratch_reg) { + prev_inst_read_scratch_reg = true; + break; + } + } + if (n == 3) { + /* The previous instruction does not read scratch_reg. At this point, + * if no previous instruction has read scratch_reg it means that we + * will need to unspill it here and we can't reuse it (so we return + * false). Otherwise, if we found at least one consecutive instruction + * that read scratch_reg, then we know that we got here from + * evaluate_spill_costs (since for the spill_reg path any block of + * consecutive instructions using scratch_reg must start with a write + * to that register, so we would've exited the loop in the check for + * the write that we have at the start of this loop), and in that case + * it means that we found the point at which the scratch_reg would be + * unspilled. Since we always unspill a full vec4, it means that we + * have all the channels available and we can just return true to + * signal that we can reuse the register in the current instruction + * too. + */ + return prev_inst_read_scratch_reg; + } + } + + return prev_inst_read_scratch_reg; +} + +static inline unsigned +spill_cost_for_type(enum brw_reg_type type) +{ + /* Spilling of a 64-bit register involves emitting 2 32-bit scratch + * messages plus the 64b/32b shuffling code. + */ + return type_sz(type) == 8 ? 2.25f : 1.0f; +} + +void +vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill) +{ + float loop_scale = 1.0; + + unsigned *reg_type_size = (unsigned *) + ralloc_size(NULL, this->alloc.count * sizeof(unsigned)); + + for (unsigned i = 0; i < this->alloc.count; i++) { + spill_costs[i] = 0.0; + no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2; + reg_type_size[i] = 0; + } + + /* Calculate costs for spilling nodes. Call it a cost of 1 per + * spill/unspill we'll have to do, and guess that the insides of + * loops run 10 times. + */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (unsigned int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) { + /* We will only unspill src[i] it it wasn't unspilled for the + * previous instruction, in which case we'll just reuse the scratch + * reg for this instruction. + */ + if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) { + spill_costs[inst->src[i].nr] += + loop_scale * spill_cost_for_type(inst->src[i].type); + if (inst->src[i].reladdr || + inst->src[i].offset >= REG_SIZE) + no_spill[inst->src[i].nr] = true; + + /* We don't support unspills of partial DF reads. + * + * Our 64-bit unspills are implemented with two 32-bit scratch + * messages, each one reading that for both SIMD4x2 threads that + * we need to shuffle into correct 64-bit data. Ensure that we + * are reading data for both threads. + */ + if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8) + no_spill[inst->src[i].nr] = true; + } + + /* We can't spill registers that mix 32-bit and 64-bit access (that + * contain 64-bit data that is operated on via 32-bit instructions) + */ + unsigned type_size = type_sz(inst->src[i].type); + if (reg_type_size[inst->src[i].nr] == 0) + reg_type_size[inst->src[i].nr] = type_size; + else if (reg_type_size[inst->src[i].nr] != type_size) + no_spill[inst->src[i].nr] = true; + } + } + + if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) { + spill_costs[inst->dst.nr] += + loop_scale * spill_cost_for_type(inst->dst.type); + if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE) + no_spill[inst->dst.nr] = true; + + /* We don't support spills of partial DF writes. + * + * Our 64-bit spills are implemented with two 32-bit scratch messages, + * each one writing that for both SIMD4x2 threads. Ensure that we + * are writing data for both threads. + */ + if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8) + no_spill[inst->dst.nr] = true; + + /* FROM_DOUBLE opcodes are setup so that they use a dst register + * with a size of 2 even if they only produce a single-precison + * result (this is so that the opcode can use the larger register to + * produce a 64-bit aligned intermediary result as required by the + * hardware during the conversion process). This creates a problem for + * spilling though, because when we attempt to emit a spill for the + * dst we see a 32-bit destination and emit a scratch write that + * allocates a single spill register. + */ + if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE) + no_spill[inst->dst.nr] = true; + + /* We can't spill registers that mix 32-bit and 64-bit access (that + * contain 64-bit data that is operated on via 32-bit instructions) + */ + unsigned type_size = type_sz(inst->dst.type); + if (reg_type_size[inst->dst.nr] == 0) + reg_type_size[inst->dst.nr] = type_size; + else if (reg_type_size[inst->dst.nr] != type_size) + no_spill[inst->dst.nr] = true; + } + + switch (inst->opcode) { + + case BRW_OPCODE_DO: + loop_scale *= 10; + break; + + case BRW_OPCODE_WHILE: + loop_scale /= 10; + break; + + case SHADER_OPCODE_GEN4_SCRATCH_READ: + case SHADER_OPCODE_GEN4_SCRATCH_WRITE: + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF) + no_spill[inst->src[i].nr] = true; + } + if (inst->dst.file == VGRF) + no_spill[inst->dst.nr] = true; + break; + + default: + break; + } + } + + ralloc_free(reg_type_size); +} + +int +vec4_visitor::choose_spill_reg(struct ra_graph *g) +{ + float spill_costs[this->alloc.count]; + bool no_spill[this->alloc.count]; + + evaluate_spill_costs(spill_costs, no_spill); + + for (unsigned i = 0; i < this->alloc.count; i++) { + if (!no_spill[i]) + ra_set_node_spill_cost(g, i, spill_costs[i]); + } + + return ra_get_best_spill_node(g); +} + +void +vec4_visitor::spill_reg(int spill_reg_nr) +{ + assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2); + unsigned int spill_offset = last_scratch; + last_scratch += alloc.sizes[spill_reg_nr]; + + /* Generate spill/unspill instructions for the objects being spilled. */ + int scratch_reg = -1; + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (unsigned int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) { + if (scratch_reg == -1 || + !can_use_scratch_for_source(inst, i, scratch_reg)) { + /* We need to unspill anyway so make sure we read the full vec4 + * in any case. This way, the cached register can be reused + * for consecutive instructions that read different channels of + * the same vec4. + */ + scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]); + src_reg temp = inst->src[i]; + temp.nr = scratch_reg; + temp.offset = 0; + temp.swizzle = BRW_SWIZZLE_XYZW; + emit_scratch_read(block, inst, + dst_reg(temp), inst->src[i], spill_offset); + temp.offset = inst->src[i].offset; + } + assert(scratch_reg != -1); + inst->src[i].nr = scratch_reg; + } + } + + if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) { + emit_scratch_write(block, inst, spill_offset); + scratch_reg = inst->dst.nr; + } + } + + invalidate_live_intervals(); +} + +} /* namespace brw */ |