summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_vec4.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/compiler/brw_vec4.cpp')
-rw-r--r--src/intel/compiler/brw_vec4.cpp2851
1 files changed, 2851 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_vec4.cpp b/src/intel/compiler/brw_vec4.cpp
new file mode 100644
index 00000000000..d7c09093032
--- /dev/null
+++ b/src/intel/compiler/brw_vec4.cpp
@@ -0,0 +1,2851 @@
+/*
+ * Copyright © 2011 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "brw_vec4.h"
+#include "brw_fs.h"
+#include "brw_cfg.h"
+#include "brw_nir.h"
+#include "brw_vec4_builder.h"
+#include "brw_vec4_live_variables.h"
+#include "brw_vec4_vs.h"
+#include "brw_dead_control_flow.h"
+#include "common/gen_debug.h"
+#include "program/prog_parameter.h"
+
+#define MAX_INSTRUCTION (1 << 30)
+
+using namespace brw;
+
+namespace brw {
+
+void
+src_reg::init()
+{
+ memset(this, 0, sizeof(*this));
+
+ this->file = BAD_FILE;
+}
+
+src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
+{
+ init();
+
+ this->file = file;
+ this->nr = nr;
+ if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
+ this->swizzle = brw_swizzle_for_size(type->vector_elements);
+ else
+ this->swizzle = BRW_SWIZZLE_XYZW;
+ if (type)
+ this->type = brw_type_for_base_type(type);
+}
+
+/** Generic unset register constructor. */
+src_reg::src_reg()
+{
+ init();
+}
+
+src_reg::src_reg(struct ::brw_reg reg) :
+ backend_reg(reg)
+{
+ this->offset = 0;
+ this->reladdr = NULL;
+}
+
+src_reg::src_reg(const dst_reg &reg) :
+ backend_reg(reg)
+{
+ this->reladdr = reg.reladdr;
+ this->swizzle = brw_swizzle_for_mask(reg.writemask);
+}
+
+void
+dst_reg::init()
+{
+ memset(this, 0, sizeof(*this));
+ this->file = BAD_FILE;
+ this->writemask = WRITEMASK_XYZW;
+}
+
+dst_reg::dst_reg()
+{
+ init();
+}
+
+dst_reg::dst_reg(enum brw_reg_file file, int nr)
+{
+ init();
+
+ this->file = file;
+ this->nr = nr;
+}
+
+dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
+ unsigned writemask)
+{
+ init();
+
+ this->file = file;
+ this->nr = nr;
+ this->type = brw_type_for_base_type(type);
+ this->writemask = writemask;
+}
+
+dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
+ unsigned writemask)
+{
+ init();
+
+ this->file = file;
+ this->nr = nr;
+ this->type = type;
+ this->writemask = writemask;
+}
+
+dst_reg::dst_reg(struct ::brw_reg reg) :
+ backend_reg(reg)
+{
+ this->offset = 0;
+ this->reladdr = NULL;
+}
+
+dst_reg::dst_reg(const src_reg &reg) :
+ backend_reg(reg)
+{
+ this->writemask = brw_mask_for_swizzle(reg.swizzle);
+ this->reladdr = reg.reladdr;
+}
+
+bool
+dst_reg::equals(const dst_reg &r) const
+{
+ return (this->backend_reg::equals(r) &&
+ (reladdr == r.reladdr ||
+ (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
+}
+
+bool
+vec4_instruction::is_send_from_grf()
+{
+ switch (opcode) {
+ case SHADER_OPCODE_SHADER_TIME_ADD:
+ case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
+ case SHADER_OPCODE_UNTYPED_ATOMIC:
+ case SHADER_OPCODE_UNTYPED_SURFACE_READ:
+ case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
+ case SHADER_OPCODE_TYPED_ATOMIC:
+ case SHADER_OPCODE_TYPED_SURFACE_READ:
+ case SHADER_OPCODE_TYPED_SURFACE_WRITE:
+ case VEC4_OPCODE_URB_READ:
+ case TCS_OPCODE_URB_WRITE:
+ case TCS_OPCODE_RELEASE_INPUT:
+ case SHADER_OPCODE_BARRIER:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/**
+ * Returns true if this instruction's sources and destinations cannot
+ * safely be the same register.
+ *
+ * In most cases, a register can be written over safely by the same
+ * instruction that is its last use. For a single instruction, the
+ * sources are dereferenced before writing of the destination starts
+ * (naturally).
+ *
+ * However, there are a few cases where this can be problematic:
+ *
+ * - Virtual opcodes that translate to multiple instructions in the
+ * code generator: if src == dst and one instruction writes the
+ * destination before a later instruction reads the source, then
+ * src will have been clobbered.
+ *
+ * The register allocator uses this information to set up conflicts between
+ * GRF sources and the destination.
+ */
+bool
+vec4_instruction::has_source_and_destination_hazard() const
+{
+ switch (opcode) {
+ case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
+ case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
+ case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
+ return true;
+ default:
+ /* 8-wide compressed DF operations are executed as two 4-wide operations,
+ * so we have a src/dst hazard if the first half of the instruction
+ * overwrites the source of the second half. Prevent this by marking
+ * compressed instructions as having src/dst hazards, so the register
+ * allocator assigns safe register regions for dst and srcs.
+ */
+ return size_written > REG_SIZE;
+ }
+}
+
+unsigned
+vec4_instruction::size_read(unsigned arg) const
+{
+ switch (opcode) {
+ case SHADER_OPCODE_SHADER_TIME_ADD:
+ case SHADER_OPCODE_UNTYPED_ATOMIC:
+ case SHADER_OPCODE_UNTYPED_SURFACE_READ:
+ case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
+ case SHADER_OPCODE_TYPED_ATOMIC:
+ case SHADER_OPCODE_TYPED_SURFACE_READ:
+ case SHADER_OPCODE_TYPED_SURFACE_WRITE:
+ case TCS_OPCODE_URB_WRITE:
+ if (arg == 0)
+ return mlen * REG_SIZE;
+ break;
+ case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
+ if (arg == 1)
+ return mlen * REG_SIZE;
+ break;
+ default:
+ break;
+ }
+
+ switch (src[arg].file) {
+ case BAD_FILE:
+ return 0;
+ case IMM:
+ case UNIFORM:
+ return 4 * type_sz(src[arg].type);
+ default:
+ /* XXX - Represent actual vertical stride. */
+ return exec_size * type_sz(src[arg].type);
+ }
+}
+
+bool
+vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
+{
+ if (devinfo->gen == 6 && is_math())
+ return false;
+
+ if (is_send_from_grf())
+ return false;
+
+ if (!backend_instruction::can_do_source_mods())
+ return false;
+
+ return true;
+}
+
+bool
+vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
+{
+ switch (opcode) {
+ case SHADER_OPCODE_GEN4_SCRATCH_READ:
+ case VEC4_OPCODE_FROM_DOUBLE:
+ case VEC4_OPCODE_TO_DOUBLE:
+ case VEC4_OPCODE_PICK_LOW_32BIT:
+ case VEC4_OPCODE_PICK_HIGH_32BIT:
+ case VEC4_OPCODE_SET_LOW_32BIT:
+ case VEC4_OPCODE_SET_HIGH_32BIT:
+ case VS_OPCODE_PULL_CONSTANT_LOAD:
+ case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
+ case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
+ case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
+ case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
+ case TES_OPCODE_CREATE_INPUT_READ_HEADER:
+ case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
+ case VEC4_OPCODE_URB_READ:
+ case SHADER_OPCODE_MOV_INDIRECT:
+ return false;
+ default:
+ /* The MATH instruction on Gen6 only executes in align1 mode, which does
+ * not support writemasking.
+ */
+ if (devinfo->gen == 6 && is_math())
+ return false;
+
+ if (is_tex())
+ return false;
+
+ return true;
+ }
+}
+
+bool
+vec4_instruction::can_change_types() const
+{
+ return dst.type == src[0].type &&
+ !src[0].abs && !src[0].negate && !saturate &&
+ (opcode == BRW_OPCODE_MOV ||
+ (opcode == BRW_OPCODE_SEL &&
+ dst.type == src[1].type &&
+ predicate != BRW_PREDICATE_NONE &&
+ !src[1].abs && !src[1].negate));
+}
+
+/**
+ * Returns how many MRFs an opcode will write over.
+ *
+ * Note that this is not the 0 or 1 implied writes in an actual gen
+ * instruction -- the generate_* functions generate additional MOVs
+ * for setup.
+ */
+int
+vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
+{
+ if (inst->mlen == 0 || inst->is_send_from_grf())
+ return 0;
+
+ switch (inst->opcode) {
+ case SHADER_OPCODE_RCP:
+ case SHADER_OPCODE_RSQ:
+ case SHADER_OPCODE_SQRT:
+ case SHADER_OPCODE_EXP2:
+ case SHADER_OPCODE_LOG2:
+ case SHADER_OPCODE_SIN:
+ case SHADER_OPCODE_COS:
+ return 1;
+ case SHADER_OPCODE_INT_QUOTIENT:
+ case SHADER_OPCODE_INT_REMAINDER:
+ case SHADER_OPCODE_POW:
+ case TCS_OPCODE_THREAD_END:
+ return 2;
+ case VS_OPCODE_URB_WRITE:
+ return 1;
+ case VS_OPCODE_PULL_CONSTANT_LOAD:
+ return 2;
+ case SHADER_OPCODE_GEN4_SCRATCH_READ:
+ return 2;
+ case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
+ return 3;
+ case GS_OPCODE_URB_WRITE:
+ case GS_OPCODE_URB_WRITE_ALLOCATE:
+ case GS_OPCODE_THREAD_END:
+ return 0;
+ case GS_OPCODE_FF_SYNC:
+ return 1;
+ case TCS_OPCODE_URB_WRITE:
+ return 0;
+ case SHADER_OPCODE_SHADER_TIME_ADD:
+ return 0;
+ case SHADER_OPCODE_TEX:
+ case SHADER_OPCODE_TXL:
+ case SHADER_OPCODE_TXD:
+ case SHADER_OPCODE_TXF:
+ case SHADER_OPCODE_TXF_CMS:
+ case SHADER_OPCODE_TXF_CMS_W:
+ case SHADER_OPCODE_TXF_MCS:
+ case SHADER_OPCODE_TXS:
+ case SHADER_OPCODE_TG4:
+ case SHADER_OPCODE_TG4_OFFSET:
+ case SHADER_OPCODE_SAMPLEINFO:
+ case VS_OPCODE_GET_BUFFER_SIZE:
+ return inst->header_size;
+ default:
+ unreachable("not reached");
+ }
+}
+
+bool
+src_reg::equals(const src_reg &r) const
+{
+ return (this->backend_reg::equals(r) &&
+ !reladdr && !r.reladdr);
+}
+
+bool
+vec4_visitor::opt_vector_float()
+{
+ bool progress = false;
+
+ foreach_block(block, cfg) {
+ int last_reg = -1, last_offset = -1;
+ enum brw_reg_file last_reg_file = BAD_FILE;
+
+ uint8_t imm[4] = { 0 };
+ int inst_count = 0;
+ vec4_instruction *imm_inst[4];
+ unsigned writemask = 0;
+ enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
+
+ foreach_inst_in_block_safe(vec4_instruction, inst, block) {
+ int vf = -1;
+ enum brw_reg_type need_type;
+
+ /* Look for unconditional MOVs from an immediate with a partial
+ * writemask. Skip type-conversion MOVs other than integer 0,
+ * where the type doesn't matter. See if the immediate can be
+ * represented as a VF.
+ */
+ if (inst->opcode == BRW_OPCODE_MOV &&
+ inst->src[0].file == IMM &&
+ inst->predicate == BRW_PREDICATE_NONE &&
+ inst->dst.writemask != WRITEMASK_XYZW &&
+ type_sz(inst->src[0].type) < 8 &&
+ (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
+
+ vf = brw_float_to_vf(inst->src[0].d);
+ need_type = BRW_REGISTER_TYPE_D;
+
+ if (vf == -1) {
+ vf = brw_float_to_vf(inst->src[0].f);
+ need_type = BRW_REGISTER_TYPE_F;
+ }
+ } else {
+ last_reg = -1;
+ }
+
+ /* If this wasn't a MOV, or the destination register doesn't match,
+ * or we have to switch destination types, then this breaks our
+ * sequence. Combine anything we've accumulated so far.
+ */
+ if (last_reg != inst->dst.nr ||
+ last_offset != inst->dst.offset ||
+ last_reg_file != inst->dst.file ||
+ (vf > 0 && dest_type != need_type)) {
+
+ if (inst_count > 1) {
+ unsigned vf;
+ memcpy(&vf, imm, sizeof(vf));
+ vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
+ mov->dst.type = dest_type;
+ mov->dst.writemask = writemask;
+ inst->insert_before(block, mov);
+
+ for (int i = 0; i < inst_count; i++) {
+ imm_inst[i]->remove(block);
+ }
+
+ progress = true;
+ }
+
+ inst_count = 0;
+ last_reg = -1;
+ writemask = 0;
+ dest_type = BRW_REGISTER_TYPE_F;
+
+ for (int i = 0; i < 4; i++) {
+ imm[i] = 0;
+ }
+ }
+
+ /* Record this instruction's value (if it was representable). */
+ if (vf != -1) {
+ if ((inst->dst.writemask & WRITEMASK_X) != 0)
+ imm[0] = vf;
+ if ((inst->dst.writemask & WRITEMASK_Y) != 0)
+ imm[1] = vf;
+ if ((inst->dst.writemask & WRITEMASK_Z) != 0)
+ imm[2] = vf;
+ if ((inst->dst.writemask & WRITEMASK_W) != 0)
+ imm[3] = vf;
+
+ writemask |= inst->dst.writemask;
+ imm_inst[inst_count++] = inst;
+
+ last_reg = inst->dst.nr;
+ last_offset = inst->dst.offset;
+ last_reg_file = inst->dst.file;
+ if (vf > 0)
+ dest_type = need_type;
+ }
+ }
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+/* Replaces unused channels of a swizzle with channels that are used.
+ *
+ * For instance, this pass transforms
+ *
+ * mov vgrf4.yz, vgrf5.wxzy
+ *
+ * into
+ *
+ * mov vgrf4.yz, vgrf5.xxzx
+ *
+ * This eliminates false uses of some channels, letting dead code elimination
+ * remove the instructions that wrote them.
+ */
+bool
+vec4_visitor::opt_reduce_swizzle()
+{
+ bool progress = false;
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ if (inst->dst.file == BAD_FILE ||
+ inst->dst.file == ARF ||
+ inst->dst.file == FIXED_GRF ||
+ inst->is_send_from_grf())
+ continue;
+
+ unsigned swizzle;
+
+ /* Determine which channels of the sources are read. */
+ switch (inst->opcode) {
+ case VEC4_OPCODE_PACK_BYTES:
+ case BRW_OPCODE_DP4:
+ case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
+ * but all four of src1.
+ */
+ swizzle = brw_swizzle_for_size(4);
+ break;
+ case BRW_OPCODE_DP3:
+ swizzle = brw_swizzle_for_size(3);
+ break;
+ case BRW_OPCODE_DP2:
+ swizzle = brw_swizzle_for_size(2);
+ break;
+
+ case VEC4_OPCODE_TO_DOUBLE:
+ case VEC4_OPCODE_FROM_DOUBLE:
+ case VEC4_OPCODE_PICK_LOW_32BIT:
+ case VEC4_OPCODE_PICK_HIGH_32BIT:
+ case VEC4_OPCODE_SET_LOW_32BIT:
+ case VEC4_OPCODE_SET_HIGH_32BIT:
+ swizzle = brw_swizzle_for_size(4);
+ break;
+
+ default:
+ swizzle = brw_swizzle_for_mask(inst->dst.writemask);
+ break;
+ }
+
+ /* Update sources' swizzles. */
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file != VGRF &&
+ inst->src[i].file != ATTR &&
+ inst->src[i].file != UNIFORM)
+ continue;
+
+ const unsigned new_swizzle =
+ brw_compose_swizzle(swizzle, inst->src[i].swizzle);
+ if (inst->src[i].swizzle != new_swizzle) {
+ inst->src[i].swizzle = new_swizzle;
+ progress = true;
+ }
+ }
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+void
+vec4_visitor::split_uniform_registers()
+{
+ /* Prior to this, uniforms have been in an array sized according to
+ * the number of vector uniforms present, sparsely filled (so an
+ * aggregate results in reg indices being skipped over). Now we're
+ * going to cut those aggregates up so each .nr index is one
+ * vector. The goal is to make elimination of unused uniform
+ * components easier later.
+ */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (int i = 0 ; i < 3; i++) {
+ if (inst->src[i].file != UNIFORM)
+ continue;
+
+ assert(!inst->src[i].reladdr);
+
+ inst->src[i].nr += inst->src[i].offset / 16;
+ inst->src[i].offset %= 16;
+ }
+ }
+}
+
+void
+vec4_visitor::pack_uniform_registers()
+{
+ uint8_t chans_used[this->uniforms];
+ int new_loc[this->uniforms];
+ int new_chan[this->uniforms];
+
+ memset(chans_used, 0, sizeof(chans_used));
+ memset(new_loc, 0, sizeof(new_loc));
+ memset(new_chan, 0, sizeof(new_chan));
+
+ /* Find which uniform vectors are actually used by the program. We
+ * expect unused vector elements when we've moved array access out
+ * to pull constants, and from some GLSL code generators like wine.
+ */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ unsigned readmask;
+ switch (inst->opcode) {
+ case VEC4_OPCODE_PACK_BYTES:
+ case BRW_OPCODE_DP4:
+ case BRW_OPCODE_DPH:
+ readmask = 0xf;
+ break;
+ case BRW_OPCODE_DP3:
+ readmask = 0x7;
+ break;
+ case BRW_OPCODE_DP2:
+ readmask = 0x3;
+ break;
+ default:
+ readmask = inst->dst.writemask;
+ break;
+ }
+
+ for (int i = 0 ; i < 3; i++) {
+ if (inst->src[i].file != UNIFORM)
+ continue;
+
+ assert(type_sz(inst->src[i].type) % 4 == 0);
+ unsigned channel_size = type_sz(inst->src[i].type) / 4;
+
+ int reg = inst->src[i].nr;
+ for (int c = 0; c < 4; c++) {
+ if (!(readmask & (1 << c)))
+ continue;
+
+ unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
+ unsigned used = MAX2(chans_used[reg], channel * channel_size);
+ if (used <= 4)
+ chans_used[reg] = used;
+ else
+ chans_used[reg + 1] = used - 4;
+ }
+ }
+
+ if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
+ inst->src[0].file == UNIFORM) {
+ assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
+ assert(inst->src[0].subnr == 0);
+
+ unsigned bytes_read = inst->src[2].ud;
+ assert(bytes_read % 4 == 0);
+ unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
+
+ /* We just mark every register touched by a MOV_INDIRECT as being
+ * fully used. This ensures that it doesn't broken up piecewise by
+ * the next part of our packing algorithm.
+ */
+ int reg = inst->src[0].nr;
+ for (unsigned i = 0; i < vec4s_read; i++)
+ chans_used[reg + i] = 4;
+ }
+ }
+
+ int new_uniform_count = 0;
+
+ /* Now, figure out a packing of the live uniform vectors into our
+ * push constants.
+ */
+ for (int src = 0; src < uniforms; src++) {
+ int size = chans_used[src];
+
+ if (size == 0)
+ continue;
+
+ int dst;
+ /* Find the lowest place we can slot this uniform in. */
+ for (dst = 0; dst < src; dst++) {
+ if (chans_used[dst] + size <= 4)
+ break;
+ }
+
+ if (src == dst) {
+ new_loc[src] = dst;
+ new_chan[src] = 0;
+ } else {
+ new_loc[src] = dst;
+ new_chan[src] = chans_used[dst];
+
+ /* Move the references to the data */
+ for (int j = 0; j < size; j++) {
+ stage_prog_data->param[dst * 4 + new_chan[src] + j] =
+ stage_prog_data->param[src * 4 + j];
+ }
+
+ chans_used[dst] += size;
+ chans_used[src] = 0;
+ }
+
+ new_uniform_count = MAX2(new_uniform_count, dst + 1);
+ }
+
+ this->uniforms = new_uniform_count;
+
+ /* Now, update the instructions for our repacked uniforms. */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (int i = 0 ; i < 3; i++) {
+ int src = inst->src[i].nr;
+
+ if (inst->src[i].file != UNIFORM)
+ continue;
+
+ inst->src[i].nr = new_loc[src];
+ inst->src[i].swizzle += BRW_SWIZZLE4(new_chan[src], new_chan[src],
+ new_chan[src], new_chan[src]);
+ }
+ }
+}
+
+/**
+ * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
+ *
+ * While GLSL IR also performs this optimization, we end up with it in
+ * our instruction stream for a couple of reasons. One is that we
+ * sometimes generate silly instructions, for example in array access
+ * where we'll generate "ADD offset, index, base" even if base is 0.
+ * The other is that GLSL IR's constant propagation doesn't track the
+ * components of aggregates, so some VS patterns (initialize matrix to
+ * 0, accumulate in vertex blending factors) end up breaking down to
+ * instructions involving 0.
+ */
+bool
+vec4_visitor::opt_algebraic()
+{
+ bool progress = false;
+
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ switch (inst->opcode) {
+ case BRW_OPCODE_MOV:
+ if (inst->src[0].file != IMM)
+ break;
+
+ if (inst->saturate) {
+ if (inst->dst.type != inst->src[0].type)
+ assert(!"unimplemented: saturate mixed types");
+
+ if (brw_saturate_immediate(inst->dst.type,
+ &inst->src[0].as_brw_reg())) {
+ inst->saturate = false;
+ progress = true;
+ }
+ }
+ break;
+
+ case VEC4_OPCODE_UNPACK_UNIFORM:
+ if (inst->src[0].file != UNIFORM) {
+ inst->opcode = BRW_OPCODE_MOV;
+ progress = true;
+ }
+ break;
+
+ case BRW_OPCODE_ADD:
+ if (inst->src[1].is_zero()) {
+ inst->opcode = BRW_OPCODE_MOV;
+ inst->src[1] = src_reg();
+ progress = true;
+ }
+ break;
+
+ case BRW_OPCODE_MUL:
+ if (inst->src[1].is_zero()) {
+ inst->opcode = BRW_OPCODE_MOV;
+ switch (inst->src[0].type) {
+ case BRW_REGISTER_TYPE_F:
+ inst->src[0] = brw_imm_f(0.0f);
+ break;
+ case BRW_REGISTER_TYPE_D:
+ inst->src[0] = brw_imm_d(0);
+ break;
+ case BRW_REGISTER_TYPE_UD:
+ inst->src[0] = brw_imm_ud(0u);
+ break;
+ default:
+ unreachable("not reached");
+ }
+ inst->src[1] = src_reg();
+ progress = true;
+ } else if (inst->src[1].is_one()) {
+ inst->opcode = BRW_OPCODE_MOV;
+ inst->src[1] = src_reg();
+ progress = true;
+ } else if (inst->src[1].is_negative_one()) {
+ inst->opcode = BRW_OPCODE_MOV;
+ inst->src[0].negate = !inst->src[0].negate;
+ inst->src[1] = src_reg();
+ progress = true;
+ }
+ break;
+ case BRW_OPCODE_CMP:
+ if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
+ inst->src[0].abs &&
+ inst->src[0].negate &&
+ inst->src[1].is_zero()) {
+ inst->src[0].abs = false;
+ inst->src[0].negate = false;
+ inst->conditional_mod = BRW_CONDITIONAL_Z;
+ progress = true;
+ break;
+ }
+ break;
+ case SHADER_OPCODE_BROADCAST:
+ if (is_uniform(inst->src[0]) ||
+ inst->src[1].is_zero()) {
+ inst->opcode = BRW_OPCODE_MOV;
+ inst->src[1] = src_reg();
+ inst->force_writemask_all = true;
+ progress = true;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+/**
+ * Only a limited number of hardware registers may be used for push
+ * constants, so this turns access to the overflowed constants into
+ * pull constants.
+ */
+void
+vec4_visitor::move_push_constants_to_pull_constants()
+{
+ int pull_constant_loc[this->uniforms];
+
+ /* Only allow 32 registers (256 uniform components) as push constants,
+ * which is the limit on gen6.
+ *
+ * If changing this value, note the limitation about total_regs in
+ * brw_curbe.c.
+ */
+ int max_uniform_components = 32 * 8;
+ if (this->uniforms * 4 <= max_uniform_components)
+ return;
+
+ /* Make some sort of choice as to which uniforms get sent to pull
+ * constants. We could potentially do something clever here like
+ * look for the most infrequently used uniform vec4s, but leave
+ * that for later.
+ */
+ for (int i = 0; i < this->uniforms * 4; i += 4) {
+ pull_constant_loc[i / 4] = -1;
+
+ if (i >= max_uniform_components) {
+ const gl_constant_value **values = &stage_prog_data->param[i];
+
+ /* Try to find an existing copy of this uniform in the pull
+ * constants if it was part of an array access already.
+ */
+ for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
+ int matches;
+
+ for (matches = 0; matches < 4; matches++) {
+ if (stage_prog_data->pull_param[j + matches] != values[matches])
+ break;
+ }
+
+ if (matches == 4) {
+ pull_constant_loc[i / 4] = j / 4;
+ break;
+ }
+ }
+
+ if (pull_constant_loc[i / 4] == -1) {
+ assert(stage_prog_data->nr_pull_params % 4 == 0);
+ pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
+
+ for (int j = 0; j < 4; j++) {
+ stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
+ values[j];
+ }
+ }
+ }
+ }
+
+ /* Now actually rewrite usage of the things we've moved to pull
+ * constants.
+ */
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ for (int i = 0 ; i < 3; i++) {
+ if (inst->src[i].file != UNIFORM ||
+ pull_constant_loc[inst->src[i].nr] == -1)
+ continue;
+
+ int uniform = inst->src[i].nr;
+
+ const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
+ glsl_type::dvec4_type : glsl_type::vec4_type;
+ dst_reg temp = dst_reg(this, temp_type);
+
+ emit_pull_constant_load(block, inst, temp, inst->src[i],
+ pull_constant_loc[uniform], src_reg());
+
+ inst->src[i].file = temp.file;
+ inst->src[i].nr = temp.nr;
+ inst->src[i].offset %= 16;
+ inst->src[i].reladdr = NULL;
+ }
+ }
+
+ /* Repack push constants to remove the now-unused ones. */
+ pack_uniform_registers();
+}
+
+/* Conditions for which we want to avoid setting the dependency control bits */
+bool
+vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
+{
+#define IS_DWORD(reg) \
+ (reg.type == BRW_REGISTER_TYPE_UD || \
+ reg.type == BRW_REGISTER_TYPE_D)
+
+#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
+
+ /* From the Cherryview and Broadwell PRMs:
+ *
+ * "When source or destination datatype is 64b or operation is integer DWord
+ * multiply, DepCtrl must not be used."
+ *
+ * SKL PRMs don't include this restriction, however, gen7 seems to be
+ * affected, at least by the 64b restriction, since DepCtrl with double
+ * precision instructions seems to produce GPU hangs in some cases.
+ */
+ if (devinfo->gen == 8 || devinfo->is_broxton) {
+ if (inst->opcode == BRW_OPCODE_MUL &&
+ IS_DWORD(inst->src[0]) &&
+ IS_DWORD(inst->src[1]))
+ return true;
+ }
+
+ if (devinfo->gen >= 7 && devinfo->gen <= 8) {
+ if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
+ IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
+ return true;
+ }
+
+#undef IS_64BIT
+#undef IS_DWORD
+
+ if (devinfo->gen >= 8) {
+ if (inst->opcode == BRW_OPCODE_F32TO16)
+ return true;
+ }
+
+ /*
+ * mlen:
+ * In the presence of send messages, totally interrupt dependency
+ * control. They're long enough that the chance of dependency
+ * control around them just doesn't matter.
+ *
+ * predicate:
+ * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
+ * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
+ * completes the scoreboard clear must have a non-zero execution mask. This
+ * means, if any kind of predication can change the execution mask or channel
+ * enable of the last instruction, the optimization must be avoided. This is
+ * to avoid instructions being shot down the pipeline when no writes are
+ * required.
+ *
+ * math:
+ * Dependency control does not work well over math instructions.
+ * NB: Discovered empirically
+ */
+ return (inst->mlen || inst->predicate || inst->is_math());
+}
+
+/**
+ * Sets the dependency control fields on instructions after register
+ * allocation and before the generator is run.
+ *
+ * When you have a sequence of instructions like:
+ *
+ * DP4 temp.x vertex uniform[0]
+ * DP4 temp.y vertex uniform[0]
+ * DP4 temp.z vertex uniform[0]
+ * DP4 temp.w vertex uniform[0]
+ *
+ * The hardware doesn't know that it can actually run the later instructions
+ * while the previous ones are in flight, producing stalls. However, we have
+ * manual fields we can set in the instructions that let it do so.
+ */
+void
+vec4_visitor::opt_set_dependency_control()
+{
+ vec4_instruction *last_grf_write[BRW_MAX_GRF];
+ uint8_t grf_channels_written[BRW_MAX_GRF];
+ vec4_instruction *last_mrf_write[BRW_MAX_GRF];
+ uint8_t mrf_channels_written[BRW_MAX_GRF];
+
+ assert(prog_data->total_grf ||
+ !"Must be called after register allocation");
+
+ foreach_block (block, cfg) {
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+
+ foreach_inst_in_block (vec4_instruction, inst, block) {
+ /* If we read from a register that we were doing dependency control
+ * on, don't do dependency control across the read.
+ */
+ for (int i = 0; i < 3; i++) {
+ int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
+ if (inst->src[i].file == VGRF) {
+ last_grf_write[reg] = NULL;
+ } else if (inst->src[i].file == FIXED_GRF) {
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ break;
+ }
+ assert(inst->src[i].file != MRF);
+ }
+
+ if (is_dep_ctrl_unsafe(inst)) {
+ memset(last_grf_write, 0, sizeof(last_grf_write));
+ memset(last_mrf_write, 0, sizeof(last_mrf_write));
+ continue;
+ }
+
+ /* Now, see if we can do dependency control for this instruction
+ * against a previous one writing to its destination.
+ */
+ int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
+ if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
+ if (last_grf_write[reg] &&
+ last_grf_write[reg]->dst.offset == inst->dst.offset &&
+ !(inst->dst.writemask & grf_channels_written[reg])) {
+ last_grf_write[reg]->no_dd_clear = true;
+ inst->no_dd_check = true;
+ } else {
+ grf_channels_written[reg] = 0;
+ }
+
+ last_grf_write[reg] = inst;
+ grf_channels_written[reg] |= inst->dst.writemask;
+ } else if (inst->dst.file == MRF) {
+ if (last_mrf_write[reg] &&
+ last_mrf_write[reg]->dst.offset == inst->dst.offset &&
+ !(inst->dst.writemask & mrf_channels_written[reg])) {
+ last_mrf_write[reg]->no_dd_clear = true;
+ inst->no_dd_check = true;
+ } else {
+ mrf_channels_written[reg] = 0;
+ }
+
+ last_mrf_write[reg] = inst;
+ mrf_channels_written[reg] |= inst->dst.writemask;
+ }
+ }
+ }
+}
+
+bool
+vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
+ int dst_writemask,
+ int swizzle,
+ int swizzle_mask)
+{
+ /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
+ * are not allowed.
+ */
+ if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
+ return false;
+
+ if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
+ return false;
+
+ /* If this instruction sets anything not referenced by swizzle, then we'd
+ * totally break it when we reswizzle.
+ */
+ if (dst.writemask & ~swizzle_mask)
+ return false;
+
+ if (mlen > 0)
+ return false;
+
+ for (int i = 0; i < 3; i++) {
+ if (src[i].is_accumulator())
+ return false;
+ }
+
+ return true;
+}
+
+/**
+ * For any channels in the swizzle's source that were populated by this
+ * instruction, rewrite the instruction to put the appropriate result directly
+ * in those channels.
+ *
+ * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
+ */
+void
+vec4_instruction::reswizzle(int dst_writemask, int swizzle)
+{
+ /* Destination write mask doesn't correspond to source swizzle for the dot
+ * product and pack_bytes instructions.
+ */
+ if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
+ opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
+ opcode != VEC4_OPCODE_PACK_BYTES) {
+ for (int i = 0; i < 3; i++) {
+ if (src[i].file == BAD_FILE || src[i].file == IMM)
+ continue;
+
+ src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
+ }
+ }
+
+ /* Apply the specified swizzle and writemask to the original mask of
+ * written components.
+ */
+ dst.writemask = dst_writemask &
+ brw_apply_swizzle_to_mask(swizzle, dst.writemask);
+}
+
+/*
+ * Tries to reduce extra MOV instructions by taking temporary GRFs that get
+ * just written and then MOVed into another reg and making the original write
+ * of the GRF write directly to the final destination instead.
+ */
+bool
+vec4_visitor::opt_register_coalesce()
+{
+ bool progress = false;
+ int next_ip = 0;
+
+ calculate_live_intervals();
+
+ foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
+ int ip = next_ip;
+ next_ip++;
+
+ if (inst->opcode != BRW_OPCODE_MOV ||
+ (inst->dst.file != VGRF && inst->dst.file != MRF) ||
+ inst->predicate ||
+ inst->src[0].file != VGRF ||
+ inst->dst.type != inst->src[0].type ||
+ inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
+ continue;
+
+ /* Remove no-op MOVs */
+ if (inst->dst.file == inst->src[0].file &&
+ inst->dst.nr == inst->src[0].nr &&
+ inst->dst.offset == inst->src[0].offset) {
+ bool is_nop_mov = true;
+
+ for (unsigned c = 0; c < 4; c++) {
+ if ((inst->dst.writemask & (1 << c)) == 0)
+ continue;
+
+ if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
+ is_nop_mov = false;
+ break;
+ }
+ }
+
+ if (is_nop_mov) {
+ inst->remove(block);
+ progress = true;
+ continue;
+ }
+ }
+
+ bool to_mrf = (inst->dst.file == MRF);
+
+ /* Can't coalesce this GRF if someone else was going to
+ * read it later.
+ */
+ if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
+ continue;
+
+ /* We need to check interference with the final destination between this
+ * instruction and the earliest instruction involved in writing the GRF
+ * we're eliminating. To do that, keep track of which of our source
+ * channels we've seen initialized.
+ */
+ const unsigned chans_needed =
+ brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
+ inst->dst.writemask);
+ unsigned chans_remaining = chans_needed;
+
+ /* Now walk up the instruction stream trying to see if we can rewrite
+ * everything writing to the temporary to write into the destination
+ * instead.
+ */
+ vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
+ foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
+ inst) {
+ _scan_inst = scan_inst;
+
+ if (regions_overlap(inst->src[0], inst->size_read(0),
+ scan_inst->dst, scan_inst->size_written)) {
+ /* Found something writing to the reg we want to coalesce away. */
+ if (to_mrf) {
+ /* SEND instructions can't have MRF as a destination. */
+ if (scan_inst->mlen)
+ break;
+
+ if (devinfo->gen == 6) {
+ /* gen6 math instructions must have the destination be
+ * VGRF, so no compute-to-MRF for them.
+ */
+ if (scan_inst->is_math()) {
+ break;
+ }
+ }
+ }
+
+ /* This doesn't handle saturation on the instruction we
+ * want to coalesce away if the register types do not match.
+ * But if scan_inst is a non type-converting 'mov', we can fix
+ * the types later.
+ */
+ if (inst->saturate &&
+ inst->dst.type != scan_inst->dst.type &&
+ !(scan_inst->opcode == BRW_OPCODE_MOV &&
+ scan_inst->dst.type == scan_inst->src[0].type))
+ break;
+
+ /* Only allow coalescing between registers of the same type size.
+ * Otherwise we would need to make the pass aware of the fact that
+ * channel sizes are different for single and double precision.
+ */
+ if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
+ break;
+
+ /* Check that scan_inst writes the same amount of data as the
+ * instruction, otherwise coalescing would lead to writing a
+ * different (larger or smaller) region of the destination
+ */
+ if (scan_inst->size_written != inst->size_written)
+ break;
+
+ /* If we can't handle the swizzle, bail. */
+ if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
+ inst->src[0].swizzle,
+ chans_needed)) {
+ break;
+ }
+
+ /* This only handles coalescing writes of 8 channels (1 register
+ * for single-precision and 2 registers for double-precision)
+ * starting at the source offset of the copy instruction.
+ */
+ if (DIV_ROUND_UP(scan_inst->size_written,
+ type_sz(scan_inst->dst.type)) > 8 ||
+ scan_inst->dst.offset != inst->src[0].offset)
+ break;
+
+ /* Mark which channels we found unconditional writes for. */
+ if (!scan_inst->predicate)
+ chans_remaining &= ~scan_inst->dst.writemask;
+
+ if (chans_remaining == 0)
+ break;
+ }
+
+ /* You can't read from an MRF, so if someone else reads our MRF's
+ * source GRF that we wanted to rewrite, that stops us. If it's a
+ * GRF we're trying to coalesce to, we don't actually handle
+ * rewriting sources so bail in that case as well.
+ */
+ bool interfered = false;
+ for (int i = 0; i < 3; i++) {
+ if (regions_overlap(inst->src[0], inst->size_read(0),
+ scan_inst->src[i], scan_inst->size_read(i)))
+ interfered = true;
+ }
+ if (interfered)
+ break;
+
+ /* If somebody else writes the same channels of our destination here,
+ * we can't coalesce before that.
+ */
+ if (regions_overlap(inst->dst, inst->size_written,
+ scan_inst->dst, scan_inst->size_written) &&
+ (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
+ break;
+ }
+
+ /* Check for reads of the register we're trying to coalesce into. We
+ * can't go rewriting instructions above that to put some other value
+ * in the register instead.
+ */
+ if (to_mrf && scan_inst->mlen > 0) {
+ if (inst->dst.nr >= scan_inst->base_mrf &&
+ inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
+ break;
+ }
+ } else {
+ for (int i = 0; i < 3; i++) {
+ if (regions_overlap(inst->dst, inst->size_written,
+ scan_inst->src[i], scan_inst->size_read(i)))
+ interfered = true;
+ }
+ if (interfered)
+ break;
+ }
+ }
+
+ if (chans_remaining == 0) {
+ /* If we've made it here, we have an MOV we want to coalesce out, and
+ * a scan_inst pointing to the earliest instruction involved in
+ * computing the value. Now go rewrite the instruction stream
+ * between the two.
+ */
+ vec4_instruction *scan_inst = _scan_inst;
+ while (scan_inst != inst) {
+ if (scan_inst->dst.file == VGRF &&
+ scan_inst->dst.nr == inst->src[0].nr &&
+ scan_inst->dst.offset == inst->src[0].offset) {
+ scan_inst->reswizzle(inst->dst.writemask,
+ inst->src[0].swizzle);
+ scan_inst->dst.file = inst->dst.file;
+ scan_inst->dst.nr = inst->dst.nr;
+ scan_inst->dst.offset = inst->dst.offset;
+ if (inst->saturate &&
+ inst->dst.type != scan_inst->dst.type) {
+ /* If we have reached this point, scan_inst is a non
+ * type-converting 'mov' and we can modify its register types
+ * to match the ones in inst. Otherwise, we could have an
+ * incorrect saturation result.
+ */
+ scan_inst->dst.type = inst->dst.type;
+ scan_inst->src[0].type = inst->src[0].type;
+ }
+ scan_inst->saturate |= inst->saturate;
+ }
+ scan_inst = (vec4_instruction *)scan_inst->next;
+ }
+ inst->remove(block);
+ progress = true;
+ }
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+/**
+ * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
+ * flow. We could probably do better here with some form of divergence
+ * analysis.
+ */
+bool
+vec4_visitor::eliminate_find_live_channel()
+{
+ bool progress = false;
+ unsigned depth = 0;
+
+ if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
+ /* The optimization below assumes that channel zero is live on thread
+ * dispatch, which may not be the case if the fixed function dispatches
+ * threads sparsely.
+ */
+ return false;
+ }
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ switch (inst->opcode) {
+ case BRW_OPCODE_IF:
+ case BRW_OPCODE_DO:
+ depth++;
+ break;
+
+ case BRW_OPCODE_ENDIF:
+ case BRW_OPCODE_WHILE:
+ depth--;
+ break;
+
+ case SHADER_OPCODE_FIND_LIVE_CHANNEL:
+ if (depth == 0) {
+ inst->opcode = BRW_OPCODE_MOV;
+ inst->src[0] = brw_imm_d(0);
+ inst->force_writemask_all = true;
+ progress = true;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return progress;
+}
+
+/**
+ * Splits virtual GRFs requesting more than one contiguous physical register.
+ *
+ * We initially create large virtual GRFs for temporary structures, arrays,
+ * and matrices, so that the visitor functions can add offsets to work their
+ * way down to the actual member being accessed. But when it comes to
+ * optimization, we'd like to treat each register as individual storage if
+ * possible.
+ *
+ * So far, the only thing that might prevent splitting is a send message from
+ * a GRF on IVB.
+ */
+void
+vec4_visitor::split_virtual_grfs()
+{
+ int num_vars = this->alloc.count;
+ int new_virtual_grf[num_vars];
+ bool split_grf[num_vars];
+
+ memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
+
+ /* Try to split anything > 0 sized. */
+ for (int i = 0; i < num_vars; i++) {
+ split_grf[i] = this->alloc.sizes[i] != 1;
+ }
+
+ /* Check that the instructions are compatible with the registers we're trying
+ * to split.
+ */
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ if (inst->dst.file == VGRF && regs_written(inst) > 1)
+ split_grf[inst->dst.nr] = false;
+
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
+ split_grf[inst->src[i].nr] = false;
+ }
+ }
+
+ /* Allocate new space for split regs. Note that the virtual
+ * numbers will be contiguous.
+ */
+ for (int i = 0; i < num_vars; i++) {
+ if (!split_grf[i])
+ continue;
+
+ new_virtual_grf[i] = alloc.allocate(1);
+ for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
+ unsigned reg = alloc.allocate(1);
+ assert(reg == new_virtual_grf[i] + j - 1);
+ (void) reg;
+ }
+ this->alloc.sizes[i] = 1;
+ }
+
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
+ inst->dst.offset / REG_SIZE != 0) {
+ inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
+ inst->dst.offset / REG_SIZE - 1);
+ inst->dst.offset %= REG_SIZE;
+ }
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
+ inst->src[i].offset / REG_SIZE != 0) {
+ inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
+ inst->src[i].offset / REG_SIZE - 1);
+ inst->src[i].offset %= REG_SIZE;
+ }
+ }
+ }
+ invalidate_live_intervals();
+}
+
+void
+vec4_visitor::dump_instruction(backend_instruction *be_inst)
+{
+ dump_instruction(be_inst, stderr);
+}
+
+void
+vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
+{
+ vec4_instruction *inst = (vec4_instruction *)be_inst;
+
+ if (inst->predicate) {
+ fprintf(file, "(%cf0.%d%s) ",
+ inst->predicate_inverse ? '-' : '+',
+ inst->flag_subreg,
+ pred_ctrl_align16[inst->predicate]);
+ }
+
+ fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
+ inst->exec_size);
+ if (inst->saturate)
+ fprintf(file, ".sat");
+ if (inst->conditional_mod) {
+ fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
+ if (!inst->predicate &&
+ (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
+ inst->opcode != BRW_OPCODE_IF &&
+ inst->opcode != BRW_OPCODE_WHILE))) {
+ fprintf(file, ".f0.%d", inst->flag_subreg);
+ }
+ }
+ fprintf(file, " ");
+
+ switch (inst->dst.file) {
+ case VGRF:
+ fprintf(file, "vgrf%d", inst->dst.nr);
+ break;
+ case FIXED_GRF:
+ fprintf(file, "g%d", inst->dst.nr);
+ break;
+ case MRF:
+ fprintf(file, "m%d", inst->dst.nr);
+ break;
+ case ARF:
+ switch (inst->dst.nr) {
+ case BRW_ARF_NULL:
+ fprintf(file, "null");
+ break;
+ case BRW_ARF_ADDRESS:
+ fprintf(file, "a0.%d", inst->dst.subnr);
+ break;
+ case BRW_ARF_ACCUMULATOR:
+ fprintf(file, "acc%d", inst->dst.subnr);
+ break;
+ case BRW_ARF_FLAG:
+ fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
+ break;
+ default:
+ fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
+ break;
+ }
+ break;
+ case BAD_FILE:
+ fprintf(file, "(null)");
+ break;
+ case IMM:
+ case ATTR:
+ case UNIFORM:
+ unreachable("not reached");
+ }
+ if (inst->dst.offset ||
+ (inst->dst.file == VGRF &&
+ alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
+ const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
+ fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
+ inst->dst.offset % reg_size);
+ }
+ if (inst->dst.writemask != WRITEMASK_XYZW) {
+ fprintf(file, ".");
+ if (inst->dst.writemask & 1)
+ fprintf(file, "x");
+ if (inst->dst.writemask & 2)
+ fprintf(file, "y");
+ if (inst->dst.writemask & 4)
+ fprintf(file, "z");
+ if (inst->dst.writemask & 8)
+ fprintf(file, "w");
+ }
+ fprintf(file, ":%s", brw_reg_type_letters(inst->dst.type));
+
+ if (inst->src[0].file != BAD_FILE)
+ fprintf(file, ", ");
+
+ for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
+ if (inst->src[i].negate)
+ fprintf(file, "-");
+ if (inst->src[i].abs)
+ fprintf(file, "|");
+ switch (inst->src[i].file) {
+ case VGRF:
+ fprintf(file, "vgrf%d", inst->src[i].nr);
+ break;
+ case FIXED_GRF:
+ fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
+ break;
+ case ATTR:
+ fprintf(file, "attr%d", inst->src[i].nr);
+ break;
+ case UNIFORM:
+ fprintf(file, "u%d", inst->src[i].nr);
+ break;
+ case IMM:
+ switch (inst->src[i].type) {
+ case BRW_REGISTER_TYPE_F:
+ fprintf(file, "%fF", inst->src[i].f);
+ break;
+ case BRW_REGISTER_TYPE_DF:
+ fprintf(file, "%fDF", inst->src[i].df);
+ break;
+ case BRW_REGISTER_TYPE_D:
+ fprintf(file, "%dD", inst->src[i].d);
+ break;
+ case BRW_REGISTER_TYPE_UD:
+ fprintf(file, "%uU", inst->src[i].ud);
+ break;
+ case BRW_REGISTER_TYPE_VF:
+ fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
+ brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
+ brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
+ brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
+ brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
+ break;
+ default:
+ fprintf(file, "???");
+ break;
+ }
+ break;
+ case ARF:
+ switch (inst->src[i].nr) {
+ case BRW_ARF_NULL:
+ fprintf(file, "null");
+ break;
+ case BRW_ARF_ADDRESS:
+ fprintf(file, "a0.%d", inst->src[i].subnr);
+ break;
+ case BRW_ARF_ACCUMULATOR:
+ fprintf(file, "acc%d", inst->src[i].subnr);
+ break;
+ case BRW_ARF_FLAG:
+ fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
+ break;
+ default:
+ fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
+ break;
+ }
+ break;
+ case BAD_FILE:
+ fprintf(file, "(null)");
+ break;
+ case MRF:
+ unreachable("not reached");
+ }
+
+ if (inst->src[i].offset ||
+ (inst->src[i].file == VGRF &&
+ alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
+ const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
+ fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
+ inst->src[i].offset % reg_size);
+ }
+
+ if (inst->src[i].file != IMM) {
+ static const char *chans[4] = {"x", "y", "z", "w"};
+ fprintf(file, ".");
+ for (int c = 0; c < 4; c++) {
+ fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
+ }
+ }
+
+ if (inst->src[i].abs)
+ fprintf(file, "|");
+
+ if (inst->src[i].file != IMM) {
+ fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
+ }
+
+ if (i < 2 && inst->src[i + 1].file != BAD_FILE)
+ fprintf(file, ", ");
+ }
+
+ if (inst->force_writemask_all)
+ fprintf(file, " NoMask");
+
+ if (inst->exec_size != 8)
+ fprintf(file, " group%d", inst->group);
+
+ fprintf(file, "\n");
+}
+
+
+static inline struct brw_reg
+attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
+{
+ struct brw_reg reg;
+
+ unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
+ if (interleaved) {
+ reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
+ } else {
+ reg = brw_vecn_grf(width, attr, 0);
+ }
+
+ reg.type = type;
+ return reg;
+}
+
+
+/**
+ * Replace each register of type ATTR in this->instructions with a reference
+ * to a fixed HW register.
+ *
+ * If interleaved is true, then each attribute takes up half a register, with
+ * register N containing attribute 2*N in its first half and attribute 2*N+1
+ * in its second half (this corresponds to the payload setup used by geometry
+ * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
+ * false, then each attribute takes up a whole register, with register N
+ * containing attribute N (this corresponds to the payload setup used by
+ * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
+ */
+void
+vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map,
+ bool interleaved)
+{
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file != ATTR)
+ continue;
+
+ int grf = attribute_map[inst->src[i].nr +
+ inst->src[i].offset / REG_SIZE];
+ assert(inst->src[i].offset % REG_SIZE == 0);
+
+ /* All attributes used in the shader need to have been assigned a
+ * hardware register by the caller
+ */
+ assert(grf != 0);
+
+ struct brw_reg reg =
+ attribute_to_hw_reg(grf, inst->src[i].type, interleaved);
+ reg.swizzle = inst->src[i].swizzle;
+ if (inst->src[i].abs)
+ reg = brw_abs(reg);
+ if (inst->src[i].negate)
+ reg = negate(reg);
+
+ inst->src[i] = reg;
+ }
+ }
+}
+
+int
+vec4_vs_visitor::setup_attributes(int payload_reg)
+{
+ int nr_attributes;
+ int attribute_map[VERT_ATTRIB_MAX + 2];
+ memset(attribute_map, 0, sizeof(attribute_map));
+
+ nr_attributes = 0;
+ GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
+ while (vs_inputs) {
+ GLuint first = ffsll(vs_inputs) - 1;
+ int needed_slots =
+ (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) ? 2 : 1;
+ for (int c = 0; c < needed_slots; c++) {
+ attribute_map[first + c] = payload_reg + nr_attributes;
+ nr_attributes++;
+ vs_inputs &= ~BITFIELD64_BIT(first + c);
+ }
+ }
+
+ /* VertexID is stored by the VF as the last vertex element, but we
+ * don't represent it with a flag in inputs_read, so we call it
+ * VERT_ATTRIB_MAX.
+ */
+ if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
+ vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) {
+ attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
+ nr_attributes++;
+ }
+
+ if (vs_prog_data->uses_drawid) {
+ attribute_map[VERT_ATTRIB_MAX + 1] = payload_reg + nr_attributes;
+ nr_attributes++;
+ }
+
+ lower_attributes_to_hw_regs(attribute_map, false /* interleaved */);
+
+ return payload_reg + vs_prog_data->nr_attribute_slots;
+}
+
+int
+vec4_visitor::setup_uniforms(int reg)
+{
+ prog_data->base.dispatch_grf_start_reg = reg;
+
+ /* The pre-gen6 VS requires that some push constants get loaded no
+ * matter what, or the GPU would hang.
+ */
+ if (devinfo->gen < 6 && this->uniforms == 0) {
+ stage_prog_data->param =
+ reralloc(NULL, stage_prog_data->param, const gl_constant_value *, 4);
+ for (unsigned int i = 0; i < 4; i++) {
+ unsigned int slot = this->uniforms * 4 + i;
+ static gl_constant_value zero = { 0.0 };
+ stage_prog_data->param[slot] = &zero;
+ }
+
+ this->uniforms++;
+ reg++;
+ } else {
+ reg += ALIGN(uniforms, 2) / 2;
+ }
+
+ stage_prog_data->nr_params = this->uniforms * 4;
+
+ prog_data->base.curb_read_length =
+ reg - prog_data->base.dispatch_grf_start_reg;
+
+ return reg;
+}
+
+void
+vec4_vs_visitor::setup_payload(void)
+{
+ int reg = 0;
+
+ /* The payload always contains important data in g0, which contains
+ * the URB handles that are passed on to the URB write at the end
+ * of the thread. So, we always start push constants at g1.
+ */
+ reg++;
+
+ reg = setup_uniforms(reg);
+
+ reg = setup_attributes(reg);
+
+ this->first_non_payload_grf = reg;
+}
+
+bool
+vec4_visitor::lower_minmax()
+{
+ assert(devinfo->gen < 6);
+
+ bool progress = false;
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ const vec4_builder ibld(this, block, inst);
+
+ if (inst->opcode == BRW_OPCODE_SEL &&
+ inst->predicate == BRW_PREDICATE_NONE) {
+ /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
+ * the original SEL.L/GE instruction
+ */
+ ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
+ inst->conditional_mod);
+ inst->predicate = BRW_PREDICATE_NORMAL;
+ inst->conditional_mod = BRW_CONDITIONAL_NONE;
+
+ progress = true;
+ }
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+src_reg
+vec4_visitor::get_timestamp()
+{
+ assert(devinfo->gen >= 7);
+
+ src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
+ BRW_ARF_TIMESTAMP,
+ 0,
+ 0,
+ 0,
+ BRW_REGISTER_TYPE_UD,
+ BRW_VERTICAL_STRIDE_0,
+ BRW_WIDTH_4,
+ BRW_HORIZONTAL_STRIDE_4,
+ BRW_SWIZZLE_XYZW,
+ WRITEMASK_XYZW));
+
+ dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
+
+ vec4_instruction *mov = emit(MOV(dst, ts));
+ /* We want to read the 3 fields we care about (mostly field 0, but also 2)
+ * even if it's not enabled in the dispatch.
+ */
+ mov->force_writemask_all = true;
+
+ return src_reg(dst);
+}
+
+void
+vec4_visitor::emit_shader_time_begin()
+{
+ current_annotation = "shader time start";
+ shader_start_time = get_timestamp();
+}
+
+void
+vec4_visitor::emit_shader_time_end()
+{
+ current_annotation = "shader time end";
+ src_reg shader_end_time = get_timestamp();
+
+
+ /* Check that there weren't any timestamp reset events (assuming these
+ * were the only two timestamp reads that happened).
+ */
+ src_reg reset_end = shader_end_time;
+ reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
+ vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
+ test->conditional_mod = BRW_CONDITIONAL_Z;
+
+ emit(IF(BRW_PREDICATE_NORMAL));
+
+ /* Take the current timestamp and get the delta. */
+ shader_start_time.negate = true;
+ dst_reg diff = dst_reg(this, glsl_type::uint_type);
+ emit(ADD(diff, shader_start_time, shader_end_time));
+
+ /* If there were no instructions between the two timestamp gets, the diff
+ * is 2 cycles. Remove that overhead, so I can forget about that when
+ * trying to determine the time taken for single instructions.
+ */
+ emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
+
+ emit_shader_time_write(0, src_reg(diff));
+ emit_shader_time_write(1, brw_imm_ud(1u));
+ emit(BRW_OPCODE_ELSE);
+ emit_shader_time_write(2, brw_imm_ud(1u));
+ emit(BRW_OPCODE_ENDIF);
+}
+
+void
+vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
+{
+ dst_reg dst =
+ dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
+
+ dst_reg offset = dst;
+ dst_reg time = dst;
+ time.offset += REG_SIZE;
+
+ offset.type = BRW_REGISTER_TYPE_UD;
+ int index = shader_time_index * 3 + shader_time_subindex;
+ emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
+
+ time.type = BRW_REGISTER_TYPE_UD;
+ emit(MOV(time, value));
+
+ vec4_instruction *inst =
+ emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
+ inst->mlen = 2;
+}
+
+void
+vec4_visitor::convert_to_hw_regs()
+{
+ foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+ for (int i = 0; i < 3; i++) {
+ struct src_reg &src = inst->src[i];
+ struct brw_reg reg;
+ switch (src.file) {
+ case VGRF: {
+ const unsigned type_size = type_sz(src.type);
+ const unsigned width = REG_SIZE / 2 / MAX2(4, type_size);
+ reg = byte_offset(brw_vecn_grf(width, src.nr, 0), src.offset);
+ reg.type = src.type;
+ reg.abs = src.abs;
+ reg.negate = src.negate;
+ break;
+ }
+
+ case UNIFORM: {
+ const unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(src.type));
+ reg = stride(byte_offset(brw_vec4_grf(
+ prog_data->base.dispatch_grf_start_reg +
+ src.nr / 2, src.nr % 2 * 4),
+ src.offset),
+ 0, width, 1);
+ reg.type = src.type;
+ reg.abs = src.abs;
+ reg.negate = src.negate;
+
+ /* This should have been moved to pull constants. */
+ assert(!src.reladdr);
+ break;
+ }
+
+ case FIXED_GRF:
+ if (type_sz(src.type) == 8) {
+ reg = src.as_brw_reg();
+ break;
+ }
+ /* fallthrough */
+ case ARF:
+ case IMM:
+ continue;
+
+ case BAD_FILE:
+ /* Probably unused. */
+ reg = brw_null_reg();
+ break;
+
+ case MRF:
+ case ATTR:
+ unreachable("not reached");
+ }
+
+ apply_logical_swizzle(&reg, inst, i);
+ src = reg;
+ }
+
+ if (inst->is_3src(devinfo)) {
+ /* 3-src instructions with scalar sources support arbitrary subnr,
+ * but don't actually use swizzles. Convert swizzle into subnr.
+ * Skip this for double-precision instructions: RepCtrl=1 is not
+ * allowed for them and needs special handling.
+ */
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
+ type_sz(inst->src[i].type) < 8) {
+ assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
+ inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
+ }
+ }
+ }
+
+ dst_reg &dst = inst->dst;
+ struct brw_reg reg;
+
+ switch (inst->dst.file) {
+ case VGRF:
+ reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
+ reg.type = dst.type;
+ reg.writemask = dst.writemask;
+ break;
+
+ case MRF:
+ reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
+ assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
+ reg.type = dst.type;
+ reg.writemask = dst.writemask;
+ break;
+
+ case ARF:
+ case FIXED_GRF:
+ reg = dst.as_brw_reg();
+ break;
+
+ case BAD_FILE:
+ reg = brw_null_reg();
+ break;
+
+ case IMM:
+ case ATTR:
+ case UNIFORM:
+ unreachable("not reached");
+ }
+
+ dst = reg;
+ }
+}
+
+static bool
+stage_uses_interleaved_attributes(unsigned stage,
+ enum shader_dispatch_mode dispatch_mode)
+{
+ switch (stage) {
+ case MESA_SHADER_TESS_EVAL:
+ return true;
+ case MESA_SHADER_GEOMETRY:
+ return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
+ default:
+ return false;
+ }
+}
+
+/**
+ * Get the closest native SIMD width supported by the hardware for instruction
+ * \p inst. The instruction will be left untouched by
+ * vec4_visitor::lower_simd_width() if the returned value matches the
+ * instruction's original execution size.
+ */
+static unsigned
+get_lowered_simd_width(const struct gen_device_info *devinfo,
+ enum shader_dispatch_mode dispatch_mode,
+ unsigned stage, const vec4_instruction *inst)
+{
+ /* Do not split some instructions that require special handling */
+ switch (inst->opcode) {
+ case SHADER_OPCODE_GEN4_SCRATCH_READ:
+ case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
+ return inst->exec_size;
+ default:
+ break;
+ }
+
+ unsigned lowered_width = MIN2(16, inst->exec_size);
+
+ /* We need to split some cases of double-precision instructions that write
+ * 2 registers. We only need to care about this in gen7 because that is the
+ * only hardware that implements fp64 in Align16.
+ */
+ if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
+ /* Align16 8-wide double-precision SEL does not work well. Verified
+ * empirically.
+ */
+ if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
+ lowered_width = MIN2(lowered_width, 4);
+
+ /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
+ * Register Addressing:
+ *
+ * "When destination spans two registers, the source MUST span two
+ * registers."
+ */
+ for (unsigned i = 0; i < 3; i++) {
+ if (inst->src[i].file == BAD_FILE)
+ continue;
+ if (inst->size_read(i) <= REG_SIZE)
+ lowered_width = MIN2(lowered_width, 4);
+
+ /* Interleaved attribute setups use a vertical stride of 0, which
+ * makes them hit the associated instruction decompression bug in gen7.
+ * Split them to prevent this.
+ */
+ if (inst->src[i].file == ATTR &&
+ stage_uses_interleaved_attributes(stage, dispatch_mode))
+ lowered_width = MIN2(lowered_width, 4);
+ }
+ }
+
+ return lowered_width;
+}
+
+static bool
+dst_src_regions_overlap(vec4_instruction *inst)
+{
+ if (inst->size_written == 0)
+ return false;
+
+ unsigned dst_start = inst->dst.offset;
+ unsigned dst_end = dst_start + inst->size_written - 1;
+ for (int i = 0; i < 3; i++) {
+ if (inst->src[i].file == BAD_FILE)
+ continue;
+
+ if (inst->dst.file != inst->src[i].file ||
+ inst->dst.nr != inst->src[i].nr)
+ continue;
+
+ unsigned src_start = inst->src[i].offset;
+ unsigned src_end = src_start + inst->size_read(i) - 1;
+
+ if ((dst_start >= src_start && dst_start <= src_end) ||
+ (dst_end >= src_start && dst_end <= src_end) ||
+ (dst_start <= src_start && dst_end >= src_end)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool
+vec4_visitor::lower_simd_width()
+{
+ bool progress = false;
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ const unsigned lowered_width =
+ get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
+ assert(lowered_width <= inst->exec_size);
+ if (lowered_width == inst->exec_size)
+ continue;
+
+ /* We need to deal with source / destination overlaps when splitting.
+ * The hardware supports reading from and writing to the same register
+ * in the same instruction, but we need to be careful that each split
+ * instruction we produce does not corrupt the source of the next.
+ *
+ * The easiest way to handle this is to make the split instructions write
+ * to temporaries if there is an src/dst overlap and then move from the
+ * temporaries to the original destination. We also need to consider
+ * instructions that do partial writes via align1 opcodes, in which case
+ * we need to make sure that the we initialize the temporary with the
+ * value of the instruction's dst.
+ */
+ bool needs_temp = dst_src_regions_overlap(inst);
+ for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
+ unsigned channel_offset = lowered_width * n;
+
+ unsigned size_written = lowered_width * type_sz(inst->dst.type);
+
+ /* Create the split instruction from the original so that we copy all
+ * relevant instruction fields, then set the width and calculate the
+ * new dst/src regions.
+ */
+ vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
+ linst->exec_size = lowered_width;
+ linst->group = channel_offset;
+ linst->size_written = size_written;
+
+ /* Compute split dst region */
+ dst_reg dst;
+ if (needs_temp) {
+ unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
+ dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
+ inst->dst.type);
+ if (inst->is_align1_partial_write()) {
+ vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
+ copy->exec_size = lowered_width;
+ copy->group = channel_offset;
+ copy->size_written = size_written;
+ inst->insert_before(block, copy);
+ }
+ } else {
+ dst = horiz_offset(inst->dst, channel_offset);
+ }
+ linst->dst = dst;
+
+ /* Compute split source regions */
+ for (int i = 0; i < 3; i++) {
+ if (linst->src[i].file == BAD_FILE)
+ continue;
+
+ if (!is_uniform(linst->src[i]))
+ linst->src[i] = horiz_offset(linst->src[i], channel_offset);
+ }
+
+ inst->insert_before(block, linst);
+
+ /* If we used a temporary to store the result of the split
+ * instruction, copy the result to the original destination
+ */
+ if (needs_temp) {
+ vec4_instruction *mov =
+ MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
+ mov->exec_size = lowered_width;
+ mov->group = channel_offset;
+ mov->size_written = size_written;
+ mov->predicate = inst->predicate;
+ inst->insert_before(block, mov);
+ }
+ }
+
+ inst->remove(block);
+ progress = true;
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+static bool
+is_align1_df(vec4_instruction *inst)
+{
+ switch (inst->opcode) {
+ case VEC4_OPCODE_FROM_DOUBLE:
+ case VEC4_OPCODE_TO_DOUBLE:
+ case VEC4_OPCODE_PICK_LOW_32BIT:
+ case VEC4_OPCODE_PICK_HIGH_32BIT:
+ case VEC4_OPCODE_SET_LOW_32BIT:
+ case VEC4_OPCODE_SET_HIGH_32BIT:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static brw_predicate
+scalarize_predicate(brw_predicate predicate, unsigned writemask)
+{
+ if (predicate != BRW_PREDICATE_NORMAL)
+ return predicate;
+
+ switch (writemask) {
+ case WRITEMASK_X:
+ return BRW_PREDICATE_ALIGN16_REPLICATE_X;
+ case WRITEMASK_Y:
+ return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
+ case WRITEMASK_Z:
+ return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
+ case WRITEMASK_W:
+ return BRW_PREDICATE_ALIGN16_REPLICATE_W;
+ default:
+ unreachable("invalid writemask");
+ }
+}
+
+/* Gen7 has a hardware decompression bug that we can exploit to represent
+ * handful of additional swizzles natively.
+ */
+static bool
+is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
+{
+ switch (inst->src[arg].swizzle) {
+ case BRW_SWIZZLE_XXXX:
+ case BRW_SWIZZLE_YYYY:
+ case BRW_SWIZZLE_ZZZZ:
+ case BRW_SWIZZLE_WWWW:
+ case BRW_SWIZZLE_XYXY:
+ case BRW_SWIZZLE_YXYX:
+ case BRW_SWIZZLE_ZWZW:
+ case BRW_SWIZZLE_WZWZ:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* 64-bit sources use regions with a width of 2. These 2 elements in each row
+ * can be addressed using 32-bit swizzles (which is what the hardware supports)
+ * but it also means that the swizzle we apply on the first two components of a
+ * dvec4 is coupled with the swizzle we use for the last 2. In other words,
+ * only some specific swizzle combinations can be natively supported.
+ *
+ * FIXME: we can go an step further and implement even more swizzle
+ * variations using only partial scalarization.
+ *
+ * For more details see:
+ * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
+ */
+bool
+vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
+{
+ const src_reg &src = inst->src[arg];
+ assert(type_sz(src.type) == 8);
+
+ /* Uniform regions have a vstride=0. Because we use 2-wide rows with
+ * 64-bit regions it means that we cannot access components Z/W, so
+ * return false for any such case. Interleaved attributes will also be
+ * mapped to GRF registers with a vstride of 0, so apply the same
+ * treatment.
+ */
+ if ((is_uniform(src) ||
+ (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
+ src.file == ATTR)) &&
+ (brw_mask_for_swizzle(src.swizzle) & 12))
+ return false;
+
+ switch (src.swizzle) {
+ case BRW_SWIZZLE_XYZW:
+ case BRW_SWIZZLE_XXZZ:
+ case BRW_SWIZZLE_YYWW:
+ case BRW_SWIZZLE_YXWZ:
+ return true;
+ default:
+ return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
+ }
+}
+
+bool
+vec4_visitor::scalarize_df()
+{
+ bool progress = false;
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ /* Skip DF instructions that operate in Align1 mode */
+ if (is_align1_df(inst))
+ continue;
+
+ /* Check if this is a double-precision instruction */
+ bool is_double = type_sz(inst->dst.type) == 8;
+ for (int arg = 0; !is_double && arg < 3; arg++) {
+ is_double = inst->src[arg].file != BAD_FILE &&
+ type_sz(inst->src[arg].type) == 8;
+ }
+
+ if (!is_double)
+ continue;
+
+ /* Skip the lowering for specific regioning scenarios that we can
+ * support natively.
+ */
+ bool skip_lowering = true;
+
+ /* XY and ZW writemasks operate in 32-bit, which means that they don't
+ * have a native 64-bit representation and they should always be split.
+ */
+ if (inst->dst.writemask == WRITEMASK_XY ||
+ inst->dst.writemask == WRITEMASK_ZW) {
+ skip_lowering = false;
+ } else {
+ for (unsigned i = 0; i < 3; i++) {
+ if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
+ continue;
+ skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
+ }
+ }
+
+ if (skip_lowering)
+ continue;
+
+ /* Generate scalar instructions for each enabled channel */
+ for (unsigned chan = 0; chan < 4; chan++) {
+ unsigned chan_mask = 1 << chan;
+ if (!(inst->dst.writemask & chan_mask))
+ continue;
+
+ vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
+
+ for (unsigned i = 0; i < 3; i++) {
+ unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
+ scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
+ }
+
+ scalar_inst->dst.writemask = chan_mask;
+
+ if (inst->predicate != BRW_PREDICATE_NONE) {
+ scalar_inst->predicate =
+ scalarize_predicate(inst->predicate, chan_mask);
+ }
+
+ inst->insert_before(block, scalar_inst);
+ }
+
+ inst->remove(block);
+ progress = true;
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+bool
+vec4_visitor::lower_64bit_mad_to_mul_add()
+{
+ bool progress = false;
+
+ foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
+ if (inst->opcode != BRW_OPCODE_MAD)
+ continue;
+
+ if (type_sz(inst->dst.type) != 8)
+ continue;
+
+ dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
+
+ /* Use the copy constructor so we copy all relevant instruction fields
+ * from the original mad into the add and mul instructions
+ */
+ vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
+ mul->opcode = BRW_OPCODE_MUL;
+ mul->dst = mul_dst;
+ mul->src[0] = inst->src[1];
+ mul->src[1] = inst->src[2];
+ mul->src[2].file = BAD_FILE;
+
+ vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
+ add->opcode = BRW_OPCODE_ADD;
+ add->src[0] = src_reg(mul_dst);
+ add->src[1] = inst->src[0];
+ add->src[2].file = BAD_FILE;
+
+ inst->insert_before(block, mul);
+ inst->insert_before(block, add);
+ inst->remove(block);
+
+ progress = true;
+ }
+
+ if (progress)
+ invalidate_live_intervals();
+
+ return progress;
+}
+
+/* The align16 hardware can only do 32-bit swizzle channels, so we need to
+ * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
+ * to 32-bit swizzle channels in hardware registers.
+ *
+ * @inst and @arg identify the original vec4 IR source operand we need to
+ * translate the swizzle for and @hw_reg is the hardware register where we
+ * will write the hardware swizzle to use.
+ *
+ * This pass assumes that Align16/DF instructions have been fully scalarized
+ * previously so there is just one 64-bit swizzle channel to deal with for any
+ * given Vec4 IR source.
+ */
+void
+vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
+ vec4_instruction *inst, int arg)
+{
+ src_reg reg = inst->src[arg];
+
+ if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
+ return;
+
+ /* If this is not a 64-bit operand or this is a scalar instruction we don't
+ * need to do anything about the swizzles.
+ */
+ if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
+ hw_reg->swizzle = reg.swizzle;
+ return;
+ }
+
+ /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
+ assert(brw_is_single_value_swizzle(reg.swizzle) ||
+ is_supported_64bit_region(inst, arg));
+
+ if (is_supported_64bit_region(inst, arg) &&
+ !is_gen7_supported_64bit_swizzle(inst, arg)) {
+ /* Supported 64-bit swizzles are those such that their first two
+ * components, when expanded to 32-bit swizzles, match the semantics
+ * of the original 64-bit swizzle with 2-wide row regioning.
+ */
+ unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
+ unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
+ hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
+ swizzle1 * 2, swizzle1 * 2 + 1);
+ } else {
+ /* If we got here then we have one of the following:
+ *
+ * 1. An unsupported swizzle, which should be single-value thanks to the
+ * scalarization pass.
+ *
+ * 2. A gen7 supported swizzle. These can be single-value or double-value
+ * swizzles. If the latter, they are never cross-dvec2 channels. For
+ * these we always need to activate the gen7 vstride=0 exploit.
+ */
+ unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
+ unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
+ assert((swizzle0 < 2) == (swizzle1 < 2));
+
+ /* To gain access to Z/W components we need to select the second half
+ * of the register and then use a X/Y swizzle to select Z/W respectively.
+ */
+ if (swizzle0 >= 2) {
+ *hw_reg = suboffset(*hw_reg, 2);
+ swizzle0 -= 2;
+ swizzle1 -= 2;
+ }
+
+ /* All gen7-specific supported swizzles require the vstride=0 exploit */
+ if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
+ hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
+
+ /* Any 64-bit source with an offset at 16B is intended to address the
+ * second half of a register and needs a vertical stride of 0 so we:
+ *
+ * 1. Don't violate register region restrictions.
+ * 2. Activate the gen7 instruction decompresion bug exploit when
+ * execsize > 4
+ */
+ if (hw_reg->subnr % REG_SIZE == 16) {
+ assert(devinfo->gen == 7);
+ hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
+ }
+
+ hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
+ swizzle1 * 2, swizzle1 * 2 + 1);
+ }
+}
+
+bool
+vec4_visitor::run()
+{
+ if (shader_time_index >= 0)
+ emit_shader_time_begin();
+
+ emit_prolog();
+
+ emit_nir_code();
+ if (failed)
+ return false;
+ base_ir = NULL;
+
+ emit_thread_end();
+
+ calculate_cfg();
+
+ /* Before any optimization, push array accesses out to scratch
+ * space where we need them to be. This pass may allocate new
+ * virtual GRFs, so we want to do it early. It also makes sure
+ * that we have reladdr computations available for CSE, since we'll
+ * often do repeated subexpressions for those.
+ */
+ move_grf_array_access_to_scratch();
+ move_uniform_array_access_to_pull_constants();
+
+ pack_uniform_registers();
+ move_push_constants_to_pull_constants();
+ split_virtual_grfs();
+
+#define OPT(pass, args...) ({ \
+ pass_num++; \
+ bool this_progress = pass(args); \
+ \
+ if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
+ char filename[64]; \
+ snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
+ stage_abbrev, nir->info->name, iteration, pass_num); \
+ \
+ backend_shader::dump_instructions(filename); \
+ } \
+ \
+ progress = progress || this_progress; \
+ this_progress; \
+ })
+
+
+ if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
+ char filename[64];
+ snprintf(filename, 64, "%s-%s-00-00-start",
+ stage_abbrev, nir->info->name);
+
+ backend_shader::dump_instructions(filename);
+ }
+
+ bool progress;
+ int iteration = 0;
+ int pass_num = 0;
+ do {
+ progress = false;
+ pass_num = 0;
+ iteration++;
+
+ OPT(opt_predicated_break, this);
+ OPT(opt_reduce_swizzle);
+ OPT(dead_code_eliminate);
+ OPT(dead_control_flow_eliminate, this);
+ OPT(opt_copy_propagation);
+ OPT(opt_cmod_propagation);
+ OPT(opt_cse);
+ OPT(opt_algebraic);
+ OPT(opt_register_coalesce);
+ OPT(eliminate_find_live_channel);
+ } while (progress);
+
+ pass_num = 0;
+
+ if (OPT(opt_vector_float)) {
+ OPT(opt_cse);
+ OPT(opt_copy_propagation, false);
+ OPT(opt_copy_propagation, true);
+ OPT(dead_code_eliminate);
+ }
+
+ if (devinfo->gen <= 5 && OPT(lower_minmax)) {
+ OPT(opt_cmod_propagation);
+ OPT(opt_cse);
+ OPT(opt_copy_propagation);
+ OPT(dead_code_eliminate);
+ }
+
+ if (OPT(lower_simd_width)) {
+ OPT(opt_copy_propagation);
+ OPT(dead_code_eliminate);
+ }
+
+ if (failed)
+ return false;
+
+ OPT(lower_64bit_mad_to_mul_add);
+
+ /* Run this before payload setup because tesselation shaders
+ * rely on it to prevent cross dvec2 regioning on DF attributes
+ * that are setup so that XY are on the second half of register and
+ * ZW are in the first half of the next.
+ */
+ OPT(scalarize_df);
+
+ setup_payload();
+
+ if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
+ /* Debug of register spilling: Go spill everything. */
+ const int grf_count = alloc.count;
+ float spill_costs[alloc.count];
+ bool no_spill[alloc.count];
+ evaluate_spill_costs(spill_costs, no_spill);
+ for (int i = 0; i < grf_count; i++) {
+ if (no_spill[i])
+ continue;
+ spill_reg(i);
+ }
+
+ /* We want to run this after spilling because 64-bit (un)spills need to
+ * emit code to shuffle 64-bit data for the 32-bit scratch read/write
+ * messages that can produce unsupported 64-bit swizzle regions.
+ */
+ OPT(scalarize_df);
+ }
+
+ bool allocated_without_spills = reg_allocate();
+
+ if (!allocated_without_spills) {
+ compiler->shader_perf_log(log_data,
+ "%s shader triggered register spilling. "
+ "Try reducing the number of live vec4 values "
+ "to improve performance.\n",
+ stage_name);
+
+ while (!reg_allocate()) {
+ if (failed)
+ return false;
+ }
+
+ /* We want to run this after spilling because 64-bit (un)spills need to
+ * emit code to shuffle 64-bit data for the 32-bit scratch read/write
+ * messages that can produce unsupported 64-bit swizzle regions.
+ */
+ OPT(scalarize_df);
+ }
+
+ opt_schedule_instructions();
+
+ opt_set_dependency_control();
+
+ convert_to_hw_regs();
+
+ if (last_scratch > 0) {
+ prog_data->base.total_scratch =
+ brw_get_scratch_size(last_scratch * REG_SIZE);
+ }
+
+ return !failed;
+}
+
+} /* namespace brw */
+
+extern "C" {
+
+/**
+ * Compile a vertex shader.
+ *
+ * Returns the final assembly and the program's size.
+ */
+const unsigned *
+brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
+ void *mem_ctx,
+ const struct brw_vs_prog_key *key,
+ struct brw_vs_prog_data *prog_data,
+ const nir_shader *src_shader,
+ gl_clip_plane *clip_planes,
+ bool use_legacy_snorm_formula,
+ int shader_time_index,
+ unsigned *final_assembly_size,
+ char **error_str)
+{
+ const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
+ nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
+ shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
+ brw_nir_lower_vs_inputs(shader, is_scalar,
+ use_legacy_snorm_formula, key->gl_attrib_wa_flags);
+ brw_nir_lower_vue_outputs(shader, is_scalar);
+ shader = brw_postprocess_nir(shader, compiler, is_scalar);
+
+ const unsigned *assembly = NULL;
+
+ prog_data->base.clip_distance_mask =
+ ((1 << shader->info->clip_distance_array_size) - 1);
+ prog_data->base.cull_distance_mask =
+ ((1 << shader->info->cull_distance_array_size) - 1) <<
+ shader->info->clip_distance_array_size;
+
+ unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read);
+
+ /* gl_VertexID and gl_InstanceID are system values, but arrive via an
+ * incoming vertex attribute. So, add an extra slot.
+ */
+ if (shader->info->system_values_read &
+ (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
+ BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
+ BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
+ BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
+ nr_attribute_slots++;
+ }
+
+ /* gl_DrawID has its very own vec4 */
+ if (shader->info->system_values_read &
+ BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) {
+ nr_attribute_slots++;
+ }
+
+ unsigned nr_attributes = nr_attribute_slots -
+ DIV_ROUND_UP(_mesa_bitcount_64(shader->info->double_inputs_read), 2);
+
+ /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
+ * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
+ * vec4 mode, the hardware appears to wedge unless we read something.
+ */
+ if (is_scalar)
+ prog_data->base.urb_read_length =
+ DIV_ROUND_UP(nr_attribute_slots, 2);
+ else
+ prog_data->base.urb_read_length =
+ DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
+
+ prog_data->nr_attributes = nr_attributes;
+ prog_data->nr_attribute_slots = nr_attribute_slots;
+
+ /* Since vertex shaders reuse the same VUE entry for inputs and outputs
+ * (overwriting the original contents), we need to make sure the size is
+ * the larger of the two.
+ */
+ const unsigned vue_entries =
+ MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
+
+ if (compiler->devinfo->gen == 6)
+ prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
+ else
+ prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
+
+ if (INTEL_DEBUG & DEBUG_VS) {
+ fprintf(stderr, "VS Output ");
+ brw_print_vue_map(stderr, &prog_data->base.vue_map);
+ }
+
+ if (is_scalar) {
+ prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
+
+ fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
+ NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
+ shader, 8, shader_time_index);
+ if (!v.run_vs(clip_planes)) {
+ if (error_str)
+ *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
+
+ return NULL;
+ }
+
+ prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
+
+ fs_generator g(compiler, log_data, mem_ctx, (void *) key,
+ &prog_data->base.base, v.promoted_constants,
+ v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
+ if (INTEL_DEBUG & DEBUG_VS) {
+ const char *debug_name =
+ ralloc_asprintf(mem_ctx, "%s vertex shader %s",
+ shader->info->label ? shader->info->label :
+ "unnamed",
+ shader->info->name);
+
+ g.enable_debug(debug_name);
+ }
+ g.generate_code(v.cfg, 8);
+ assembly = g.get_assembly(final_assembly_size);
+ }
+
+ if (!assembly) {
+ prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
+
+ vec4_vs_visitor v(compiler, log_data, key, prog_data,
+ shader, clip_planes, mem_ctx,
+ shader_time_index, use_legacy_snorm_formula);
+ if (!v.run()) {
+ if (error_str)
+ *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
+
+ return NULL;
+ }
+
+ assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
+ shader, &prog_data->base, v.cfg,
+ final_assembly_size);
+ }
+
+ return assembly;
+}
+
+} /* extern "C" */