aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_fs_surface_builder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/compiler/brw_fs_surface_builder.cpp')
-rw-r--r--src/intel/compiler/brw_fs_surface_builder.cpp1194
1 files changed, 1194 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_surface_builder.cpp b/src/intel/compiler/brw_fs_surface_builder.cpp
new file mode 100644
index 00000000000..8990a5ca710
--- /dev/null
+++ b/src/intel/compiler/brw_fs_surface_builder.cpp
@@ -0,0 +1,1194 @@
+/*
+ * Copyright © 2013-2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "isl/isl.h"
+#include "brw_fs_surface_builder.h"
+#include "brw_fs.h"
+
+using namespace brw;
+
+namespace brw {
+ namespace surface_access {
+ namespace {
+ /**
+ * Generate a logical send opcode for a surface message and return
+ * the result.
+ */
+ fs_reg
+ emit_send(const fs_builder &bld, enum opcode opcode,
+ const fs_reg &addr, const fs_reg &src, const fs_reg &surface,
+ unsigned dims, unsigned arg, unsigned rsize,
+ brw_predicate pred = BRW_PREDICATE_NONE)
+ {
+ /* Reduce the dynamically uniform surface index to a single
+ * scalar.
+ */
+ const fs_reg usurface = bld.emit_uniformize(surface);
+ const fs_reg srcs[] = {
+ addr, src, usurface, brw_imm_ud(dims), brw_imm_ud(arg)
+ };
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, rsize);
+ fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
+
+ inst->size_written = rsize * dst.component_size(inst->exec_size);
+ inst->predicate = pred;
+ return dst;
+ }
+ }
+
+ /**
+ * Emit an untyped surface read opcode. \p dims determines the number
+ * of components of the address and \p size the number of components of
+ * the returned value.
+ */
+ fs_reg
+ emit_untyped_read(const fs_builder &bld,
+ const fs_reg &surface, const fs_reg &addr,
+ unsigned dims, unsigned size,
+ brw_predicate pred)
+ {
+ return emit_send(bld, SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
+ addr, fs_reg(), surface, dims, size, size, pred);
+ }
+
+ /**
+ * Emit an untyped surface write opcode. \p dims determines the number
+ * of components of the address and \p size the number of components of
+ * the argument.
+ */
+ void
+ emit_untyped_write(const fs_builder &bld, const fs_reg &surface,
+ const fs_reg &addr, const fs_reg &src,
+ unsigned dims, unsigned size,
+ brw_predicate pred)
+ {
+ emit_send(bld, SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
+ addr, src, surface, dims, size, 0, pred);
+ }
+
+ /**
+ * Emit an untyped surface atomic opcode. \p dims determines the number
+ * of components of the address and \p rsize the number of components of
+ * the returned value (either zero or one).
+ */
+ fs_reg
+ emit_untyped_atomic(const fs_builder &bld,
+ const fs_reg &surface, const fs_reg &addr,
+ const fs_reg &src0, const fs_reg &src1,
+ unsigned dims, unsigned rsize, unsigned op,
+ brw_predicate pred)
+ {
+ /* FINISHME: Factor out this frequently recurring pattern into a
+ * helper function.
+ */
+ const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
+ const fs_reg srcs[] = { src0, src1 };
+ const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
+ bld.LOAD_PAYLOAD(tmp, srcs, n, 0);
+
+ return emit_send(bld, SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
+ addr, tmp, surface, dims, op, rsize, pred);
+ }
+
+ /**
+ * Emit a typed surface read opcode. \p dims determines the number of
+ * components of the address and \p size the number of components of the
+ * returned value.
+ */
+ fs_reg
+ emit_typed_read(const fs_builder &bld, const fs_reg &surface,
+ const fs_reg &addr, unsigned dims, unsigned size)
+ {
+ return emit_send(bld, SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
+ addr, fs_reg(), surface, dims, size, size);
+ }
+
+ /**
+ * Emit a typed surface write opcode. \p dims determines the number of
+ * components of the address and \p size the number of components of the
+ * argument.
+ */
+ void
+ emit_typed_write(const fs_builder &bld, const fs_reg &surface,
+ const fs_reg &addr, const fs_reg &src,
+ unsigned dims, unsigned size)
+ {
+ emit_send(bld, SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
+ addr, src, surface, dims, size, 0);
+ }
+
+ /**
+ * Emit a typed surface atomic opcode. \p dims determines the number of
+ * components of the address and \p rsize the number of components of
+ * the returned value (either zero or one).
+ */
+ fs_reg
+ emit_typed_atomic(const fs_builder &bld, const fs_reg &surface,
+ const fs_reg &addr,
+ const fs_reg &src0, const fs_reg &src1,
+ unsigned dims, unsigned rsize, unsigned op,
+ brw_predicate pred)
+ {
+ /* FINISHME: Factor out this frequently recurring pattern into a
+ * helper function.
+ */
+ const unsigned n = (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
+ const fs_reg srcs[] = { src0, src1 };
+ const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, n);
+ bld.LOAD_PAYLOAD(tmp, srcs, n, 0);
+
+ return emit_send(bld, SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
+ addr, tmp, surface, dims, op, rsize);
+ }
+ }
+}
+
+namespace {
+ namespace image_format_info {
+ /* The higher compiler layers use the GL enums for image formats even if
+ * they come in from SPIR-V or Vulkan. We need to turn them into an ISL
+ * enum before we can use them.
+ */
+ enum isl_format
+ isl_format_for_gl_format(uint32_t gl_format)
+ {
+ switch (gl_format) {
+ case GL_R8: return ISL_FORMAT_R8_UNORM;
+ case GL_R8_SNORM: return ISL_FORMAT_R8_SNORM;
+ case GL_R8UI: return ISL_FORMAT_R8_UINT;
+ case GL_R8I: return ISL_FORMAT_R8_SINT;
+ case GL_RG8: return ISL_FORMAT_R8G8_UNORM;
+ case GL_RG8_SNORM: return ISL_FORMAT_R8G8_SNORM;
+ case GL_RG8UI: return ISL_FORMAT_R8G8_UINT;
+ case GL_RG8I: return ISL_FORMAT_R8G8_SINT;
+ case GL_RGBA8: return ISL_FORMAT_R8G8B8A8_UNORM;
+ case GL_RGBA8_SNORM: return ISL_FORMAT_R8G8B8A8_SNORM;
+ case GL_RGBA8UI: return ISL_FORMAT_R8G8B8A8_UINT;
+ case GL_RGBA8I: return ISL_FORMAT_R8G8B8A8_SINT;
+ case GL_R11F_G11F_B10F: return ISL_FORMAT_R11G11B10_FLOAT;
+ case GL_RGB10_A2: return ISL_FORMAT_R10G10B10A2_UNORM;
+ case GL_RGB10_A2UI: return ISL_FORMAT_R10G10B10A2_UINT;
+ case GL_R16: return ISL_FORMAT_R16_UNORM;
+ case GL_R16_SNORM: return ISL_FORMAT_R16_SNORM;
+ case GL_R16F: return ISL_FORMAT_R16_FLOAT;
+ case GL_R16UI: return ISL_FORMAT_R16_UINT;
+ case GL_R16I: return ISL_FORMAT_R16_SINT;
+ case GL_RG16: return ISL_FORMAT_R16G16_UNORM;
+ case GL_RG16_SNORM: return ISL_FORMAT_R16G16_SNORM;
+ case GL_RG16F: return ISL_FORMAT_R16G16_FLOAT;
+ case GL_RG16UI: return ISL_FORMAT_R16G16_UINT;
+ case GL_RG16I: return ISL_FORMAT_R16G16_SINT;
+ case GL_RGBA16: return ISL_FORMAT_R16G16B16A16_UNORM;
+ case GL_RGBA16_SNORM: return ISL_FORMAT_R16G16B16A16_SNORM;
+ case GL_RGBA16F: return ISL_FORMAT_R16G16B16A16_FLOAT;
+ case GL_RGBA16UI: return ISL_FORMAT_R16G16B16A16_UINT;
+ case GL_RGBA16I: return ISL_FORMAT_R16G16B16A16_SINT;
+ case GL_R32F: return ISL_FORMAT_R32_FLOAT;
+ case GL_R32UI: return ISL_FORMAT_R32_UINT;
+ case GL_R32I: return ISL_FORMAT_R32_SINT;
+ case GL_RG32F: return ISL_FORMAT_R32G32_FLOAT;
+ case GL_RG32UI: return ISL_FORMAT_R32G32_UINT;
+ case GL_RG32I: return ISL_FORMAT_R32G32_SINT;
+ case GL_RGBA32F: return ISL_FORMAT_R32G32B32A32_FLOAT;
+ case GL_RGBA32UI: return ISL_FORMAT_R32G32B32A32_UINT;
+ case GL_RGBA32I: return ISL_FORMAT_R32G32B32A32_SINT;
+ case GL_NONE: return ISL_FORMAT_UNSUPPORTED;
+ default:
+ assert(!"Invalid image format");
+ return ISL_FORMAT_UNSUPPORTED;
+ }
+ }
+
+ /**
+ * Simple 4-tuple of scalars used to pass around per-color component
+ * values.
+ */
+ struct color_u {
+ color_u(unsigned x = 0) : r(x), g(x), b(x), a(x)
+ {
+ }
+
+ color_u(unsigned r, unsigned g, unsigned b, unsigned a) :
+ r(r), g(g), b(b), a(a)
+ {
+ }
+
+ unsigned
+ operator[](unsigned i) const
+ {
+ const unsigned xs[] = { r, g, b, a };
+ return xs[i];
+ }
+
+ unsigned r, g, b, a;
+ };
+
+ /**
+ * Return the per-channel bitfield widths for a given image format.
+ */
+ inline color_u
+ get_bit_widths(isl_format format)
+ {
+ const isl_format_layout *fmtl = isl_format_get_layout(format);
+
+ return color_u(fmtl->channels.r.bits,
+ fmtl->channels.g.bits,
+ fmtl->channels.b.bits,
+ fmtl->channels.a.bits);
+ }
+
+ /**
+ * Return the per-channel bitfield shifts for a given image format.
+ */
+ inline color_u
+ get_bit_shifts(isl_format format)
+ {
+ const color_u widths = get_bit_widths(format);
+ return color_u(0, widths.r, widths.r + widths.g,
+ widths.r + widths.g + widths.b);
+ }
+
+ /**
+ * Return true if all present components have the same bit width.
+ */
+ inline bool
+ is_homogeneous(isl_format format)
+ {
+ const color_u widths = get_bit_widths(format);
+ return ((widths.g == 0 || widths.g == widths.r) &&
+ (widths.b == 0 || widths.b == widths.r) &&
+ (widths.a == 0 || widths.a == widths.r));
+ }
+
+ /**
+ * Return true if the format conversion boils down to a trivial copy.
+ */
+ inline bool
+ is_conversion_trivial(const gen_device_info *devinfo, isl_format format)
+ {
+ return (get_bit_widths(format).r == 32 && is_homogeneous(format)) ||
+ format == isl_lower_storage_image_format(devinfo, format);
+ }
+
+ /**
+ * Return true if the hardware natively supports some format with
+ * compatible bitfield layout, but possibly different data types.
+ */
+ inline bool
+ has_supported_bit_layout(const gen_device_info *devinfo,
+ isl_format format)
+ {
+ const color_u widths = get_bit_widths(format);
+ const color_u lower_widths = get_bit_widths(
+ isl_lower_storage_image_format(devinfo, format));
+
+ return (widths.r == lower_widths.r &&
+ widths.g == lower_widths.g &&
+ widths.b == lower_widths.b &&
+ widths.a == lower_widths.a);
+ }
+
+ /**
+ * Return true if we are required to spread individual components over
+ * several components of the format used by the hardware (RG32 and
+ * friends implemented as RGBA16UI).
+ */
+ inline bool
+ has_split_bit_layout(const gen_device_info *devinfo, isl_format format)
+ {
+ const isl_format lower_format =
+ isl_lower_storage_image_format(devinfo, format);
+
+ return (isl_format_get_num_channels(format) <
+ isl_format_get_num_channels(lower_format));
+ }
+
+ /**
+ * Return true if the hardware returns garbage in the unused high bits
+ * of each component. This may happen on IVB because we rely on the
+ * undocumented behavior that typed reads from surfaces of the
+ * unsupported R8 and R16 formats return useful data in their least
+ * significant bits.
+ */
+ inline bool
+ has_undefined_high_bits(const gen_device_info *devinfo,
+ isl_format format)
+ {
+ const isl_format lower_format =
+ isl_lower_storage_image_format(devinfo, format);
+
+ return (devinfo->gen == 7 && !devinfo->is_haswell &&
+ (lower_format == ISL_FORMAT_R16_UINT ||
+ lower_format == ISL_FORMAT_R8_UINT));
+ }
+
+ /**
+ * Return true if the format represents values as signed integers
+ * requiring sign extension when unpacking.
+ */
+ inline bool
+ needs_sign_extension(isl_format format)
+ {
+ return isl_format_has_snorm_channel(format) ||
+ isl_format_has_sint_channel(format);
+ }
+ }
+
+ namespace image_validity {
+ /**
+ * Check whether the bound image is suitable for untyped access.
+ */
+ brw_predicate
+ emit_untyped_image_check(const fs_builder &bld, const fs_reg &image,
+ brw_predicate pred)
+ {
+ const gen_device_info *devinfo = bld.shader->devinfo;
+ const fs_reg stride = offset(image, bld, BRW_IMAGE_PARAM_STRIDE_OFFSET);
+
+ if (devinfo->gen == 7 && !devinfo->is_haswell) {
+ /* Check whether the first stride component (i.e. the Bpp value)
+ * is greater than four, what on Gen7 indicates that a surface of
+ * type RAW has been bound for untyped access. Reading or writing
+ * to a surface of type other than RAW using untyped surface
+ * messages causes a hang on IVB and VLV.
+ */
+ set_predicate(pred,
+ bld.CMP(bld.null_reg_ud(), stride, brw_imm_d(4),
+ BRW_CONDITIONAL_G));
+
+ return BRW_PREDICATE_NORMAL;
+ } else {
+ /* More recent generations handle the format mismatch
+ * gracefully.
+ */
+ return pred;
+ }
+ }
+
+ /**
+ * Check whether there is an image bound at the given index and write
+ * the comparison result to f0.0. Returns an appropriate predication
+ * mode to use on subsequent image operations.
+ */
+ brw_predicate
+ emit_typed_atomic_check(const fs_builder &bld, const fs_reg &image)
+ {
+ const gen_device_info *devinfo = bld.shader->devinfo;
+ const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
+
+ if (devinfo->gen == 7 && !devinfo->is_haswell) {
+ /* Check the first component of the size field to find out if the
+ * image is bound. Necessary on IVB for typed atomics because
+ * they don't seem to respect null surfaces and will happily
+ * corrupt or read random memory when no image is bound.
+ */
+ bld.CMP(bld.null_reg_ud(),
+ retype(size, BRW_REGISTER_TYPE_UD),
+ brw_imm_d(0), BRW_CONDITIONAL_NZ);
+
+ return BRW_PREDICATE_NORMAL;
+ } else {
+ /* More recent platforms implement compliant behavior when a null
+ * surface is bound.
+ */
+ return BRW_PREDICATE_NONE;
+ }
+ }
+
+ /**
+ * Check whether the provided coordinates are within the image bounds
+ * and write the comparison result to f0.0. Returns an appropriate
+ * predication mode to use on subsequent image operations.
+ */
+ brw_predicate
+ emit_bounds_check(const fs_builder &bld, const fs_reg &image,
+ const fs_reg &addr, unsigned dims)
+ {
+ const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
+
+ for (unsigned c = 0; c < dims; ++c)
+ set_predicate(c == 0 ? BRW_PREDICATE_NONE : BRW_PREDICATE_NORMAL,
+ bld.CMP(bld.null_reg_ud(),
+ offset(retype(addr, BRW_REGISTER_TYPE_UD), bld, c),
+ offset(size, bld, c),
+ BRW_CONDITIONAL_L));
+
+ return BRW_PREDICATE_NORMAL;
+ }
+ }
+
+ namespace image_coordinates {
+ /**
+ * Return the total number of coordinates needed to address a texel of
+ * the surface, which may be more than the sum of \p surf_dims and \p
+ * arr_dims if padding is required.
+ */
+ unsigned
+ num_image_coordinates(const fs_builder &bld,
+ unsigned surf_dims, unsigned arr_dims,
+ isl_format format)
+ {
+ /* HSW in vec4 mode and our software coordinate handling for untyped
+ * reads want the array index to be at the Z component.
+ */
+ const bool array_index_at_z =
+ format != ISL_FORMAT_UNSUPPORTED &&
+ !isl_has_matching_typed_storage_image_format(
+ bld.shader->devinfo, format);
+ const unsigned zero_dims =
+ ((surf_dims == 1 && arr_dims == 1 && array_index_at_z) ? 1 : 0);
+
+ return surf_dims + zero_dims + arr_dims;
+ }
+
+ /**
+ * Transform image coordinates into the form expected by the
+ * implementation.
+ */
+ fs_reg
+ emit_image_coordinates(const fs_builder &bld, const fs_reg &addr,
+ unsigned surf_dims, unsigned arr_dims,
+ isl_format format)
+ {
+ const unsigned dims =
+ num_image_coordinates(bld, surf_dims, arr_dims, format);
+
+ if (dims > surf_dims + arr_dims) {
+ assert(surf_dims == 1 && arr_dims == 1 && dims == 3);
+ /* The array index is required to be passed in as the Z component,
+ * insert a zero at the Y component to shift it to the right
+ * position.
+ *
+ * FINISHME: Factor out this frequently recurring pattern into a
+ * helper function.
+ */
+ const fs_reg srcs[] = { addr, brw_imm_d(0), offset(addr, bld, 1) };
+ const fs_reg dst = bld.vgrf(addr.type, dims);
+ bld.LOAD_PAYLOAD(dst, srcs, dims, 0);
+ return dst;
+ } else {
+ return addr;
+ }
+ }
+
+ /**
+ * Calculate the offset in memory of the texel given by \p coord.
+ *
+ * This is meant to be used with untyped surface messages to access a
+ * tiled surface, what involves taking into account the tiling and
+ * swizzling modes of the surface manually so it will hopefully not
+ * happen very often.
+ *
+ * The tiling algorithm implemented here matches either the X or Y
+ * tiling layouts supported by the hardware depending on the tiling
+ * coefficients passed to the program as uniforms. See Volume 1 Part 2
+ * Section 4.5 "Address Tiling Function" of the IVB PRM for an in-depth
+ * explanation of the hardware tiling format.
+ */
+ fs_reg
+ emit_address_calculation(const fs_builder &bld, const fs_reg &image,
+ const fs_reg &coord, unsigned dims)
+ {
+ const gen_device_info *devinfo = bld.shader->devinfo;
+ const fs_reg off = offset(image, bld, BRW_IMAGE_PARAM_OFFSET_OFFSET);
+ const fs_reg stride = offset(image, bld, BRW_IMAGE_PARAM_STRIDE_OFFSET);
+ const fs_reg tile = offset(image, bld, BRW_IMAGE_PARAM_TILING_OFFSET);
+ const fs_reg swz = offset(image, bld, BRW_IMAGE_PARAM_SWIZZLING_OFFSET);
+ const fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ const fs_reg minor = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ const fs_reg major = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD);
+
+ /* Shift the coordinates by the fixed surface offset. It may be
+ * non-zero if the image is a single slice of a higher-dimensional
+ * surface, or if a non-zero mipmap level of the surface is bound to
+ * the pipeline. The offset needs to be applied here rather than at
+ * surface state set-up time because the desired slice-level may
+ * start mid-tile, so simply shifting the surface base address
+ * wouldn't give a well-formed tiled surface in the general case.
+ */
+ for (unsigned c = 0; c < 2; ++c)
+ bld.ADD(offset(addr, bld, c), offset(off, bld, c),
+ (c < dims ?
+ offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, c) :
+ fs_reg(brw_imm_d(0))));
+
+ /* The layout of 3-D textures in memory is sort-of like a tiling
+ * format. At each miplevel, the slices are arranged in rows of
+ * 2^level slices per row. The slice row is stored in tmp.y and
+ * the slice within the row is stored in tmp.x.
+ *
+ * The layout of 2-D array textures and cubemaps is much simpler:
+ * Depending on whether the ARYSPC_LOD0 layout is in use it will be
+ * stored in memory as an array of slices, each one being a 2-D
+ * arrangement of miplevels, or as a 2D arrangement of miplevels,
+ * each one being an array of slices. In either case the separation
+ * between slices of the same LOD is equal to the qpitch value
+ * provided as stride.w.
+ *
+ * This code can be made to handle either 2D arrays and 3D textures
+ * by passing in the miplevel as tile.z for 3-D textures and 0 in
+ * tile.z for 2-D array textures.
+ *
+ * See Volume 1 Part 1 of the Gen7 PRM, sections 6.18.4.7 "Surface
+ * Arrays" and 6.18.6 "3D Surfaces" for a more extensive discussion
+ * of the hardware 3D texture and 2D array layouts.
+ */
+ if (dims > 2) {
+ /* Decompose z into a major (tmp.y) and a minor (tmp.x)
+ * index.
+ */
+ bld.BFE(offset(tmp, bld, 0), offset(tile, bld, 2), brw_imm_d(0),
+ offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, 2));
+ bld.SHR(offset(tmp, bld, 1),
+ offset(retype(coord, BRW_REGISTER_TYPE_UD), bld, 2),
+ offset(tile, bld, 2));
+
+ /* Take into account the horizontal (tmp.x) and vertical (tmp.y)
+ * slice offset.
+ */
+ for (unsigned c = 0; c < 2; ++c) {
+ bld.MUL(offset(tmp, bld, c),
+ offset(stride, bld, 2 + c), offset(tmp, bld, c));
+ bld.ADD(offset(addr, bld, c),
+ offset(addr, bld, c), offset(tmp, bld, c));
+ }
+ }
+
+ if (dims > 1) {
+ /* Calculate the major/minor x and y indices. In order to
+ * accommodate both X and Y tiling, the Y-major tiling format is
+ * treated as being a bunch of narrow X-tiles placed next to each
+ * other. This means that the tile width for Y-tiling is actually
+ * the width of one sub-column of the Y-major tile where each 4K
+ * tile has 8 512B sub-columns.
+ *
+ * The major Y value is the row of tiles in which the pixel lives.
+ * The major X value is the tile sub-column in which the pixel
+ * lives; for X tiling, this is the same as the tile column, for Y
+ * tiling, each tile has 8 sub-columns. The minor X and Y indices
+ * are the position within the sub-column.
+ */
+ for (unsigned c = 0; c < 2; ++c) {
+ /* Calculate the minor x and y indices. */
+ bld.BFE(offset(minor, bld, c), offset(tile, bld, c),
+ brw_imm_d(0), offset(addr, bld, c));
+
+ /* Calculate the major x and y indices. */
+ bld.SHR(offset(major, bld, c),
+ offset(addr, bld, c), offset(tile, bld, c));
+ }
+
+ /* Calculate the texel index from the start of the tile row and
+ * the vertical coordinate of the row.
+ * Equivalent to:
+ * tmp.x = (major.x << tile.y << tile.x) +
+ * (minor.y << tile.x) + minor.x
+ * tmp.y = major.y << tile.y
+ */
+ bld.SHL(tmp, major, offset(tile, bld, 1));
+ bld.ADD(tmp, tmp, offset(minor, bld, 1));
+ bld.SHL(tmp, tmp, offset(tile, bld, 0));
+ bld.ADD(tmp, tmp, minor);
+ bld.SHL(offset(tmp, bld, 1),
+ offset(major, bld, 1), offset(tile, bld, 1));
+
+ /* Add it to the start of the tile row. */
+ bld.MUL(offset(tmp, bld, 1),
+ offset(tmp, bld, 1), offset(stride, bld, 1));
+ bld.ADD(tmp, tmp, offset(tmp, bld, 1));
+
+ /* Multiply by the Bpp value. */
+ bld.MUL(dst, tmp, stride);
+
+ if (devinfo->gen < 8 && !devinfo->is_baytrail) {
+ /* Take into account the two dynamically specified shifts.
+ * Both need are used to implement swizzling of X-tiled
+ * surfaces. For Y-tiled surfaces only one bit needs to be
+ * XOR-ed with bit 6 of the memory address, so a swz value of
+ * 0xff (actually interpreted as 31 by the hardware) will be
+ * provided to cause the relevant bit of tmp.y to be zero and
+ * turn the first XOR into the identity. For linear surfaces
+ * or platforms lacking address swizzling both shifts will be
+ * 0xff causing the relevant bits of both tmp.x and .y to be
+ * zero, what effectively disables swizzling.
+ */
+ for (unsigned c = 0; c < 2; ++c)
+ bld.SHR(offset(tmp, bld, c), dst, offset(swz, bld, c));
+
+ /* XOR tmp.x and tmp.y with bit 6 of the memory address. */
+ bld.XOR(tmp, tmp, offset(tmp, bld, 1));
+ bld.AND(tmp, tmp, brw_imm_d(1 << 6));
+ bld.XOR(dst, dst, tmp);
+ }
+
+ } else {
+ /* Multiply by the Bpp/stride value. Note that the addr.y may be
+ * non-zero even if the image is one-dimensional because a
+ * vertical offset may have been applied above to select a
+ * non-zero slice or level of a higher-dimensional texture.
+ */
+ bld.MUL(offset(addr, bld, 1),
+ offset(addr, bld, 1), offset(stride, bld, 1));
+ bld.ADD(addr, addr, offset(addr, bld, 1));
+ bld.MUL(dst, addr, stride);
+ }
+
+ return dst;
+ }
+ }
+
+ namespace image_format_conversion {
+ using image_format_info::color_u;
+
+ namespace {
+ /**
+ * Maximum representable value in an unsigned integer with the given
+ * number of bits.
+ */
+ inline unsigned
+ scale(unsigned n)
+ {
+ return (1 << n) - 1;
+ }
+ }
+
+ /**
+ * Pack the vector \p src in a bitfield given the per-component bit
+ * shifts and widths. Note that bitfield components are not allowed to
+ * cross 32-bit boundaries.
+ */
+ fs_reg
+ emit_pack(const fs_builder &bld, const fs_reg &src,
+ const color_u &shifts, const color_u &widths)
+ {
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
+ bool seen[4] = {};
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
+
+ /* Shift each component left to the correct bitfield position. */
+ bld.SHL(tmp, offset(src, bld, c), brw_imm_ud(shifts[c] % 32));
+
+ /* Add everything up. */
+ if (seen[shifts[c] / 32]) {
+ bld.OR(offset(dst, bld, shifts[c] / 32),
+ offset(dst, bld, shifts[c] / 32), tmp);
+ } else {
+ bld.MOV(offset(dst, bld, shifts[c] / 32), tmp);
+ seen[shifts[c] / 32] = true;
+ }
+ }
+ }
+
+ return dst;
+ }
+
+ /**
+ * Unpack a vector from the bitfield \p src given the per-component bit
+ * shifts and widths. Note that bitfield components are not allowed to
+ * cross 32-bit boundaries.
+ */
+ fs_reg
+ emit_unpack(const fs_builder &bld, const fs_reg &src,
+ const color_u &shifts, const color_u &widths)
+ {
+ const fs_reg dst = bld.vgrf(src.type, 4);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ /* Shift left to discard the most significant bits. */
+ bld.SHL(offset(dst, bld, c),
+ offset(src, bld, shifts[c] / 32),
+ brw_imm_ud(32 - shifts[c] % 32 - widths[c]));
+
+ /* Shift back to the least significant bits using an arithmetic
+ * shift to get sign extension on signed types.
+ */
+ bld.ASR(offset(dst, bld, c),
+ offset(dst, bld, c), brw_imm_ud(32 - widths[c]));
+ }
+ }
+
+ return dst;
+ }
+
+ /**
+ * Convert an integer vector into another integer vector of the
+ * specified bit widths, properly handling overflow.
+ */
+ fs_reg
+ emit_convert_to_integer(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths, bool is_signed)
+ {
+ const unsigned s = (is_signed ? 1 : 0);
+ const fs_reg dst = bld.vgrf(
+ is_signed ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_UD, 4);
+ assert(src.type == dst.type);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ /* Clamp to the maximum value. */
+ bld.emit_minmax(offset(dst, bld, c), offset(src, bld, c),
+ brw_imm_d((int)scale(widths[c] - s)),
+ BRW_CONDITIONAL_L);
+
+ /* Clamp to the minimum value. */
+ if (is_signed)
+ bld.emit_minmax(offset(dst, bld, c), offset(dst, bld, c),
+ brw_imm_d(-(int)scale(widths[c] - s) - 1),
+ BRW_CONDITIONAL_GE);
+
+ /* Mask off all but the bits we actually want. Otherwise, if
+ * we pass a negative number into the hardware when it's
+ * expecting something like UINT8, it will happily clamp it to
+ * +255 for us.
+ */
+ if (is_signed && widths[c] < 32)
+ bld.AND(offset(dst, bld, c), offset(dst, bld, c),
+ brw_imm_d(scale(widths[c])));
+ }
+ }
+
+ return dst;
+ }
+
+ /**
+ * Convert a normalized fixed-point vector of the specified signedness
+ * and bit widths into a floating point vector.
+ */
+ fs_reg
+ emit_convert_from_scaled(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths, bool is_signed)
+ {
+ const unsigned s = (is_signed ? 1 : 0);
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ /* Convert to float. */
+ bld.MOV(offset(dst, bld, c), offset(src, bld, c));
+
+ /* Divide by the normalization constants. */
+ bld.MUL(offset(dst, bld, c), offset(dst, bld, c),
+ brw_imm_f(1.0f / scale(widths[c] - s)));
+
+ /* Clamp to the minimum value. */
+ if (is_signed)
+ bld.emit_minmax(offset(dst, bld, c),
+ offset(dst, bld, c), brw_imm_f(-1.0f),
+ BRW_CONDITIONAL_GE);
+ }
+ }
+ return dst;
+ }
+
+ /**
+ * Convert a floating-point vector into a normalized fixed-point vector
+ * of the specified signedness and bit widths.
+ */
+ fs_reg
+ emit_convert_to_scaled(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths, bool is_signed)
+ {
+ const unsigned s = (is_signed ? 1 : 0);
+ const fs_reg dst = bld.vgrf(
+ is_signed ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_UD, 4);
+ const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ /* Clamp the normalized floating-point argument. */
+ if (is_signed) {
+ bld.emit_minmax(offset(fdst, bld, c), offset(src, bld, c),
+ brw_imm_f(-1.0f), BRW_CONDITIONAL_GE);
+
+ bld.emit_minmax(offset(fdst, bld, c), offset(fdst, bld, c),
+ brw_imm_f(1.0f), BRW_CONDITIONAL_L);
+ } else {
+ set_saturate(true, bld.MOV(offset(fdst, bld, c),
+ offset(src, bld, c)));
+ }
+
+ /* Multiply by the normalization constants. */
+ bld.MUL(offset(fdst, bld, c), offset(fdst, bld, c),
+ brw_imm_f((float)scale(widths[c] - s)));
+
+ /* Convert to integer. */
+ bld.RNDE(offset(fdst, bld, c), offset(fdst, bld, c));
+ bld.MOV(offset(dst, bld, c), offset(fdst, bld, c));
+
+ /* Mask off all but the bits we actually want. Otherwise, if
+ * we pass a negative number into the hardware when it's
+ * expecting something like UINT8, it will happily clamp it to
+ * +255 for us.
+ */
+ if (is_signed && widths[c] < 32)
+ bld.AND(offset(dst, bld, c), offset(dst, bld, c),
+ brw_imm_d(scale(widths[c])));
+ }
+ }
+
+ return dst;
+ }
+
+ /**
+ * Convert a floating point vector of the specified bit widths into a
+ * 32-bit floating point vector.
+ */
+ fs_reg
+ emit_convert_from_float(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths)
+ {
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
+ const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ bld.MOV(offset(dst, bld, c), offset(src, bld, c));
+
+ /* Extend 10-bit and 11-bit floating point numbers to 15 bits.
+ * This works because they have a 5-bit exponent just like the
+ * 16-bit floating point format, and they have no sign bit.
+ */
+ if (widths[c] < 16)
+ bld.SHL(offset(dst, bld, c),
+ offset(dst, bld, c), brw_imm_ud(15 - widths[c]));
+
+ /* Convert to 32-bit floating point. */
+ bld.F16TO32(offset(fdst, bld, c), offset(dst, bld, c));
+ }
+ }
+
+ return fdst;
+ }
+
+ /**
+ * Convert a vector into a floating point vector of the specified bit
+ * widths.
+ */
+ fs_reg
+ emit_convert_to_float(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths)
+ {
+ const fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
+ const fs_reg fdst = retype(dst, BRW_REGISTER_TYPE_F);
+
+ for (unsigned c = 0; c < 4; ++c) {
+ if (widths[c]) {
+ bld.MOV(offset(fdst, bld, c), offset(src, bld, c));
+
+ /* Clamp to the minimum value. */
+ if (widths[c] < 16)
+ bld.emit_minmax(offset(fdst, bld, c), offset(fdst, bld, c),
+ brw_imm_f(0.0f), BRW_CONDITIONAL_GE);
+
+ /* Convert to 16-bit floating-point. */
+ bld.F32TO16(offset(dst, bld, c), offset(fdst, bld, c));
+
+ /* Discard the least significant bits to get floating point
+ * numbers of the requested width. This works because the
+ * 10-bit and 11-bit floating point formats have a 5-bit
+ * exponent just like the 16-bit format, and they have no sign
+ * bit.
+ */
+ if (widths[c] < 16)
+ bld.SHR(offset(dst, bld, c), offset(dst, bld, c),
+ brw_imm_ud(15 - widths[c]));
+ }
+ }
+
+ return dst;
+ }
+
+ /**
+ * Fill missing components of a vector with 0, 0, 0, 1.
+ */
+ fs_reg
+ emit_pad(const fs_builder &bld, const fs_reg &src,
+ const color_u &widths)
+ {
+ const fs_reg dst = bld.vgrf(src.type, 4);
+ const unsigned pad[] = { 0, 0, 0, 1 };
+
+ for (unsigned c = 0; c < 4; ++c)
+ bld.MOV(offset(dst, bld, c),
+ widths[c] ? offset(src, bld, c)
+ : fs_reg(brw_imm_ud(pad[c])));
+
+ return dst;
+ }
+ }
+}
+
+namespace brw {
+ namespace image_access {
+ /**
+ * Load a vector from a surface of the given format and dimensionality
+ * at the given coordinates. \p surf_dims and \p arr_dims give the
+ * number of non-array and array coordinates of the image respectively.
+ */
+ fs_reg
+ emit_image_load(const fs_builder &bld,
+ const fs_reg &image, const fs_reg &addr,
+ unsigned surf_dims, unsigned arr_dims,
+ unsigned gl_format)
+ {
+ using namespace image_format_info;
+ using namespace image_format_conversion;
+ using namespace image_validity;
+ using namespace image_coordinates;
+ using namespace surface_access;
+ const gen_device_info *devinfo = bld.shader->devinfo;
+ const isl_format format = isl_format_for_gl_format(gl_format);
+ const isl_format lower_format =
+ isl_lower_storage_image_format(devinfo, format);
+ fs_reg tmp;
+
+ /* Transform the image coordinates into actual surface coordinates. */
+ const fs_reg saddr =
+ emit_image_coordinates(bld, addr, surf_dims, arr_dims, format);
+ const unsigned dims =
+ num_image_coordinates(bld, surf_dims, arr_dims, format);
+
+ if (isl_has_matching_typed_storage_image_format(devinfo, format)) {
+ /* Hopefully we get here most of the time... */
+ tmp = emit_typed_read(bld, image, saddr, dims,
+ isl_format_get_num_channels(lower_format));
+ } else {
+ /* Untyped surface reads return 32 bits of the surface per
+ * component, without any sort of unpacking or type conversion,
+ */
+ const unsigned size = isl_format_get_layout(format)->bpb / 32;
+ /* they don't properly handle out of bounds access, so we have to
+ * check manually if the coordinates are valid and predicate the
+ * surface read on the result,
+ */
+ const brw_predicate pred =
+ emit_untyped_image_check(bld, image,
+ emit_bounds_check(bld, image,
+ saddr, dims));
+
+ /* and they don't know about surface coordinates, we need to
+ * convert them to a raw memory offset.
+ */
+ const fs_reg laddr = emit_address_calculation(bld, image, saddr, dims);
+
+ tmp = emit_untyped_read(bld, image, laddr, 1, size, pred);
+
+ /* An out of bounds surface access should give zero as result. */
+ for (unsigned c = 0; c < size; ++c)
+ set_predicate(pred, bld.SEL(offset(tmp, bld, c),
+ offset(tmp, bld, c), brw_imm_d(0)));
+ }
+
+ /* Set the register type to D instead of UD if the data type is
+ * represented as a signed integer in memory so that sign extension
+ * is handled correctly by unpack.
+ */
+ if (needs_sign_extension(format))
+ tmp = retype(tmp, BRW_REGISTER_TYPE_D);
+
+ if (!has_supported_bit_layout(devinfo, format)) {
+ /* Unpack individual vector components from the bitfield if the
+ * hardware is unable to do it for us.
+ */
+ if (has_split_bit_layout(devinfo, format))
+ tmp = emit_pack(bld, tmp, get_bit_shifts(lower_format),
+ get_bit_widths(lower_format));
+ else
+ tmp = emit_unpack(bld, tmp, get_bit_shifts(format),
+ get_bit_widths(format));
+
+ } else if ((needs_sign_extension(format) &&
+ !is_conversion_trivial(devinfo, format)) ||
+ has_undefined_high_bits(devinfo, format)) {
+ /* Perform a trivial unpack even though the bit layout matches in
+ * order to get the most significant bits of each component
+ * initialized properly.
+ */
+ tmp = emit_unpack(bld, tmp, color_u(0, 32, 64, 96),
+ get_bit_widths(format));
+ }
+
+ if (!isl_format_has_int_channel(format)) {
+ if (is_conversion_trivial(devinfo, format)) {
+ /* Just need to cast the vector to the target type. */
+ tmp = retype(tmp, BRW_REGISTER_TYPE_F);
+ } else {
+ /* Do the right sort of type conversion to float. */
+ if (isl_format_has_float_channel(format))
+ tmp = emit_convert_from_float(
+ bld, tmp, get_bit_widths(format));
+ else
+ tmp = emit_convert_from_scaled(
+ bld, tmp, get_bit_widths(format),
+ isl_format_has_snorm_channel(format));
+ }
+ }
+
+ /* Initialize missing components of the result. */
+ return emit_pad(bld, tmp, get_bit_widths(format));
+ }
+
+ /**
+ * Store a vector in a surface of the given format and dimensionality at
+ * the given coordinates. \p surf_dims and \p arr_dims give the number
+ * of non-array and array coordinates of the image respectively.
+ */
+ void
+ emit_image_store(const fs_builder &bld, const fs_reg &image,
+ const fs_reg &addr, const fs_reg &src,
+ unsigned surf_dims, unsigned arr_dims,
+ unsigned gl_format)
+ {
+ using namespace image_format_info;
+ using namespace image_format_conversion;
+ using namespace image_validity;
+ using namespace image_coordinates;
+ using namespace surface_access;
+ const isl_format format = isl_format_for_gl_format(gl_format);
+ const gen_device_info *devinfo = bld.shader->devinfo;
+
+ /* Transform the image coordinates into actual surface coordinates. */
+ const fs_reg saddr =
+ emit_image_coordinates(bld, addr, surf_dims, arr_dims, format);
+ const unsigned dims =
+ num_image_coordinates(bld, surf_dims, arr_dims, format);
+
+ if (gl_format == GL_NONE) {
+ /* We don't know what the format is, but that's fine because it
+ * implies write-only access, and typed surface writes are always
+ * able to take care of type conversion and packing for us.
+ */
+ emit_typed_write(bld, image, saddr, src, dims, 4);
+
+ } else {
+ const isl_format lower_format =
+ isl_lower_storage_image_format(devinfo, format);
+ fs_reg tmp = src;
+
+ if (!is_conversion_trivial(devinfo, format)) {
+ /* Do the right sort of type conversion. */
+ if (isl_format_has_float_channel(format))
+ tmp = emit_convert_to_float(bld, tmp, get_bit_widths(format));
+
+ else if (isl_format_has_int_channel(format))
+ tmp = emit_convert_to_integer(bld, tmp, get_bit_widths(format),
+ isl_format_has_sint_channel(format));
+
+ else
+ tmp = emit_convert_to_scaled(bld, tmp, get_bit_widths(format),
+ isl_format_has_snorm_channel(format));
+ }
+
+ /* We're down to bit manipulation at this point. */
+ tmp = retype(tmp, BRW_REGISTER_TYPE_UD);
+
+ if (!has_supported_bit_layout(devinfo, format)) {
+ /* Pack the vector components into a bitfield if the hardware
+ * is unable to do it for us.
+ */
+ if (has_split_bit_layout(devinfo, format))
+ tmp = emit_unpack(bld, tmp, get_bit_shifts(lower_format),
+ get_bit_widths(lower_format));
+
+ else
+ tmp = emit_pack(bld, tmp, get_bit_shifts(format),
+ get_bit_widths(format));
+ }
+
+ if (isl_has_matching_typed_storage_image_format(devinfo, format)) {
+ /* Hopefully we get here most of the time... */
+ emit_typed_write(bld, image, saddr, tmp, dims,
+ isl_format_get_num_channels(lower_format));
+
+ } else {
+ /* Untyped surface writes store 32 bits of the surface per
+ * component, without any sort of packing or type conversion,
+ */
+ const unsigned size = isl_format_get_layout(format)->bpb / 32;
+
+ /* they don't properly handle out of bounds access, so we have
+ * to check manually if the coordinates are valid and predicate
+ * the surface write on the result,
+ */
+ const brw_predicate pred =
+ emit_untyped_image_check(bld, image,
+ emit_bounds_check(bld, image,
+ saddr, dims));
+
+ /* and, phew, they don't know about surface coordinates, we
+ * need to convert them to a raw memory offset.
+ */
+ const fs_reg laddr = emit_address_calculation(
+ bld, image, saddr, dims);
+
+ emit_untyped_write(bld, image, laddr, tmp, 1, size, pred);
+ }
+ }
+ }
+
+ /**
+ * Perform an atomic read-modify-write operation in a surface of the
+ * given dimensionality at the given coordinates. \p surf_dims and \p
+ * arr_dims give the number of non-array and array coordinates of the
+ * image respectively. Main building block of the imageAtomic GLSL
+ * built-ins.
+ */
+ fs_reg
+ emit_image_atomic(const fs_builder &bld,
+ const fs_reg &image, const fs_reg &addr,
+ const fs_reg &src0, const fs_reg &src1,
+ unsigned surf_dims, unsigned arr_dims,
+ unsigned rsize, unsigned op)
+ {
+ using namespace image_validity;
+ using namespace image_coordinates;
+ using namespace surface_access;
+ /* Avoid performing an atomic operation on an unbound surface. */
+ const brw_predicate pred = emit_typed_atomic_check(bld, image);
+
+ /* Transform the image coordinates into actual surface coordinates. */
+ const fs_reg saddr =
+ emit_image_coordinates(bld, addr, surf_dims, arr_dims,
+ ISL_FORMAT_R32_UINT);
+ const unsigned dims =
+ num_image_coordinates(bld, surf_dims, arr_dims,
+ ISL_FORMAT_R32_UINT);
+
+ /* Thankfully we can do without untyped atomics here. */
+ const fs_reg tmp = emit_typed_atomic(bld, image, saddr, src0, src1,
+ dims, rsize, op, pred);
+
+ /* An unbound surface access should give zero as result. */
+ if (rsize && pred)
+ set_predicate(pred, bld.SEL(tmp, tmp, brw_imm_d(0)));
+
+ return retype(tmp, src0.type);
+ }
+ }
+}