diff options
Diffstat (limited to 'src/intel/compiler/brw_vec4.cpp')
-rw-r--r-- | src/intel/compiler/brw_vec4.cpp | 2851 |
1 files changed, 2851 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_vec4.cpp b/src/intel/compiler/brw_vec4.cpp new file mode 100644 index 00000000000..d7c09093032 --- /dev/null +++ b/src/intel/compiler/brw_vec4.cpp @@ -0,0 +1,2851 @@ +/* + * Copyright © 2011 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include "brw_vec4.h" +#include "brw_fs.h" +#include "brw_cfg.h" +#include "brw_nir.h" +#include "brw_vec4_builder.h" +#include "brw_vec4_live_variables.h" +#include "brw_vec4_vs.h" +#include "brw_dead_control_flow.h" +#include "common/gen_debug.h" +#include "program/prog_parameter.h" + +#define MAX_INSTRUCTION (1 << 30) + +using namespace brw; + +namespace brw { + +void +src_reg::init() +{ + memset(this, 0, sizeof(*this)); + + this->file = BAD_FILE; +} + +src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) +{ + init(); + + this->file = file; + this->nr = nr; + if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) + this->swizzle = brw_swizzle_for_size(type->vector_elements); + else + this->swizzle = BRW_SWIZZLE_XYZW; + if (type) + this->type = brw_type_for_base_type(type); +} + +/** Generic unset register constructor. */ +src_reg::src_reg() +{ + init(); +} + +src_reg::src_reg(struct ::brw_reg reg) : + backend_reg(reg) +{ + this->offset = 0; + this->reladdr = NULL; +} + +src_reg::src_reg(const dst_reg ®) : + backend_reg(reg) +{ + this->reladdr = reg.reladdr; + this->swizzle = brw_swizzle_for_mask(reg.writemask); +} + +void +dst_reg::init() +{ + memset(this, 0, sizeof(*this)); + this->file = BAD_FILE; + this->writemask = WRITEMASK_XYZW; +} + +dst_reg::dst_reg() +{ + init(); +} + +dst_reg::dst_reg(enum brw_reg_file file, int nr) +{ + init(); + + this->file = file; + this->nr = nr; +} + +dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, + unsigned writemask) +{ + init(); + + this->file = file; + this->nr = nr; + this->type = brw_type_for_base_type(type); + this->writemask = writemask; +} + +dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, + unsigned writemask) +{ + init(); + + this->file = file; + this->nr = nr; + this->type = type; + this->writemask = writemask; +} + +dst_reg::dst_reg(struct ::brw_reg reg) : + backend_reg(reg) +{ + this->offset = 0; + this->reladdr = NULL; +} + +dst_reg::dst_reg(const src_reg ®) : + backend_reg(reg) +{ + this->writemask = brw_mask_for_swizzle(reg.swizzle); + this->reladdr = reg.reladdr; +} + +bool +dst_reg::equals(const dst_reg &r) const +{ + return (this->backend_reg::equals(r) && + (reladdr == r.reladdr || + (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); +} + +bool +vec4_instruction::is_send_from_grf() +{ + switch (opcode) { + case SHADER_OPCODE_SHADER_TIME_ADD: + case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: + case SHADER_OPCODE_UNTYPED_ATOMIC: + case SHADER_OPCODE_UNTYPED_SURFACE_READ: + case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: + case SHADER_OPCODE_TYPED_ATOMIC: + case SHADER_OPCODE_TYPED_SURFACE_READ: + case SHADER_OPCODE_TYPED_SURFACE_WRITE: + case VEC4_OPCODE_URB_READ: + case TCS_OPCODE_URB_WRITE: + case TCS_OPCODE_RELEASE_INPUT: + case SHADER_OPCODE_BARRIER: + return true; + default: + return false; + } +} + +/** + * Returns true if this instruction's sources and destinations cannot + * safely be the same register. + * + * In most cases, a register can be written over safely by the same + * instruction that is its last use. For a single instruction, the + * sources are dereferenced before writing of the destination starts + * (naturally). + * + * However, there are a few cases where this can be problematic: + * + * - Virtual opcodes that translate to multiple instructions in the + * code generator: if src == dst and one instruction writes the + * destination before a later instruction reads the source, then + * src will have been clobbered. + * + * The register allocator uses this information to set up conflicts between + * GRF sources and the destination. + */ +bool +vec4_instruction::has_source_and_destination_hazard() const +{ + switch (opcode) { + case TCS_OPCODE_SET_INPUT_URB_OFFSETS: + case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: + case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: + return true; + default: + /* 8-wide compressed DF operations are executed as two 4-wide operations, + * so we have a src/dst hazard if the first half of the instruction + * overwrites the source of the second half. Prevent this by marking + * compressed instructions as having src/dst hazards, so the register + * allocator assigns safe register regions for dst and srcs. + */ + return size_written > REG_SIZE; + } +} + +unsigned +vec4_instruction::size_read(unsigned arg) const +{ + switch (opcode) { + case SHADER_OPCODE_SHADER_TIME_ADD: + case SHADER_OPCODE_UNTYPED_ATOMIC: + case SHADER_OPCODE_UNTYPED_SURFACE_READ: + case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: + case SHADER_OPCODE_TYPED_ATOMIC: + case SHADER_OPCODE_TYPED_SURFACE_READ: + case SHADER_OPCODE_TYPED_SURFACE_WRITE: + case TCS_OPCODE_URB_WRITE: + if (arg == 0) + return mlen * REG_SIZE; + break; + case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: + if (arg == 1) + return mlen * REG_SIZE; + break; + default: + break; + } + + switch (src[arg].file) { + case BAD_FILE: + return 0; + case IMM: + case UNIFORM: + return 4 * type_sz(src[arg].type); + default: + /* XXX - Represent actual vertical stride. */ + return exec_size * type_sz(src[arg].type); + } +} + +bool +vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo) +{ + if (devinfo->gen == 6 && is_math()) + return false; + + if (is_send_from_grf()) + return false; + + if (!backend_instruction::can_do_source_mods()) + return false; + + return true; +} + +bool +vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo) +{ + switch (opcode) { + case SHADER_OPCODE_GEN4_SCRATCH_READ: + case VEC4_OPCODE_FROM_DOUBLE: + case VEC4_OPCODE_TO_DOUBLE: + case VEC4_OPCODE_PICK_LOW_32BIT: + case VEC4_OPCODE_PICK_HIGH_32BIT: + case VEC4_OPCODE_SET_LOW_32BIT: + case VEC4_OPCODE_SET_HIGH_32BIT: + case VS_OPCODE_PULL_CONSTANT_LOAD: + case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: + case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: + case TCS_OPCODE_SET_INPUT_URB_OFFSETS: + case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: + case TES_OPCODE_CREATE_INPUT_READ_HEADER: + case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: + case VEC4_OPCODE_URB_READ: + case SHADER_OPCODE_MOV_INDIRECT: + return false; + default: + /* The MATH instruction on Gen6 only executes in align1 mode, which does + * not support writemasking. + */ + if (devinfo->gen == 6 && is_math()) + return false; + + if (is_tex()) + return false; + + return true; + } +} + +bool +vec4_instruction::can_change_types() const +{ + return dst.type == src[0].type && + !src[0].abs && !src[0].negate && !saturate && + (opcode == BRW_OPCODE_MOV || + (opcode == BRW_OPCODE_SEL && + dst.type == src[1].type && + predicate != BRW_PREDICATE_NONE && + !src[1].abs && !src[1].negate)); +} + +/** + * Returns how many MRFs an opcode will write over. + * + * Note that this is not the 0 or 1 implied writes in an actual gen + * instruction -- the generate_* functions generate additional MOVs + * for setup. + */ +int +vec4_visitor::implied_mrf_writes(vec4_instruction *inst) +{ + if (inst->mlen == 0 || inst->is_send_from_grf()) + return 0; + + switch (inst->opcode) { + case SHADER_OPCODE_RCP: + case SHADER_OPCODE_RSQ: + case SHADER_OPCODE_SQRT: + case SHADER_OPCODE_EXP2: + case SHADER_OPCODE_LOG2: + case SHADER_OPCODE_SIN: + case SHADER_OPCODE_COS: + return 1; + case SHADER_OPCODE_INT_QUOTIENT: + case SHADER_OPCODE_INT_REMAINDER: + case SHADER_OPCODE_POW: + case TCS_OPCODE_THREAD_END: + return 2; + case VS_OPCODE_URB_WRITE: + return 1; + case VS_OPCODE_PULL_CONSTANT_LOAD: + return 2; + case SHADER_OPCODE_GEN4_SCRATCH_READ: + return 2; + case SHADER_OPCODE_GEN4_SCRATCH_WRITE: + return 3; + case GS_OPCODE_URB_WRITE: + case GS_OPCODE_URB_WRITE_ALLOCATE: + case GS_OPCODE_THREAD_END: + return 0; + case GS_OPCODE_FF_SYNC: + return 1; + case TCS_OPCODE_URB_WRITE: + return 0; + case SHADER_OPCODE_SHADER_TIME_ADD: + return 0; + case SHADER_OPCODE_TEX: + case SHADER_OPCODE_TXL: + case SHADER_OPCODE_TXD: + case SHADER_OPCODE_TXF: + case SHADER_OPCODE_TXF_CMS: + case SHADER_OPCODE_TXF_CMS_W: + case SHADER_OPCODE_TXF_MCS: + case SHADER_OPCODE_TXS: + case SHADER_OPCODE_TG4: + case SHADER_OPCODE_TG4_OFFSET: + case SHADER_OPCODE_SAMPLEINFO: + case VS_OPCODE_GET_BUFFER_SIZE: + return inst->header_size; + default: + unreachable("not reached"); + } +} + +bool +src_reg::equals(const src_reg &r) const +{ + return (this->backend_reg::equals(r) && + !reladdr && !r.reladdr); +} + +bool +vec4_visitor::opt_vector_float() +{ + bool progress = false; + + foreach_block(block, cfg) { + int last_reg = -1, last_offset = -1; + enum brw_reg_file last_reg_file = BAD_FILE; + + uint8_t imm[4] = { 0 }; + int inst_count = 0; + vec4_instruction *imm_inst[4]; + unsigned writemask = 0; + enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; + + foreach_inst_in_block_safe(vec4_instruction, inst, block) { + int vf = -1; + enum brw_reg_type need_type; + + /* Look for unconditional MOVs from an immediate with a partial + * writemask. Skip type-conversion MOVs other than integer 0, + * where the type doesn't matter. See if the immediate can be + * represented as a VF. + */ + if (inst->opcode == BRW_OPCODE_MOV && + inst->src[0].file == IMM && + inst->predicate == BRW_PREDICATE_NONE && + inst->dst.writemask != WRITEMASK_XYZW && + type_sz(inst->src[0].type) < 8 && + (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { + + vf = brw_float_to_vf(inst->src[0].d); + need_type = BRW_REGISTER_TYPE_D; + + if (vf == -1) { + vf = brw_float_to_vf(inst->src[0].f); + need_type = BRW_REGISTER_TYPE_F; + } + } else { + last_reg = -1; + } + + /* If this wasn't a MOV, or the destination register doesn't match, + * or we have to switch destination types, then this breaks our + * sequence. Combine anything we've accumulated so far. + */ + if (last_reg != inst->dst.nr || + last_offset != inst->dst.offset || + last_reg_file != inst->dst.file || + (vf > 0 && dest_type != need_type)) { + + if (inst_count > 1) { + unsigned vf; + memcpy(&vf, imm, sizeof(vf)); + vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); + mov->dst.type = dest_type; + mov->dst.writemask = writemask; + inst->insert_before(block, mov); + + for (int i = 0; i < inst_count; i++) { + imm_inst[i]->remove(block); + } + + progress = true; + } + + inst_count = 0; + last_reg = -1; + writemask = 0; + dest_type = BRW_REGISTER_TYPE_F; + + for (int i = 0; i < 4; i++) { + imm[i] = 0; + } + } + + /* Record this instruction's value (if it was representable). */ + if (vf != -1) { + if ((inst->dst.writemask & WRITEMASK_X) != 0) + imm[0] = vf; + if ((inst->dst.writemask & WRITEMASK_Y) != 0) + imm[1] = vf; + if ((inst->dst.writemask & WRITEMASK_Z) != 0) + imm[2] = vf; + if ((inst->dst.writemask & WRITEMASK_W) != 0) + imm[3] = vf; + + writemask |= inst->dst.writemask; + imm_inst[inst_count++] = inst; + + last_reg = inst->dst.nr; + last_offset = inst->dst.offset; + last_reg_file = inst->dst.file; + if (vf > 0) + dest_type = need_type; + } + } + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +/* Replaces unused channels of a swizzle with channels that are used. + * + * For instance, this pass transforms + * + * mov vgrf4.yz, vgrf5.wxzy + * + * into + * + * mov vgrf4.yz, vgrf5.xxzx + * + * This eliminates false uses of some channels, letting dead code elimination + * remove the instructions that wrote them. + */ +bool +vec4_visitor::opt_reduce_swizzle() +{ + bool progress = false; + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + if (inst->dst.file == BAD_FILE || + inst->dst.file == ARF || + inst->dst.file == FIXED_GRF || + inst->is_send_from_grf()) + continue; + + unsigned swizzle; + + /* Determine which channels of the sources are read. */ + switch (inst->opcode) { + case VEC4_OPCODE_PACK_BYTES: + case BRW_OPCODE_DP4: + case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, + * but all four of src1. + */ + swizzle = brw_swizzle_for_size(4); + break; + case BRW_OPCODE_DP3: + swizzle = brw_swizzle_for_size(3); + break; + case BRW_OPCODE_DP2: + swizzle = brw_swizzle_for_size(2); + break; + + case VEC4_OPCODE_TO_DOUBLE: + case VEC4_OPCODE_FROM_DOUBLE: + case VEC4_OPCODE_PICK_LOW_32BIT: + case VEC4_OPCODE_PICK_HIGH_32BIT: + case VEC4_OPCODE_SET_LOW_32BIT: + case VEC4_OPCODE_SET_HIGH_32BIT: + swizzle = brw_swizzle_for_size(4); + break; + + default: + swizzle = brw_swizzle_for_mask(inst->dst.writemask); + break; + } + + /* Update sources' swizzles. */ + for (int i = 0; i < 3; i++) { + if (inst->src[i].file != VGRF && + inst->src[i].file != ATTR && + inst->src[i].file != UNIFORM) + continue; + + const unsigned new_swizzle = + brw_compose_swizzle(swizzle, inst->src[i].swizzle); + if (inst->src[i].swizzle != new_swizzle) { + inst->src[i].swizzle = new_swizzle; + progress = true; + } + } + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +void +vec4_visitor::split_uniform_registers() +{ + /* Prior to this, uniforms have been in an array sized according to + * the number of vector uniforms present, sparsely filled (so an + * aggregate results in reg indices being skipped over). Now we're + * going to cut those aggregates up so each .nr index is one + * vector. The goal is to make elimination of unused uniform + * components easier later. + */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (int i = 0 ; i < 3; i++) { + if (inst->src[i].file != UNIFORM) + continue; + + assert(!inst->src[i].reladdr); + + inst->src[i].nr += inst->src[i].offset / 16; + inst->src[i].offset %= 16; + } + } +} + +void +vec4_visitor::pack_uniform_registers() +{ + uint8_t chans_used[this->uniforms]; + int new_loc[this->uniforms]; + int new_chan[this->uniforms]; + + memset(chans_used, 0, sizeof(chans_used)); + memset(new_loc, 0, sizeof(new_loc)); + memset(new_chan, 0, sizeof(new_chan)); + + /* Find which uniform vectors are actually used by the program. We + * expect unused vector elements when we've moved array access out + * to pull constants, and from some GLSL code generators like wine. + */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + unsigned readmask; + switch (inst->opcode) { + case VEC4_OPCODE_PACK_BYTES: + case BRW_OPCODE_DP4: + case BRW_OPCODE_DPH: + readmask = 0xf; + break; + case BRW_OPCODE_DP3: + readmask = 0x7; + break; + case BRW_OPCODE_DP2: + readmask = 0x3; + break; + default: + readmask = inst->dst.writemask; + break; + } + + for (int i = 0 ; i < 3; i++) { + if (inst->src[i].file != UNIFORM) + continue; + + assert(type_sz(inst->src[i].type) % 4 == 0); + unsigned channel_size = type_sz(inst->src[i].type) / 4; + + int reg = inst->src[i].nr; + for (int c = 0; c < 4; c++) { + if (!(readmask & (1 << c))) + continue; + + unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; + unsigned used = MAX2(chans_used[reg], channel * channel_size); + if (used <= 4) + chans_used[reg] = used; + else + chans_used[reg + 1] = used - 4; + } + } + + if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && + inst->src[0].file == UNIFORM) { + assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); + assert(inst->src[0].subnr == 0); + + unsigned bytes_read = inst->src[2].ud; + assert(bytes_read % 4 == 0); + unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); + + /* We just mark every register touched by a MOV_INDIRECT as being + * fully used. This ensures that it doesn't broken up piecewise by + * the next part of our packing algorithm. + */ + int reg = inst->src[0].nr; + for (unsigned i = 0; i < vec4s_read; i++) + chans_used[reg + i] = 4; + } + } + + int new_uniform_count = 0; + + /* Now, figure out a packing of the live uniform vectors into our + * push constants. + */ + for (int src = 0; src < uniforms; src++) { + int size = chans_used[src]; + + if (size == 0) + continue; + + int dst; + /* Find the lowest place we can slot this uniform in. */ + for (dst = 0; dst < src; dst++) { + if (chans_used[dst] + size <= 4) + break; + } + + if (src == dst) { + new_loc[src] = dst; + new_chan[src] = 0; + } else { + new_loc[src] = dst; + new_chan[src] = chans_used[dst]; + + /* Move the references to the data */ + for (int j = 0; j < size; j++) { + stage_prog_data->param[dst * 4 + new_chan[src] + j] = + stage_prog_data->param[src * 4 + j]; + } + + chans_used[dst] += size; + chans_used[src] = 0; + } + + new_uniform_count = MAX2(new_uniform_count, dst + 1); + } + + this->uniforms = new_uniform_count; + + /* Now, update the instructions for our repacked uniforms. */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (int i = 0 ; i < 3; i++) { + int src = inst->src[i].nr; + + if (inst->src[i].file != UNIFORM) + continue; + + inst->src[i].nr = new_loc[src]; + inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src], + new_chan[src], new_chan[src]); + } + } +} + +/** + * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). + * + * While GLSL IR also performs this optimization, we end up with it in + * our instruction stream for a couple of reasons. One is that we + * sometimes generate silly instructions, for example in array access + * where we'll generate "ADD offset, index, base" even if base is 0. + * The other is that GLSL IR's constant propagation doesn't track the + * components of aggregates, so some VS patterns (initialize matrix to + * 0, accumulate in vertex blending factors) end up breaking down to + * instructions involving 0. + */ +bool +vec4_visitor::opt_algebraic() +{ + bool progress = false; + + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + switch (inst->opcode) { + case BRW_OPCODE_MOV: + if (inst->src[0].file != IMM) + break; + + if (inst->saturate) { + if (inst->dst.type != inst->src[0].type) + assert(!"unimplemented: saturate mixed types"); + + if (brw_saturate_immediate(inst->dst.type, + &inst->src[0].as_brw_reg())) { + inst->saturate = false; + progress = true; + } + } + break; + + case VEC4_OPCODE_UNPACK_UNIFORM: + if (inst->src[0].file != UNIFORM) { + inst->opcode = BRW_OPCODE_MOV; + progress = true; + } + break; + + case BRW_OPCODE_ADD: + if (inst->src[1].is_zero()) { + inst->opcode = BRW_OPCODE_MOV; + inst->src[1] = src_reg(); + progress = true; + } + break; + + case BRW_OPCODE_MUL: + if (inst->src[1].is_zero()) { + inst->opcode = BRW_OPCODE_MOV; + switch (inst->src[0].type) { + case BRW_REGISTER_TYPE_F: + inst->src[0] = brw_imm_f(0.0f); + break; + case BRW_REGISTER_TYPE_D: + inst->src[0] = brw_imm_d(0); + break; + case BRW_REGISTER_TYPE_UD: + inst->src[0] = brw_imm_ud(0u); + break; + default: + unreachable("not reached"); + } + inst->src[1] = src_reg(); + progress = true; + } else if (inst->src[1].is_one()) { + inst->opcode = BRW_OPCODE_MOV; + inst->src[1] = src_reg(); + progress = true; + } else if (inst->src[1].is_negative_one()) { + inst->opcode = BRW_OPCODE_MOV; + inst->src[0].negate = !inst->src[0].negate; + inst->src[1] = src_reg(); + progress = true; + } + break; + case BRW_OPCODE_CMP: + if (inst->conditional_mod == BRW_CONDITIONAL_GE && + inst->src[0].abs && + inst->src[0].negate && + inst->src[1].is_zero()) { + inst->src[0].abs = false; + inst->src[0].negate = false; + inst->conditional_mod = BRW_CONDITIONAL_Z; + progress = true; + break; + } + break; + case SHADER_OPCODE_BROADCAST: + if (is_uniform(inst->src[0]) || + inst->src[1].is_zero()) { + inst->opcode = BRW_OPCODE_MOV; + inst->src[1] = src_reg(); + inst->force_writemask_all = true; + progress = true; + } + break; + + default: + break; + } + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +/** + * Only a limited number of hardware registers may be used for push + * constants, so this turns access to the overflowed constants into + * pull constants. + */ +void +vec4_visitor::move_push_constants_to_pull_constants() +{ + int pull_constant_loc[this->uniforms]; + + /* Only allow 32 registers (256 uniform components) as push constants, + * which is the limit on gen6. + * + * If changing this value, note the limitation about total_regs in + * brw_curbe.c. + */ + int max_uniform_components = 32 * 8; + if (this->uniforms * 4 <= max_uniform_components) + return; + + /* Make some sort of choice as to which uniforms get sent to pull + * constants. We could potentially do something clever here like + * look for the most infrequently used uniform vec4s, but leave + * that for later. + */ + for (int i = 0; i < this->uniforms * 4; i += 4) { + pull_constant_loc[i / 4] = -1; + + if (i >= max_uniform_components) { + const gl_constant_value **values = &stage_prog_data->param[i]; + + /* Try to find an existing copy of this uniform in the pull + * constants if it was part of an array access already. + */ + for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { + int matches; + + for (matches = 0; matches < 4; matches++) { + if (stage_prog_data->pull_param[j + matches] != values[matches]) + break; + } + + if (matches == 4) { + pull_constant_loc[i / 4] = j / 4; + break; + } + } + + if (pull_constant_loc[i / 4] == -1) { + assert(stage_prog_data->nr_pull_params % 4 == 0); + pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; + + for (int j = 0; j < 4; j++) { + stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = + values[j]; + } + } + } + } + + /* Now actually rewrite usage of the things we've moved to pull + * constants. + */ + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + for (int i = 0 ; i < 3; i++) { + if (inst->src[i].file != UNIFORM || + pull_constant_loc[inst->src[i].nr] == -1) + continue; + + int uniform = inst->src[i].nr; + + const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? + glsl_type::dvec4_type : glsl_type::vec4_type; + dst_reg temp = dst_reg(this, temp_type); + + emit_pull_constant_load(block, inst, temp, inst->src[i], + pull_constant_loc[uniform], src_reg()); + + inst->src[i].file = temp.file; + inst->src[i].nr = temp.nr; + inst->src[i].offset %= 16; + inst->src[i].reladdr = NULL; + } + } + + /* Repack push constants to remove the now-unused ones. */ + pack_uniform_registers(); +} + +/* Conditions for which we want to avoid setting the dependency control bits */ +bool +vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) +{ +#define IS_DWORD(reg) \ + (reg.type == BRW_REGISTER_TYPE_UD || \ + reg.type == BRW_REGISTER_TYPE_D) + +#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) + + /* From the Cherryview and Broadwell PRMs: + * + * "When source or destination datatype is 64b or operation is integer DWord + * multiply, DepCtrl must not be used." + * + * SKL PRMs don't include this restriction, however, gen7 seems to be + * affected, at least by the 64b restriction, since DepCtrl with double + * precision instructions seems to produce GPU hangs in some cases. + */ + if (devinfo->gen == 8 || devinfo->is_broxton) { + if (inst->opcode == BRW_OPCODE_MUL && + IS_DWORD(inst->src[0]) && + IS_DWORD(inst->src[1])) + return true; + } + + if (devinfo->gen >= 7 && devinfo->gen <= 8) { + if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || + IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) + return true; + } + +#undef IS_64BIT +#undef IS_DWORD + + if (devinfo->gen >= 8) { + if (inst->opcode == BRW_OPCODE_F32TO16) + return true; + } + + /* + * mlen: + * In the presence of send messages, totally interrupt dependency + * control. They're long enough that the chance of dependency + * control around them just doesn't matter. + * + * predicate: + * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: + * When a sequence of NoDDChk and NoDDClr are used, the last instruction that + * completes the scoreboard clear must have a non-zero execution mask. This + * means, if any kind of predication can change the execution mask or channel + * enable of the last instruction, the optimization must be avoided. This is + * to avoid instructions being shot down the pipeline when no writes are + * required. + * + * math: + * Dependency control does not work well over math instructions. + * NB: Discovered empirically + */ + return (inst->mlen || inst->predicate || inst->is_math()); +} + +/** + * Sets the dependency control fields on instructions after register + * allocation and before the generator is run. + * + * When you have a sequence of instructions like: + * + * DP4 temp.x vertex uniform[0] + * DP4 temp.y vertex uniform[0] + * DP4 temp.z vertex uniform[0] + * DP4 temp.w vertex uniform[0] + * + * The hardware doesn't know that it can actually run the later instructions + * while the previous ones are in flight, producing stalls. However, we have + * manual fields we can set in the instructions that let it do so. + */ +void +vec4_visitor::opt_set_dependency_control() +{ + vec4_instruction *last_grf_write[BRW_MAX_GRF]; + uint8_t grf_channels_written[BRW_MAX_GRF]; + vec4_instruction *last_mrf_write[BRW_MAX_GRF]; + uint8_t mrf_channels_written[BRW_MAX_GRF]; + + assert(prog_data->total_grf || + !"Must be called after register allocation"); + + foreach_block (block, cfg) { + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + + foreach_inst_in_block (vec4_instruction, inst, block) { + /* If we read from a register that we were doing dependency control + * on, don't do dependency control across the read. + */ + for (int i = 0; i < 3; i++) { + int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; + if (inst->src[i].file == VGRF) { + last_grf_write[reg] = NULL; + } else if (inst->src[i].file == FIXED_GRF) { + memset(last_grf_write, 0, sizeof(last_grf_write)); + break; + } + assert(inst->src[i].file != MRF); + } + + if (is_dep_ctrl_unsafe(inst)) { + memset(last_grf_write, 0, sizeof(last_grf_write)); + memset(last_mrf_write, 0, sizeof(last_mrf_write)); + continue; + } + + /* Now, see if we can do dependency control for this instruction + * against a previous one writing to its destination. + */ + int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; + if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { + if (last_grf_write[reg] && + last_grf_write[reg]->dst.offset == inst->dst.offset && + !(inst->dst.writemask & grf_channels_written[reg])) { + last_grf_write[reg]->no_dd_clear = true; + inst->no_dd_check = true; + } else { + grf_channels_written[reg] = 0; + } + + last_grf_write[reg] = inst; + grf_channels_written[reg] |= inst->dst.writemask; + } else if (inst->dst.file == MRF) { + if (last_mrf_write[reg] && + last_mrf_write[reg]->dst.offset == inst->dst.offset && + !(inst->dst.writemask & mrf_channels_written[reg])) { + last_mrf_write[reg]->no_dd_clear = true; + inst->no_dd_check = true; + } else { + mrf_channels_written[reg] = 0; + } + + last_mrf_write[reg] = inst; + mrf_channels_written[reg] |= inst->dst.writemask; + } + } + } +} + +bool +vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo, + int dst_writemask, + int swizzle, + int swizzle_mask) +{ + /* Gen6 MATH instructions can not execute in align16 mode, so swizzles + * are not allowed. + */ + if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) + return false; + + if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) + return false; + + /* If this instruction sets anything not referenced by swizzle, then we'd + * totally break it when we reswizzle. + */ + if (dst.writemask & ~swizzle_mask) + return false; + + if (mlen > 0) + return false; + + for (int i = 0; i < 3; i++) { + if (src[i].is_accumulator()) + return false; + } + + return true; +} + +/** + * For any channels in the swizzle's source that were populated by this + * instruction, rewrite the instruction to put the appropriate result directly + * in those channels. + * + * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x + */ +void +vec4_instruction::reswizzle(int dst_writemask, int swizzle) +{ + /* Destination write mask doesn't correspond to source swizzle for the dot + * product and pack_bytes instructions. + */ + if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && + opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && + opcode != VEC4_OPCODE_PACK_BYTES) { + for (int i = 0; i < 3; i++) { + if (src[i].file == BAD_FILE || src[i].file == IMM) + continue; + + src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); + } + } + + /* Apply the specified swizzle and writemask to the original mask of + * written components. + */ + dst.writemask = dst_writemask & + brw_apply_swizzle_to_mask(swizzle, dst.writemask); +} + +/* + * Tries to reduce extra MOV instructions by taking temporary GRFs that get + * just written and then MOVed into another reg and making the original write + * of the GRF write directly to the final destination instead. + */ +bool +vec4_visitor::opt_register_coalesce() +{ + bool progress = false; + int next_ip = 0; + + calculate_live_intervals(); + + foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { + int ip = next_ip; + next_ip++; + + if (inst->opcode != BRW_OPCODE_MOV || + (inst->dst.file != VGRF && inst->dst.file != MRF) || + inst->predicate || + inst->src[0].file != VGRF || + inst->dst.type != inst->src[0].type || + inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) + continue; + + /* Remove no-op MOVs */ + if (inst->dst.file == inst->src[0].file && + inst->dst.nr == inst->src[0].nr && + inst->dst.offset == inst->src[0].offset) { + bool is_nop_mov = true; + + for (unsigned c = 0; c < 4; c++) { + if ((inst->dst.writemask & (1 << c)) == 0) + continue; + + if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { + is_nop_mov = false; + break; + } + } + + if (is_nop_mov) { + inst->remove(block); + progress = true; + continue; + } + } + + bool to_mrf = (inst->dst.file == MRF); + + /* Can't coalesce this GRF if someone else was going to + * read it later. + */ + if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) + continue; + + /* We need to check interference with the final destination between this + * instruction and the earliest instruction involved in writing the GRF + * we're eliminating. To do that, keep track of which of our source + * channels we've seen initialized. + */ + const unsigned chans_needed = + brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, + inst->dst.writemask); + unsigned chans_remaining = chans_needed; + + /* Now walk up the instruction stream trying to see if we can rewrite + * everything writing to the temporary to write into the destination + * instead. + */ + vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; + foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, + inst) { + _scan_inst = scan_inst; + + if (regions_overlap(inst->src[0], inst->size_read(0), + scan_inst->dst, scan_inst->size_written)) { + /* Found something writing to the reg we want to coalesce away. */ + if (to_mrf) { + /* SEND instructions can't have MRF as a destination. */ + if (scan_inst->mlen) + break; + + if (devinfo->gen == 6) { + /* gen6 math instructions must have the destination be + * VGRF, so no compute-to-MRF for them. + */ + if (scan_inst->is_math()) { + break; + } + } + } + + /* This doesn't handle saturation on the instruction we + * want to coalesce away if the register types do not match. + * But if scan_inst is a non type-converting 'mov', we can fix + * the types later. + */ + if (inst->saturate && + inst->dst.type != scan_inst->dst.type && + !(scan_inst->opcode == BRW_OPCODE_MOV && + scan_inst->dst.type == scan_inst->src[0].type)) + break; + + /* Only allow coalescing between registers of the same type size. + * Otherwise we would need to make the pass aware of the fact that + * channel sizes are different for single and double precision. + */ + if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) + break; + + /* Check that scan_inst writes the same amount of data as the + * instruction, otherwise coalescing would lead to writing a + * different (larger or smaller) region of the destination + */ + if (scan_inst->size_written != inst->size_written) + break; + + /* If we can't handle the swizzle, bail. */ + if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, + inst->src[0].swizzle, + chans_needed)) { + break; + } + + /* This only handles coalescing writes of 8 channels (1 register + * for single-precision and 2 registers for double-precision) + * starting at the source offset of the copy instruction. + */ + if (DIV_ROUND_UP(scan_inst->size_written, + type_sz(scan_inst->dst.type)) > 8 || + scan_inst->dst.offset != inst->src[0].offset) + break; + + /* Mark which channels we found unconditional writes for. */ + if (!scan_inst->predicate) + chans_remaining &= ~scan_inst->dst.writemask; + + if (chans_remaining == 0) + break; + } + + /* You can't read from an MRF, so if someone else reads our MRF's + * source GRF that we wanted to rewrite, that stops us. If it's a + * GRF we're trying to coalesce to, we don't actually handle + * rewriting sources so bail in that case as well. + */ + bool interfered = false; + for (int i = 0; i < 3; i++) { + if (regions_overlap(inst->src[0], inst->size_read(0), + scan_inst->src[i], scan_inst->size_read(i))) + interfered = true; + } + if (interfered) + break; + + /* If somebody else writes the same channels of our destination here, + * we can't coalesce before that. + */ + if (regions_overlap(inst->dst, inst->size_written, + scan_inst->dst, scan_inst->size_written) && + (inst->dst.writemask & scan_inst->dst.writemask) != 0) { + break; + } + + /* Check for reads of the register we're trying to coalesce into. We + * can't go rewriting instructions above that to put some other value + * in the register instead. + */ + if (to_mrf && scan_inst->mlen > 0) { + if (inst->dst.nr >= scan_inst->base_mrf && + inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) { + break; + } + } else { + for (int i = 0; i < 3; i++) { + if (regions_overlap(inst->dst, inst->size_written, + scan_inst->src[i], scan_inst->size_read(i))) + interfered = true; + } + if (interfered) + break; + } + } + + if (chans_remaining == 0) { + /* If we've made it here, we have an MOV we want to coalesce out, and + * a scan_inst pointing to the earliest instruction involved in + * computing the value. Now go rewrite the instruction stream + * between the two. + */ + vec4_instruction *scan_inst = _scan_inst; + while (scan_inst != inst) { + if (scan_inst->dst.file == VGRF && + scan_inst->dst.nr == inst->src[0].nr && + scan_inst->dst.offset == inst->src[0].offset) { + scan_inst->reswizzle(inst->dst.writemask, + inst->src[0].swizzle); + scan_inst->dst.file = inst->dst.file; + scan_inst->dst.nr = inst->dst.nr; + scan_inst->dst.offset = inst->dst.offset; + if (inst->saturate && + inst->dst.type != scan_inst->dst.type) { + /* If we have reached this point, scan_inst is a non + * type-converting 'mov' and we can modify its register types + * to match the ones in inst. Otherwise, we could have an + * incorrect saturation result. + */ + scan_inst->dst.type = inst->dst.type; + scan_inst->src[0].type = inst->src[0].type; + } + scan_inst->saturate |= inst->saturate; + } + scan_inst = (vec4_instruction *)scan_inst->next; + } + inst->remove(block); + progress = true; + } + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +/** + * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control + * flow. We could probably do better here with some form of divergence + * analysis. + */ +bool +vec4_visitor::eliminate_find_live_channel() +{ + bool progress = false; + unsigned depth = 0; + + if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { + /* The optimization below assumes that channel zero is live on thread + * dispatch, which may not be the case if the fixed function dispatches + * threads sparsely. + */ + return false; + } + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + switch (inst->opcode) { + case BRW_OPCODE_IF: + case BRW_OPCODE_DO: + depth++; + break; + + case BRW_OPCODE_ENDIF: + case BRW_OPCODE_WHILE: + depth--; + break; + + case SHADER_OPCODE_FIND_LIVE_CHANNEL: + if (depth == 0) { + inst->opcode = BRW_OPCODE_MOV; + inst->src[0] = brw_imm_d(0); + inst->force_writemask_all = true; + progress = true; + } + break; + + default: + break; + } + } + + return progress; +} + +/** + * Splits virtual GRFs requesting more than one contiguous physical register. + * + * We initially create large virtual GRFs for temporary structures, arrays, + * and matrices, so that the visitor functions can add offsets to work their + * way down to the actual member being accessed. But when it comes to + * optimization, we'd like to treat each register as individual storage if + * possible. + * + * So far, the only thing that might prevent splitting is a send message from + * a GRF on IVB. + */ +void +vec4_visitor::split_virtual_grfs() +{ + int num_vars = this->alloc.count; + int new_virtual_grf[num_vars]; + bool split_grf[num_vars]; + + memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); + + /* Try to split anything > 0 sized. */ + for (int i = 0; i < num_vars; i++) { + split_grf[i] = this->alloc.sizes[i] != 1; + } + + /* Check that the instructions are compatible with the registers we're trying + * to split. + */ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + if (inst->dst.file == VGRF && regs_written(inst) > 1) + split_grf[inst->dst.nr] = false; + + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) + split_grf[inst->src[i].nr] = false; + } + } + + /* Allocate new space for split regs. Note that the virtual + * numbers will be contiguous. + */ + for (int i = 0; i < num_vars; i++) { + if (!split_grf[i]) + continue; + + new_virtual_grf[i] = alloc.allocate(1); + for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { + unsigned reg = alloc.allocate(1); + assert(reg == new_virtual_grf[i] + j - 1); + (void) reg; + } + this->alloc.sizes[i] = 1; + } + + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && + inst->dst.offset / REG_SIZE != 0) { + inst->dst.nr = (new_virtual_grf[inst->dst.nr] + + inst->dst.offset / REG_SIZE - 1); + inst->dst.offset %= REG_SIZE; + } + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && + inst->src[i].offset / REG_SIZE != 0) { + inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + + inst->src[i].offset / REG_SIZE - 1); + inst->src[i].offset %= REG_SIZE; + } + } + } + invalidate_live_intervals(); +} + +void +vec4_visitor::dump_instruction(backend_instruction *be_inst) +{ + dump_instruction(be_inst, stderr); +} + +void +vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) +{ + vec4_instruction *inst = (vec4_instruction *)be_inst; + + if (inst->predicate) { + fprintf(file, "(%cf0.%d%s) ", + inst->predicate_inverse ? '-' : '+', + inst->flag_subreg, + pred_ctrl_align16[inst->predicate]); + } + + fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), + inst->exec_size); + if (inst->saturate) + fprintf(file, ".sat"); + if (inst->conditional_mod) { + fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); + if (!inst->predicate && + (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && + inst->opcode != BRW_OPCODE_IF && + inst->opcode != BRW_OPCODE_WHILE))) { + fprintf(file, ".f0.%d", inst->flag_subreg); + } + } + fprintf(file, " "); + + switch (inst->dst.file) { + case VGRF: + fprintf(file, "vgrf%d", inst->dst.nr); + break; + case FIXED_GRF: + fprintf(file, "g%d", inst->dst.nr); + break; + case MRF: + fprintf(file, "m%d", inst->dst.nr); + break; + case ARF: + switch (inst->dst.nr) { + case BRW_ARF_NULL: + fprintf(file, "null"); + break; + case BRW_ARF_ADDRESS: + fprintf(file, "a0.%d", inst->dst.subnr); + break; + case BRW_ARF_ACCUMULATOR: + fprintf(file, "acc%d", inst->dst.subnr); + break; + case BRW_ARF_FLAG: + fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); + break; + default: + fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); + break; + } + break; + case BAD_FILE: + fprintf(file, "(null)"); + break; + case IMM: + case ATTR: + case UNIFORM: + unreachable("not reached"); + } + if (inst->dst.offset || + (inst->dst.file == VGRF && + alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { + const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); + fprintf(file, "+%d.%d", inst->dst.offset / reg_size, + inst->dst.offset % reg_size); + } + if (inst->dst.writemask != WRITEMASK_XYZW) { + fprintf(file, "."); + if (inst->dst.writemask & 1) + fprintf(file, "x"); + if (inst->dst.writemask & 2) + fprintf(file, "y"); + if (inst->dst.writemask & 4) + fprintf(file, "z"); + if (inst->dst.writemask & 8) + fprintf(file, "w"); + } + fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type)); + + if (inst->src[0].file != BAD_FILE) + fprintf(file, ", "); + + for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { + if (inst->src[i].negate) + fprintf(file, "-"); + if (inst->src[i].abs) + fprintf(file, "|"); + switch (inst->src[i].file) { + case VGRF: + fprintf(file, "vgrf%d", inst->src[i].nr); + break; + case FIXED_GRF: + fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); + break; + case ATTR: + fprintf(file, "attr%d", inst->src[i].nr); + break; + case UNIFORM: + fprintf(file, "u%d", inst->src[i].nr); + break; + case IMM: + switch (inst->src[i].type) { + case BRW_REGISTER_TYPE_F: + fprintf(file, "%fF", inst->src[i].f); + break; + case BRW_REGISTER_TYPE_DF: + fprintf(file, "%fDF", inst->src[i].df); + break; + case BRW_REGISTER_TYPE_D: + fprintf(file, "%dD", inst->src[i].d); + break; + case BRW_REGISTER_TYPE_UD: + fprintf(file, "%uU", inst->src[i].ud); + break; + case BRW_REGISTER_TYPE_VF: + fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", + brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), + brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), + brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), + brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); + break; + default: + fprintf(file, "???"); + break; + } + break; + case ARF: + switch (inst->src[i].nr) { + case BRW_ARF_NULL: + fprintf(file, "null"); + break; + case BRW_ARF_ADDRESS: + fprintf(file, "a0.%d", inst->src[i].subnr); + break; + case BRW_ARF_ACCUMULATOR: + fprintf(file, "acc%d", inst->src[i].subnr); + break; + case BRW_ARF_FLAG: + fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); + break; + default: + fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); + break; + } + break; + case BAD_FILE: + fprintf(file, "(null)"); + break; + case MRF: + unreachable("not reached"); + } + + if (inst->src[i].offset || + (inst->src[i].file == VGRF && + alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { + const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); + fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, + inst->src[i].offset % reg_size); + } + + if (inst->src[i].file != IMM) { + static const char *chans[4] = {"x", "y", "z", "w"}; + fprintf(file, "."); + for (int c = 0; c < 4; c++) { + fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); + } + } + + if (inst->src[i].abs) + fprintf(file, "|"); + + if (inst->src[i].file != IMM) { + fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type)); + } + + if (i < 2 && inst->src[i + 1].file != BAD_FILE) + fprintf(file, ", "); + } + + if (inst->force_writemask_all) + fprintf(file, " NoMask"); + + if (inst->exec_size != 8) + fprintf(file, " group%d", inst->group); + + fprintf(file, "\n"); +} + + +static inline struct brw_reg +attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved) +{ + struct brw_reg reg; + + unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type)); + if (interleaved) { + reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1); + } else { + reg = brw_vecn_grf(width, attr, 0); + } + + reg.type = type; + return reg; +} + + +/** + * Replace each register of type ATTR in this->instructions with a reference + * to a fixed HW register. + * + * If interleaved is true, then each attribute takes up half a register, with + * register N containing attribute 2*N in its first half and attribute 2*N+1 + * in its second half (this corresponds to the payload setup used by geometry + * shaders in "single" or "dual instanced" dispatch mode). If interleaved is + * false, then each attribute takes up a whole register, with register N + * containing attribute N (this corresponds to the payload setup used by + * vertex shaders, and by geometry shaders in "dual object" dispatch mode). + */ +void +vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map, + bool interleaved) +{ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (int i = 0; i < 3; i++) { + if (inst->src[i].file != ATTR) + continue; + + int grf = attribute_map[inst->src[i].nr + + inst->src[i].offset / REG_SIZE]; + assert(inst->src[i].offset % REG_SIZE == 0); + + /* All attributes used in the shader need to have been assigned a + * hardware register by the caller + */ + assert(grf != 0); + + struct brw_reg reg = + attribute_to_hw_reg(grf, inst->src[i].type, interleaved); + reg.swizzle = inst->src[i].swizzle; + if (inst->src[i].abs) + reg = brw_abs(reg); + if (inst->src[i].negate) + reg = negate(reg); + + inst->src[i] = reg; + } + } +} + +int +vec4_vs_visitor::setup_attributes(int payload_reg) +{ + int nr_attributes; + int attribute_map[VERT_ATTRIB_MAX + 2]; + memset(attribute_map, 0, sizeof(attribute_map)); + + nr_attributes = 0; + GLbitfield64 vs_inputs = vs_prog_data->inputs_read; + while (vs_inputs) { + GLuint first = ffsll(vs_inputs) - 1; + int needed_slots = + (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) ? 2 : 1; + for (int c = 0; c < needed_slots; c++) { + attribute_map[first + c] = payload_reg + nr_attributes; + nr_attributes++; + vs_inputs &= ~BITFIELD64_BIT(first + c); + } + } + + /* VertexID is stored by the VF as the last vertex element, but we + * don't represent it with a flag in inputs_read, so we call it + * VERT_ATTRIB_MAX. + */ + if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid || + vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) { + attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes; + nr_attributes++; + } + + if (vs_prog_data->uses_drawid) { + attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes; + nr_attributes++; + } + + lower_attributes_to_hw_regs(attribute_map, false /* interleaved */); + + return payload_reg + vs_prog_data->nr_attribute_slots; +} + +int +vec4_visitor::setup_uniforms(int reg) +{ + prog_data->base.dispatch_grf_start_reg = reg; + + /* The pre-gen6 VS requires that some push constants get loaded no + * matter what, or the GPU would hang. + */ + if (devinfo->gen < 6 && this->uniforms == 0) { + stage_prog_data->param = + reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4); + for (unsigned int i = 0; i < 4; i++) { + unsigned int slot = this->uniforms * 4 + i; + static gl_constant_value zero = { 0.0 }; + stage_prog_data->param[slot] = &zero; + } + + this->uniforms++; + reg++; + } else { + reg += ALIGN(uniforms, 2) / 2; + } + + stage_prog_data->nr_params = this->uniforms * 4; + + prog_data->base.curb_read_length = + reg - prog_data->base.dispatch_grf_start_reg; + + return reg; +} + +void +vec4_vs_visitor::setup_payload(void) +{ + int reg = 0; + + /* The payload always contains important data in g0, which contains + * the URB handles that are passed on to the URB write at the end + * of the thread. So, we always start push constants at g1. + */ + reg++; + + reg = setup_uniforms(reg); + + reg = setup_attributes(reg); + + this->first_non_payload_grf = reg; +} + +bool +vec4_visitor::lower_minmax() +{ + assert(devinfo->gen < 6); + + bool progress = false; + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + const vec4_builder ibld(this, block, inst); + + if (inst->opcode == BRW_OPCODE_SEL && + inst->predicate == BRW_PREDICATE_NONE) { + /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of + * the original SEL.L/GE instruction + */ + ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], + inst->conditional_mod); + inst->predicate = BRW_PREDICATE_NORMAL; + inst->conditional_mod = BRW_CONDITIONAL_NONE; + + progress = true; + } + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +src_reg +vec4_visitor::get_timestamp() +{ + assert(devinfo->gen >= 7); + + src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, + BRW_ARF_TIMESTAMP, + 0, + 0, + 0, + BRW_REGISTER_TYPE_UD, + BRW_VERTICAL_STRIDE_0, + BRW_WIDTH_4, + BRW_HORIZONTAL_STRIDE_4, + BRW_SWIZZLE_XYZW, + WRITEMASK_XYZW)); + + dst_reg dst = dst_reg(this, glsl_type::uvec4_type); + + vec4_instruction *mov = emit(MOV(dst, ts)); + /* We want to read the 3 fields we care about (mostly field 0, but also 2) + * even if it's not enabled in the dispatch. + */ + mov->force_writemask_all = true; + + return src_reg(dst); +} + +void +vec4_visitor::emit_shader_time_begin() +{ + current_annotation = "shader time start"; + shader_start_time = get_timestamp(); +} + +void +vec4_visitor::emit_shader_time_end() +{ + current_annotation = "shader time end"; + src_reg shader_end_time = get_timestamp(); + + + /* Check that there weren't any timestamp reset events (assuming these + * were the only two timestamp reads that happened). + */ + src_reg reset_end = shader_end_time; + reset_end.swizzle = BRW_SWIZZLE_ZZZZ; + vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); + test->conditional_mod = BRW_CONDITIONAL_Z; + + emit(IF(BRW_PREDICATE_NORMAL)); + + /* Take the current timestamp and get the delta. */ + shader_start_time.negate = true; + dst_reg diff = dst_reg(this, glsl_type::uint_type); + emit(ADD(diff, shader_start_time, shader_end_time)); + + /* If there were no instructions between the two timestamp gets, the diff + * is 2 cycles. Remove that overhead, so I can forget about that when + * trying to determine the time taken for single instructions. + */ + emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); + + emit_shader_time_write(0, src_reg(diff)); + emit_shader_time_write(1, brw_imm_ud(1u)); + emit(BRW_OPCODE_ELSE); + emit_shader_time_write(2, brw_imm_ud(1u)); + emit(BRW_OPCODE_ENDIF); +} + +void +vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) +{ + dst_reg dst = + dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); + + dst_reg offset = dst; + dst_reg time = dst; + time.offset += REG_SIZE; + + offset.type = BRW_REGISTER_TYPE_UD; + int index = shader_time_index * 3 + shader_time_subindex; + emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE))); + + time.type = BRW_REGISTER_TYPE_UD; + emit(MOV(time, value)); + + vec4_instruction *inst = + emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); + inst->mlen = 2; +} + +void +vec4_visitor::convert_to_hw_regs() +{ + foreach_block_and_inst(block, vec4_instruction, inst, cfg) { + for (int i = 0; i < 3; i++) { + struct src_reg &src = inst->src[i]; + struct brw_reg reg; + switch (src.file) { + case VGRF: { + const unsigned type_size = type_sz(src.type); + const unsigned width = REG_SIZE / 2 / MAX2(4, type_size); + reg = byte_offset(brw_vecn_grf(width, src.nr, 0), src.offset); + reg.type = src.type; + reg.abs = src.abs; + reg.negate = src.negate; + break; + } + + case UNIFORM: { + const unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(src.type)); + reg = stride(byte_offset(brw_vec4_grf( + prog_data->base.dispatch_grf_start_reg + + src.nr / 2, src.nr % 2 * 4), + src.offset), + 0, width, 1); + reg.type = src.type; + reg.abs = src.abs; + reg.negate = src.negate; + + /* This should have been moved to pull constants. */ + assert(!src.reladdr); + break; + } + + case FIXED_GRF: + if (type_sz(src.type) == 8) { + reg = src.as_brw_reg(); + break; + } + /* fallthrough */ + case ARF: + case IMM: + continue; + + case BAD_FILE: + /* Probably unused. */ + reg = brw_null_reg(); + break; + + case MRF: + case ATTR: + unreachable("not reached"); + } + + apply_logical_swizzle(®, inst, i); + src = reg; + } + + if (inst->is_3src(devinfo)) { + /* 3-src instructions with scalar sources support arbitrary subnr, + * but don't actually use swizzles. Convert swizzle into subnr. + * Skip this for double-precision instructions: RepCtrl=1 is not + * allowed for them and needs special handling. + */ + for (int i = 0; i < 3; i++) { + if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && + type_sz(inst->src[i].type) < 8) { + assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); + inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); + } + } + } + + dst_reg &dst = inst->dst; + struct brw_reg reg; + + switch (inst->dst.file) { + case VGRF: + reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); + reg.type = dst.type; + reg.writemask = dst.writemask; + break; + + case MRF: + reg = byte_offset(brw_message_reg(dst.nr), dst.offset); + assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); + reg.type = dst.type; + reg.writemask = dst.writemask; + break; + + case ARF: + case FIXED_GRF: + reg = dst.as_brw_reg(); + break; + + case BAD_FILE: + reg = brw_null_reg(); + break; + + case IMM: + case ATTR: + case UNIFORM: + unreachable("not reached"); + } + + dst = reg; + } +} + +static bool +stage_uses_interleaved_attributes(unsigned stage, + enum shader_dispatch_mode dispatch_mode) +{ + switch (stage) { + case MESA_SHADER_TESS_EVAL: + return true; + case MESA_SHADER_GEOMETRY: + return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; + default: + return false; + } +} + +/** + * Get the closest native SIMD width supported by the hardware for instruction + * \p inst. The instruction will be left untouched by + * vec4_visitor::lower_simd_width() if the returned value matches the + * instruction's original execution size. + */ +static unsigned +get_lowered_simd_width(const struct gen_device_info *devinfo, + enum shader_dispatch_mode dispatch_mode, + unsigned stage, const vec4_instruction *inst) +{ + /* Do not split some instructions that require special handling */ + switch (inst->opcode) { + case SHADER_OPCODE_GEN4_SCRATCH_READ: + case SHADER_OPCODE_GEN4_SCRATCH_WRITE: + return inst->exec_size; + default: + break; + } + + unsigned lowered_width = MIN2(16, inst->exec_size); + + /* We need to split some cases of double-precision instructions that write + * 2 registers. We only need to care about this in gen7 because that is the + * only hardware that implements fp64 in Align16. + */ + if (devinfo->gen == 7 && inst->size_written > REG_SIZE) { + /* Align16 8-wide double-precision SEL does not work well. Verified + * empirically. + */ + if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) + lowered_width = MIN2(lowered_width, 4); + + /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct + * Register Addressing: + * + * "When destination spans two registers, the source MUST span two + * registers." + */ + for (unsigned i = 0; i < 3; i++) { + if (inst->src[i].file == BAD_FILE) + continue; + if (inst->size_read(i) <= REG_SIZE) + lowered_width = MIN2(lowered_width, 4); + + /* Interleaved attribute setups use a vertical stride of 0, which + * makes them hit the associated instruction decompression bug in gen7. + * Split them to prevent this. + */ + if (inst->src[i].file == ATTR && + stage_uses_interleaved_attributes(stage, dispatch_mode)) + lowered_width = MIN2(lowered_width, 4); + } + } + + return lowered_width; +} + +static bool +dst_src_regions_overlap(vec4_instruction *inst) +{ + if (inst->size_written == 0) + return false; + + unsigned dst_start = inst->dst.offset; + unsigned dst_end = dst_start + inst->size_written - 1; + for (int i = 0; i < 3; i++) { + if (inst->src[i].file == BAD_FILE) + continue; + + if (inst->dst.file != inst->src[i].file || + inst->dst.nr != inst->src[i].nr) + continue; + + unsigned src_start = inst->src[i].offset; + unsigned src_end = src_start + inst->size_read(i) - 1; + + if ((dst_start >= src_start && dst_start <= src_end) || + (dst_end >= src_start && dst_end <= src_end) || + (dst_start <= src_start && dst_end >= src_end)) { + return true; + } + } + + return false; +} + +bool +vec4_visitor::lower_simd_width() +{ + bool progress = false; + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + const unsigned lowered_width = + get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); + assert(lowered_width <= inst->exec_size); + if (lowered_width == inst->exec_size) + continue; + + /* We need to deal with source / destination overlaps when splitting. + * The hardware supports reading from and writing to the same register + * in the same instruction, but we need to be careful that each split + * instruction we produce does not corrupt the source of the next. + * + * The easiest way to handle this is to make the split instructions write + * to temporaries if there is an src/dst overlap and then move from the + * temporaries to the original destination. We also need to consider + * instructions that do partial writes via align1 opcodes, in which case + * we need to make sure that the we initialize the temporary with the + * value of the instruction's dst. + */ + bool needs_temp = dst_src_regions_overlap(inst); + for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { + unsigned channel_offset = lowered_width * n; + + unsigned size_written = lowered_width * type_sz(inst->dst.type); + + /* Create the split instruction from the original so that we copy all + * relevant instruction fields, then set the width and calculate the + * new dst/src regions. + */ + vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); + linst->exec_size = lowered_width; + linst->group = channel_offset; + linst->size_written = size_written; + + /* Compute split dst region */ + dst_reg dst; + if (needs_temp) { + unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); + dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), + inst->dst.type); + if (inst->is_align1_partial_write()) { + vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); + copy->exec_size = lowered_width; + copy->group = channel_offset; + copy->size_written = size_written; + inst->insert_before(block, copy); + } + } else { + dst = horiz_offset(inst->dst, channel_offset); + } + linst->dst = dst; + + /* Compute split source regions */ + for (int i = 0; i < 3; i++) { + if (linst->src[i].file == BAD_FILE) + continue; + + if (!is_uniform(linst->src[i])) + linst->src[i] = horiz_offset(linst->src[i], channel_offset); + } + + inst->insert_before(block, linst); + + /* If we used a temporary to store the result of the split + * instruction, copy the result to the original destination + */ + if (needs_temp) { + vec4_instruction *mov = + MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); + mov->exec_size = lowered_width; + mov->group = channel_offset; + mov->size_written = size_written; + mov->predicate = inst->predicate; + inst->insert_before(block, mov); + } + } + + inst->remove(block); + progress = true; + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +static bool +is_align1_df(vec4_instruction *inst) +{ + switch (inst->opcode) { + case VEC4_OPCODE_FROM_DOUBLE: + case VEC4_OPCODE_TO_DOUBLE: + case VEC4_OPCODE_PICK_LOW_32BIT: + case VEC4_OPCODE_PICK_HIGH_32BIT: + case VEC4_OPCODE_SET_LOW_32BIT: + case VEC4_OPCODE_SET_HIGH_32BIT: + return true; + default: + return false; + } +} + +static brw_predicate +scalarize_predicate(brw_predicate predicate, unsigned writemask) +{ + if (predicate != BRW_PREDICATE_NORMAL) + return predicate; + + switch (writemask) { + case WRITEMASK_X: + return BRW_PREDICATE_ALIGN16_REPLICATE_X; + case WRITEMASK_Y: + return BRW_PREDICATE_ALIGN16_REPLICATE_Y; + case WRITEMASK_Z: + return BRW_PREDICATE_ALIGN16_REPLICATE_Z; + case WRITEMASK_W: + return BRW_PREDICATE_ALIGN16_REPLICATE_W; + default: + unreachable("invalid writemask"); + } +} + +/* Gen7 has a hardware decompression bug that we can exploit to represent + * handful of additional swizzles natively. + */ +static bool +is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) +{ + switch (inst->src[arg].swizzle) { + case BRW_SWIZZLE_XXXX: + case BRW_SWIZZLE_YYYY: + case BRW_SWIZZLE_ZZZZ: + case BRW_SWIZZLE_WWWW: + case BRW_SWIZZLE_XYXY: + case BRW_SWIZZLE_YXYX: + case BRW_SWIZZLE_ZWZW: + case BRW_SWIZZLE_WZWZ: + return true; + default: + return false; + } +} + +/* 64-bit sources use regions with a width of 2. These 2 elements in each row + * can be addressed using 32-bit swizzles (which is what the hardware supports) + * but it also means that the swizzle we apply on the first two components of a + * dvec4 is coupled with the swizzle we use for the last 2. In other words, + * only some specific swizzle combinations can be natively supported. + * + * FIXME: we can go an step further and implement even more swizzle + * variations using only partial scalarization. + * + * For more details see: + * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 + */ +bool +vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) +{ + const src_reg &src = inst->src[arg]; + assert(type_sz(src.type) == 8); + + /* Uniform regions have a vstride=0. Because we use 2-wide rows with + * 64-bit regions it means that we cannot access components Z/W, so + * return false for any such case. Interleaved attributes will also be + * mapped to GRF registers with a vstride of 0, so apply the same + * treatment. + */ + if ((is_uniform(src) || + (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && + src.file == ATTR)) && + (brw_mask_for_swizzle(src.swizzle) & 12)) + return false; + + switch (src.swizzle) { + case BRW_SWIZZLE_XYZW: + case BRW_SWIZZLE_XXZZ: + case BRW_SWIZZLE_YYWW: + case BRW_SWIZZLE_YXWZ: + return true; + default: + return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg); + } +} + +bool +vec4_visitor::scalarize_df() +{ + bool progress = false; + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + /* Skip DF instructions that operate in Align1 mode */ + if (is_align1_df(inst)) + continue; + + /* Check if this is a double-precision instruction */ + bool is_double = type_sz(inst->dst.type) == 8; + for (int arg = 0; !is_double && arg < 3; arg++) { + is_double = inst->src[arg].file != BAD_FILE && + type_sz(inst->src[arg].type) == 8; + } + + if (!is_double) + continue; + + /* Skip the lowering for specific regioning scenarios that we can + * support natively. + */ + bool skip_lowering = true; + + /* XY and ZW writemasks operate in 32-bit, which means that they don't + * have a native 64-bit representation and they should always be split. + */ + if (inst->dst.writemask == WRITEMASK_XY || + inst->dst.writemask == WRITEMASK_ZW) { + skip_lowering = false; + } else { + for (unsigned i = 0; i < 3; i++) { + if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) + continue; + skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); + } + } + + if (skip_lowering) + continue; + + /* Generate scalar instructions for each enabled channel */ + for (unsigned chan = 0; chan < 4; chan++) { + unsigned chan_mask = 1 << chan; + if (!(inst->dst.writemask & chan_mask)) + continue; + + vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); + + for (unsigned i = 0; i < 3; i++) { + unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); + scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); + } + + scalar_inst->dst.writemask = chan_mask; + + if (inst->predicate != BRW_PREDICATE_NONE) { + scalar_inst->predicate = + scalarize_predicate(inst->predicate, chan_mask); + } + + inst->insert_before(block, scalar_inst); + } + + inst->remove(block); + progress = true; + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +bool +vec4_visitor::lower_64bit_mad_to_mul_add() +{ + bool progress = false; + + foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { + if (inst->opcode != BRW_OPCODE_MAD) + continue; + + if (type_sz(inst->dst.type) != 8) + continue; + + dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); + + /* Use the copy constructor so we copy all relevant instruction fields + * from the original mad into the add and mul instructions + */ + vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); + mul->opcode = BRW_OPCODE_MUL; + mul->dst = mul_dst; + mul->src[0] = inst->src[1]; + mul->src[1] = inst->src[2]; + mul->src[2].file = BAD_FILE; + + vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); + add->opcode = BRW_OPCODE_ADD; + add->src[0] = src_reg(mul_dst); + add->src[1] = inst->src[0]; + add->src[2].file = BAD_FILE; + + inst->insert_before(block, mul); + inst->insert_before(block, add); + inst->remove(block); + + progress = true; + } + + if (progress) + invalidate_live_intervals(); + + return progress; +} + +/* The align16 hardware can only do 32-bit swizzle channels, so we need to + * translate the logical 64-bit swizzle channels that we use in the Vec4 IR + * to 32-bit swizzle channels in hardware registers. + * + * @inst and @arg identify the original vec4 IR source operand we need to + * translate the swizzle for and @hw_reg is the hardware register where we + * will write the hardware swizzle to use. + * + * This pass assumes that Align16/DF instructions have been fully scalarized + * previously so there is just one 64-bit swizzle channel to deal with for any + * given Vec4 IR source. + */ +void +vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, + vec4_instruction *inst, int arg) +{ + src_reg reg = inst->src[arg]; + + if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) + return; + + /* If this is not a 64-bit operand or this is a scalar instruction we don't + * need to do anything about the swizzles. + */ + if(type_sz(reg.type) < 8 || is_align1_df(inst)) { + hw_reg->swizzle = reg.swizzle; + return; + } + + /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ + assert(brw_is_single_value_swizzle(reg.swizzle) || + is_supported_64bit_region(inst, arg)); + + if (is_supported_64bit_region(inst, arg) && + !is_gen7_supported_64bit_swizzle(inst, arg)) { + /* Supported 64-bit swizzles are those such that their first two + * components, when expanded to 32-bit swizzles, match the semantics + * of the original 64-bit swizzle with 2-wide row regioning. + */ + unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); + unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); + hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, + swizzle1 * 2, swizzle1 * 2 + 1); + } else { + /* If we got here then we have one of the following: + * + * 1. An unsupported swizzle, which should be single-value thanks to the + * scalarization pass. + * + * 2. A gen7 supported swizzle. These can be single-value or double-value + * swizzles. If the latter, they are never cross-dvec2 channels. For + * these we always need to activate the gen7 vstride=0 exploit. + */ + unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); + unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); + assert((swizzle0 < 2) == (swizzle1 < 2)); + + /* To gain access to Z/W components we need to select the second half + * of the register and then use a X/Y swizzle to select Z/W respectively. + */ + if (swizzle0 >= 2) { + *hw_reg = suboffset(*hw_reg, 2); + swizzle0 -= 2; + swizzle1 -= 2; + } + + /* All gen7-specific supported swizzles require the vstride=0 exploit */ + if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg)) + hw_reg->vstride = BRW_VERTICAL_STRIDE_0; + + /* Any 64-bit source with an offset at 16B is intended to address the + * second half of a register and needs a vertical stride of 0 so we: + * + * 1. Don't violate register region restrictions. + * 2. Activate the gen7 instruction decompresion bug exploit when + * execsize > 4 + */ + if (hw_reg->subnr % REG_SIZE == 16) { + assert(devinfo->gen == 7); + hw_reg->vstride = BRW_VERTICAL_STRIDE_0; + } + + hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, + swizzle1 * 2, swizzle1 * 2 + 1); + } +} + +bool +vec4_visitor::run() +{ + if (shader_time_index >= 0) + emit_shader_time_begin(); + + emit_prolog(); + + emit_nir_code(); + if (failed) + return false; + base_ir = NULL; + + emit_thread_end(); + + calculate_cfg(); + + /* Before any optimization, push array accesses out to scratch + * space where we need them to be. This pass may allocate new + * virtual GRFs, so we want to do it early. It also makes sure + * that we have reladdr computations available for CSE, since we'll + * often do repeated subexpressions for those. + */ + move_grf_array_access_to_scratch(); + move_uniform_array_access_to_pull_constants(); + + pack_uniform_registers(); + move_push_constants_to_pull_constants(); + split_virtual_grfs(); + +#define OPT(pass, args...) ({ \ + pass_num++; \ + bool this_progress = pass(args); \ + \ + if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ + char filename[64]; \ + snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ + stage_abbrev, nir->info->name, iteration, pass_num); \ + \ + backend_shader::dump_instructions(filename); \ + } \ + \ + progress = progress || this_progress; \ + this_progress; \ + }) + + + if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { + char filename[64]; + snprintf(filename, 64, "%s-%s-00-00-start", + stage_abbrev, nir->info->name); + + backend_shader::dump_instructions(filename); + } + + bool progress; + int iteration = 0; + int pass_num = 0; + do { + progress = false; + pass_num = 0; + iteration++; + + OPT(opt_predicated_break, this); + OPT(opt_reduce_swizzle); + OPT(dead_code_eliminate); + OPT(dead_control_flow_eliminate, this); + OPT(opt_copy_propagation); + OPT(opt_cmod_propagation); + OPT(opt_cse); + OPT(opt_algebraic); + OPT(opt_register_coalesce); + OPT(eliminate_find_live_channel); + } while (progress); + + pass_num = 0; + + if (OPT(opt_vector_float)) { + OPT(opt_cse); + OPT(opt_copy_propagation, false); + OPT(opt_copy_propagation, true); + OPT(dead_code_eliminate); + } + + if (devinfo->gen <= 5 && OPT(lower_minmax)) { + OPT(opt_cmod_propagation); + OPT(opt_cse); + OPT(opt_copy_propagation); + OPT(dead_code_eliminate); + } + + if (OPT(lower_simd_width)) { + OPT(opt_copy_propagation); + OPT(dead_code_eliminate); + } + + if (failed) + return false; + + OPT(lower_64bit_mad_to_mul_add); + + /* Run this before payload setup because tesselation shaders + * rely on it to prevent cross dvec2 regioning on DF attributes + * that are setup so that XY are on the second half of register and + * ZW are in the first half of the next. + */ + OPT(scalarize_df); + + setup_payload(); + + if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) { + /* Debug of register spilling: Go spill everything. */ + const int grf_count = alloc.count; + float spill_costs[alloc.count]; + bool no_spill[alloc.count]; + evaluate_spill_costs(spill_costs, no_spill); + for (int i = 0; i < grf_count; i++) { + if (no_spill[i]) + continue; + spill_reg(i); + } + + /* We want to run this after spilling because 64-bit (un)spills need to + * emit code to shuffle 64-bit data for the 32-bit scratch read/write + * messages that can produce unsupported 64-bit swizzle regions. + */ + OPT(scalarize_df); + } + + bool allocated_without_spills = reg_allocate(); + + if (!allocated_without_spills) { + compiler->shader_perf_log(log_data, + "%s shader triggered register spilling. " + "Try reducing the number of live vec4 values " + "to improve performance.\n", + stage_name); + + while (!reg_allocate()) { + if (failed) + return false; + } + + /* We want to run this after spilling because 64-bit (un)spills need to + * emit code to shuffle 64-bit data for the 32-bit scratch read/write + * messages that can produce unsupported 64-bit swizzle regions. + */ + OPT(scalarize_df); + } + + opt_schedule_instructions(); + + opt_set_dependency_control(); + + convert_to_hw_regs(); + + if (last_scratch > 0) { + prog_data->base.total_scratch = + brw_get_scratch_size(last_scratch * REG_SIZE); + } + + return !failed; +} + +} /* namespace brw */ + +extern "C" { + +/** + * Compile a vertex shader. + * + * Returns the final assembly and the program's size. + */ +const unsigned * +brw_compile_vs(const struct brw_compiler *compiler, void *log_data, + void *mem_ctx, + const struct brw_vs_prog_key *key, + struct brw_vs_prog_data *prog_data, + const nir_shader *src_shader, + gl_clip_plane *clip_planes, + bool use_legacy_snorm_formula, + int shader_time_index, + unsigned *final_assembly_size, + char **error_str) +{ + const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; + nir_shader *shader = nir_shader_clone(mem_ctx, src_shader); + shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar); + brw_nir_lower_vs_inputs(shader, is_scalar, + use_legacy_snorm_formula, key->gl_attrib_wa_flags); + brw_nir_lower_vue_outputs(shader, is_scalar); + shader = brw_postprocess_nir(shader, compiler, is_scalar); + + const unsigned *assembly = NULL; + + prog_data->base.clip_distance_mask = + ((1 << shader->info->clip_distance_array_size) - 1); + prog_data->base.cull_distance_mask = + ((1 << shader->info->cull_distance_array_size) - 1) << + shader->info->clip_distance_array_size; + + unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read); + + /* gl_VertexID and gl_InstanceID are system values, but arrive via an + * incoming vertex attribute. So, add an extra slot. + */ + if (shader->info->system_values_read & + (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) | + BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | + BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | + BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) { + nr_attribute_slots++; + } + + /* gl_DrawID has its very own vec4 */ + if (shader->info->system_values_read & + BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) { + nr_attribute_slots++; + } + + unsigned nr_attributes = nr_attribute_slots - + DIV_ROUND_UP(_mesa_bitcount_64(shader->info->double_inputs_read), 2); + + /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry + * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in + * vec4 mode, the hardware appears to wedge unless we read something. + */ + if (is_scalar) + prog_data->base.urb_read_length = + DIV_ROUND_UP(nr_attribute_slots, 2); + else + prog_data->base.urb_read_length = + DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); + + prog_data->nr_attributes = nr_attributes; + prog_data->nr_attribute_slots = nr_attribute_slots; + + /* Since vertex shaders reuse the same VUE entry for inputs and outputs + * (overwriting the original contents), we need to make sure the size is + * the larger of the two. + */ + const unsigned vue_entries = + MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); + + if (compiler->devinfo->gen == 6) + prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); + else + prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); + + if (INTEL_DEBUG & DEBUG_VS) { + fprintf(stderr, "VS Output "); + brw_print_vue_map(stderr, &prog_data->base.vue_map); + } + + if (is_scalar) { + prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; + + fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base, + NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */ + shader, 8, shader_time_index); + if (!v.run_vs(clip_planes)) { + if (error_str) + *error_str = ralloc_strdup(mem_ctx, v.fail_msg); + + return NULL; + } + + prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; + + fs_generator g(compiler, log_data, mem_ctx, (void *) key, + &prog_data->base.base, v.promoted_constants, + v.runtime_check_aads_emit, MESA_SHADER_VERTEX); + if (INTEL_DEBUG & DEBUG_VS) { + const char *debug_name = + ralloc_asprintf(mem_ctx, "%s vertex shader %s", + shader->info->label ? shader->info->label : + "unnamed", + shader->info->name); + + g.enable_debug(debug_name); + } + g.generate_code(v.cfg, 8); + assembly = g.get_assembly(final_assembly_size); + } + + if (!assembly) { + prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; + + vec4_vs_visitor v(compiler, log_data, key, prog_data, + shader, clip_planes, mem_ctx, + shader_time_index, use_legacy_snorm_formula); + if (!v.run()) { + if (error_str) + *error_str = ralloc_strdup(mem_ctx, v.fail_msg); + + return NULL; + } + + assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, + shader, &prog_data->base, v.cfg, + final_assembly_size); + } + + return assembly; +} + +} /* extern "C" */ |