aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_vec4_reg_allocate.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/compiler/brw_vec4_reg_allocate.cpp')
-rw-r--r--src/intel/compiler/brw_vec4_reg_allocate.cpp558
1 files changed, 558 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_vec4_reg_allocate.cpp b/src/intel/compiler/brw_vec4_reg_allocate.cpp
new file mode 100644
index 00000000000..e3b46cc2f7f
--- /dev/null
+++ b/src/intel/compiler/brw_vec4_reg_allocate.cpp
@@ -0,0 +1,558 @@
+/*
+ * Copyright © 2011 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "util/register_allocate.h"
+#include "brw_vec4.h"
+#include "brw_cfg.h"
+
+using namespace brw;
+
+namespace brw {
+
+static void
+assign(unsigned int *reg_hw_locations, backend_reg *reg)
+{
+ if (reg->file == VGRF) {
+ reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
+ reg->offset %= REG_SIZE;
+ }
+}
+
+bool
+vec4_visitor::reg_allocate_trivial()
+{
+ unsigned int hw_reg_mapping[this->alloc.count];
+ bool virtual_grf_used[this->alloc.count];
+ int next;
+
+ /* Calculate which virtual GRFs are actually in use after whatever
+ * optimization passes have occurred.
+ */
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ virtual_grf_used[i] = false;
+ }
+
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ if (inst->dst.file == VGRF)
+ virtual_grf_used[inst->dst.nr] = true;
+
+ for (unsigned i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF)
+ virtual_grf_used[inst->src[i].nr] = true;
+ }
+ }
+
+ hw_reg_mapping[0] = this->first_non_payload_grf;
+ next = hw_reg_mapping[0] + this->alloc.sizes[0];
+ for (unsigned i = 1; i < this->alloc.count; i++) {
+ if (virtual_grf_used[i]) {
+ hw_reg_mapping[i] = next;
+ next += this->alloc.sizes[i];
+ }
+ }
+ prog_data->total_grf = next;
+
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ assign(hw_reg_mapping, &inst->dst);
+ assign(hw_reg_mapping, &inst->src[0]);
+ assign(hw_reg_mapping, &inst->src[1]);
+ assign(hw_reg_mapping, &inst->src[2]);
+ }
+
+ if (prog_data->total_grf > max_grf) {
+ fail("Ran out of regs on trivial allocator (%d/%d)\n",
+ prog_data->total_grf, max_grf);
+ return false;
+ }
+
+ return true;
+}
+
+extern "C" void
+brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
+{
+ int base_reg_count =
+ compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
+
+ /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
+ * SEND-from-GRF sources cannot be split, so we also need classes for each
+ * potential message length.
+ */
+ const int class_count = MAX_VGRF_SIZE;
+ int class_sizes[MAX_VGRF_SIZE];
+
+ for (int i = 0; i < class_count; i++)
+ class_sizes[i] = i + 1;
+
+ /* Compute the total number of registers across all classes. */
+ int ra_reg_count = 0;
+ for (int i = 0; i < class_count; i++) {
+ ra_reg_count += base_reg_count - (class_sizes[i] - 1);
+ }
+
+ ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
+ compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
+ ralloc_free(compiler->vec4_reg_set.regs);
+ compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
+ if (compiler->devinfo->gen >= 6)
+ ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
+ ralloc_free(compiler->vec4_reg_set.classes);
+ compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
+
+ /* Now, add the registers to their classes, and add the conflicts
+ * between them and the base GRF registers (and also each other).
+ */
+ int reg = 0;
+ unsigned *q_values[MAX_VGRF_SIZE];
+ for (int i = 0; i < class_count; i++) {
+ int class_reg_count = base_reg_count - (class_sizes[i] - 1);
+ compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
+
+ q_values[i] = new unsigned[MAX_VGRF_SIZE];
+
+ for (int j = 0; j < class_reg_count; j++) {
+ ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
+
+ compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
+
+ for (int base_reg = j;
+ base_reg < j + class_sizes[i];
+ base_reg++) {
+ ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
+ }
+
+ reg++;
+ }
+
+ for (int j = 0; j < class_count; j++) {
+ /* Calculate the q values manually because the algorithm used by
+ * ra_set_finalize() to do it has higher complexity affecting the
+ * start-up time of some applications. q(i, j) is just the maximum
+ * number of registers from class i a register from class j can
+ * conflict with.
+ */
+ q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
+ }
+ }
+ assert(reg == ra_reg_count);
+
+ for (int reg = 0; reg < base_reg_count; reg++)
+ ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
+
+ ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
+
+ for (int i = 0; i < MAX_VGRF_SIZE; i++)
+ delete[] q_values[i];
+}
+
+void
+vec4_visitor::setup_payload_interference(struct ra_graph *g,
+ int first_payload_node,
+ int reg_node_count)
+{
+ int payload_node_count = this->first_non_payload_grf;
+
+ for (int i = 0; i < payload_node_count; i++) {
+ /* Mark each payload reg node as being allocated to its physical register.
+ *
+ * The alternative would be to have per-physical register classes, which
+ * would just be silly.
+ */
+ ra_set_node_reg(g, first_payload_node + i, i);
+
+ /* For now, just mark each payload node as interfering with every other
+ * node to be allocated.
+ */
+ for (int j = 0; j < reg_node_count; j++) {
+ ra_add_node_interference(g, first_payload_node + i, j);
+ }
+ }
+}
+
+bool
+vec4_visitor::reg_allocate()
+{
+ unsigned int hw_reg_mapping[alloc.count];
+ int payload_reg_count = this->first_non_payload_grf;
+
+ /* Using the trivial allocator can be useful in debugging undefined
+ * register access as a result of broken optimization passes.
+ */
+ if (0)
+ return reg_allocate_trivial();
+
+ calculate_live_intervals();
+
+ int node_count = alloc.count;
+ int first_payload_node = node_count;
+ node_count += payload_reg_count;
+ struct ra_graph *g =
+ ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
+
+ for (unsigned i = 0; i < alloc.count; i++) {
+ int size = this->alloc.sizes[i];
+ assert(size >= 1 && size <= MAX_VGRF_SIZE);
+ ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
+
+ for (unsigned j = 0; j < i; j++) {
+ if (virtual_grf_interferes(i, j)) {
+ ra_add_node_interference(g, i, j);
+ }
+ }
+ }
+
+ /* Certain instructions can't safely use the same register for their
+ * sources and destination. Add interference.
+ */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
+ for (unsigned i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF) {
+ ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
+ }
+ }
+ }
+ }
+
+ setup_payload_interference(g, first_payload_node, node_count);
+
+ if (!ra_allocate(g)) {
+ /* Failed to allocate registers. Spill a reg, and the caller will
+ * loop back into here to try again.
+ */
+ int reg = choose_spill_reg(g);
+ if (this->no_spills) {
+ fail("Failure to register allocate. Reduce number of live "
+ "values to avoid this.");
+ } else if (reg == -1) {
+ fail("no register to spill\n");
+ } else {
+ spill_reg(reg);
+ }
+ ralloc_free(g);
+ return false;
+ }
+
+ /* Get the chosen virtual registers for each node, and map virtual
+ * regs in the register classes back down to real hardware reg
+ * numbers.
+ */
+ prog_data->total_grf = payload_reg_count;
+ for (unsigned i = 0; i < alloc.count; i++) {
+ int reg = ra_get_node_reg(g, i);
+
+ hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
+ prog_data->total_grf = MAX2(prog_data->total_grf,
+ hw_reg_mapping[i] + alloc.sizes[i]);
+ }
+
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ assign(hw_reg_mapping, &inst->dst);
+ assign(hw_reg_mapping, &inst->src[0]);
+ assign(hw_reg_mapping, &inst->src[1]);
+ assign(hw_reg_mapping, &inst->src[2]);
+ }
+
+ ralloc_free(g);
+
+ return true;
+}
+
+/**
+ * When we decide to spill a register, instead of blindly spilling every use,
+ * save unspills when the spill register is used (read) in consecutive
+ * instructions. This can potentially save a bunch of unspills that would
+ * have very little impact in register allocation anyway.
+ *
+ * Notice that we need to account for this behavior when spilling a register
+ * and when evaluating spilling costs. This function is designed so it can
+ * be called from both places and avoid repeating the logic.
+ *
+ * - When we call this function from spill_reg(), we pass in scratch_reg the
+ * actual unspill/spill register that we want to reuse in the current
+ * instruction.
+ *
+ * - When we call this from evaluate_spill_costs(), we pass the register for
+ * which we are evaluating spilling costs.
+ *
+ * In either case, we check if the previous instructions read scratch_reg until
+ * we find one that writes to it with a compatible mask or does not read/write
+ * scratch_reg at all.
+ */
+static bool
+can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
+ unsigned scratch_reg)
+{
+ assert(inst->src[i].file == VGRF);
+ bool prev_inst_read_scratch_reg = false;
+
+ /* See if any previous source in the same instructions reads scratch_reg */
+ for (unsigned n = 0; n < i; n++) {
+ if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
+ prev_inst_read_scratch_reg = true;
+ }
+
+ /* Now check if previous instructions read/write scratch_reg */
+ for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
+ !prev_inst->is_head_sentinel();
+ prev_inst = (vec4_instruction *) prev_inst->prev) {
+
+ /* If the previous instruction writes to scratch_reg then we can reuse
+ * it if the write is not conditional and the channels we write are
+ * compatible with our read mask
+ */
+ if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
+ return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
+ (brw_mask_for_swizzle(inst->src[i].swizzle) &
+ ~prev_inst->dst.writemask) == 0;
+ }
+
+ /* Skip scratch read/writes so that instructions generated by spilling
+ * other registers (that won't read/write scratch_reg) do not stop us from
+ * reusing scratch_reg for this instruction.
+ */
+ if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
+ prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
+ continue;
+
+ /* If the previous instruction does not write to scratch_reg, then check
+ * if it reads it
+ */
+ int n;
+ for (n = 0; n < 3; n++) {
+ if (prev_inst->src[n].file == VGRF &&
+ prev_inst->src[n].nr == scratch_reg) {
+ prev_inst_read_scratch_reg = true;
+ break;
+ }
+ }
+ if (n == 3) {
+ /* The previous instruction does not read scratch_reg. At this point,
+ * if no previous instruction has read scratch_reg it means that we
+ * will need to unspill it here and we can't reuse it (so we return
+ * false). Otherwise, if we found at least one consecutive instruction
+ * that read scratch_reg, then we know that we got here from
+ * evaluate_spill_costs (since for the spill_reg path any block of
+ * consecutive instructions using scratch_reg must start with a write
+ * to that register, so we would've exited the loop in the check for
+ * the write that we have at the start of this loop), and in that case
+ * it means that we found the point at which the scratch_reg would be
+ * unspilled. Since we always unspill a full vec4, it means that we
+ * have all the channels available and we can just return true to
+ * signal that we can reuse the register in the current instruction
+ * too.
+ */
+ return prev_inst_read_scratch_reg;
+ }
+ }
+
+ return prev_inst_read_scratch_reg;
+}
+
+static inline unsigned
+spill_cost_for_type(enum brw_reg_type type)
+{
+ /* Spilling of a 64-bit register involves emitting 2 32-bit scratch
+ * messages plus the 64b/32b shuffling code.
+ */
+ return type_sz(type) == 8 ? 2.25f : 1.0f;
+}
+
+void
+vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
+{
+ float loop_scale = 1.0;
+
+ unsigned *reg_type_size = (unsigned *)
+ ralloc_size(NULL, this->alloc.count * sizeof(unsigned));
+
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ spill_costs[i] = 0.0;
+ no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
+ reg_type_size[i] = 0;
+ }
+
+ /* Calculate costs for spilling nodes. Call it a cost of 1 per
+ * spill/unspill we'll have to do, and guess that the insides of
+ * loops run 10 times.
+ */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (unsigned int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
+ /* We will only unspill src[i] it it wasn't unspilled for the
+ * previous instruction, in which case we'll just reuse the scratch
+ * reg for this instruction.
+ */
+ if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
+ spill_costs[inst->src[i].nr] +=
+ loop_scale * spill_cost_for_type(inst->src[i].type);
+ if (inst->src[i].reladdr ||
+ inst->src[i].offset >= REG_SIZE)
+ no_spill[inst->src[i].nr] = true;
+
+ /* We don't support unspills of partial DF reads.
+ *
+ * Our 64-bit unspills are implemented with two 32-bit scratch
+ * messages, each one reading that for both SIMD4x2 threads that
+ * we need to shuffle into correct 64-bit data. Ensure that we
+ * are reading data for both threads.
+ */
+ if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
+ no_spill[inst->src[i].nr] = true;
+ }
+
+ /* We can't spill registers that mix 32-bit and 64-bit access (that
+ * contain 64-bit data that is operated on via 32-bit instructions)
+ */
+ unsigned type_size = type_sz(inst->src[i].type);
+ if (reg_type_size[inst->src[i].nr] == 0)
+ reg_type_size[inst->src[i].nr] = type_size;
+ else if (reg_type_size[inst->src[i].nr] != type_size)
+ no_spill[inst->src[i].nr] = true;
+ }
+ }
+
+ if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
+ spill_costs[inst->dst.nr] +=
+ loop_scale * spill_cost_for_type(inst->dst.type);
+ if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
+ no_spill[inst->dst.nr] = true;
+
+ /* We don't support spills of partial DF writes.
+ *
+ * Our 64-bit spills are implemented with two 32-bit scratch messages,
+ * each one writing that for both SIMD4x2 threads. Ensure that we
+ * are writing data for both threads.
+ */
+ if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
+ no_spill[inst->dst.nr] = true;
+
+ /* FROM_DOUBLE opcodes are setup so that they use a dst register
+ * with a size of 2 even if they only produce a single-precison
+ * result (this is so that the opcode can use the larger register to
+ * produce a 64-bit aligned intermediary result as required by the
+ * hardware during the conversion process). This creates a problem for
+ * spilling though, because when we attempt to emit a spill for the
+ * dst we see a 32-bit destination and emit a scratch write that
+ * allocates a single spill register.
+ */
+ if (inst->opcode == VEC4_OPCODE_FROM_DOUBLE)
+ no_spill[inst->dst.nr] = true;
+
+ /* We can't spill registers that mix 32-bit and 64-bit access (that
+ * contain 64-bit data that is operated on via 32-bit instructions)
+ */
+ unsigned type_size = type_sz(inst->dst.type);
+ if (reg_type_size[inst->dst.nr] == 0)
+ reg_type_size[inst->dst.nr] = type_size;
+ else if (reg_type_size[inst->dst.nr] != type_size)
+ no_spill[inst->dst.nr] = true;
+ }
+
+ switch (inst->opcode) {
+
+ case BRW_OPCODE_DO:
+ loop_scale *= 10;
+ break;
+
+ case BRW_OPCODE_WHILE:
+ loop_scale /= 10;
+ break;
+
+ case SHADER_OPCODE_GEN4_SCRATCH_READ:
+ case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF)
+ no_spill[inst->src[i].nr] = true;
+ }
+ if (inst->dst.file == VGRF)
+ no_spill[inst->dst.nr] = true;
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ ralloc_free(reg_type_size);
+}
+
+int
+vec4_visitor::choose_spill_reg(struct ra_graph *g)
+{
+ float spill_costs[this->alloc.count];
+ bool no_spill[this->alloc.count];
+
+ evaluate_spill_costs(spill_costs, no_spill);
+
+ for (unsigned i = 0; i < this->alloc.count; i++) {
+ if (!no_spill[i])
+ ra_set_node_spill_cost(g, i, spill_costs[i]);
+ }
+
+ return ra_get_best_spill_node(g);
+}
+
+void
+vec4_visitor::spill_reg(int spill_reg_nr)
+{
+ assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
+ unsigned int spill_offset = last_scratch;
+ last_scratch += alloc.sizes[spill_reg_nr];
+
+ /* Generate spill/unspill instructions for the objects being spilled. */
+ int scratch_reg = -1;
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (unsigned int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
+ if (scratch_reg == -1 ||
+ !can_use_scratch_for_source(inst, i, scratch_reg)) {
+ /* We need to unspill anyway so make sure we read the full vec4
+ * in any case. This way, the cached register can be reused
+ * for consecutive instructions that read different channels of
+ * the same vec4.
+ */
+ scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
+ src_reg temp = inst->src[i];
+ temp.nr = scratch_reg;
+ temp.offset = 0;
+ temp.swizzle = BRW_SWIZZLE_XYZW;
+ emit_scratch_read(block, inst,
+ dst_reg(temp), inst->src[i], spill_offset);
+ temp.offset = inst->src[i].offset;
+ }
+ assert(scratch_reg != -1);
+ inst->src[i].nr = scratch_reg;
+ }
+ }
+
+ if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
+ emit_scratch_write(block, inst, spill_offset);
+ scratch_reg = inst->dst.nr;
+ }
+ }
+
+ invalidate_live_intervals();
+}
+
+} /* namespace brw */