diff options
Diffstat (limited to 'src/intel/compiler/brw_fs_nir.cpp')
-rw-r--r-- | src/intel/compiler/brw_fs_nir.cpp | 4679 |
1 files changed, 4679 insertions, 0 deletions
diff --git a/src/intel/compiler/brw_fs_nir.cpp b/src/intel/compiler/brw_fs_nir.cpp new file mode 100644 index 00000000000..d403dec5357 --- /dev/null +++ b/src/intel/compiler/brw_fs_nir.cpp @@ -0,0 +1,4679 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include "compiler/glsl/ir.h" +#include "brw_fs.h" +#include "brw_fs_surface_builder.h" +#include "brw_nir.h" + +using namespace brw; +using namespace brw::surface_access; + +void +fs_visitor::emit_nir_code() +{ + /* emit the arrays used for inputs and outputs - load/store intrinsics will + * be converted to reads/writes of these arrays + */ + nir_setup_outputs(); + nir_setup_uniforms(); + nir_emit_system_values(); + + /* get the main function and emit it */ + nir_foreach_function(function, nir) { + assert(strcmp(function->name, "main") == 0); + assert(function->impl); + nir_emit_impl(function->impl); + } +} + +void +fs_visitor::nir_setup_outputs() +{ + if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT) + return; + + nir_foreach_variable(var, &nir->outputs) { + const unsigned vec4s = + var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4) + : type_size_vec4(var->type); + fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s); + for (unsigned i = 0; i < vec4s; i++) { + if (outputs[var->data.driver_location + i].file == BAD_FILE) + outputs[var->data.driver_location + i] = offset(reg, bld, 4 * i); + } + } +} + +void +fs_visitor::nir_setup_uniforms() +{ + if (dispatch_width != min_dispatch_width) + return; + + uniforms = nir->num_uniforms / 4; +} + +static bool +emit_system_values_block(nir_block *block, fs_visitor *v) +{ + fs_reg *reg; + + nir_foreach_instr(instr, block) { + if (instr->type != nir_instr_type_intrinsic) + continue; + + nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); + switch (intrin->intrinsic) { + case nir_intrinsic_load_vertex_id: + unreachable("should be lowered by lower_vertex_id()."); + + case nir_intrinsic_load_vertex_id_zero_base: + assert(v->stage == MESA_SHADER_VERTEX); + reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE]; + if (reg->file == BAD_FILE) + *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE); + break; + + case nir_intrinsic_load_base_vertex: + assert(v->stage == MESA_SHADER_VERTEX); + reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX]; + if (reg->file == BAD_FILE) + *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX); + break; + + case nir_intrinsic_load_instance_id: + assert(v->stage == MESA_SHADER_VERTEX); + reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID]; + if (reg->file == BAD_FILE) + *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID); + break; + + case nir_intrinsic_load_base_instance: + assert(v->stage == MESA_SHADER_VERTEX); + reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE]; + if (reg->file == BAD_FILE) + *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE); + break; + + case nir_intrinsic_load_draw_id: + assert(v->stage == MESA_SHADER_VERTEX); + reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID]; + if (reg->file == BAD_FILE) + *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID); + break; + + case nir_intrinsic_load_invocation_id: + if (v->stage == MESA_SHADER_TESS_CTRL) + break; + assert(v->stage == MESA_SHADER_GEOMETRY); + reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; + if (reg->file == BAD_FILE) { + const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL); + fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); + fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.SHR(iid, g1, brw_imm_ud(27u)); + *reg = iid; + } + break; + + case nir_intrinsic_load_sample_pos: + assert(v->stage == MESA_SHADER_FRAGMENT); + reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; + if (reg->file == BAD_FILE) + *reg = *v->emit_samplepos_setup(); + break; + + case nir_intrinsic_load_sample_id: + assert(v->stage == MESA_SHADER_FRAGMENT); + reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID]; + if (reg->file == BAD_FILE) + *reg = *v->emit_sampleid_setup(); + break; + + case nir_intrinsic_load_sample_mask_in: + assert(v->stage == MESA_SHADER_FRAGMENT); + assert(v->devinfo->gen >= 7); + reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN]; + if (reg->file == BAD_FILE) + *reg = *v->emit_samplemaskin_setup(); + break; + + case nir_intrinsic_load_work_group_id: + assert(v->stage == MESA_SHADER_COMPUTE); + reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID]; + if (reg->file == BAD_FILE) + *reg = *v->emit_cs_work_group_id_setup(); + break; + + case nir_intrinsic_load_helper_invocation: + assert(v->stage == MESA_SHADER_FRAGMENT); + reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION]; + if (reg->file == BAD_FILE) { + const fs_builder abld = + v->bld.annotate("gl_HelperInvocation", NULL); + + /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the + * pixel mask is in g1.7 of the thread payload. + * + * We move the per-channel pixel enable bit to the low bit of each + * channel by shifting the byte containing the pixel mask by the + * vector immediate 0x76543210UV. + * + * The region of <1,8,0> reads only 1 byte (the pixel masks for + * subspans 0 and 1) in SIMD8 and an additional byte (the pixel + * masks for 2 and 3) in SIMD16. + */ + fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1); + abld.SHR(shifted, + stride(byte_offset(retype(brw_vec1_grf(1, 0), + BRW_REGISTER_TYPE_UB), 28), + 1, 8, 0), + brw_imm_v(0x76543210)); + + /* A set bit in the pixel mask means the channel is enabled, but + * that is the opposite of gl_HelperInvocation so we need to invert + * the mask. + * + * The negate source-modifier bit of logical instructions on Gen8+ + * performs 1's complement negation, so we can use that instead of + * a NOT instruction. + */ + fs_reg inverted = negate(shifted); + if (v->devinfo->gen < 8) { + inverted = abld.vgrf(BRW_REGISTER_TYPE_UW); + abld.NOT(inverted, shifted); + } + + /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing + * with 1 and negating. + */ + fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.AND(anded, inverted, brw_imm_uw(1)); + + fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1); + abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D))); + *reg = dst; + } + break; + + default: + break; + } + } + + return true; +} + +void +fs_visitor::nir_emit_system_values() +{ + nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX); + for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) { + nir_system_values[i] = fs_reg(); + } + + nir_foreach_function(function, nir) { + assert(strcmp(function->name, "main") == 0); + assert(function->impl); + nir_foreach_block(block, function->impl) { + emit_system_values_block(block, this); + } + } +} + +void +fs_visitor::nir_emit_impl(nir_function_impl *impl) +{ + nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc); + for (unsigned i = 0; i < impl->reg_alloc; i++) { + nir_locals[i] = fs_reg(); + } + + foreach_list_typed(nir_register, reg, node, &impl->registers) { + unsigned array_elems = + reg->num_array_elems == 0 ? 1 : reg->num_array_elems; + unsigned size = array_elems * reg->num_components; + const brw_reg_type reg_type = + reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF; + nir_locals[reg->index] = bld.vgrf(reg_type, size); + } + + nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg, + impl->ssa_alloc); + + nir_emit_cf_list(&impl->body); +} + +void +fs_visitor::nir_emit_cf_list(exec_list *list) +{ + exec_list_validate(list); + foreach_list_typed(nir_cf_node, node, node, list) { + switch (node->type) { + case nir_cf_node_if: + nir_emit_if(nir_cf_node_as_if(node)); + break; + + case nir_cf_node_loop: + nir_emit_loop(nir_cf_node_as_loop(node)); + break; + + case nir_cf_node_block: + nir_emit_block(nir_cf_node_as_block(node)); + break; + + default: + unreachable("Invalid CFG node block"); + } + } +} + +void +fs_visitor::nir_emit_if(nir_if *if_stmt) +{ + /* first, put the condition into f0 */ + fs_inst *inst = bld.MOV(bld.null_reg_d(), + retype(get_nir_src(if_stmt->condition), + BRW_REGISTER_TYPE_D)); + inst->conditional_mod = BRW_CONDITIONAL_NZ; + + bld.IF(BRW_PREDICATE_NORMAL); + + nir_emit_cf_list(&if_stmt->then_list); + + /* note: if the else is empty, dead CF elimination will remove it */ + bld.emit(BRW_OPCODE_ELSE); + + nir_emit_cf_list(&if_stmt->else_list); + + bld.emit(BRW_OPCODE_ENDIF); +} + +void +fs_visitor::nir_emit_loop(nir_loop *loop) +{ + bld.emit(BRW_OPCODE_DO); + + nir_emit_cf_list(&loop->body); + + bld.emit(BRW_OPCODE_WHILE); +} + +void +fs_visitor::nir_emit_block(nir_block *block) +{ + nir_foreach_instr(instr, block) { + nir_emit_instr(instr); + } +} + +void +fs_visitor::nir_emit_instr(nir_instr *instr) +{ + const fs_builder abld = bld.annotate(NULL, instr); + + switch (instr->type) { + case nir_instr_type_alu: + nir_emit_alu(abld, nir_instr_as_alu(instr)); + break; + + case nir_instr_type_intrinsic: + switch (stage) { + case MESA_SHADER_VERTEX: + nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + case MESA_SHADER_TESS_CTRL: + nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + case MESA_SHADER_TESS_EVAL: + nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + case MESA_SHADER_GEOMETRY: + nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + case MESA_SHADER_FRAGMENT: + nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + case MESA_SHADER_COMPUTE: + nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr)); + break; + default: + unreachable("unsupported shader stage"); + } + break; + + case nir_instr_type_tex: + nir_emit_texture(abld, nir_instr_as_tex(instr)); + break; + + case nir_instr_type_load_const: + nir_emit_load_const(abld, nir_instr_as_load_const(instr)); + break; + + case nir_instr_type_ssa_undef: + /* We create a new VGRF for undefs on every use (by handling + * them in get_nir_src()), rather than for each definition. + * This helps register coalescing eliminate MOVs from undef. + */ + break; + + case nir_instr_type_jump: + nir_emit_jump(abld, nir_instr_as_jump(instr)); + break; + + default: + unreachable("unknown instruction type"); + } +} + +/** + * Recognizes a parent instruction of nir_op_extract_* and changes the type to + * match instr. + */ +bool +fs_visitor::optimize_extract_to_float(nir_alu_instr *instr, + const fs_reg &result) +{ + if (!instr->src[0].src.is_ssa || + !instr->src[0].src.ssa->parent_instr) + return false; + + if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu) + return false; + + nir_alu_instr *src0 = + nir_instr_as_alu(instr->src[0].src.ssa->parent_instr); + + if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 && + src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16) + return false; + + nir_const_value *element = nir_src_as_const_value(src0->src[1].src); + assert(element != NULL); + + /* Element type to extract.*/ + const brw_reg_type type = brw_int_type( + src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1, + src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8); + + fs_reg op0 = get_nir_src(src0->src[0].src); + op0.type = brw_type_for_nir_type(devinfo, + (nir_alu_type)(nir_op_infos[src0->op].input_types[0] | + nir_src_bit_size(src0->src[0].src))); + op0 = offset(op0, bld, src0->src[0].swizzle[0]); + + set_saturate(instr->dest.saturate, + bld.MOV(result, subscript(op0, type, element->u32[0]))); + return true; +} + +bool +fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr, + const fs_reg &result) +{ + if (!instr->src[0].src.is_ssa || + instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic) + return false; + + nir_intrinsic_instr *src0 = + nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr); + + if (src0->intrinsic != nir_intrinsic_load_front_face) + return false; + + nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src); + if (!value1 || fabsf(value1->f32[0]) != 1.0f) + return false; + + nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src); + if (!value2 || fabsf(value2->f32[0]) != 1.0f) + return false; + + fs_reg tmp = vgrf(glsl_type::int_type); + + if (devinfo->gen >= 6) { + /* Bit 15 of g0.0 is 0 if the polygon is front facing. */ + fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); + + /* For (gl_FrontFacing ? 1.0 : -1.0), emit: + * + * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W + * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D + * + * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0). + * + * This negation looks like it's safe in practice, because bits 0:4 will + * surely be TRIANGLES + */ + + if (value1->f32[0] == -1.0f) { + g0.negate = true; + } + + bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1), + g0, brw_imm_uw(0x3f80)); + } else { + /* Bit 31 of g1.6 is 0 if the polygon is front facing. */ + fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); + + /* For (gl_FrontFacing ? 1.0 : -1.0), emit: + * + * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D + * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D + * + * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0). + * + * This negation looks like it's safe in practice, because bits 0:4 will + * surely be TRIANGLES + */ + + if (value1->f32[0] == -1.0f) { + g1_6.negate = true; + } + + bld.OR(tmp, g1_6, brw_imm_d(0x3f800000)); + } + bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000)); + + return true; +} + +static void +emit_find_msb_using_lzd(const fs_builder &bld, + const fs_reg &result, + const fs_reg &src, + bool is_signed) +{ + fs_inst *inst; + fs_reg temp = src; + + if (is_signed) { + /* LZD of an absolute value source almost always does the right + * thing. There are two problem values: + * + * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns + * 0. However, findMSB(int(0x80000000)) == 30. + * + * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns + * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says: + * + * For a value of zero or negative one, -1 will be returned. + * + * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but + * findMSB(-(1<<x)) should return x-1. + * + * For all negative number cases, including 0x80000000 and + * 0xffffffff, the correct value is obtained from LZD if instead of + * negating the (already negative) value the logical-not is used. A + * conditonal logical-not can be achieved in two instructions. + */ + temp = bld.vgrf(BRW_REGISTER_TYPE_D); + + bld.ASR(temp, src, brw_imm_d(31)); + bld.XOR(temp, temp, src); + } + + bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), + retype(temp, BRW_REGISTER_TYPE_UD)); + + /* LZD counts from the MSB side, while GLSL's findMSB() wants the count + * from the LSB side. Subtract the result from 31 to convert the MSB + * count into an LSB count. If no bits are set, LZD will return 32. + * 31-32 = -1, which is exactly what findMSB() is supposed to return. + */ + inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31)); + inst->src[0].negate = true; +} + +void +fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr) +{ + struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key; + fs_inst *inst; + + fs_reg result = get_nir_dest(instr->dest.dest); + result.type = brw_type_for_nir_type(devinfo, + (nir_alu_type)(nir_op_infos[instr->op].output_type | + nir_dest_bit_size(instr->dest.dest))); + + fs_reg op[4]; + for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { + op[i] = get_nir_src(instr->src[i].src); + op[i].type = brw_type_for_nir_type(devinfo, + (nir_alu_type)(nir_op_infos[instr->op].input_types[i] | + nir_src_bit_size(instr->src[i].src))); + op[i].abs = instr->src[i].abs; + op[i].negate = instr->src[i].negate; + } + + /* We get a bunch of mov's out of the from_ssa pass and they may still + * be vectorized. We'll handle them as a special-case. We'll also + * handle vecN here because it's basically the same thing. + */ + switch (instr->op) { + case nir_op_imov: + case nir_op_fmov: + case nir_op_vec2: + case nir_op_vec3: + case nir_op_vec4: { + fs_reg temp = result; + bool need_extra_copy = false; + for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { + if (!instr->src[i].src.is_ssa && + instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) { + need_extra_copy = true; + temp = bld.vgrf(result.type, 4); + break; + } + } + + for (unsigned i = 0; i < 4; i++) { + if (!(instr->dest.write_mask & (1 << i))) + continue; + + if (instr->op == nir_op_imov || instr->op == nir_op_fmov) { + inst = bld.MOV(offset(temp, bld, i), + offset(op[0], bld, instr->src[0].swizzle[i])); + } else { + inst = bld.MOV(offset(temp, bld, i), + offset(op[i], bld, instr->src[i].swizzle[0])); + } + inst->saturate = instr->dest.saturate; + } + + /* In this case the source and destination registers were the same, + * so we need to insert an extra set of moves in order to deal with + * any swizzling. + */ + if (need_extra_copy) { + for (unsigned i = 0; i < 4; i++) { + if (!(instr->dest.write_mask & (1 << i))) + continue; + + bld.MOV(offset(result, bld, i), offset(temp, bld, i)); + } + } + return; + } + default: + break; + } + + /* At this point, we have dealt with any instruction that operates on + * more than a single channel. Therefore, we can just adjust the source + * and destination registers for that channel and emit the instruction. + */ + unsigned channel = 0; + if (nir_op_infos[instr->op].output_size == 0) { + /* Since NIR is doing the scalarizing for us, we should only ever see + * vectorized operations with a single channel. + */ + assert(_mesa_bitcount(instr->dest.write_mask) == 1); + channel = ffs(instr->dest.write_mask) - 1; + + result = offset(result, bld, channel); + } + + for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { + assert(nir_op_infos[instr->op].input_sizes[i] < 2); + op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]); + } + + switch (instr->op) { + case nir_op_i2f: + case nir_op_u2f: + case nir_op_i642d: + case nir_op_u642d: + if (optimize_extract_to_float(instr, result)) + return; + inst = bld.MOV(result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_f2d: + case nir_op_i2d: + case nir_op_u2d: + /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions: + * + * "When source or destination is 64b (...), regioning in Align1 + * must follow these rules: + * + * 1. Source and destination horizontal stride must be aligned to + * the same qword. + * (...)" + * + * This means that 32-bit to 64-bit conversions need to have the 32-bit + * data elements aligned to 64-bit. This restriction does not apply to + * BDW and later. + */ + if (nir_dest_bit_size(instr->dest.dest) == 64 && + nir_src_bit_size(instr->src[0].src) == 32 && + (devinfo->is_cherryview || devinfo->is_broxton)) { + fs_reg tmp = bld.vgrf(result.type, 1); + tmp = subscript(tmp, op[0].type, 0); + inst = bld.MOV(tmp, op[0]); + inst = bld.MOV(result, tmp); + inst->saturate = instr->dest.saturate; + break; + } + /* fallthrough */ + case nir_op_f2i64: + case nir_op_f2u64: + case nir_op_i2i64: + case nir_op_i2u64: + case nir_op_u2i64: + case nir_op_u2u64: + case nir_op_b2i64: + case nir_op_d2f: + case nir_op_d2i: + case nir_op_d2u: + case nir_op_i642f: + case nir_op_u642f: + case nir_op_u2i32: + case nir_op_i2i32: + case nir_op_u2u32: + case nir_op_i2u32: + if (instr->op == nir_op_b2i64) { + bld.MOV(result, negate(op[0])); + } else { + inst = bld.MOV(result, op[0]); + inst->saturate = instr->dest.saturate; + } + break; + + case nir_op_f2i: + case nir_op_f2u: + bld.MOV(result, op[0]); + break; + + case nir_op_fsign: { + if (op[0].abs) { + /* Straightforward since the source can be assumed to be + * non-negative. + */ + set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0])); + set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f))); + + } else if (type_sz(op[0].type) < 8) { + /* AND(val, 0x80000000) gives the sign bit. + * + * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not + * zero. + */ + bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); + + fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD); + op[0].type = BRW_REGISTER_TYPE_UD; + result.type = BRW_REGISTER_TYPE_UD; + bld.AND(result_int, op[0], brw_imm_ud(0x80000000u)); + + inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u)); + inst->predicate = BRW_PREDICATE_NORMAL; + if (instr->dest.saturate) { + inst = bld.MOV(result, result); + inst->saturate = true; + } + } else { + /* For doubles we do the same but we need to consider: + * + * - 2-src instructions can't operate with 64-bit immediates + * - The sign is encoded in the high 32-bit of each DF + * - CMP with DF requires special handling in SIMD16 + * - We need to produce a DF result. + */ + + /* 2-src instructions can't have 64-bit immediates, so put 0.0 in + * a register and compare with that. + */ + fs_reg tmp = vgrf(glsl_type::double_type); + bld.MOV(tmp, setup_imm_df(bld, 0.0)); + + /* A direct DF CMP using the flag register (null dst) won't work in + * SIMD16 because the CMP will be split in two by lower_simd_width, + * resulting in two CMP instructions with the same dst (NULL), + * leading to dead code elimination of the first one. In SIMD8, + * however, there is no need to split the CMP and we can save some + * work. + */ + fs_reg dst_tmp = vgrf(glsl_type::double_type); + bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ); + + /* In SIMD16 we want to avoid using a NULL dst register with DF CMP, + * so we store the result of the comparison in a vgrf instead and + * then we generate a UD comparison from that that won't have to + * be split by lower_simd_width. This is what NIR does to handle + * double comparisons in the general case. + */ + if (bld.dispatch_width() == 16 ) { + fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD); + bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0)); + bld.CMP(bld.null_reg_ud(), + dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ); + } + + /* Get the high 32-bit of each double component where the sign is */ + fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD); + bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1)); + + /* Get the sign bit */ + bld.AND(result_int, result_int, brw_imm_ud(0x80000000u)); + + /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */ + inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u)); + inst->predicate = BRW_PREDICATE_NORMAL; + + /* Convert from 32-bit float to 64-bit double */ + result.type = BRW_REGISTER_TYPE_DF; + inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F)); + + if (instr->dest.saturate) { + inst = bld.MOV(result, result); + inst->saturate = true; + } + } + break; + } + + case nir_op_isign: + /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1). + * -> non-negative val generates 0x00000000. + * Predicated OR sets 1 if val is positive. + */ + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G); + bld.ASR(result, op[0], brw_imm_d(31)); + inst = bld.OR(result, result, brw_imm_d(1)); + inst->predicate = BRW_PREDICATE_NORMAL; + break; + + case nir_op_frcp: + inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fexp2: + inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_flog2: + inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fsin: + inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fcos: + inst = bld.emit(SHADER_OPCODE_COS, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fddx: + if (fs_key->high_quality_derivatives) { + inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); + } else { + inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); + } + inst->saturate = instr->dest.saturate; + break; + case nir_op_fddx_fine: + inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_fddx_coarse: + inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_fddy: + if (fs_key->high_quality_derivatives) { + inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]); + } else { + inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]); + } + inst->saturate = instr->dest.saturate; + break; + case nir_op_fddy_fine: + inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_fddy_coarse: + inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_iadd: + case nir_op_fadd: + inst = bld.ADD(result, op[0], op[1]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fmul: + inst = bld.MUL(result, op[0], op[1]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_imul: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.MUL(result, op[0], op[1]); + break; + + case nir_op_imul_high: + case nir_op_umul_high: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]); + break; + + case nir_op_idiv: + case nir_op_udiv: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]); + break; + + case nir_op_uadd_carry: + unreachable("Should have been lowered by carry_to_arith()."); + + case nir_op_usub_borrow: + unreachable("Should have been lowered by borrow_to_arith()."); + + case nir_op_umod: + case nir_op_irem: + /* According to the sign table for INT DIV in the Ivy Bridge PRM, it + * appears that our hardware just does the right thing for signed + * remainder. + */ + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]); + break; + + case nir_op_imod: { + /* Get a regular C-style remainder. If a % b == 0, set the predicate. */ + bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]); + + /* Math instructions don't support conditional mod */ + inst = bld.MOV(bld.null_reg_d(), result); + inst->conditional_mod = BRW_CONDITIONAL_NZ; + + /* Now, we need to determine if signs of the sources are different. + * When we XOR the sources, the top bit is 0 if they are the same and 1 + * if they are different. We can then use a conditional modifier to + * turn that into a predicate. This leads us to an XOR.l instruction. + * + * Technically, according to the PRM, you're not allowed to use .l on a + * XOR instruction. However, emperical experiments and Curro's reading + * of the simulator source both indicate that it's safe. + */ + fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D); + inst = bld.XOR(tmp, op[0], op[1]); + inst->predicate = BRW_PREDICATE_NORMAL; + inst->conditional_mod = BRW_CONDITIONAL_L; + + /* If the result of the initial remainder operation is non-zero and the + * two sources have different signs, add in a copy of op[1] to get the + * final integer modulus value. + */ + inst = bld.ADD(result, result, op[1]); + inst->predicate = BRW_PREDICATE_NORMAL; + break; + } + + case nir_op_flt: + case nir_op_fge: + case nir_op_feq: + case nir_op_fne: { + fs_reg dest = result; + if (nir_src_bit_size(instr->src[0].src) > 32) { + dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1); + } + brw_conditional_mod cond; + switch (instr->op) { + case nir_op_flt: + cond = BRW_CONDITIONAL_L; + break; + case nir_op_fge: + cond = BRW_CONDITIONAL_GE; + break; + case nir_op_feq: + cond = BRW_CONDITIONAL_Z; + break; + case nir_op_fne: + cond = BRW_CONDITIONAL_NZ; + break; + default: + unreachable("bad opcode"); + } + bld.CMP(dest, op[0], op[1], cond); + if (nir_src_bit_size(instr->src[0].src) > 32) { + bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0)); + } + break; + } + + case nir_op_ilt: + case nir_op_ult: + case nir_op_ige: + case nir_op_uge: + case nir_op_ieq: + case nir_op_ine: { + fs_reg dest = result; + if (nir_src_bit_size(instr->src[0].src) > 32) { + dest = bld.vgrf(BRW_REGISTER_TYPE_UQ, 1); + } + + brw_conditional_mod cond; + switch (instr->op) { + case nir_op_ilt: + case nir_op_ult: + cond = BRW_CONDITIONAL_L; + break; + case nir_op_ige: + case nir_op_uge: + cond = BRW_CONDITIONAL_GE; + break; + case nir_op_ieq: + cond = BRW_CONDITIONAL_Z; + break; + case nir_op_ine: + cond = BRW_CONDITIONAL_NZ; + break; + default: + unreachable("bad opcode"); + } + bld.CMP(dest, op[0], op[1], cond); + if (nir_src_bit_size(instr->src[0].src) > 32) { + bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0)); + } + break; + } + + case nir_op_inot: + if (devinfo->gen >= 8) { + op[0] = resolve_source_modifiers(op[0]); + } + bld.NOT(result, op[0]); + break; + case nir_op_ixor: + if (devinfo->gen >= 8) { + op[0] = resolve_source_modifiers(op[0]); + op[1] = resolve_source_modifiers(op[1]); + } + bld.XOR(result, op[0], op[1]); + break; + case nir_op_ior: + if (devinfo->gen >= 8) { + op[0] = resolve_source_modifiers(op[0]); + op[1] = resolve_source_modifiers(op[1]); + } + bld.OR(result, op[0], op[1]); + break; + case nir_op_iand: + if (devinfo->gen >= 8) { + op[0] = resolve_source_modifiers(op[0]); + op[1] = resolve_source_modifiers(op[1]); + } + bld.AND(result, op[0], op[1]); + break; + + case nir_op_fdot2: + case nir_op_fdot3: + case nir_op_fdot4: + case nir_op_ball_fequal2: + case nir_op_ball_iequal2: + case nir_op_ball_fequal3: + case nir_op_ball_iequal3: + case nir_op_ball_fequal4: + case nir_op_ball_iequal4: + case nir_op_bany_fnequal2: + case nir_op_bany_inequal2: + case nir_op_bany_fnequal3: + case nir_op_bany_inequal3: + case nir_op_bany_fnequal4: + case nir_op_bany_inequal4: + unreachable("Lowered by nir_lower_alu_reductions"); + + case nir_op_fnoise1_1: + case nir_op_fnoise1_2: + case nir_op_fnoise1_3: + case nir_op_fnoise1_4: + case nir_op_fnoise2_1: + case nir_op_fnoise2_2: + case nir_op_fnoise2_3: + case nir_op_fnoise2_4: + case nir_op_fnoise3_1: + case nir_op_fnoise3_2: + case nir_op_fnoise3_3: + case nir_op_fnoise3_4: + case nir_op_fnoise4_1: + case nir_op_fnoise4_2: + case nir_op_fnoise4_3: + case nir_op_fnoise4_4: + unreachable("not reached: should be handled by lower_noise"); + + case nir_op_ldexp: + unreachable("not reached: should be handled by ldexp_to_arith()"); + + case nir_op_fsqrt: + inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_frsq: + inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_b2i: + case nir_op_b2f: + bld.MOV(result, negate(op[0])); + break; + + case nir_op_f2b: + bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ); + break; + + case nir_op_i642b: + case nir_op_d2b: { + /* two-argument instructions can't take 64-bit immediates */ + fs_reg zero; + fs_reg tmp; + + if (instr->op == nir_op_d2b) { + zero = vgrf(glsl_type::double_type); + tmp = vgrf(glsl_type::double_type); + } else { + zero = vgrf(glsl_type::int64_t_type); + tmp = vgrf(glsl_type::int64_t_type); + } + + bld.MOV(zero, setup_imm_df(bld, 0.0)); + /* A SIMD16 execution needs to be split in two instructions, so use + * a vgrf instead of the flag register as dst so instruction splitting + * works + */ + bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ); + bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0)); + break; + } + case nir_op_i2b: + bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); + break; + + case nir_op_ftrunc: + inst = bld.RNDZ(result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fceil: { + op[0].negate = !op[0].negate; + fs_reg temp = vgrf(glsl_type::float_type); + bld.RNDD(temp, op[0]); + temp.negate = true; + inst = bld.MOV(result, temp); + inst->saturate = instr->dest.saturate; + break; + } + case nir_op_ffloor: + inst = bld.RNDD(result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_ffract: + inst = bld.FRC(result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_fround_even: + inst = bld.RNDE(result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_fquantize2f16: { + fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D); + fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F); + fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F); + + /* The destination stride must be at least as big as the source stride. */ + tmp16.type = BRW_REGISTER_TYPE_W; + tmp16.stride = 2; + + /* Check for denormal */ + fs_reg abs_src0 = op[0]; + abs_src0.abs = true; + bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)), + BRW_CONDITIONAL_L); + /* Get the appropriately signed zero */ + bld.AND(retype(zero, BRW_REGISTER_TYPE_UD), + retype(op[0], BRW_REGISTER_TYPE_UD), + brw_imm_ud(0x80000000)); + /* Do the actual F32 -> F16 -> F32 conversion */ + bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]); + bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16); + /* Select that or zero based on normal status */ + inst = bld.SEL(result, zero, tmp32); + inst->predicate = BRW_PREDICATE_NORMAL; + inst->saturate = instr->dest.saturate; + break; + } + + case nir_op_imin: + case nir_op_umin: + case nir_op_fmin: + inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_imax: + case nir_op_umax: + case nir_op_fmax: + inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_pack_snorm_2x16: + case nir_op_pack_snorm_4x8: + case nir_op_pack_unorm_2x16: + case nir_op_pack_unorm_4x8: + case nir_op_unpack_snorm_2x16: + case nir_op_unpack_snorm_4x8: + case nir_op_unpack_unorm_2x16: + case nir_op_unpack_unorm_4x8: + case nir_op_unpack_half_2x16: + case nir_op_pack_half_2x16: + unreachable("not reached: should be handled by lower_packing_builtins"); + + case nir_op_unpack_half_2x16_split_x: + inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + case nir_op_unpack_half_2x16_split_y: + inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_pack_64_2x32_split: + bld.emit(FS_OPCODE_PACK, result, op[0], op[1]); + break; + + case nir_op_unpack_64_2x32_split_x: + case nir_op_unpack_64_2x32_split_y: { + if (instr->op == nir_op_unpack_64_2x32_split_x) + bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0)); + else + bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1)); + break; + } + + case nir_op_fpow: + inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_bitfield_reverse: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.BFREV(result, op[0]); + break; + + case nir_op_bit_count: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.CBIT(result, op[0]); + break; + + case nir_op_ufind_msb: { + assert(nir_dest_bit_size(instr->dest.dest) < 64); + emit_find_msb_using_lzd(bld, result, op[0], false); + break; + } + + case nir_op_ifind_msb: { + assert(nir_dest_bit_size(instr->dest.dest) < 64); + + if (devinfo->gen < 7) { + emit_find_msb_using_lzd(bld, result, op[0], true); + } else { + bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]); + + /* FBH counts from the MSB side, while GLSL's findMSB() wants the + * count from the LSB side. If FBH didn't return an error + * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB + * count into an LSB count. + */ + bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ); + + inst = bld.ADD(result, result, brw_imm_d(31)); + inst->predicate = BRW_PREDICATE_NORMAL; + inst->src[0].negate = true; + } + break; + } + + case nir_op_find_lsb: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + + if (devinfo->gen < 7) { + fs_reg temp = vgrf(glsl_type::int_type); + + /* (x & -x) generates a value that consists of only the LSB of x. + * For all powers of 2, findMSB(y) == findLSB(y). + */ + fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D); + fs_reg negated_src = src; + + /* One must be negated, and the other must be non-negated. It + * doesn't matter which is which. + */ + negated_src.negate = true; + src.negate = false; + + bld.AND(temp, src, negated_src); + emit_find_msb_using_lzd(bld, result, temp, false); + } else { + bld.FBL(result, op[0]); + } + break; + + case nir_op_ubitfield_extract: + case nir_op_ibitfield_extract: + unreachable("should have been lowered"); + case nir_op_ubfe: + case nir_op_ibfe: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.BFE(result, op[2], op[1], op[0]); + break; + case nir_op_bfm: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.BFI1(result, op[0], op[1]); + break; + case nir_op_bfi: + assert(nir_dest_bit_size(instr->dest.dest) < 64); + bld.BFI2(result, op[0], op[1], op[2]); + break; + + case nir_op_bitfield_insert: + unreachable("not reached: should have been lowered"); + + case nir_op_ishl: + bld.SHL(result, op[0], op[1]); + break; + case nir_op_ishr: + bld.ASR(result, op[0], op[1]); + break; + case nir_op_ushr: + bld.SHR(result, op[0], op[1]); + break; + + case nir_op_pack_half_2x16_split: + bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]); + break; + + case nir_op_ffma: + inst = bld.MAD(result, op[2], op[1], op[0]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_flrp: + inst = bld.LRP(result, op[0], op[1], op[2]); + inst->saturate = instr->dest.saturate; + break; + + case nir_op_bcsel: + if (optimize_frontfacing_ternary(instr, result)) + return; + + bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ); + inst = bld.SEL(result, op[1], op[2]); + inst->predicate = BRW_PREDICATE_NORMAL; + break; + + case nir_op_extract_u8: + case nir_op_extract_i8: { + const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8); + nir_const_value *byte = nir_src_as_const_value(instr->src[1].src); + assert(byte != NULL); + bld.MOV(result, subscript(op[0], type, byte->u32[0])); + break; + } + + case nir_op_extract_u16: + case nir_op_extract_i16: { + const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16); + nir_const_value *word = nir_src_as_const_value(instr->src[1].src); + assert(word != NULL); + bld.MOV(result, subscript(op[0], type, word->u32[0])); + break; + } + + default: + unreachable("unhandled instruction"); + } + + /* If we need to do a boolean resolve, replace the result with -(x & 1) + * to sign extend the low bit to 0/~0 + */ + if (devinfo->gen <= 5 && + (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) { + fs_reg masked = vgrf(glsl_type::int_type); + bld.AND(masked, result, brw_imm_d(1)); + masked.negate = true; + bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked); + } +} + +void +fs_visitor::nir_emit_load_const(const fs_builder &bld, + nir_load_const_instr *instr) +{ + const brw_reg_type reg_type = + instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF; + fs_reg reg = bld.vgrf(reg_type, instr->def.num_components); + + switch (instr->def.bit_size) { + case 32: + for (unsigned i = 0; i < instr->def.num_components; i++) + bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i])); + break; + + case 64: + for (unsigned i = 0; i < instr->def.num_components; i++) + bld.MOV(offset(reg, bld, i), + setup_imm_df(bld, instr->value.f64[i])); + break; + + default: + unreachable("Invalid bit size"); + } + + nir_ssa_values[instr->def.index] = reg; +} + +fs_reg +fs_visitor::get_nir_src(const nir_src &src) +{ + fs_reg reg; + if (src.is_ssa) { + if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) { + const brw_reg_type reg_type = src.ssa->bit_size == 32 ? + BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF; + reg = bld.vgrf(reg_type, src.ssa->num_components); + } else { + reg = nir_ssa_values[src.ssa->index]; + } + } else { + /* We don't handle indirects on locals */ + assert(src.reg.indirect == NULL); + reg = offset(nir_locals[src.reg.reg->index], bld, + src.reg.base_offset * src.reg.reg->num_components); + } + + /* to avoid floating-point denorm flushing problems, set the type by + * default to D - instructions that need floating point semantics will set + * this to F if they need to + */ + return retype(reg, BRW_REGISTER_TYPE_D); +} + +/** + * Return an IMM for constants; otherwise call get_nir_src() as normal. + */ +fs_reg +fs_visitor::get_nir_src_imm(const nir_src &src) +{ + nir_const_value *val = nir_src_as_const_value(src); + return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src); +} + +fs_reg +fs_visitor::get_nir_dest(const nir_dest &dest) +{ + if (dest.is_ssa) { + const brw_reg_type reg_type = + dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF; + nir_ssa_values[dest.ssa.index] = + bld.vgrf(reg_type, dest.ssa.num_components); + return nir_ssa_values[dest.ssa.index]; + } else { + /* We don't handle indirects on locals */ + assert(dest.reg.indirect == NULL); + return offset(nir_locals[dest.reg.reg->index], bld, + dest.reg.base_offset * dest.reg.reg->num_components); + } +} + +fs_reg +fs_visitor::get_nir_image_deref(const nir_deref_var *deref) +{ + fs_reg image(UNIFORM, deref->var->data.driver_location / 4, + BRW_REGISTER_TYPE_UD); + fs_reg indirect; + unsigned indirect_max = 0; + + for (const nir_deref *tail = &deref->deref; tail->child; + tail = tail->child) { + const nir_deref_array *deref_array = nir_deref_as_array(tail->child); + assert(tail->child->deref_type == nir_deref_type_array); + const unsigned size = glsl_get_length(tail->type); + const unsigned element_size = type_size_scalar(deref_array->deref.type); + const unsigned base = MIN2(deref_array->base_offset, size - 1); + image = offset(image, bld, base * element_size); + + if (deref_array->deref_array_type == nir_deref_array_type_indirect) { + fs_reg tmp = vgrf(glsl_type::uint_type); + + /* Accessing an invalid surface index with the dataport can result + * in a hang. According to the spec "if the index used to + * select an individual element is negative or greater than or + * equal to the size of the array, the results of the operation + * are undefined but may not lead to termination" -- which is one + * of the possible outcomes of the hang. Clamp the index to + * prevent access outside of the array bounds. + */ + bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect), + BRW_REGISTER_TYPE_UD), + brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L); + + indirect_max += element_size * (tail->type->length - 1); + + bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4)); + if (indirect.file == BAD_FILE) { + indirect = tmp; + } else { + bld.ADD(indirect, indirect, tmp); + } + } + } + + if (indirect.file == BAD_FILE) { + return image; + } else { + /* Emit a pile of MOVs to load the uniform into a temporary. The + * dead-code elimination pass will get rid of what we don't use. + */ + fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE); + for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) { + bld.emit(SHADER_OPCODE_MOV_INDIRECT, + offset(tmp, bld, j), offset(image, bld, j), + indirect, brw_imm_ud((indirect_max + 1) * 4)); + } + return tmp; + } +} + +void +fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst, + unsigned wr_mask) +{ + for (unsigned i = 0; i < 4; i++) { + if (!((wr_mask >> i) & 1)) + continue; + + fs_inst *new_inst = new(mem_ctx) fs_inst(inst); + new_inst->dst = offset(new_inst->dst, bld, i); + for (unsigned j = 0; j < new_inst->sources; j++) + if (new_inst->src[j].file == VGRF) + new_inst->src[j] = offset(new_inst->src[j], bld, i); + + bld.emit(new_inst); + } +} + +/** + * Get the matching channel register datatype for an image intrinsic of the + * specified GLSL image type. + */ +static brw_reg_type +get_image_base_type(const glsl_type *type) +{ + switch ((glsl_base_type)type->sampled_type) { + case GLSL_TYPE_UINT: + return BRW_REGISTER_TYPE_UD; + case GLSL_TYPE_INT: + return BRW_REGISTER_TYPE_D; + case GLSL_TYPE_FLOAT: + return BRW_REGISTER_TYPE_F; + default: + unreachable("Not reached."); + } +} + +/** + * Get the appropriate atomic op for an image atomic intrinsic. + */ +static unsigned +get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type) +{ + switch (op) { + case nir_intrinsic_image_atomic_add: + return BRW_AOP_ADD; + case nir_intrinsic_image_atomic_min: + return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? + BRW_AOP_IMIN : BRW_AOP_UMIN); + case nir_intrinsic_image_atomic_max: + return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ? + BRW_AOP_IMAX : BRW_AOP_UMAX); + case nir_intrinsic_image_atomic_and: + return BRW_AOP_AND; + case nir_intrinsic_image_atomic_or: + return BRW_AOP_OR; + case nir_intrinsic_image_atomic_xor: + return BRW_AOP_XOR; + case nir_intrinsic_image_atomic_exchange: + return BRW_AOP_MOV; + case nir_intrinsic_image_atomic_comp_swap: + return BRW_AOP_CMPWR; + default: + unreachable("Not reachable."); + } +} + +static fs_inst * +emit_pixel_interpolater_send(const fs_builder &bld, + enum opcode opcode, + const fs_reg &dst, + const fs_reg &src, + const fs_reg &desc, + glsl_interp_mode interpolation) +{ + struct brw_wm_prog_data *wm_prog_data = + brw_wm_prog_data(bld.shader->stage_prog_data); + fs_inst *inst; + fs_reg payload; + int mlen; + + if (src.file == BAD_FILE) { + /* Dummy payload */ + payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1); + mlen = 1; + } else { + payload = src; + mlen = 2 * bld.dispatch_width() / 8; + } + + inst = bld.emit(opcode, dst, payload, desc); + inst->mlen = mlen; + /* 2 floats per slot returned */ + inst->size_written = 2 * dst.component_size(inst->exec_size); + inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE; + + wm_prog_data->pulls_bary = true; + + return inst; +} + +/** + * Computes 1 << x, given a D/UD register containing some value x. + */ +static fs_reg +intexp2(const fs_builder &bld, const fs_reg &x) +{ + assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D); + + fs_reg result = bld.vgrf(x.type, 1); + fs_reg one = bld.vgrf(x.type, 1); + + bld.MOV(one, retype(brw_imm_d(1), one.type)); + bld.SHL(result, one, x); + return result; +} + +void +fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src) +{ + assert(stage == MESA_SHADER_GEOMETRY); + + struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); + + if (gs_compile->control_data_header_size_bits == 0) + return; + + /* We can only do EndPrimitive() functionality when the control data + * consists of cut bits. Fortunately, the only time it isn't is when the + * output type is points, in which case EndPrimitive() is a no-op. + */ + if (gs_prog_data->control_data_format != + GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) { + return; + } + + /* Cut bits use one bit per vertex. */ + assert(gs_compile->control_data_bits_per_vertex == 1); + + fs_reg vertex_count = get_nir_src(vertex_count_nir_src); + vertex_count.type = BRW_REGISTER_TYPE_UD; + + /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting + * vertex n, 0 otherwise. So all we need to do here is mark bit + * (vertex_count - 1) % 32 in the cut_bits register to indicate that + * EndPrimitive() was called after emitting vertex (vertex_count - 1); + * vec4_gs_visitor::emit_control_data_bits() will take care of the rest. + * + * Note that if EndPrimitive() is called before emitting any vertices, this + * will cause us to set bit 31 of the control_data_bits register to 1. + * That's fine because: + * + * - If max_vertices < 32, then vertex number 31 (zero-based) will never be + * output, so the hardware will ignore cut bit 31. + * + * - If max_vertices == 32, then vertex number 31 is guaranteed to be the + * last vertex, so setting cut bit 31 has no effect (since the primitive + * is automatically ended when the GS terminates). + * + * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the + * control_data_bits register to 0 when the first vertex is emitted. + */ + + const fs_builder abld = bld.annotate("end primitive"); + + /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */ + fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); + fs_reg mask = intexp2(abld, prev_count); + /* Note: we're relying on the fact that the GEN SHL instruction only pays + * attention to the lower 5 bits of its second source argument, so on this + * architecture, 1 << (vertex_count - 1) is equivalent to 1 << + * ((vertex_count - 1) % 32). + */ + abld.OR(this->control_data_bits, this->control_data_bits, mask); +} + +void +fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count) +{ + assert(stage == MESA_SHADER_GEOMETRY); + assert(gs_compile->control_data_bits_per_vertex != 0); + + struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); + + const fs_builder abld = bld.annotate("emit control data bits"); + const fs_builder fwa_bld = bld.exec_all(); + + /* We use a single UD register to accumulate control data bits (32 bits + * for each of the SIMD8 channels). So we need to write a DWord (32 bits) + * at a time. + * + * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets. + * We have select a 128-bit group via the Global and Per-Slot Offsets, then + * use the Channel Mask phase to enable/disable which DWord within that + * group to write. (Remember, different SIMD8 channels may have emitted + * different numbers of vertices, so we may need per-slot offsets.) + * + * Channel masking presents an annoying problem: we may have to replicate + * the data up to 4 times: + * + * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data. + * + * To avoid penalizing shaders that emit a small number of vertices, we + * can avoid these sometimes: if the size of the control data header is + * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land + * land in the same 128-bit group, so we can skip per-slot offsets. + * + * Similarly, if the control data header is <= 32 bits, there is only one + * DWord, so we can skip channel masks. + */ + enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8; + + fs_reg channel_mask, per_slot_offset; + + if (gs_compile->control_data_header_size_bits > 32) { + opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; + channel_mask = vgrf(glsl_type::uint_type); + } + + if (gs_compile->control_data_header_size_bits > 128) { + opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT; + per_slot_offset = vgrf(glsl_type::uint_type); + } + + /* Figure out which DWord we're trying to write to using the formula: + * + * dword_index = (vertex_count - 1) * bits_per_vertex / 32 + * + * Since bits_per_vertex is a power of two, and is known at compile + * time, this can be optimized to: + * + * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex)) + */ + if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) { + fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu)); + unsigned log2_bits_per_vertex = + util_last_bit(gs_compile->control_data_bits_per_vertex); + abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex)); + + if (per_slot_offset.file != BAD_FILE) { + /* Set the per-slot offset to dword_index / 4, so that we'll write to + * the appropriate OWord within the control data header. + */ + abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u)); + } + + /* Set the channel masks to 1 << (dword_index % 4), so that we'll + * write to the appropriate DWORD within the OWORD. + */ + fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + fwa_bld.AND(channel, dword_index, brw_imm_ud(3u)); + channel_mask = intexp2(fwa_bld, channel); + /* Then the channel masks need to be in bits 23:16. */ + fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u)); + } + + /* Store the control data bits in the message payload and send it. */ + int mlen = 2; + if (channel_mask.file != BAD_FILE) + mlen += 4; /* channel masks, plus 3 extra copies of the data */ + if (per_slot_offset.file != BAD_FILE) + mlen++; + + fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen); + fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen); + int i = 0; + sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); + if (per_slot_offset.file != BAD_FILE) + sources[i++] = per_slot_offset; + if (channel_mask.file != BAD_FILE) + sources[i++] = channel_mask; + while (i < mlen) { + sources[i++] = this->control_data_bits; + } + + abld.LOAD_PAYLOAD(payload, sources, mlen, mlen); + fs_inst *inst = abld.emit(opcode, reg_undef, payload); + inst->mlen = mlen; + /* We need to increment Global Offset by 256-bits to make room for + * Broadwell's extra "Vertex Count" payload at the beginning of the + * URB entry. Since this is an OWord message, Global Offset is counted + * in 128-bit units, so we must set it to 2. + */ + if (gs_prog_data->static_vertex_count == -1) + inst->offset = 2; +} + +void +fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count, + unsigned stream_id) +{ + /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */ + + /* Note: we are calling this *before* increasing vertex_count, so + * this->vertex_count == vertex_count - 1 in the formula above. + */ + + /* Stream mode uses 2 bits per vertex */ + assert(gs_compile->control_data_bits_per_vertex == 2); + + /* Must be a valid stream */ + assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS); + + /* Control data bits are initialized to 0 so we don't have to set any + * bits when sending vertices to stream 0. + */ + if (stream_id == 0) + return; + + const fs_builder abld = bld.annotate("set stream control data bits", NULL); + + /* reg::sid = stream_id */ + fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.MOV(sid, brw_imm_ud(stream_id)); + + /* reg:shift_count = 2 * (vertex_count - 1) */ + fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.SHL(shift_count, vertex_count, brw_imm_ud(1u)); + + /* Note: we're relying on the fact that the GEN SHL instruction only pays + * attention to the lower 5 bits of its second source argument, so on this + * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to + * stream_id << ((2 * (vertex_count - 1)) % 32). + */ + fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + abld.SHL(mask, sid, shift_count); + abld.OR(this->control_data_bits, this->control_data_bits, mask); +} + +void +fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src, + unsigned stream_id) +{ + assert(stage == MESA_SHADER_GEOMETRY); + + struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); + + fs_reg vertex_count = get_nir_src(vertex_count_nir_src); + vertex_count.type = BRW_REGISTER_TYPE_UD; + + /* Haswell and later hardware ignores the "Render Stream Select" bits + * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled, + * and instead sends all primitives down the pipeline for rasterization. + * If the SOL stage is enabled, "Render Stream Select" is honored and + * primitives bound to non-zero streams are discarded after stream output. + * + * Since the only purpose of primives sent to non-zero streams is to + * be recorded by transform feedback, we can simply discard all geometry + * bound to these streams when transform feedback is disabled. + */ + if (stream_id > 0 && !nir->info->has_transform_feedback_varyings) + return; + + /* If we're outputting 32 control data bits or less, then we can wait + * until the shader is over to output them all. Otherwise we need to + * output them as we go. Now is the time to do it, since we're about to + * output the vertex_count'th vertex, so it's guaranteed that the + * control data bits associated with the (vertex_count - 1)th vertex are + * correct. + */ + if (gs_compile->control_data_header_size_bits > 32) { + const fs_builder abld = + bld.annotate("emit vertex: emit control data bits"); + + /* Only emit control data bits if we've finished accumulating a batch + * of 32 bits. This is the case when: + * + * (vertex_count * bits_per_vertex) % 32 == 0 + * + * (in other words, when the last 5 bits of vertex_count * + * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some + * integer n (which is always the case, since bits_per_vertex is + * always 1 or 2), this is equivalent to requiring that the last 5-n + * bits of vertex_count are 0: + * + * vertex_count & (2^(5-n) - 1) == 0 + * + * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is + * equivalent to: + * + * vertex_count & (32 / bits_per_vertex - 1) == 0 + * + * TODO: If vertex_count is an immediate, we could do some of this math + * at compile time... + */ + fs_inst *inst = + abld.AND(bld.null_reg_d(), vertex_count, + brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u)); + inst->conditional_mod = BRW_CONDITIONAL_Z; + + abld.IF(BRW_PREDICATE_NORMAL); + /* If vertex_count is 0, then no control data bits have been + * accumulated yet, so we can skip emitting them. + */ + abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u), + BRW_CONDITIONAL_NEQ); + abld.IF(BRW_PREDICATE_NORMAL); + emit_gs_control_data_bits(vertex_count); + abld.emit(BRW_OPCODE_ENDIF); + + /* Reset control_data_bits to 0 so we can start accumulating a new + * batch. + * + * Note: in the case where vertex_count == 0, this neutralizes the + * effect of any call to EndPrimitive() that the shader may have + * made before outputting its first vertex. + */ + inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u)); + inst->force_writemask_all = true; + abld.emit(BRW_OPCODE_ENDIF); + } + + emit_urb_writes(vertex_count); + + /* In stream mode we have to set control data bits for all vertices + * unless we have disabled control data bits completely (which we do + * do for GL_POINTS outputs that don't use streams). + */ + if (gs_compile->control_data_header_size_bits > 0 && + gs_prog_data->control_data_format == + GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) { + set_gs_stream_control_data_bits(vertex_count, stream_id); + } +} + +void +fs_visitor::emit_gs_input_load(const fs_reg &dst, + const nir_src &vertex_src, + unsigned base_offset, + const nir_src &offset_src, + unsigned num_components, + unsigned first_component) +{ + struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); + + nir_const_value *vertex_const = nir_src_as_const_value(vertex_src); + nir_const_value *offset_const = nir_src_as_const_value(offset_src); + const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8; + + /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y], + * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only + * gl_PointSize is available as a GS input, however, so it must be that. + */ + const bool is_point_size = (base_offset == 0); + + /* TODO: figure out push input layout for invocations == 1 */ + if (gs_prog_data->invocations == 1 && + offset_const != NULL && vertex_const != NULL && + 4 * (base_offset + offset_const->u32[0]) < push_reg_count) { + int imm_offset = (base_offset + offset_const->u32[0]) * 4 + + vertex_const->u32[0] * push_reg_count; + /* This input was pushed into registers. */ + if (is_point_size) { + /* gl_PointSize comes in .w */ + bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type)); + } else { + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(dst, bld, i), + fs_reg(ATTR, imm_offset + i + first_component, dst.type)); + } + } + return; + } + + /* Resort to the pull model. Ensure the VUE handles are provided. */ + gs_prog_data->base.include_vue_handles = true; + + unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2; + fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + + if (gs_prog_data->invocations == 1) { + if (vertex_const) { + /* The vertex index is constant; just select the proper URB handle. */ + icp_handle = + retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0), + BRW_REGISTER_TYPE_UD); + } else { + /* The vertex index is non-constant. We need to use indirect + * addressing to fetch the proper URB handle. + * + * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0> + * indicating that channel <n> should read the handle from + * DWord <n>. We convert that to bytes by multiplying by 4. + * + * Next, we convert the vertex index to bytes by multiplying + * by 32 (shifting by 5), and add the two together. This is + * the final indirect byte offset. + */ + fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1); + fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + + /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */ + bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210))); + /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */ + bld.SHL(channel_offsets, sequence, brw_imm_ud(2u)); + /* Convert vertex_index to bytes (multiply by 32) */ + bld.SHL(vertex_offset_bytes, + retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), + brw_imm_ud(5u)); + bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets); + + /* Use first_icp_handle as the base offset. There is one register + * of URB handles per vertex, so inform the register allocator that + * we might read up to nir->info->gs.vertices_in registers. + */ + bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, + retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type), + fs_reg(icp_offset_bytes), + brw_imm_ud(nir->info->gs.vertices_in * REG_SIZE)); + } + } else { + assert(gs_prog_data->invocations > 1); + + if (vertex_const) { + assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5); + bld.MOV(icp_handle, + retype(brw_vec1_grf(first_icp_handle + + vertex_const->i32[0] / 8, + vertex_const->i32[0] % 8), + BRW_REGISTER_TYPE_UD)); + } else { + /* The vertex index is non-constant. We need to use indirect + * addressing to fetch the proper URB handle. + * + */ + fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + + /* Convert vertex_index to bytes (multiply by 4) */ + bld.SHL(icp_offset_bytes, + retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), + brw_imm_ud(2u)); + + /* Use first_icp_handle as the base offset. There is one DWord + * of URB handles per vertex, so inform the register allocator that + * we might read up to ceil(nir->info->gs.vertices_in / 8) registers. + */ + bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, + retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type), + fs_reg(icp_offset_bytes), + brw_imm_ud(DIV_ROUND_UP(nir->info->gs.vertices_in, 8) * + REG_SIZE)); + } + } + + fs_inst *inst; + + fs_reg tmp_dst = dst; + fs_reg indirect_offset = get_nir_src(offset_src); + unsigned num_iterations = 1; + unsigned orig_num_components = num_components; + + if (type_sz(dst.type) == 8) { + if (num_components > 2) { + num_iterations = 2; + num_components = 2; + } + fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type); + tmp_dst = tmp; + first_component = first_component / 2; + } + + for (unsigned iter = 0; iter < num_iterations; iter++) { + if (offset_const) { + /* Constant indexing - use global offset. */ + if (first_component != 0) { + unsigned read_components = num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle); + inst->size_written = read_components * + tmp.component_size(inst->exec_size); + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(tmp_dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst, + icp_handle); + inst->size_written = num_components * + tmp_dst.component_size(inst->exec_size); + } + inst->offset = base_offset + offset_const->u32[0]; + inst->mlen = 1; + } else { + /* Indirect indexing - use per-slot offsets as well. */ + const fs_reg srcs[] = { icp_handle, indirect_offset }; + unsigned read_components = num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); + bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); + if (first_component != 0) { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, + payload); + inst->size_written = read_components * + tmp.component_size(inst->exec_size); + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(tmp_dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst, + payload); + inst->size_written = num_components * + tmp_dst.component_size(inst->exec_size); + } + inst->offset = base_offset; + inst->mlen = 2; + } + + if (type_sz(dst.type) == 8) { + shuffle_32bit_load_result_to_64bit_data( + bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components); + + for (unsigned c = 0; c < num_components; c++) + bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c)); + } + + if (num_iterations > 1) { + num_components = orig_num_components - 2; + if(offset_const) { + base_offset++; + } else { + fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u)); + indirect_offset = new_indirect; + } + } + } + + if (is_point_size) { + /* Read the whole VUE header (because of alignment) and read .w. */ + fs_reg tmp = bld.vgrf(dst.type, 4); + inst->dst = tmp; + inst->size_written = 4 * REG_SIZE; + bld.MOV(dst, offset(tmp, bld, 3)); + } +} + +fs_reg +fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr) +{ + nir_src *offset_src = nir_get_io_offset_src(instr); + nir_const_value *const_value = nir_src_as_const_value(*offset_src); + + if (const_value) { + /* The only constant offset we should find is 0. brw_nir.c's + * add_const_offset_to_base() will fold other constant offsets + * into instr->const_index[0]. + */ + assert(const_value->u32[0] == 0); + return fs_reg(); + } + + return get_nir_src(*offset_src); +} + +static void +do_untyped_vector_read(const fs_builder &bld, + const fs_reg dest, + const fs_reg surf_index, + const fs_reg offset_reg, + unsigned num_components) +{ + if (type_sz(dest.type) == 4) { + fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg, + 1 /* dims */, + num_components, + BRW_PREDICATE_NONE); + read_result.type = dest.type; + for (unsigned i = 0; i < num_components; i++) + bld.MOV(offset(dest, bld, i), offset(read_result, bld, i)); + } else if (type_sz(dest.type) == 8) { + /* Reading a dvec, so we need to: + * + * 1. Multiply num_components by 2, to account for the fact that we + * need to read 64-bit components. + * 2. Shuffle the result of the load to form valid 64-bit elements + * 3. Emit a second load (for components z/w) if needed. + */ + fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD); + bld.MOV(read_offset, offset_reg); + + int iters = num_components <= 2 ? 1 : 2; + + /* Load the dvec, the first iteration loads components x/y, the second + * iteration, if needed, loads components z/w + */ + for (int it = 0; it < iters; it++) { + /* Compute number of components to read in this iteration */ + int iter_components = MIN2(2, num_components); + num_components -= iter_components; + + /* Read. Since this message reads 32-bit components, we need to + * read twice as many components. + */ + fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset, + 1 /* dims */, + iter_components * 2, + BRW_PREDICATE_NONE); + + /* Shuffle the 32-bit load result into valid 64-bit data */ + const fs_reg packed_result = bld.vgrf(dest.type, iter_components); + shuffle_32bit_load_result_to_64bit_data( + bld, packed_result, read_result, iter_components); + + /* Move each component to its destination */ + read_result = retype(read_result, BRW_REGISTER_TYPE_DF); + for (int c = 0; c < iter_components; c++) { + bld.MOV(offset(dest, bld, it * 2 + c), + offset(packed_result, bld, c)); + } + + bld.ADD(read_offset, read_offset, brw_imm_ud(16)); + } + } else { + unreachable("Unsupported type"); + } +} + +void +fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_VERTEX); + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_load_vertex_id: + unreachable("should be lowered by lower_vertex_id()"); + + case nir_intrinsic_load_vertex_id_zero_base: + case nir_intrinsic_load_base_vertex: + case nir_intrinsic_load_instance_id: + case nir_intrinsic_load_base_instance: + case nir_intrinsic_load_draw_id: { + gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); + fs_reg val = nir_system_values[sv]; + assert(val.file != BAD_FILE); + dest.type = val.type; + bld.MOV(dest, val); + break; + } + + case nir_intrinsic_load_input: { + fs_reg src = fs_reg(ATTR, instr->const_index[0], dest.type); + unsigned first_component = nir_intrinsic_component(instr); + unsigned num_components = instr->num_components; + enum brw_reg_type type = dest.type; + + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + assert(const_offset && "Indirect input loads not allowed"); + src = offset(src, bld, const_offset->u32[0]); + + for (unsigned j = 0; j < num_components; j++) { + bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component)); + } + + if (type == BRW_REGISTER_TYPE_DF) { + /* Once the double vector is read, set again its original register + * type to continue with normal execution. + */ + src = retype(src, type); + dest = retype(dest, type); + } + + if (type_sz(src.type) == 8) { + shuffle_32bit_load_result_to_64bit_data(bld, + dest, + retype(dest, BRW_REGISTER_TYPE_F), + instr->num_components); + } + break; + } + + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +void +fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_TESS_CTRL); + struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key; + struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data); + + fs_reg dst; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dst = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_load_primitive_id: + bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1))); + break; + case nir_intrinsic_load_invocation_id: + bld.MOV(retype(dst, invocation_id.type), invocation_id); + break; + case nir_intrinsic_load_patch_vertices_in: + bld.MOV(retype(dst, BRW_REGISTER_TYPE_D), + brw_imm_d(tcs_key->input_vertices)); + break; + + case nir_intrinsic_barrier: { + if (tcs_prog_data->instances == 1) + break; + + fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + fs_reg m0_2 = component(m0, 2); + + const fs_builder chanbld = bld.exec_all().group(1, 0); + + /* Zero the message header */ + bld.exec_all().MOV(m0, brw_imm_ud(0u)); + + /* Copy "Barrier ID" from r0.2, bits 16:13 */ + chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD), + brw_imm_ud(INTEL_MASK(16, 13))); + + /* Shift it up to bits 27:24. */ + chanbld.SHL(m0_2, m0_2, brw_imm_ud(11)); + + /* Set the Barrier Count and the enable bit */ + chanbld.OR(m0_2, m0_2, + brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15))); + + bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0); + break; + } + + case nir_intrinsic_load_input: + unreachable("nir_lower_io should never give us these."); + break; + + case nir_intrinsic_load_per_vertex_input: { + fs_reg indirect_offset = get_indirect_offset(instr); + unsigned imm_offset = instr->const_index[0]; + + const nir_src &vertex_src = instr->src[0]; + nir_const_value *vertex_const = nir_src_as_const_value(vertex_src); + + fs_inst *inst; + + fs_reg icp_handle; + + if (vertex_const) { + /* Emit a MOV to resolve <0,1,0> regioning. */ + icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + bld.MOV(icp_handle, + retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3), + vertex_const->i32[0] & 7), + BRW_REGISTER_TYPE_UD)); + } else if (tcs_prog_data->instances == 1 && + vertex_src.is_ssa && + vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic && + nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) { + /* For the common case of only 1 instance, an array index of + * gl_InvocationID means reading g1. Skip all the indirect work. + */ + icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD); + } else { + /* The vertex index is non-constant. We need to use indirect + * addressing to fetch the proper URB handle. + */ + icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + + /* Each ICP handle is a single DWord (4 bytes) */ + fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + bld.SHL(vertex_offset_bytes, + retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD), + brw_imm_ud(2u)); + + /* Start at g1. We might read up to 4 registers. */ + bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle, + retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes, + brw_imm_ud(4 * REG_SIZE)); + } + + /* We can only read two double components with each URB read, so + * we send two read messages in that case, each one loading up to + * two double components. + */ + unsigned num_iterations = 1; + unsigned num_components = instr->num_components; + unsigned first_component = nir_intrinsic_component(instr); + fs_reg orig_dst = dst; + if (type_sz(dst.type) == 8) { + first_component = first_component / 2; + if (instr->num_components > 2) { + num_iterations = 2; + num_components = 2; + } + + fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type); + dst = tmp; + } + + for (unsigned iter = 0; iter < num_iterations; iter++) { + if (indirect_offset.file == BAD_FILE) { + /* Constant indexing - use global offset. */ + if (first_component != 0) { + unsigned read_components = num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle); + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle); + } + inst->offset = imm_offset; + inst->mlen = 1; + } else { + /* Indirect indexing - use per-slot offsets as well. */ + const fs_reg srcs[] = { icp_handle, indirect_offset }; + fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); + bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); + if (first_component != 0) { + unsigned read_components = num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, + payload); + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, + payload); + } + inst->offset = imm_offset; + inst->mlen = 2; + } + inst->size_written = (num_components + first_component) * + inst->dst.component_size(inst->exec_size); + + /* If we are reading 64-bit data using 32-bit read messages we need + * build proper 64-bit data elements by shuffling the low and high + * 32-bit components around like we do for other things like UBOs + * or SSBOs. + */ + if (type_sz(dst.type) == 8) { + shuffle_32bit_load_result_to_64bit_data( + bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components); + + for (unsigned c = 0; c < num_components; c++) { + bld.MOV(offset(orig_dst, bld, iter * 2 + c), + offset(dst, bld, c)); + } + } + + /* Copy the temporary to the destination to deal with writemasking. + * + * Also attempt to deal with gl_PointSize being in the .w component. + */ + if (inst->offset == 0 && indirect_offset.file == BAD_FILE) { + assert(type_sz(dst.type) < 8); + inst->dst = bld.vgrf(dst.type, 4); + inst->size_written = 4 * REG_SIZE; + bld.MOV(dst, offset(inst->dst, bld, 3)); + } + + /* If we are loading double data and we need a second read message + * adjust the write offset + */ + if (num_iterations > 1) { + num_components = instr->num_components - 2; + imm_offset++; + } + } + break; + } + + case nir_intrinsic_load_output: + case nir_intrinsic_load_per_vertex_output: { + fs_reg indirect_offset = get_indirect_offset(instr); + unsigned imm_offset = instr->const_index[0]; + unsigned first_component = nir_intrinsic_component(instr); + + fs_inst *inst; + if (indirect_offset.file == BAD_FILE) { + /* Replicate the patch handle to all enabled channels */ + fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + bld.MOV(patch_handle, + retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)); + + { + if (first_component != 0) { + unsigned read_components = + instr->num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, + patch_handle); + inst->size_written = read_components * REG_SIZE; + for (unsigned i = 0; i < instr->num_components; i++) { + bld.MOV(offset(dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, + patch_handle); + inst->size_written = instr->num_components * REG_SIZE; + } + inst->offset = imm_offset; + inst->mlen = 1; + } + } else { + /* Indirect indexing - use per-slot offsets as well. */ + const fs_reg srcs[] = { + retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), + indirect_offset + }; + fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); + bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); + if (first_component != 0) { + unsigned read_components = + instr->num_components + first_component; + fs_reg tmp = bld.vgrf(dst.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, + payload); + inst->size_written = read_components * REG_SIZE; + for (unsigned i = 0; i < instr->num_components; i++) { + bld.MOV(offset(dst, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, + payload); + inst->size_written = instr->num_components * REG_SIZE; + } + inst->offset = imm_offset; + inst->mlen = 2; + } + break; + } + + case nir_intrinsic_store_output: + case nir_intrinsic_store_per_vertex_output: { + fs_reg value = get_nir_src(instr->src[0]); + bool is_64bit = (instr->src[0].is_ssa ? + instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64; + fs_reg indirect_offset = get_indirect_offset(instr); + unsigned imm_offset = instr->const_index[0]; + unsigned swiz = BRW_SWIZZLE_XYZW; + unsigned mask = instr->const_index[1]; + unsigned header_regs = 0; + fs_reg srcs[7]; + srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD); + + if (indirect_offset.file != BAD_FILE) { + srcs[header_regs++] = indirect_offset; + } + + if (mask == 0) + break; + + unsigned num_components = util_last_bit(mask); + enum opcode opcode; + + /* We can only pack two 64-bit components in a single message, so send + * 2 messages if we have more components + */ + unsigned num_iterations = 1; + unsigned iter_components = num_components; + unsigned first_component = nir_intrinsic_component(instr); + if (is_64bit) { + first_component = first_component / 2; + if (instr->num_components > 2) { + num_iterations = 2; + iter_components = 2; + } + } + + /* 64-bit data needs to me shuffled before we can write it to the URB. + * We will use this temporary to shuffle the components in each + * iteration. + */ + fs_reg tmp = + fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type); + + mask = mask << first_component; + + for (unsigned iter = 0; iter < num_iterations; iter++) { + if (!is_64bit && mask != WRITEMASK_XYZW) { + srcs[header_regs++] = brw_imm_ud(mask << 16); + opcode = indirect_offset.file != BAD_FILE ? + SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT : + SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; + } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) { + /* Expand the 64-bit mask to 32-bit channels. We only handle + * two channels in each iteration, so we only care about X/Y. + */ + unsigned mask32 = 0; + if (mask & WRITEMASK_X) + mask32 |= WRITEMASK_XY; + if (mask & WRITEMASK_Y) + mask32 |= WRITEMASK_ZW; + + /* If the mask does not include any of the channels X or Y there + * is nothing to do in this iteration. Move on to the next couple + * of 64-bit channels. + */ + if (!mask32) { + mask >>= 2; + imm_offset++; + continue; + } + + srcs[header_regs++] = brw_imm_ud(mask32 << 16); + opcode = indirect_offset.file != BAD_FILE ? + SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT : + SHADER_OPCODE_URB_WRITE_SIMD8_MASKED; + } else { + opcode = indirect_offset.file != BAD_FILE ? + SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT : + SHADER_OPCODE_URB_WRITE_SIMD8; + } + + for (unsigned i = 0; i < iter_components; i++) { + if (!(mask & (1 << (i + first_component)))) + continue; + + if (!is_64bit) { + srcs[header_regs + i + first_component] = + offset(value, bld, BRW_GET_SWZ(swiz, i)); + } else { + /* We need to shuffle the 64-bit data to match the layout + * expected by our 32-bit URB write messages. We use a temporary + * for that. + */ + unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i); + shuffle_64bit_data_for_32bit_write(bld, + retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F), + retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF), + 1); + + /* Now copy the data to the destination */ + fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type); + unsigned idx = 2 * i; + bld.MOV(dest, offset(tmp, bld, idx)); + bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1)); + srcs[header_regs + idx + first_component * 2] = dest; + srcs[header_regs + idx + 1 + first_component * 2] = + offset(dest, bld, 1); + } + } + + unsigned mlen = + header_regs + (is_64bit ? 2 * iter_components : iter_components) + + (is_64bit ? 2 * first_component : first_component); + fs_reg payload = + bld.vgrf(BRW_REGISTER_TYPE_UD, mlen); + bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs); + + fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload); + inst->offset = imm_offset; + inst->mlen = mlen; + + /* If this is a 64-bit attribute, select the next two 64-bit channels + * to be handled in the next iteration. + */ + if (is_64bit) { + mask >>= 2; + imm_offset++; + } + } + break; + } + + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +void +fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_TESS_EVAL); + struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data); + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_load_primitive_id: + bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1))); + break; + case nir_intrinsic_load_tess_coord: + /* gl_TessCoord is part of the payload in g1-3 */ + for (unsigned i = 0; i < 3; i++) { + bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0))); + } + break; + + case nir_intrinsic_load_input: + case nir_intrinsic_load_per_vertex_input: { + fs_reg indirect_offset = get_indirect_offset(instr); + unsigned imm_offset = instr->const_index[0]; + unsigned first_component = nir_intrinsic_component(instr); + + if (type_sz(dest.type) == 8) { + first_component = first_component / 2; + } + + fs_inst *inst; + if (indirect_offset.file == BAD_FILE) { + /* Arbitrarily only push up to 32 vec4 slots worth of data, + * which is 16 registers (since each holds 2 vec4 slots). + */ + const unsigned max_push_slots = 32; + if (imm_offset < max_push_slots) { + fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type); + for (int i = 0; i < instr->num_components; i++) { + unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) + + i + first_component; + bld.MOV(offset(dest, bld, i), component(src, comp)); + } + tes_prog_data->base.urb_read_length = + MAX2(tes_prog_data->base.urb_read_length, + DIV_ROUND_UP(imm_offset + 1, 2)); + } else { + /* Replicate the patch handle to all enabled channels */ + const fs_reg srcs[] = { + retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD) + }; + fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1); + bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0); + + if (first_component != 0) { + unsigned read_components = + instr->num_components + first_component; + fs_reg tmp = bld.vgrf(dest.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, + patch_handle); + inst->size_written = read_components * REG_SIZE; + for (unsigned i = 0; i < instr->num_components; i++) { + bld.MOV(offset(dest, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, + patch_handle); + inst->size_written = instr->num_components * REG_SIZE; + } + inst->mlen = 1; + inst->offset = imm_offset; + } + } else { + /* Indirect indexing - use per-slot offsets as well. */ + + /* We can only read two double components with each URB read, so + * we send two read messages in that case, each one loading up to + * two double components. + */ + unsigned num_iterations = 1; + unsigned num_components = instr->num_components; + fs_reg orig_dest = dest; + if (type_sz(dest.type) == 8) { + if (instr->num_components > 2) { + num_iterations = 2; + num_components = 2; + } + fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type); + dest = tmp; + } + + for (unsigned iter = 0; iter < num_iterations; iter++) { + const fs_reg srcs[] = { + retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD), + indirect_offset + }; + fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2); + bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0); + + if (first_component != 0) { + unsigned read_components = + num_components + first_component; + fs_reg tmp = bld.vgrf(dest.type, read_components); + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp, + payload); + for (unsigned i = 0; i < num_components; i++) { + bld.MOV(offset(dest, bld, i), + offset(tmp, bld, i + first_component)); + } + } else { + inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, + payload); + } + inst->mlen = 2; + inst->offset = imm_offset; + inst->size_written = (num_components + first_component) * + inst->dst.component_size(inst->exec_size); + + /* If we are reading 64-bit data using 32-bit read messages we need + * build proper 64-bit data elements by shuffling the low and high + * 32-bit components around like we do for other things like UBOs + * or SSBOs. + */ + if (type_sz(dest.type) == 8) { + shuffle_32bit_load_result_to_64bit_data( + bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components); + + for (unsigned c = 0; c < num_components; c++) { + bld.MOV(offset(orig_dest, bld, iter * 2 + c), + offset(dest, bld, c)); + } + } + + /* If we are loading double data and we need a second read message + * adjust the offset + */ + if (num_iterations > 1) { + num_components = instr->num_components - 2; + imm_offset++; + } + } + } + break; + } + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +void +fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_GEOMETRY); + fs_reg indirect_offset; + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_load_primitive_id: + assert(stage == MESA_SHADER_GEOMETRY); + assert(brw_gs_prog_data(prog_data)->include_primitive_id); + bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), + retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD)); + break; + + case nir_intrinsic_load_input: + unreachable("load_input intrinsics are invalid for the GS stage"); + + case nir_intrinsic_load_per_vertex_input: + emit_gs_input_load(dest, instr->src[0], instr->const_index[0], + instr->src[1], instr->num_components, + nir_intrinsic_component(instr)); + break; + + case nir_intrinsic_emit_vertex_with_counter: + emit_gs_vertex(instr->src[0], instr->const_index[0]); + break; + + case nir_intrinsic_end_primitive_with_counter: + emit_gs_end_primitive(instr->src[0]); + break; + + case nir_intrinsic_set_vertex_count: + bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0])); + break; + + case nir_intrinsic_load_invocation_id: { + fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID]; + assert(val.file != BAD_FILE); + dest.type = val.type; + bld.MOV(dest, val); + break; + } + + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +/** + * Fetch the current render target layer index. + */ +static fs_reg +fetch_render_target_array_index(const fs_builder &bld) +{ + if (bld.shader->devinfo->gen >= 6) { + /* The render target array index is provided in the thread payload as + * bits 26:16 of r0.0. + */ + const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD); + bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1), + brw_imm_uw(0x7ff)); + return idx; + } else { + /* Pre-SNB we only ever render into the first layer of the framebuffer + * since layered rendering is not implemented. + */ + return brw_imm_ud(0); + } +} + +/** + * Fake non-coherent framebuffer read implemented using TXF to fetch from the + * framebuffer at the current fragment coordinates and sample index. + */ +fs_inst * +fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, + unsigned target) +{ + const struct gen_device_info *devinfo = bld.shader->devinfo; + + assert(bld.shader->stage == MESA_SHADER_FRAGMENT); + const brw_wm_prog_key *wm_key = + reinterpret_cast<const brw_wm_prog_key *>(key); + assert(!wm_key->coherent_fb_fetch); + const struct brw_wm_prog_data *wm_prog_data = + brw_wm_prog_data(stage_prog_data); + + /* Calculate the surface index relative to the start of the texture binding + * table block, since that's what the texturing messages expect. + */ + const unsigned surface = target + + wm_prog_data->binding_table.render_target_read_start - + wm_prog_data->base.binding_table.texture_start; + + brw_mark_surface_used( + bld.shader->stage_prog_data, + wm_prog_data->binding_table.render_target_read_start + target); + + /* Calculate the fragment coordinates. */ + const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3); + bld.MOV(offset(coords, bld, 0), pixel_x); + bld.MOV(offset(coords, bld, 1), pixel_y); + bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld)); + + /* Calculate the sample index and MCS payload when multisampling. Luckily + * the MCS fetch message behaves deterministically for UMS surfaces, so it + * shouldn't be necessary to recompile based on whether the framebuffer is + * CMS or UMS. + */ + if (wm_key->multisample_fbo && + nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) + nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup(); + + const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID]; + const fs_reg mcs = wm_key->multisample_fbo ? + emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg(); + + /* Use either a normal or a CMS texel fetch message depending on whether + * the framebuffer is single or multisample. On SKL+ use the wide CMS + * message just in case the framebuffer uses 16x multisampling, it should + * be equivalent to the normal CMS fetch for lower multisampling modes. + */ + const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL : + devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL : + SHADER_OPCODE_TXF_CMS_LOGICAL; + + /* Emit the instruction. */ + const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(), + sample, mcs, + brw_imm_ud(surface), brw_imm_ud(0), + fs_reg(), brw_imm_ud(3), brw_imm_ud(0) }; + STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS); + + fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs)); + inst->size_written = 4 * inst->dst.component_size(inst->exec_size); + + return inst; +} + +/** + * Actual coherent framebuffer read implemented using the native render target + * read message. Requires SKL+. + */ +static fs_inst * +emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target) +{ + assert(bld.shader->devinfo->gen >= 9); + fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst); + inst->target = target; + inst->size_written = 4 * inst->dst.component_size(inst->exec_size); + + return inst; +} + +static fs_reg +alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n) +{ + if (n && regs[0].file != BAD_FILE) { + return regs[0]; + + } else { + const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size); + + for (unsigned i = 0; i < n; i++) + regs[i] = tmp; + + return tmp; + } +} + +static fs_reg +alloc_frag_output(fs_visitor *v, unsigned location) +{ + assert(v->stage == MESA_SHADER_FRAGMENT); + const brw_wm_prog_key *const key = + reinterpret_cast<const brw_wm_prog_key *>(v->key); + const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION); + const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX); + + if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1)) + return alloc_temporary(v->bld, 4, &v->dual_src_output, 1); + + else if (l == FRAG_RESULT_COLOR) + return alloc_temporary(v->bld, 4, v->outputs, + MAX2(key->nr_color_regions, 1)); + + else if (l == FRAG_RESULT_DEPTH) + return alloc_temporary(v->bld, 1, &v->frag_depth, 1); + + else if (l == FRAG_RESULT_STENCIL) + return alloc_temporary(v->bld, 1, &v->frag_stencil, 1); + + else if (l == FRAG_RESULT_SAMPLE_MASK) + return alloc_temporary(v->bld, 1, &v->sample_mask, 1); + + else if (l >= FRAG_RESULT_DATA0 && + l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS) + return alloc_temporary(v->bld, 4, + &v->outputs[l - FRAG_RESULT_DATA0], 1); + + else + unreachable("Invalid location"); +} + +void +fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_FRAGMENT); + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_load_front_face: + bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), + *emit_frontfacing_interpolation()); + break; + + case nir_intrinsic_load_sample_pos: { + fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS]; + assert(sample_pos.file != BAD_FILE); + dest.type = sample_pos.type; + bld.MOV(dest, sample_pos); + bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1)); + break; + } + + case nir_intrinsic_load_layer_id: + dest.type = BRW_REGISTER_TYPE_UD; + bld.MOV(dest, fetch_render_target_array_index(bld)); + break; + + case nir_intrinsic_load_helper_invocation: + case nir_intrinsic_load_sample_mask_in: + case nir_intrinsic_load_sample_id: { + gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); + fs_reg val = nir_system_values[sv]; + assert(val.file != BAD_FILE); + dest.type = val.type; + bld.MOV(dest, val); + break; + } + + case nir_intrinsic_store_output: { + const fs_reg src = get_nir_src(instr->src[0]); + const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); + assert(const_offset && "Indirect output stores not allowed"); + const unsigned location = nir_intrinsic_base(instr) + + SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION); + const fs_reg new_dest = retype(alloc_frag_output(this, location), + src.type); + + for (unsigned j = 0; j < instr->num_components; j++) + bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j), + offset(src, bld, j)); + + break; + } + + case nir_intrinsic_load_output: { + const unsigned l = GET_FIELD(nir_intrinsic_base(instr), + BRW_NIR_FRAG_OUTPUT_LOCATION); + assert(l >= FRAG_RESULT_DATA0); + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + assert(const_offset && "Indirect output loads not allowed"); + const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0]; + const fs_reg tmp = bld.vgrf(dest.type, 4); + + if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch) + emit_coherent_fb_read(bld, tmp, target); + else + emit_non_coherent_fb_read(bld, tmp, target); + + for (unsigned j = 0; j < instr->num_components; j++) { + bld.MOV(offset(dest, bld, j), + offset(tmp, bld, nir_intrinsic_component(instr) + j)); + } + + break; + } + + case nir_intrinsic_discard: + case nir_intrinsic_discard_if: { + /* We track our discarded pixels in f0.1. By predicating on it, we can + * update just the flag bits that aren't yet discarded. If there's no + * condition, we emit a CMP of g0 != g0, so all currently executing + * channels will get turned off. + */ + fs_inst *cmp; + if (instr->intrinsic == nir_intrinsic_discard_if) { + cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]), + brw_imm_d(0), BRW_CONDITIONAL_Z); + } else { + fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0), + BRW_REGISTER_TYPE_UW)); + cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ); + } + cmp->predicate = BRW_PREDICATE_NORMAL; + cmp->flag_subreg = 1; + + if (devinfo->gen >= 6) { + emit_discard_jump(); + } + break; + } + + case nir_intrinsic_load_input: { + /* load_input is only used for flat inputs */ + unsigned base = nir_intrinsic_base(instr); + unsigned component = nir_intrinsic_component(instr); + unsigned num_components = instr->num_components; + enum brw_reg_type type = dest.type; + + /* Special case fields in the VUE header */ + if (base == VARYING_SLOT_LAYER) + component = 1; + else if (base == VARYING_SLOT_VIEWPORT) + component = 2; + + if (nir_dest_bit_size(instr->dest) == 64) { + /* const_index is in 32-bit type size units that could not be aligned + * with DF. We need to read the double vector as if it was a float + * vector of twice the number of components to fetch the right data. + */ + type = BRW_REGISTER_TYPE_F; + num_components *= 2; + } + + for (unsigned int i = 0; i < num_components; i++) { + struct brw_reg interp = interp_reg(base, component + i); + interp = suboffset(interp, 3); + bld.emit(FS_OPCODE_CINTERP, offset(retype(dest, type), bld, i), + retype(fs_reg(interp), type)); + } + + if (nir_dest_bit_size(instr->dest) == 64) { + shuffle_32bit_load_result_to_64bit_data(bld, + dest, + retype(dest, type), + instr->num_components); + } + break; + } + + case nir_intrinsic_load_barycentric_pixel: + case nir_intrinsic_load_barycentric_centroid: + case nir_intrinsic_load_barycentric_sample: + /* Do nothing - load_interpolated_input handling will handle it later. */ + break; + + case nir_intrinsic_load_barycentric_at_sample: { + const glsl_interp_mode interpolation = + (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); + + nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]); + + if (const_sample) { + unsigned msg_data = const_sample->i32[0] << 4; + + emit_pixel_interpolater_send(bld, + FS_OPCODE_INTERPOLATE_AT_SAMPLE, + dest, + fs_reg(), /* src */ + brw_imm_ud(msg_data), + interpolation); + } else { + const fs_reg sample_src = retype(get_nir_src(instr->src[0]), + BRW_REGISTER_TYPE_UD); + + if (nir_src_is_dynamically_uniform(instr->src[0])) { + const fs_reg sample_id = bld.emit_uniformize(sample_src); + const fs_reg msg_data = vgrf(glsl_type::uint_type); + bld.exec_all().group(1, 0) + .SHL(msg_data, sample_id, brw_imm_ud(4u)); + emit_pixel_interpolater_send(bld, + FS_OPCODE_INTERPOLATE_AT_SAMPLE, + dest, + fs_reg(), /* src */ + msg_data, + interpolation); + } else { + /* Make a loop that sends a message to the pixel interpolater + * for the sample number in each live channel. If there are + * multiple channels with the same sample number then these + * will be handled simultaneously with a single interation of + * the loop. + */ + bld.emit(BRW_OPCODE_DO); + + /* Get the next live sample number into sample_id_reg */ + const fs_reg sample_id = bld.emit_uniformize(sample_src); + + /* Set the flag register so that we can perform the send + * message on all channels that have the same sample number + */ + bld.CMP(bld.null_reg_ud(), + sample_src, sample_id, + BRW_CONDITIONAL_EQ); + const fs_reg msg_data = vgrf(glsl_type::uint_type); + bld.exec_all().group(1, 0) + .SHL(msg_data, sample_id, brw_imm_ud(4u)); + fs_inst *inst = + emit_pixel_interpolater_send(bld, + FS_OPCODE_INTERPOLATE_AT_SAMPLE, + dest, + fs_reg(), /* src */ + msg_data, + interpolation); + set_predicate(BRW_PREDICATE_NORMAL, inst); + + /* Continue the loop if there are any live channels left */ + set_predicate_inv(BRW_PREDICATE_NORMAL, + true, /* inverse */ + bld.emit(BRW_OPCODE_WHILE)); + } + } + break; + } + + case nir_intrinsic_load_barycentric_at_offset: { + const glsl_interp_mode interpolation = + (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr); + + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + + if (const_offset) { + unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf; + unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf; + + emit_pixel_interpolater_send(bld, + FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, + dest, + fs_reg(), /* src */ + brw_imm_ud(off_x | (off_y << 4)), + interpolation); + } else { + fs_reg src = vgrf(glsl_type::ivec2_type); + fs_reg offset_src = retype(get_nir_src(instr->src[0]), + BRW_REGISTER_TYPE_F); + for (int i = 0; i < 2; i++) { + fs_reg temp = vgrf(glsl_type::float_type); + bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f)); + fs_reg itemp = vgrf(glsl_type::int_type); + /* float to int */ + bld.MOV(itemp, temp); + + /* Clamp the upper end of the range to +7/16. + * ARB_gpu_shader5 requires that we support a maximum offset + * of +0.5, which isn't representable in a S0.4 value -- if + * we didn't clamp it, we'd end up with -8/16, which is the + * opposite of what the shader author wanted. + * + * This is legal due to ARB_gpu_shader5's quantization + * rules: + * + * "Not all values of <offset> may be supported; x and y + * offsets may be rounded to fixed-point values with the + * number of fraction bits given by the + * implementation-dependent constant + * FRAGMENT_INTERPOLATION_OFFSET_BITS" + */ + set_condmod(BRW_CONDITIONAL_L, + bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7))); + } + + const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET; + emit_pixel_interpolater_send(bld, + opcode, + dest, + src, + brw_imm_ud(0u), + interpolation); + } + break; + } + + case nir_intrinsic_load_interpolated_input: { + if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) { + emit_fragcoord_interpolation(dest); + break; + } + + assert(instr->src[0].ssa && + instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic); + nir_intrinsic_instr *bary_intrinsic = + nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr); + nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic; + enum glsl_interp_mode interp_mode = + (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic); + fs_reg dst_xy; + + if (bary_intrin == nir_intrinsic_load_barycentric_at_offset || + bary_intrin == nir_intrinsic_load_barycentric_at_sample) { + /* Use the result of the PI message */ + dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F); + } else { + /* Use the delta_xy values computed from the payload */ + enum brw_barycentric_mode bary = + brw_barycentric_mode(interp_mode, bary_intrin); + + dst_xy = this->delta_xy[bary]; + } + + for (unsigned int i = 0; i < instr->num_components; i++) { + fs_reg interp = + fs_reg(interp_reg(nir_intrinsic_base(instr), + nir_intrinsic_component(instr) + i)); + interp.type = BRW_REGISTER_TYPE_F; + dest.type = BRW_REGISTER_TYPE_F; + + if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) { + fs_reg tmp = vgrf(glsl_type::float_type); + bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp); + bld.MUL(offset(dest, bld, i), tmp, this->pixel_w); + } else { + bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp); + } + } + break; + } + + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +void +fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld, + nir_intrinsic_instr *instr) +{ + assert(stage == MESA_SHADER_COMPUTE); + struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data); + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_barrier: + emit_barrier(); + cs_prog_data->uses_barrier = true; + break; + + case nir_intrinsic_load_local_invocation_id: + case nir_intrinsic_load_work_group_id: { + gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic); + fs_reg val = nir_system_values[sv]; + assert(val.file != BAD_FILE); + dest.type = val.type; + for (unsigned i = 0; i < 3; i++) + bld.MOV(offset(dest, bld, i), offset(val, bld, i)); + break; + } + + case nir_intrinsic_load_num_work_groups: { + const unsigned surface = + cs_prog_data->binding_table.work_groups_start; + + cs_prog_data->uses_num_work_groups = true; + + fs_reg surf_index = brw_imm_ud(surface); + brw_mark_surface_used(prog_data, surface); + + /* Read the 3 GLuint components of gl_NumWorkGroups */ + for (unsigned i = 0; i < 3; i++) { + fs_reg read_result = + emit_untyped_read(bld, surf_index, + brw_imm_ud(i << 2), + 1 /* dims */, 1 /* size */, + BRW_PREDICATE_NONE); + read_result.type = dest.type; + bld.MOV(dest, read_result); + dest = offset(dest, bld, 1); + } + break; + } + + case nir_intrinsic_shared_atomic_add: + nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr); + break; + case nir_intrinsic_shared_atomic_imin: + nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr); + break; + case nir_intrinsic_shared_atomic_umin: + nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr); + break; + case nir_intrinsic_shared_atomic_imax: + nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr); + break; + case nir_intrinsic_shared_atomic_umax: + nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr); + break; + case nir_intrinsic_shared_atomic_and: + nir_emit_shared_atomic(bld, BRW_AOP_AND, instr); + break; + case nir_intrinsic_shared_atomic_or: + nir_emit_shared_atomic(bld, BRW_AOP_OR, instr); + break; + case nir_intrinsic_shared_atomic_xor: + nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr); + break; + case nir_intrinsic_shared_atomic_exchange: + nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr); + break; + case nir_intrinsic_shared_atomic_comp_swap: + nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr); + break; + + case nir_intrinsic_load_shared: { + assert(devinfo->gen >= 7); + + fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM); + + /* Get the offset to read from */ + fs_reg offset_reg; + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + if (const_offset) { + offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]); + } else { + offset_reg = vgrf(glsl_type::uint_type); + bld.ADD(offset_reg, + retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD), + brw_imm_ud(instr->const_index[0])); + } + + /* Read the vector */ + do_untyped_vector_read(bld, dest, surf_index, offset_reg, + instr->num_components); + break; + } + + case nir_intrinsic_store_shared: { + assert(devinfo->gen >= 7); + + /* Block index */ + fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM); + + /* Value */ + fs_reg val_reg = get_nir_src(instr->src[0]); + + /* Writemask */ + unsigned writemask = instr->const_index[1]; + + /* get_nir_src() retypes to integer. Be wary of 64-bit types though + * since the untyped writes below operate in units of 32-bits, which + * means that we need to write twice as many components each time. + * Also, we have to suffle 64-bit data to be in the appropriate layout + * expected by our 32-bit write messages. + */ + unsigned type_size = 4; + unsigned bit_size = instr->src[0].is_ssa ? + instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; + if (bit_size == 64) { + type_size = 8; + fs_reg tmp = + fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type); + shuffle_64bit_data_for_32bit_write( + bld, + retype(tmp, BRW_REGISTER_TYPE_F), + retype(val_reg, BRW_REGISTER_TYPE_DF), + instr->num_components); + val_reg = tmp; + } + + unsigned type_slots = type_size / 4; + + /* Combine groups of consecutive enabled channels in one write + * message. We use ffs to find the first enabled channel and then ffs on + * the bit-inverse, down-shifted writemask to determine the length of + * the block of enabled bits. + */ + while (writemask) { + unsigned first_component = ffs(writemask) - 1; + unsigned length = ffs(~(writemask >> first_component)) - 1; + + /* We can't write more than 2 64-bit components at once. Limit the + * length of the write to what we can do and let the next iteration + * handle the rest + */ + if (type_size > 4) + length = MIN2(2, length); + + fs_reg offset_reg; + nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); + if (const_offset) { + offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] + + type_size * first_component); + } else { + offset_reg = vgrf(glsl_type::uint_type); + bld.ADD(offset_reg, + retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD), + brw_imm_ud(instr->const_index[0] + type_size * first_component)); + } + + emit_untyped_write(bld, surf_index, offset_reg, + offset(val_reg, bld, first_component * type_slots), + 1 /* dims */, length * type_slots, + BRW_PREDICATE_NONE); + + /* Clear the bits in the writemask that we just wrote, then try + * again to see if more channels are left. + */ + writemask &= (15 << (first_component + length)); + } + + break; + } + + default: + nir_emit_intrinsic(bld, instr); + break; + } +} + +void +fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr) +{ + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + switch (instr->intrinsic) { + case nir_intrinsic_atomic_counter_inc: + case nir_intrinsic_atomic_counter_dec: + case nir_intrinsic_atomic_counter_read: + case nir_intrinsic_atomic_counter_add: + case nir_intrinsic_atomic_counter_min: + case nir_intrinsic_atomic_counter_max: + case nir_intrinsic_atomic_counter_and: + case nir_intrinsic_atomic_counter_or: + case nir_intrinsic_atomic_counter_xor: + case nir_intrinsic_atomic_counter_exchange: + case nir_intrinsic_atomic_counter_comp_swap: { + if (stage == MESA_SHADER_FRAGMENT && + instr->intrinsic != nir_intrinsic_atomic_counter_read) + brw_wm_prog_data(prog_data)->has_side_effects = true; + + /* Get some metadata from the image intrinsic. */ + const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; + + /* Get the arguments of the atomic intrinsic. */ + const fs_reg offset = get_nir_src(instr->src[0]); + const unsigned surface = (stage_prog_data->binding_table.abo_start + + instr->const_index[0]); + const fs_reg src0 = (info->num_srcs >= 2 + ? get_nir_src(instr->src[1]) : fs_reg()); + const fs_reg src1 = (info->num_srcs >= 3 + ? get_nir_src(instr->src[2]) : fs_reg()); + fs_reg tmp; + + assert(info->num_srcs <= 3); + + /* Emit a surface read or atomic op. */ + if (instr->intrinsic == nir_intrinsic_atomic_counter_read) { + tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1); + } else { + tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, src0, + src1, 1, 1, + get_atomic_counter_op(instr->intrinsic)); + } + + /* Assign the result. */ + bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp); + + /* Mark the surface as used. */ + brw_mark_surface_used(stage_prog_data, surface); + break; + } + + case nir_intrinsic_image_load: + case nir_intrinsic_image_store: + case nir_intrinsic_image_atomic_add: + case nir_intrinsic_image_atomic_min: + case nir_intrinsic_image_atomic_max: + case nir_intrinsic_image_atomic_and: + case nir_intrinsic_image_atomic_or: + case nir_intrinsic_image_atomic_xor: + case nir_intrinsic_image_atomic_exchange: + case nir_intrinsic_image_atomic_comp_swap: { + using namespace image_access; + + if (stage == MESA_SHADER_FRAGMENT && + instr->intrinsic != nir_intrinsic_image_load) + brw_wm_prog_data(prog_data)->has_side_effects = true; + + /* Get the referenced image variable and type. */ + const nir_variable *var = instr->variables[0]->var; + const glsl_type *type = var->type->without_array(); + const brw_reg_type base_type = get_image_base_type(type); + + /* Get some metadata from the image intrinsic. */ + const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; + const unsigned arr_dims = type->sampler_array ? 1 : 0; + const unsigned surf_dims = type->coordinate_components() - arr_dims; + const unsigned format = var->data.image.format; + + /* Get the arguments of the image intrinsic. */ + const fs_reg image = get_nir_image_deref(instr->variables[0]); + const fs_reg addr = retype(get_nir_src(instr->src[0]), + BRW_REGISTER_TYPE_UD); + const fs_reg src0 = (info->num_srcs >= 3 ? + retype(get_nir_src(instr->src[2]), base_type) : + fs_reg()); + const fs_reg src1 = (info->num_srcs >= 4 ? + retype(get_nir_src(instr->src[3]), base_type) : + fs_reg()); + fs_reg tmp; + + /* Emit an image load, store or atomic op. */ + if (instr->intrinsic == nir_intrinsic_image_load) + tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format); + + else if (instr->intrinsic == nir_intrinsic_image_store) + emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, + var->data.image.write_only ? GL_NONE : format); + + else + tmp = emit_image_atomic(bld, image, addr, src0, src1, + surf_dims, arr_dims, info->dest_components, + get_image_atomic_op(instr->intrinsic, type)); + + /* Assign the result. */ + for (unsigned c = 0; c < info->dest_components; ++c) + bld.MOV(offset(retype(dest, base_type), bld, c), + offset(tmp, bld, c)); + break; + } + + case nir_intrinsic_memory_barrier_atomic_counter: + case nir_intrinsic_memory_barrier_buffer: + case nir_intrinsic_memory_barrier_image: + case nir_intrinsic_memory_barrier: { + const fs_builder ubld = bld.group(8, 0); + const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2); + ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp) + ->size_written = 2 * REG_SIZE; + break; + } + + case nir_intrinsic_group_memory_barrier: + case nir_intrinsic_memory_barrier_shared: + /* We treat these workgroup-level barriers as no-ops. This should be + * safe at present and as long as: + * + * - Memory access instructions are not subsequently reordered by the + * compiler back-end. + * + * - All threads from a given compute shader workgroup fit within a + * single subslice and therefore talk to the same HDC shared unit + * what supposedly guarantees ordering and coherency between threads + * from the same workgroup. This may change in the future when we + * start splitting workgroups across multiple subslices. + * + * - The context is not in fault-and-stream mode, which could cause + * memory transactions (including to SLM) prior to the barrier to be + * replayed after the barrier if a pagefault occurs. This shouldn't + * be a problem up to and including SKL because fault-and-stream is + * not usable due to hardware issues, but that's likely to change in + * the future. + */ + break; + + case nir_intrinsic_shader_clock: { + /* We cannot do anything if there is an event, so ignore it for now */ + const fs_reg shader_clock = get_timestamp(bld); + const fs_reg srcs[] = { component(shader_clock, 0), + component(shader_clock, 1) }; + bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0); + break; + } + + case nir_intrinsic_image_size: { + /* Get the referenced image variable and type. */ + const nir_variable *var = instr->variables[0]->var; + const glsl_type *type = var->type->without_array(); + + /* Get the size of the image. */ + const fs_reg image = get_nir_image_deref(instr->variables[0]); + const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET); + + /* For 1DArray image types, the array index is stored in the Z component. + * Fix this by swizzling the Z component to the Y component. + */ + const bool is_1d_array_image = + type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D && + type->sampler_array; + + /* For CubeArray images, we should count the number of cubes instead + * of the number of faces. Fix it by dividing the (Z component) by 6. + */ + const bool is_cube_array_image = + type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE && + type->sampler_array; + + /* Copy all the components. */ + const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; + for (unsigned c = 0; c < info->dest_components; ++c) { + if ((int)c >= type->coordinate_components()) { + bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), + brw_imm_d(1)); + } else if (c == 1 && is_1d_array_image) { + bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), + offset(size, bld, 2)); + } else if (c == 2 && is_cube_array_image) { + bld.emit(SHADER_OPCODE_INT_QUOTIENT, + offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), + offset(size, bld, c), brw_imm_d(6)); + } else { + bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c), + offset(size, bld, c)); + } + } + + break; + } + + case nir_intrinsic_image_samples: + /* The driver does not support multi-sampled images. */ + bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1)); + break; + + case nir_intrinsic_load_uniform: { + /* Offsets are in bytes but they should always be multiples of 4 */ + assert(instr->const_index[0] % 4 == 0); + + fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type); + + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + if (const_offset) { + /* Offsets are in bytes but they should always be multiples of 4 */ + assert(const_offset->u32[0] % 4 == 0); + src.offset = const_offset->u32[0]; + + for (unsigned j = 0; j < instr->num_components; j++) { + bld.MOV(offset(dest, bld, j), offset(src, bld, j)); + } + } else { + fs_reg indirect = retype(get_nir_src(instr->src[0]), + BRW_REGISTER_TYPE_UD); + + /* We need to pass a size to the MOV_INDIRECT but we don't want it to + * go past the end of the uniform. In order to keep the n'th + * component from running past, we subtract off the size of all but + * one component of the vector. + */ + assert(instr->const_index[1] >= + instr->num_components * (int) type_sz(dest.type)); + unsigned read_size = instr->const_index[1] - + (instr->num_components - 1) * type_sz(dest.type); + + bool supports_64bit_indirects = + !devinfo->is_cherryview && !devinfo->is_broxton; + + if (type_sz(dest.type) != 8 || supports_64bit_indirects) { + for (unsigned j = 0; j < instr->num_components; j++) { + bld.emit(SHADER_OPCODE_MOV_INDIRECT, + offset(dest, bld, j), offset(src, bld, j), + indirect, brw_imm_ud(read_size)); + } + } else { + const unsigned num_mov_indirects = + type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD); + /* We read a little bit less per MOV INDIRECT, as they are now + * 32-bits ones instead of 64-bit. Fix read_size then. + */ + const unsigned read_size_32bit = read_size - + (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD); + for (unsigned j = 0; j < instr->num_components; j++) { + for (unsigned i = 0; i < num_mov_indirects; i++) { + bld.emit(SHADER_OPCODE_MOV_INDIRECT, + subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i), + subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i), + indirect, brw_imm_ud(read_size_32bit)); + } + } + } + } + break; + } + + case nir_intrinsic_load_ubo: { + nir_const_value *const_index = nir_src_as_const_value(instr->src[0]); + fs_reg surf_index; + + if (const_index) { + const unsigned index = stage_prog_data->binding_table.ubo_start + + const_index->u32[0]; + surf_index = brw_imm_ud(index); + brw_mark_surface_used(prog_data, index); + } else { + /* The block index is not a constant. Evaluate the index expression + * per-channel and add the base UBO index; we have to select a value + * from any live channel. + */ + surf_index = vgrf(glsl_type::uint_type); + bld.ADD(surf_index, get_nir_src(instr->src[0]), + brw_imm_ud(stage_prog_data->binding_table.ubo_start)); + surf_index = bld.emit_uniformize(surf_index); + + /* Assume this may touch any UBO. It would be nice to provide + * a tighter bound, but the array information is already lowered away. + */ + brw_mark_surface_used(prog_data, + stage_prog_data->binding_table.ubo_start + + nir->info->num_ubos - 1); + } + + nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); + if (const_offset == NULL) { + fs_reg base_offset = retype(get_nir_src(instr->src[1]), + BRW_REGISTER_TYPE_UD); + + for (int i = 0; i < instr->num_components; i++) + VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index, + base_offset, i * type_sz(dest.type)); + } else { + /* Even if we are loading doubles, a pull constant load will load + * a 32-bit vec4, so should only reserve vgrf space for that. If we + * need to load a full dvec4 we will have to emit 2 loads. This is + * similar to demote_pull_constants(), except that in that case we + * see individual accesses to each component of the vector and then + * we let CSE deal with duplicate loads. Here we see a vector access + * and we have to split it if necessary. + */ + const unsigned type_size = type_sz(dest.type); + const unsigned block_sz = 64; /* Fetch one cacheline at a time. */ + const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0); + const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD); + + for (unsigned c = 0; c < instr->num_components;) { + const unsigned base = const_offset->u32[0] + c * type_size; + /* Number of usable components in the next block-aligned load. */ + const unsigned count = MIN2(instr->num_components - c, + (block_sz - base % block_sz) / type_size); + + ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, + packed_consts, surf_index, + brw_imm_ud(base & ~(block_sz - 1))); + + const fs_reg consts = + retype(byte_offset(packed_consts, base & (block_sz - 1)), + dest.type); + + for (unsigned d = 0; d < count; d++) + bld.MOV(offset(dest, bld, c + d), component(consts, d)); + + c += count; + } + } + break; + } + + case nir_intrinsic_load_ssbo: { + assert(devinfo->gen >= 7); + + nir_const_value *const_uniform_block = + nir_src_as_const_value(instr->src[0]); + + fs_reg surf_index; + if (const_uniform_block) { + unsigned index = stage_prog_data->binding_table.ssbo_start + + const_uniform_block->u32[0]; + surf_index = brw_imm_ud(index); + brw_mark_surface_used(prog_data, index); + } else { + surf_index = vgrf(glsl_type::uint_type); + bld.ADD(surf_index, get_nir_src(instr->src[0]), + brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); + + /* Assume this may touch any UBO. It would be nice to provide + * a tighter bound, but the array information is already lowered away. + */ + brw_mark_surface_used(prog_data, + stage_prog_data->binding_table.ssbo_start + + nir->info->num_ssbos - 1); + } + + fs_reg offset_reg; + nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); + if (const_offset) { + offset_reg = brw_imm_ud(const_offset->u32[0]); + } else { + offset_reg = get_nir_src(instr->src[1]); + } + + /* Read the vector */ + do_untyped_vector_read(bld, dest, surf_index, offset_reg, + instr->num_components); + + break; + } + + case nir_intrinsic_store_ssbo: { + assert(devinfo->gen >= 7); + + if (stage == MESA_SHADER_FRAGMENT) + brw_wm_prog_data(prog_data)->has_side_effects = true; + + /* Block index */ + fs_reg surf_index; + nir_const_value *const_uniform_block = + nir_src_as_const_value(instr->src[1]); + if (const_uniform_block) { + unsigned index = stage_prog_data->binding_table.ssbo_start + + const_uniform_block->u32[0]; + surf_index = brw_imm_ud(index); + brw_mark_surface_used(prog_data, index); + } else { + surf_index = vgrf(glsl_type::uint_type); + bld.ADD(surf_index, get_nir_src(instr->src[1]), + brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); + + brw_mark_surface_used(prog_data, + stage_prog_data->binding_table.ssbo_start + + nir->info->num_ssbos - 1); + } + + /* Value */ + fs_reg val_reg = get_nir_src(instr->src[0]); + + /* Writemask */ + unsigned writemask = instr->const_index[0]; + + /* get_nir_src() retypes to integer. Be wary of 64-bit types though + * since the untyped writes below operate in units of 32-bits, which + * means that we need to write twice as many components each time. + * Also, we have to suffle 64-bit data to be in the appropriate layout + * expected by our 32-bit write messages. + */ + unsigned type_size = 4; + unsigned bit_size = instr->src[0].is_ssa ? + instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; + if (bit_size == 64) { + type_size = 8; + fs_reg tmp = + fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type); + shuffle_64bit_data_for_32bit_write(bld, + retype(tmp, BRW_REGISTER_TYPE_F), + retype(val_reg, BRW_REGISTER_TYPE_DF), + instr->num_components); + val_reg = tmp; + } + + unsigned type_slots = type_size / 4; + + /* Combine groups of consecutive enabled channels in one write + * message. We use ffs to find the first enabled channel and then ffs on + * the bit-inverse, down-shifted writemask to determine the length of + * the block of enabled bits. + */ + while (writemask) { + unsigned first_component = ffs(writemask) - 1; + unsigned length = ffs(~(writemask >> first_component)) - 1; + + /* We can't write more than 2 64-bit components at once. Limit the + * length of the write to what we can do and let the next iteration + * handle the rest + */ + if (type_size > 4) + length = MIN2(2, length); + + fs_reg offset_reg; + nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]); + if (const_offset) { + offset_reg = brw_imm_ud(const_offset->u32[0] + + type_size * first_component); + } else { + offset_reg = vgrf(glsl_type::uint_type); + bld.ADD(offset_reg, + retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD), + brw_imm_ud(type_size * first_component)); + } + + + emit_untyped_write(bld, surf_index, offset_reg, + offset(val_reg, bld, first_component * type_slots), + 1 /* dims */, length * type_slots, + BRW_PREDICATE_NONE); + + /* Clear the bits in the writemask that we just wrote, then try + * again to see if more channels are left. + */ + writemask &= (15 << (first_component + length)); + } + break; + } + + case nir_intrinsic_store_output: { + fs_reg src = get_nir_src(instr->src[0]); + + nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]); + assert(const_offset && "Indirect output stores not allowed"); + fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld, + 4 * const_offset->u32[0]), src.type); + + unsigned num_components = instr->num_components; + unsigned first_component = nir_intrinsic_component(instr); + unsigned bit_size = instr->src[0].is_ssa ? + instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size; + if (bit_size == 64) { + fs_reg tmp = + fs_reg(VGRF, alloc.allocate(2 * num_components), + BRW_REGISTER_TYPE_F); + shuffle_64bit_data_for_32bit_write( + bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components); + src = retype(tmp, src.type); + num_components *= 2; + } + + for (unsigned j = 0; j < num_components; j++) { + bld.MOV(offset(new_dest, bld, j + first_component), + offset(src, bld, j)); + } + break; + } + + case nir_intrinsic_ssbo_atomic_add: + nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr); + break; + case nir_intrinsic_ssbo_atomic_imin: + nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr); + break; + case nir_intrinsic_ssbo_atomic_umin: + nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr); + break; + case nir_intrinsic_ssbo_atomic_imax: + nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr); + break; + case nir_intrinsic_ssbo_atomic_umax: + nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr); + break; + case nir_intrinsic_ssbo_atomic_and: + nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr); + break; + case nir_intrinsic_ssbo_atomic_or: + nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr); + break; + case nir_intrinsic_ssbo_atomic_xor: + nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr); + break; + case nir_intrinsic_ssbo_atomic_exchange: + nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr); + break; + case nir_intrinsic_ssbo_atomic_comp_swap: + nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr); + break; + + case nir_intrinsic_get_buffer_size: { + nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]); + unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0; + + /* A resinfo's sampler message is used to get the buffer size. The + * SIMD8's writeback message consists of four registers and SIMD16's + * writeback message consists of 8 destination registers (two per each + * component). Because we are only interested on the first channel of + * the first returned component, where resinfo returns the buffer size + * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of + * the dispatch width. + */ + const fs_builder ubld = bld.exec_all().group(8, 0); + fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD); + fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4); + + /* Set LOD = 0 */ + ubld.MOV(src_payload, brw_imm_d(0)); + + const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index; + fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload, + src_payload, brw_imm_ud(index)); + inst->header_size = 0; + inst->mlen = 1; + inst->size_written = 4 * REG_SIZE; + + bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0)); + brw_mark_surface_used(prog_data, index); + break; + } + + case nir_intrinsic_load_channel_num: { + fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UW); + dest = retype(dest, BRW_REGISTER_TYPE_UD); + const fs_builder allbld8 = bld.group(8, 0).exec_all(); + allbld8.MOV(tmp, brw_imm_v(0x76543210)); + if (dispatch_width > 8) + allbld8.ADD(byte_offset(tmp, 16), tmp, brw_imm_uw(8u)); + if (dispatch_width > 16) { + const fs_builder allbld16 = bld.group(16, 0).exec_all(); + allbld16.ADD(byte_offset(tmp, 32), tmp, brw_imm_uw(16u)); + } + bld.MOV(dest, tmp); + break; + } + + default: + unreachable("unknown intrinsic"); + } +} + +void +fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld, + int op, nir_intrinsic_instr *instr) +{ + if (stage == MESA_SHADER_FRAGMENT) + brw_wm_prog_data(prog_data)->has_side_effects = true; + + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + fs_reg surface; + nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]); + if (const_surface) { + unsigned surf_index = stage_prog_data->binding_table.ssbo_start + + const_surface->u32[0]; + surface = brw_imm_ud(surf_index); + brw_mark_surface_used(prog_data, surf_index); + } else { + surface = vgrf(glsl_type::uint_type); + bld.ADD(surface, get_nir_src(instr->src[0]), + brw_imm_ud(stage_prog_data->binding_table.ssbo_start)); + + /* Assume this may touch any SSBO. This is the same we do for other + * UBO/SSBO accesses with non-constant surface. + */ + brw_mark_surface_used(prog_data, + stage_prog_data->binding_table.ssbo_start + + nir->info->num_ssbos - 1); + } + + fs_reg offset = get_nir_src(instr->src[1]); + fs_reg data1 = get_nir_src(instr->src[2]); + fs_reg data2; + if (op == BRW_AOP_CMPWR) + data2 = get_nir_src(instr->src[3]); + + /* Emit the actual atomic operation */ + + fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset, + data1, data2, + 1 /* dims */, 1 /* rsize */, + op, + BRW_PREDICATE_NONE); + dest.type = atomic_result.type; + bld.MOV(dest, atomic_result); +} + +void +fs_visitor::nir_emit_shared_atomic(const fs_builder &bld, + int op, nir_intrinsic_instr *instr) +{ + fs_reg dest; + if (nir_intrinsic_infos[instr->intrinsic].has_dest) + dest = get_nir_dest(instr->dest); + + fs_reg surface = brw_imm_ud(GEN7_BTI_SLM); + fs_reg offset; + fs_reg data1 = get_nir_src(instr->src[1]); + fs_reg data2; + if (op == BRW_AOP_CMPWR) + data2 = get_nir_src(instr->src[2]); + + /* Get the offset */ + nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]); + if (const_offset) { + offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]); + } else { + offset = vgrf(glsl_type::uint_type); + bld.ADD(offset, + retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD), + brw_imm_ud(instr->const_index[0])); + } + + /* Emit the actual atomic operation operation */ + + fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset, + data1, data2, + 1 /* dims */, 1 /* rsize */, + op, + BRW_PREDICATE_NONE); + dest.type = atomic_result.type; + bld.MOV(dest, atomic_result); +} + +void +fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr) +{ + unsigned texture = instr->texture_index; + unsigned sampler = instr->sampler_index; + + fs_reg srcs[TEX_LOGICAL_NUM_SRCS]; + + srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture); + srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler); + + int lod_components = 0; + + /* The hardware requires a LOD for buffer textures */ + if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF) + srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0); + + uint32_t header_bits = 0; + for (unsigned i = 0; i < instr->num_srcs; i++) { + fs_reg src = get_nir_src(instr->src[i].src); + switch (instr->src[i].src_type) { + case nir_tex_src_bias: + srcs[TEX_LOGICAL_SRC_LOD] = + retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F); + break; + case nir_tex_src_comparator: + srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F); + break; + case nir_tex_src_coord: + switch (instr->op) { + case nir_texop_txf: + case nir_texop_txf_ms: + case nir_texop_txf_ms_mcs: + case nir_texop_samples_identical: + srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D); + break; + default: + srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F); + break; + } + break; + case nir_tex_src_ddx: + srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F); + lod_components = nir_tex_instr_src_size(instr, i); + break; + case nir_tex_src_ddy: + srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F); + break; + case nir_tex_src_lod: + switch (instr->op) { + case nir_texop_txs: + srcs[TEX_LOGICAL_SRC_LOD] = + retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD); + break; + case nir_texop_txf: + srcs[TEX_LOGICAL_SRC_LOD] = + retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D); + break; + default: + srcs[TEX_LOGICAL_SRC_LOD] = + retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F); + break; + } + break; + case nir_tex_src_ms_index: + srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD); + break; + + case nir_tex_src_offset: { + nir_const_value *const_offset = + nir_src_as_const_value(instr->src[i].src); + unsigned offset_bits = 0; + if (const_offset && + brw_texture_offset(const_offset->i32, + nir_tex_instr_src_size(instr, i), + &offset_bits)) { + header_bits |= offset_bits; + } else { + srcs[TEX_LOGICAL_SRC_TG4_OFFSET] = + retype(src, BRW_REGISTER_TYPE_D); + } + break; + } + + case nir_tex_src_projector: + unreachable("should be lowered"); + + case nir_tex_src_texture_offset: { + /* Figure out the highest possible texture index and mark it as used */ + uint32_t max_used = texture + instr->texture_array_size - 1; + if (instr->op == nir_texop_tg4 && devinfo->gen < 8) { + max_used += stage_prog_data->binding_table.gather_texture_start; + } else { + max_used += stage_prog_data->binding_table.texture_start; + } + brw_mark_surface_used(prog_data, max_used); + + /* Emit code to evaluate the actual indexing expression */ + fs_reg tmp = vgrf(glsl_type::uint_type); + bld.ADD(tmp, src, brw_imm_ud(texture)); + srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp); + break; + } + + case nir_tex_src_sampler_offset: { + /* Emit code to evaluate the actual indexing expression */ + fs_reg tmp = vgrf(glsl_type::uint_type); + bld.ADD(tmp, src, brw_imm_ud(sampler)); + srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp); + break; + } + + case nir_tex_src_ms_mcs: + assert(instr->op == nir_texop_txf_ms); + srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D); + break; + + case nir_tex_src_plane: { + nir_const_value *const_plane = + nir_src_as_const_value(instr->src[i].src); + const uint32_t plane = const_plane->u32[0]; + const uint32_t texture_index = + instr->texture_index + + stage_prog_data->binding_table.plane_start[plane] - + stage_prog_data->binding_table.texture_start; + + srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index); + break; + } + + default: + unreachable("unknown texture source"); + } + } + + if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE && + (instr->op == nir_texop_txf_ms || + instr->op == nir_texop_samples_identical)) { + if (devinfo->gen >= 7 && + key_tex->compressed_multisample_layout_mask & (1 << texture)) { + srcs[TEX_LOGICAL_SRC_MCS] = + emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE], + instr->coord_components, + srcs[TEX_LOGICAL_SRC_SURFACE]); + } else { + srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u); + } + } + + srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components); + srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components); + + if (instr->op == nir_texop_query_levels || + (instr->op == nir_texop_tex && stage != MESA_SHADER_FRAGMENT)) { + /* textureQueryLevels() and texture() are implemented in terms of TXS + * and TXL respectively, so we need to pass a valid LOD argument. + */ + assert(srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE); + srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u); + } + + enum opcode opcode; + switch (instr->op) { + case nir_texop_tex: + opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL : + SHADER_OPCODE_TXL_LOGICAL); + break; + case nir_texop_txb: + opcode = FS_OPCODE_TXB_LOGICAL; + break; + case nir_texop_txl: + opcode = SHADER_OPCODE_TXL_LOGICAL; + break; + case nir_texop_txd: + opcode = SHADER_OPCODE_TXD_LOGICAL; + break; + case nir_texop_txf: + opcode = SHADER_OPCODE_TXF_LOGICAL; + break; + case nir_texop_txf_ms: + if ((key_tex->msaa_16 & (1 << sampler))) + opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL; + else + opcode = SHADER_OPCODE_TXF_CMS_LOGICAL; + break; + case nir_texop_txf_ms_mcs: + opcode = SHADER_OPCODE_TXF_MCS_LOGICAL; + break; + case nir_texop_query_levels: + case nir_texop_txs: + opcode = SHADER_OPCODE_TXS_LOGICAL; + break; + case nir_texop_lod: + opcode = SHADER_OPCODE_LOD_LOGICAL; + break; + case nir_texop_tg4: + if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE) + opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL; + else + opcode = SHADER_OPCODE_TG4_LOGICAL; + break; + case nir_texop_texture_samples: + opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL; + break; + case nir_texop_samples_identical: { + fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D); + + /* If mcs is an immediate value, it means there is no MCS. In that case + * just return false. + */ + if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) { + bld.MOV(dst, brw_imm_ud(0u)); + } else if ((key_tex->msaa_16 & (1 << sampler))) { + fs_reg tmp = vgrf(glsl_type::uint_type); + bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS], + offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1)); + bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ); + } else { + bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u), + BRW_CONDITIONAL_EQ); + } + return; + } + default: + unreachable("unknown texture opcode"); + } + + if (instr->op == nir_texop_tg4) { + if (instr->component == 1 && + key_tex->gather_channel_quirk_mask & (1 << texture)) { + /* gather4 sampler is broken for green channel on RG32F -- + * we must ask for blue instead. + */ + header_bits |= 2 << 16; + } else { + header_bits |= instr->component << 16; + } + } + + fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4); + fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs)); + inst->offset = header_bits; + + const unsigned dest_size = nir_tex_instr_dest_size(instr); + if (devinfo->gen >= 9 && + instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) { + unsigned write_mask = instr->dest.is_ssa ? + nir_ssa_def_components_read(&instr->dest.ssa): + (1 << dest_size) - 1; + assert(write_mask != 0); /* dead code should have been eliminated */ + inst->size_written = util_last_bit(write_mask) * + inst->dst.component_size(inst->exec_size); + } else { + inst->size_written = 4 * inst->dst.component_size(inst->exec_size); + } + + if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE) + inst->shadow_compare = true; + + if (instr->op == nir_texop_tg4 && devinfo->gen == 6) + emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst); + + fs_reg nir_dest[4]; + for (unsigned i = 0; i < dest_size; i++) + nir_dest[i] = offset(dst, bld, i); + + if (instr->op == nir_texop_query_levels) { + /* # levels is in .w */ + nir_dest[0] = offset(dst, bld, 3); + } else if (instr->op == nir_texop_txs && + dest_size >= 3 && devinfo->gen < 7) { + /* Gen4-6 return 0 instead of 1 for single layer surfaces. */ + fs_reg depth = offset(dst, bld, 2); + nir_dest[2] = vgrf(glsl_type::int_type); + bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE); + } + + bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0); +} + +void +fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr) +{ + switch (instr->type) { + case nir_jump_break: + bld.emit(BRW_OPCODE_BREAK); + break; + case nir_jump_continue: + bld.emit(BRW_OPCODE_CONTINUE); + break; + case nir_jump_return: + default: + unreachable("unknown jump"); + } +} + +/** + * This helper takes the result of a load operation that reads 32-bit elements + * in this format: + * + * x x x x x x x x + * y y y y y y y y + * z z z z z z z z + * w w w w w w w w + * + * and shuffles the data to get this: + * + * x y x y x y x y + * x y x y x y x y + * z w z w z w z w + * z w z w z w z w + * + * Which is exactly what we want if the load is reading 64-bit components + * like doubles, where x represents the low 32-bit of the x double component + * and y represents the high 32-bit of the x double component (likewise with + * z and w for double component y). The parameter @components represents + * the number of 64-bit components present in @src. This would typically be + * 2 at most, since we can only fit 2 double elements in the result of a + * vec4 load. + * + * Notice that @dst and @src can be the same register. + */ +void +shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld, + const fs_reg &dst, + const fs_reg &src, + uint32_t components) +{ + assert(type_sz(src.type) == 4); + assert(type_sz(dst.type) == 8); + + /* A temporary that we will use to shuffle the 32-bit data of each + * component in the vector into valid 64-bit data. We can't write directly + * to dst because dst can be (and would usually be) the same as src + * and in that case the first MOV in the loop below would overwrite the + * data read in the second MOV. + */ + fs_reg tmp = bld.vgrf(dst.type); + + for (unsigned i = 0; i < components; i++) { + const fs_reg component_i = offset(src, bld, 2 * i); + + bld.MOV(subscript(tmp, src.type, 0), component_i); + bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1)); + + bld.MOV(offset(dst, bld, i), tmp); + } +} + +/** + * This helper does the inverse operation of + * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA. + * + * We need to do this when we are going to use untyped write messsages that + * operate with 32-bit components in order to arrange our 64-bit data to be + * in the expected layout. + * + * Notice that callers of this function, unlike in the case of the inverse + * operation, would typically need to call this with dst and src being + * different registers, since they would otherwise corrupt the original + * 64-bit data they are about to write. Because of this the function checks + * that the src and dst regions involved in the operation do not overlap. + */ +void +shuffle_64bit_data_for_32bit_write(const fs_builder &bld, + const fs_reg &dst, + const fs_reg &src, + uint32_t components) +{ + assert(type_sz(src.type) == 8); + assert(type_sz(dst.type) == 4); + + assert(!regions_overlap( + dst, 2 * components * dst.component_size(bld.dispatch_width()), + src, components * src.component_size(bld.dispatch_width()))); + + for (unsigned i = 0; i < components; i++) { + const fs_reg component_i = offset(src, bld, i); + bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0)); + bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1)); + } +} + +fs_reg +setup_imm_df(const fs_builder &bld, double v) +{ + const struct gen_device_info *devinfo = bld.shader->devinfo; + assert(devinfo->gen >= 7); + + if (devinfo->gen >= 8) + return brw_imm_df(v); + + /* gen7.5 does not support DF immediates straighforward but the DIM + * instruction allows to set the 64-bit immediate value. + */ + if (devinfo->is_haswell) { + const fs_builder ubld = bld.exec_all().group(1, 0); + fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1); + ubld.DIM(dst, brw_imm_df(v)); + return component(dst, 0); + } + + /* gen7 does not support DF immediates, so we generate a 64-bit constant by + * writing the low 32-bit of the constant to suboffset 0 of a VGRF and + * the high 32-bit to suboffset 4 and then applying a stride of 0. + * + * Alternatively, we could also produce a normal VGRF (without stride 0) + * by writing to all the channels in the VGRF, however, that would hit the + * gen7 bug where we have to split writes that span more than 1 register + * into instructions with a width of 4 (otherwise the write to the second + * register written runs into an execmask hardware bug) which isn't very + * nice. + */ + union { + double d; + struct { + uint32_t i1; + uint32_t i2; + }; + } di; + + di.d = v; + + const fs_builder ubld = bld.exec_all().group(1, 0); + const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2); + ubld.MOV(tmp, brw_imm_ud(di.i1)); + ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2)); + + return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0); +} |