aboutsummaryrefslogtreecommitdiffstats
path: root/src/intel/blorp
diff options
context:
space:
mode:
Diffstat (limited to 'src/intel/blorp')
-rw-r--r--src/intel/blorp/blorp.c292
-rw-r--r--src/intel/blorp/blorp.h153
-rw-r--r--src/intel/blorp/blorp_blit.c1649
-rw-r--r--src/intel/blorp/blorp_clear.c344
-rw-r--r--src/intel/blorp/blorp_genX_exec.h1176
-rw-r--r--src/intel/blorp/blorp_priv.h291
6 files changed, 3905 insertions, 0 deletions
diff --git a/src/intel/blorp/blorp.c b/src/intel/blorp/blorp.c
new file mode 100644
index 00000000000..4dbba017489
--- /dev/null
+++ b/src/intel/blorp/blorp.c
@@ -0,0 +1,292 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include <errno.h>
+
+#include "program/prog_instruction.h"
+
+#include "blorp_priv.h"
+#include "brw_compiler.h"
+#include "brw_nir.h"
+
+void
+blorp_init(struct blorp_context *blorp, void *driver_ctx,
+ struct isl_device *isl_dev)
+{
+ blorp->driver_ctx = driver_ctx;
+ blorp->isl_dev = isl_dev;
+}
+
+void
+blorp_finish(struct blorp_context *blorp)
+{
+ blorp->driver_ctx = NULL;
+}
+
+void
+blorp_batch_init(struct blorp_context *blorp,
+ struct blorp_batch *batch, void *driver_batch)
+{
+ batch->blorp = blorp;
+ batch->driver_batch = driver_batch;
+}
+
+void
+blorp_batch_finish(struct blorp_batch *batch)
+{
+ batch->blorp = NULL;
+}
+
+void
+brw_blorp_surface_info_init(struct blorp_context *blorp,
+ struct brw_blorp_surface_info *info,
+ const struct blorp_surf *surf,
+ unsigned int level, unsigned int layer,
+ enum isl_format format, bool is_render_target)
+{
+ /* Layer is a physical layer, so if this is a 2D multisample array texture
+ * using INTEL_MSAA_LAYOUT_UMS or INTEL_MSAA_LAYOUT_CMS, then it had better
+ * be a multiple of num_samples.
+ */
+ unsigned layer_multiplier = 1;
+ if (surf->surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY) {
+ assert(layer % surf->surf->samples == 0);
+ layer_multiplier = surf->surf->samples;
+ }
+
+ if (format == ISL_FORMAT_UNSUPPORTED)
+ format = surf->surf->format;
+
+ if (format == ISL_FORMAT_R24_UNORM_X8_TYPELESS) {
+ /* Unfortunately, ISL_FORMAT_R24_UNORM_X8_TYPELESS it isn't supported as
+ * a render target, which would prevent us from blitting to 24-bit
+ * depth. The miptree consists of 32 bits per pixel, arranged as 24-bit
+ * depth values interleaved with 8 "don't care" bits. Since depth
+ * values don't require any blending, it doesn't matter how we interpret
+ * the bit pattern as long as we copy the right amount of data, so just
+ * map it as 8-bit BGRA.
+ */
+ format = ISL_FORMAT_B8G8R8A8_UNORM;
+ } else if (surf->surf->usage & ISL_SURF_USAGE_STENCIL_BIT) {
+ assert(surf->surf->format == ISL_FORMAT_R8_UINT);
+ /* Prior to Broadwell, we can't render to R8_UINT */
+ if (blorp->isl_dev->info->gen < 8)
+ format = ISL_FORMAT_R8_UNORM;
+ }
+
+ info->surf = *surf->surf;
+ info->addr = surf->addr;
+
+ info->aux_usage = surf->aux_usage;
+ if (info->aux_usage != ISL_AUX_USAGE_NONE) {
+ info->aux_surf = *surf->aux_surf;
+ info->aux_addr = surf->aux_addr;
+ }
+
+ info->clear_color = surf->clear_color;
+
+ info->view = (struct isl_view) {
+ .usage = is_render_target ? ISL_SURF_USAGE_RENDER_TARGET_BIT :
+ ISL_SURF_USAGE_TEXTURE_BIT,
+ .format = format,
+ .base_level = level,
+ .levels = 1,
+ .channel_select = {
+ ISL_CHANNEL_SELECT_RED,
+ ISL_CHANNEL_SELECT_GREEN,
+ ISL_CHANNEL_SELECT_BLUE,
+ ISL_CHANNEL_SELECT_ALPHA,
+ },
+ };
+
+ if (!is_render_target &&
+ (info->surf.dim == ISL_SURF_DIM_3D ||
+ info->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY)) {
+ /* 3-D textures don't support base_array layer and neither do 2-D
+ * multisampled textures on IVB so we need to pass it through the
+ * sampler in those cases. These are also two cases where we are
+ * guaranteed that we won't be doing any funny surface hacks.
+ */
+ info->view.base_array_layer = 0;
+ info->view.array_len = MAX2(info->surf.logical_level0_px.depth,
+ info->surf.logical_level0_px.array_len);
+ info->z_offset = layer / layer_multiplier;
+ } else {
+ info->view.base_array_layer = layer / layer_multiplier;
+ info->view.array_len = 1;
+ info->z_offset = 0;
+ }
+}
+
+
+void
+blorp_params_init(struct blorp_params *params)
+{
+ memset(params, 0, sizeof(*params));
+ params->num_draw_buffers = 1;
+ params->num_layers = 1;
+}
+
+void
+brw_blorp_init_wm_prog_key(struct brw_wm_prog_key *wm_key)
+{
+ memset(wm_key, 0, sizeof(*wm_key));
+ wm_key->nr_color_regions = 1;
+ for (int i = 0; i < MAX_SAMPLERS; i++)
+ wm_key->tex.swizzles[i] = SWIZZLE_XYZW;
+}
+
+static int
+nir_uniform_type_size(const struct glsl_type *type)
+{
+ /* Only very basic types are allowed */
+ assert(glsl_type_is_vector_or_scalar(type));
+ assert(glsl_get_bit_size(type) == 32);
+
+ return glsl_get_vector_elements(type) * 4;
+}
+
+const unsigned *
+brw_blorp_compile_nir_shader(struct blorp_context *blorp, struct nir_shader *nir,
+ const struct brw_wm_prog_key *wm_key,
+ bool use_repclear,
+ struct brw_blorp_prog_data *prog_data,
+ unsigned *program_size)
+{
+ const struct brw_compiler *compiler = blorp->compiler;
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ /* Calling brw_preprocess_nir and friends is destructive and, if cloning is
+ * enabled, may end up completely replacing the nir_shader. Therefore, we
+ * own it and might as well put it in our context for easy cleanup.
+ */
+ ralloc_steal(mem_ctx, nir);
+ nir->options =
+ compiler->glsl_compiler_options[MESA_SHADER_FRAGMENT].NirOptions;
+
+ struct brw_wm_prog_data wm_prog_data;
+ memset(&wm_prog_data, 0, sizeof(wm_prog_data));
+
+ wm_prog_data.base.nr_params = 0;
+ wm_prog_data.base.param = NULL;
+
+ /* BLORP always just uses the first two binding table entries */
+ wm_prog_data.binding_table.render_target_start = BLORP_RENDERBUFFER_BT_INDEX;
+ wm_prog_data.base.binding_table.texture_start = BLORP_TEXTURE_BT_INDEX;
+
+ nir = brw_preprocess_nir(compiler, nir);
+ nir_remove_dead_variables(nir, nir_var_shader_in);
+ nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
+
+ /* Uniforms are required to be lowered before going into compile_fs. For
+ * BLORP, we'll assume that whoever builds the shader sets the location
+ * they want so we just need to lower them and figure out how many we have
+ * in total.
+ */
+ nir->num_uniforms = 0;
+ nir_foreach_variable(var, &nir->uniforms) {
+ var->data.driver_location = var->data.location;
+ unsigned end = var->data.location + nir_uniform_type_size(var->type);
+ nir->num_uniforms = MAX2(nir->num_uniforms, end);
+ }
+ nir_lower_io(nir, nir_var_uniform, nir_uniform_type_size);
+
+ const unsigned *program =
+ brw_compile_fs(compiler, blorp->driver_ctx, mem_ctx,
+ wm_key, &wm_prog_data, nir,
+ NULL, -1, -1, false, use_repclear, program_size, NULL);
+
+ /* Copy the relavent bits of wm_prog_data over into the blorp prog data */
+ prog_data->dispatch_8 = wm_prog_data.dispatch_8;
+ prog_data->dispatch_16 = wm_prog_data.dispatch_16;
+ prog_data->first_curbe_grf_0 = wm_prog_data.base.dispatch_grf_start_reg;
+ prog_data->first_curbe_grf_2 = wm_prog_data.dispatch_grf_start_reg_2;
+ prog_data->ksp_offset_2 = wm_prog_data.prog_offset_2;
+ prog_data->persample_msaa_dispatch = wm_prog_data.persample_dispatch;
+ prog_data->flat_inputs = wm_prog_data.flat_inputs;
+ prog_data->num_varying_inputs = wm_prog_data.num_varying_inputs;
+ prog_data->inputs_read = nir->info.inputs_read;
+
+ assert(wm_prog_data.base.nr_params == 0);
+
+ return program;
+}
+
+void
+blorp_gen6_hiz_op(struct blorp_batch *batch,
+ struct blorp_surf *surf, unsigned level, unsigned layer,
+ enum blorp_hiz_op op)
+{
+ struct blorp_params params;
+ blorp_params_init(&params);
+
+ params.hiz_op = op;
+
+ brw_blorp_surface_info_init(batch->blorp, &params.depth, surf, level, layer,
+ surf->surf->format, true);
+
+ /* Align the rectangle primitive to 8x4 pixels.
+ *
+ * During fast depth clears, the emitted rectangle primitive must be
+ * aligned to 8x4 pixels. From the Ivybridge PRM, Vol 2 Part 1 Section
+ * 11.5.3.1 Depth Buffer Clear (and the matching section in the Sandybridge
+ * PRM):
+ * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
+ * aligned to an 8x4 pixel block relative to the upper left corner
+ * of the depth buffer [...]
+ *
+ * For hiz resolves, the rectangle must also be 8x4 aligned. Item
+ * WaHizAmbiguate8x4Aligned from the Haswell workarounds page and the
+ * Ivybridge simulator require the alignment.
+ *
+ * To be safe, let's just align the rect for all hiz operations and all
+ * hardware generations.
+ *
+ * However, for some miptree slices of a Z24 texture, emitting an 8x4
+ * aligned rectangle that covers the slice may clobber adjacent slices if
+ * we strictly adhered to the texture alignments specified in the PRM. The
+ * Ivybridge PRM, Section "Alignment Unit Size", states that
+ * SURFACE_STATE.Surface_Horizontal_Alignment should be 4 for Z24 surfaces,
+ * not 8. But commit 1f112cc increased the alignment from 4 to 8, which
+ * prevents the clobbering.
+ */
+ params.x1 = minify(params.depth.surf.logical_level0_px.width,
+ params.depth.view.base_level);
+ params.y1 = minify(params.depth.surf.logical_level0_px.height,
+ params.depth.view.base_level);
+ params.x1 = ALIGN(params.x1, 8);
+ params.y1 = ALIGN(params.y1, 4);
+
+ if (params.depth.view.base_level == 0) {
+ /* TODO: What about MSAA? */
+ params.depth.surf.logical_level0_px.width = params.x1;
+ params.depth.surf.logical_level0_px.height = params.y1;
+ }
+
+ params.dst.surf.samples = params.depth.surf.samples;
+ params.dst.surf.logical_level0_px = params.depth.surf.logical_level0_px;
+ params.depth_format = isl_format_get_depth_format(surf->surf->format, false);
+
+ batch->blorp->exec(batch, &params);
+}
diff --git a/src/intel/blorp/blorp.h b/src/intel/blorp/blorp.h
new file mode 100644
index 00000000000..a4fcfdfcf70
--- /dev/null
+++ b/src/intel/blorp/blorp.h
@@ -0,0 +1,153 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#pragma once
+
+#include <stdint.h>
+#include <stdbool.h>
+
+#include "isl/isl.h"
+
+struct brw_context;
+struct brw_wm_prog_key;
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct blorp_batch;
+struct blorp_params;
+
+struct blorp_context {
+ void *driver_ctx;
+
+ const struct isl_device *isl_dev;
+
+ const struct brw_compiler *compiler;
+
+ struct {
+ uint32_t tex;
+ uint32_t rb;
+ uint32_t vb;
+ } mocs;
+
+ bool (*lookup_shader)(struct blorp_context *blorp,
+ const void *key, uint32_t key_size,
+ uint32_t *kernel_out, void *prog_data_out);
+ void (*upload_shader)(struct blorp_context *blorp,
+ const void *key, uint32_t key_size,
+ const void *kernel, uint32_t kernel_size,
+ const void *prog_data, uint32_t prog_data_size,
+ uint32_t *kernel_out, void *prog_data_out);
+ void (*exec)(struct blorp_batch *batch, const struct blorp_params *params);
+};
+
+void blorp_init(struct blorp_context *blorp, void *driver_ctx,
+ struct isl_device *isl_dev);
+void blorp_finish(struct blorp_context *blorp);
+
+struct blorp_batch {
+ struct blorp_context *blorp;
+ void *driver_batch;
+};
+
+void blorp_batch_init(struct blorp_context *blorp, struct blorp_batch *batch,
+ void *driver_batch);
+void blorp_batch_finish(struct blorp_batch *batch);
+
+struct blorp_address {
+ void *buffer;
+ uint32_t read_domains;
+ uint32_t write_domain;
+ uint32_t offset;
+};
+
+struct blorp_surf
+{
+ const struct isl_surf *surf;
+ struct blorp_address addr;
+
+ const struct isl_surf *aux_surf;
+ struct blorp_address aux_addr;
+ enum isl_aux_usage aux_usage;
+
+ union isl_color_value clear_color;
+};
+
+void
+blorp_blit(struct blorp_batch *batch,
+ const struct blorp_surf *src_surf,
+ unsigned src_level, unsigned src_layer,
+ enum isl_format src_format, int src_swizzle,
+ const struct blorp_surf *dst_surf,
+ unsigned dst_level, unsigned dst_layer,
+ enum isl_format dst_format,
+ float src_x0, float src_y0,
+ float src_x1, float src_y1,
+ float dst_x0, float dst_y0,
+ float dst_x1, float dst_y1,
+ uint32_t filter, bool mirror_x, bool mirror_y);
+
+void
+blorp_fast_clear(struct blorp_batch *batch,
+ const struct blorp_surf *surf,
+ uint32_t level, uint32_t layer,
+ uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1);
+
+void
+blorp_clear(struct blorp_batch *batch,
+ const struct blorp_surf *surf,
+ uint32_t level, uint32_t layer,
+ uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
+ enum isl_format format, union isl_color_value clear_color,
+ bool color_write_disable[4]);
+
+void
+blorp_ccs_resolve(struct blorp_batch *batch,
+ struct blorp_surf *surf, enum isl_format format);
+
+/**
+ * For an overview of the HiZ operations, see the following sections of the
+ * Sandy Bridge PRM, Volume 1, Part2:
+ * - 7.5.3.1 Depth Buffer Clear
+ * - 7.5.3.2 Depth Buffer Resolve
+ * - 7.5.3.3 Hierarchical Depth Buffer Resolve
+ *
+ * Of these, two get entered in the resolve map as needing to be done to the
+ * buffer: depth resolve and hiz resolve.
+ */
+enum blorp_hiz_op {
+ BLORP_HIZ_OP_NONE,
+ BLORP_HIZ_OP_DEPTH_CLEAR,
+ BLORP_HIZ_OP_DEPTH_RESOLVE,
+ BLORP_HIZ_OP_HIZ_RESOLVE,
+};
+
+void
+blorp_gen6_hiz_op(struct blorp_batch *batch,
+ struct blorp_surf *surf, unsigned level, unsigned layer,
+ enum blorp_hiz_op op);
+
+#ifdef __cplusplus
+} /* end extern "C" */
+#endif /* __cplusplus */
diff --git a/src/intel/blorp/blorp_blit.c b/src/intel/blorp/blorp_blit.c
new file mode 100644
index 00000000000..170c3816e38
--- /dev/null
+++ b/src/intel/blorp/blorp_blit.c
@@ -0,0 +1,1649 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "program/prog_instruction.h"
+#include "compiler/nir/nir_builder.h"
+
+#include "blorp_priv.h"
+#include "brw_meta_util.h"
+
+#define FILE_DEBUG_FLAG DEBUG_BLORP
+
+/**
+ * Enum to specify the order of arguments in a sampler message
+ */
+enum sampler_message_arg
+{
+ SAMPLER_MESSAGE_ARG_U_FLOAT,
+ SAMPLER_MESSAGE_ARG_V_FLOAT,
+ SAMPLER_MESSAGE_ARG_U_INT,
+ SAMPLER_MESSAGE_ARG_V_INT,
+ SAMPLER_MESSAGE_ARG_R_INT,
+ SAMPLER_MESSAGE_ARG_SI_INT,
+ SAMPLER_MESSAGE_ARG_MCS_INT,
+ SAMPLER_MESSAGE_ARG_ZERO_INT,
+};
+
+struct brw_blorp_blit_vars {
+ /* Input values from brw_blorp_wm_inputs */
+ nir_variable *v_discard_rect;
+ nir_variable *v_rect_grid;
+ nir_variable *v_coord_transform;
+ nir_variable *v_src_z;
+
+ /* gl_FragCoord */
+ nir_variable *frag_coord;
+
+ /* gl_FragColor */
+ nir_variable *color_out;
+};
+
+static void
+brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
+ const struct brw_blorp_blit_prog_key *key)
+{
+ /* Blended and scaled blits never use pixel discard. */
+ assert(!key->use_kill || !(key->blend && key->blit_scaled));
+
+#define LOAD_INPUT(name, type)\
+ v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
+ type, #name); \
+ v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
+ v->v_##name->data.location = VARYING_SLOT_VAR0 + \
+ offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
+
+ LOAD_INPUT(discard_rect, glsl_vec4_type())
+ LOAD_INPUT(rect_grid, glsl_vec4_type())
+ LOAD_INPUT(coord_transform, glsl_vec4_type())
+ LOAD_INPUT(src_z, glsl_uint_type())
+
+#undef LOAD_INPUT
+
+ v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
+ glsl_vec4_type(), "gl_FragCoord");
+ v->frag_coord->data.location = VARYING_SLOT_POS;
+ v->frag_coord->data.origin_upper_left = true;
+
+ v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
+ glsl_vec4_type(), "gl_FragColor");
+ v->color_out->data.location = FRAG_RESULT_COLOR;
+}
+
+static nir_ssa_def *
+blorp_blit_get_frag_coords(nir_builder *b,
+ const struct brw_blorp_blit_prog_key *key,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
+
+ if (key->persample_msaa_dispatch) {
+ return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
+ nir_load_sample_id(b));
+ } else {
+ return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
+ }
+}
+
+/**
+ * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
+ * coordinates.
+ */
+static nir_ssa_def *
+blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
+
+ nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
+ nir_channel(b, coord_transform, 3));
+ nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
+ nir_channel(b, coord_transform, 2));
+
+ return nir_ffma(b, src_pos, mul, offset);
+}
+
+static inline void
+blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *c0, *c1, *c2, *c3;
+ nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
+ nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
+ nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
+ nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
+ nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
+
+ c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
+ c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
+ c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
+ c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
+
+ nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
+
+ nir_intrinsic_instr *discard =
+ nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
+ discard->src[0] = nir_src_for_ssa(oob);
+ nir_builder_instr_insert(b, &discard->instr);
+}
+
+static nir_tex_instr *
+blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
+ nir_alu_type dst_type)
+{
+ nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
+
+ tex->op = op;
+
+ tex->dest_type = dst_type;
+ tex->is_array = false;
+ tex->is_shadow = false;
+
+ /* Blorp only has one texture and it's bound at unit 0 */
+ tex->texture = NULL;
+ tex->sampler = NULL;
+ tex->texture_index = 0;
+ tex->sampler_index = 0;
+
+ /* To properly handle 3-D and 2-D array textures, we pull the Z component
+ * from an input. TODO: This is a bit magic; we should probably make this
+ * more explicit in the future.
+ */
+ assert(pos->num_components >= 2);
+ pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
+ nir_load_var(b, v->v_src_z));
+
+ tex->src[0].src_type = nir_tex_src_coord;
+ tex->src[0].src = nir_src_for_ssa(pos);
+ tex->coord_components = 3;
+
+ nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
+
+ return tex;
+}
+
+static nir_ssa_def *
+blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, nir_alu_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
+
+ assert(pos->num_components == 2);
+ tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
+ tex->src[1].src_type = nir_tex_src_lod;
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, nir_alu_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
+ tex->src[1].src_type = nir_tex_src_lod;
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, nir_ssa_def *mcs, nir_alu_type dst_type)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
+ mcs != NULL ? 3 : 2, dst_type);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+ tex->src[1].src_type = nir_tex_src_ms_index;
+ if (pos->num_components == 2) {
+ tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+ } else {
+ assert(pos->num_components == 3);
+ tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
+ }
+
+ if (mcs) {
+ tex->src[2].src_type = nir_tex_src_ms_mcs;
+ tex->src[2].src = nir_src_for_ssa(mcs);
+ }
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
+{
+ nir_tex_instr *tex =
+ blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
+ pos, 1, nir_type_int);
+
+ tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+ nir_builder_instr_insert(b, &tex->instr);
+
+ return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
+ uint32_t src_mask, int src_left_shift)
+{
+ nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
+
+ nir_ssa_def *shifted;
+ if (src_left_shift > 0) {
+ shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
+ } else if (src_left_shift < 0) {
+ shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
+ } else {
+ assert(src_left_shift == 0);
+ shifted = masked;
+ }
+
+ return nir_ior(b, dst, shifted);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
+{
+ assert(pos->num_components == 2);
+ nir_ssa_def *x_Y = nir_channel(b, pos, 0);
+ nir_ssa_def *y_Y = nir_channel(b, pos, 1);
+
+ /* Given X and Y coordinates that describe an address using Y tiling,
+ * translate to the X and Y coordinates that describe the same address
+ * using W tiling.
+ *
+ * If we break down the low order bits of X and Y, using a
+ * single letter to represent each low-order bit:
+ *
+ * X = A << 7 | 0bBCDEFGH
+ * Y = J << 5 | 0bKLMNP (1)
+ *
+ * Then we can apply the Y tiling formula to see the memory offset being
+ * addressed:
+ *
+ * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2)
+ *
+ * If we apply the W detiling formula to this memory location, that the
+ * corresponding X' and Y' coordinates are:
+ *
+ * X' = A << 6 | 0bBCDPFH (3)
+ * Y' = J << 6 | 0bKLMNEG
+ *
+ * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
+ * we need to make the following computation:
+ *
+ * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4)
+ * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
+ */
+ nir_ssa_def *x_W = nir_imm_int(b, 0);
+ x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
+ x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
+ x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
+
+ nir_ssa_def *y_W = nir_imm_int(b, 0);
+ y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
+ y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
+ y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
+
+ return nir_vec2(b, x_W, y_W);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
+{
+ assert(pos->num_components == 2);
+ nir_ssa_def *x_W = nir_channel(b, pos, 0);
+ nir_ssa_def *y_W = nir_channel(b, pos, 1);
+
+ /* Applying the same logic as above, but in reverse, we obtain the
+ * formulas:
+ *
+ * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
+ * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
+ */
+ nir_ssa_def *x_Y = nir_imm_int(b, 0);
+ x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
+ x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
+ x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
+ x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
+
+ nir_ssa_def *y_Y = nir_imm_int(b, 0);
+ y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
+ y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
+
+ return nir_vec2(b, x_Y, y_Y);
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
+ unsigned num_samples, enum isl_msaa_layout layout)
+{
+ assert(pos->num_components == 2 || pos->num_components == 3);
+
+ switch (layout) {
+ case ISL_MSAA_LAYOUT_NONE:
+ assert(pos->num_components == 2);
+ return pos;
+ case ISL_MSAA_LAYOUT_ARRAY:
+ /* No translation needed */
+ return pos;
+ case ISL_MSAA_LAYOUT_INTERLEAVED: {
+ nir_ssa_def *x_in = nir_channel(b, pos, 0);
+ nir_ssa_def *y_in = nir_channel(b, pos, 1);
+ nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
+ nir_channel(b, pos, 2);
+
+ nir_ssa_def *x_out = nir_imm_int(b, 0);
+ nir_ssa_def *y_out = nir_imm_int(b, 0);
+ switch (num_samples) {
+ case 2:
+ case 4:
+ /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = Y
+ *
+ * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ if (num_samples == 2) {
+ y_out = y_in;
+ } else {
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ }
+ break;
+
+ case 8:
+ /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+ * | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ break;
+
+ case 16:
+ /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+ * | (X & 0b1)
+ * Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
+ * | (Y & 0b1)
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+ x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
+ y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ break;
+
+ default:
+ unreachable("Invalid number of samples for IMS layout");
+ }
+
+ return nir_vec2(b, x_out, y_out);
+ }
+
+ default:
+ unreachable("Invalid MSAA layout");
+ }
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
+ unsigned num_samples, enum isl_msaa_layout layout)
+{
+ assert(pos->num_components == 2 || pos->num_components == 3);
+
+ switch (layout) {
+ case ISL_MSAA_LAYOUT_NONE:
+ /* No translation necessary, and S should already be zero. */
+ assert(pos->num_components == 2);
+ return pos;
+ case ISL_MSAA_LAYOUT_ARRAY:
+ /* No translation necessary. */
+ return pos;
+ case ISL_MSAA_LAYOUT_INTERLEAVED: {
+ assert(pos->num_components == 2);
+
+ nir_ssa_def *x_in = nir_channel(b, pos, 0);
+ nir_ssa_def *y_in = nir_channel(b, pos, 1);
+
+ nir_ssa_def *x_out = nir_imm_int(b, 0);
+ nir_ssa_def *y_out = nir_imm_int(b, 0);
+ nir_ssa_def *s_out = nir_imm_int(b, 0);
+ switch (num_samples) {
+ case 2:
+ case 4:
+ /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * S = (X & 0b10) >> 1
+ *
+ * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ if (num_samples == 2) {
+ y_out = y_in;
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ } else {
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ }
+ break;
+
+ case 8:
+ /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ break;
+
+ case 16:
+ /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
+ * S = (Y & 0b100) << 1 | (X & 0b100) |
+ * (Y & 0b10) | (X & 0b10) >> 1
+ */
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+ x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
+ y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+ s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+ s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+ break;
+
+ default:
+ unreachable("Invalid number of samples for IMS layout");
+ }
+
+ return nir_vec3(b, x_out, y_out, s_out);
+ }
+
+ default:
+ unreachable("Invalid MSAA layout");
+ }
+}
+
+/**
+ * Count the number of trailing 1 bits in the given value. For example:
+ *
+ * count_trailing_one_bits(0) == 0
+ * count_trailing_one_bits(7) == 3
+ * count_trailing_one_bits(11) == 2
+ */
+static inline int count_trailing_one_bits(unsigned value)
+{
+#ifdef HAVE___BUILTIN_CTZ
+ return __builtin_ctz(~value);
+#else
+ return _mesa_bitcount(value & ~(value + 1));
+#endif
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
+ nir_ssa_def *pos, unsigned tex_samples,
+ enum isl_aux_usage tex_aux_usage,
+ nir_alu_type dst_type)
+{
+ /* If non-null, this is the outer-most if statement */
+ nir_if *outer_if = NULL;
+
+ nir_variable *color =
+ nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
+
+ nir_ssa_def *mcs = NULL;
+ if (tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(b, v, pos);
+
+ /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
+ *
+ * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
+ *
+ * This ensures that when all samples have the same value, no numerical
+ * precision is lost, since each addition operation always adds two equal
+ * values, and summing two equal floating point values does not lose
+ * precision.
+ *
+ * We perform this computation by treating the texture_data array as a
+ * stack and performing the following operations:
+ *
+ * - push sample 0 onto stack
+ * - push sample 1 onto stack
+ * - add top two stack entries
+ * - push sample 2 onto stack
+ * - push sample 3 onto stack
+ * - add top two stack entries
+ * - add top two stack entries
+ * - divide top stack entry by 4
+ *
+ * Note that after pushing sample i onto the stack, the number of add
+ * operations we do is equal to the number of trailing 1 bits in i. This
+ * works provided the total number of samples is a power of two, which it
+ * always is for i965.
+ *
+ * For integer formats, we replace the add operations with average
+ * operations and skip the final division.
+ */
+ nir_ssa_def *texture_data[5];
+ unsigned stack_depth = 0;
+ for (unsigned i = 0; i < tex_samples; ++i) {
+ assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
+
+ /* Push sample i onto the stack */
+ assert(stack_depth < ARRAY_SIZE(texture_data));
+
+ nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
+ nir_channel(b, pos, 1),
+ nir_imm_int(b, i));
+ texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
+
+ if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
+ /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
+ * suggests an optimization:
+ *
+ * "A simple optimization with probable large return in
+ * performance is to compare the MCS value to zero (indicating
+ * all samples are on sample slice 0), and sample only from
+ * sample slice 0 using ld2dss if MCS is zero."
+ *
+ * Note that in the case where the MCS value is zero, sampling from
+ * sample slice 0 using ld2dss and sampling from sample 0 using
+ * ld2dms are equivalent (since all samples are on sample slice 0).
+ * Since we have already sampled from sample 0, all we need to do is
+ * skip the remaining fetches and averaging if MCS is zero.
+ */
+ nir_ssa_def *mcs_zero =
+ nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
+ if (tex_samples == 16) {
+ mcs_zero = nir_iand(b, mcs_zero,
+ nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
+ }
+
+ nir_if *if_stmt = nir_if_create(b->shader);
+ if_stmt->condition = nir_src_for_ssa(mcs_zero);
+ nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
+
+ b->cursor = nir_after_cf_list(&if_stmt->then_list);
+ nir_store_var(b, color, texture_data[0], 0xf);
+
+ b->cursor = nir_after_cf_list(&if_stmt->else_list);
+ outer_if = if_stmt;
+ }
+
+ for (int j = 0; j < count_trailing_one_bits(i); j++) {
+ assert(stack_depth >= 2);
+ --stack_depth;
+
+ assert(dst_type == nir_type_float);
+ texture_data[stack_depth - 1] =
+ nir_fadd(b, texture_data[stack_depth - 1],
+ texture_data[stack_depth]);
+ }
+ }
+
+ /* We should have just 1 sample on the stack now. */
+ assert(stack_depth == 1);
+
+ texture_data[0] = nir_fmul(b, texture_data[0],
+ nir_imm_float(b, 1.0 / tex_samples));
+
+ nir_store_var(b, color, texture_data[0], 0xf);
+
+ if (outer_if)
+ b->cursor = nir_after_cf_node(&outer_if->cf_node);
+
+ return nir_load_var(b, color);
+}
+
+static inline nir_ssa_def *
+nir_imm_vec2(nir_builder *build, float x, float y)
+{
+ nir_const_value v;
+
+ memset(&v, 0, sizeof(v));
+ v.f32[0] = x;
+ v.f32[1] = y;
+
+ return nir_build_imm(build, 4, 32, v);
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
+ unsigned tex_samples,
+ const struct brw_blorp_blit_prog_key *key,
+ struct brw_blorp_blit_vars *v)
+{
+ nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
+ nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
+ nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
+
+ /* Translate coordinates to lay out the samples in a rectangular grid
+ * roughly corresponding to sample locations.
+ */
+ pos_xy = nir_fmul(b, pos_xy, scale);
+ /* Adjust coordinates so that integers represent pixel centers rather
+ * than pixel edges.
+ */
+ pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
+ /* Clamp the X, Y texture coordinates to properly handle the sampling of
+ * texels on texture edges.
+ */
+ pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
+ nir_vec2(b, nir_channel(b, rect_grid, 0),
+ nir_channel(b, rect_grid, 1)));
+
+ /* Store the fractional parts to be used as bilinear interpolation
+ * coefficients.
+ */
+ nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
+ /* Round the float coordinates down to nearest integer */
+ pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
+
+ nir_ssa_def *tex_data[4];
+ for (unsigned i = 0; i < 4; ++i) {
+ float sample_off_x = (float)(i & 0x1) / key->x_scale;
+ float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
+ nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
+
+ nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
+ nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
+
+ /* The MCS value we fetch has to match up with the pixel that we're
+ * sampling from. Since we sample from different pixels in each
+ * iteration of this "for" loop, the call to mcs_fetch() should be
+ * here inside the loop after computing the pixel coordinates.
+ */
+ nir_ssa_def *mcs = NULL;
+ if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
+
+ /* Compute sample index and map the sample index to a sample number.
+ * Sample index layout shows the numbering of slots in a rectangular
+ * grid of samples with in a pixel. Sample number layout shows the
+ * rectangular grid of samples roughly corresponding to the real sample
+ * locations with in a pixel.
+ * In case of 4x MSAA, layout of sample indices matches the layout of
+ * sample numbers:
+ * ---------
+ * | 0 | 1 |
+ * ---------
+ * | 2 | 3 |
+ * ---------
+ *
+ * In case of 8x MSAA the two layouts don't match.
+ * sample index layout : --------- sample number layout : ---------
+ * | 0 | 1 | | 3 | 7 |
+ * --------- ---------
+ * | 2 | 3 | | 5 | 0 |
+ * --------- ---------
+ * | 4 | 5 | | 1 | 2 |
+ * --------- ---------
+ * | 6 | 7 | | 4 | 6 |
+ * --------- ---------
+ *
+ * Fortunately, this can be done fairly easily as:
+ * S' = (0x17306425 >> (S * 4)) & 0xf
+ *
+ * In the case of 16x MSAA the two layouts don't match.
+ * Sample index layout: Sample number layout:
+ * --------------------- ---------------------
+ * | 0 | 1 | 2 | 3 | | 15 | 10 | 9 | 7 |
+ * --------------------- ---------------------
+ * | 4 | 5 | 6 | 7 | | 4 | 1 | 3 | 13 |
+ * --------------------- ---------------------
+ * | 8 | 9 | 10 | 11 | | 12 | 2 | 0 | 6 |
+ * --------------------- ---------------------
+ * | 12 | 13 | 14 | 15 | | 11 | 8 | 5 | 14 |
+ * --------------------- ---------------------
+ *
+ * This is equivalent to
+ * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
+ */
+ nir_ssa_def *frac = nir_ffract(b, sample_coords);
+ nir_ssa_def *sample =
+ nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
+ key->x_scale * key->y_scale));
+ sample = nir_f2i(b, sample);
+
+ if (tex_samples == 8) {
+ sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x64210573),
+ nir_ishl(b, sample, nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+ } else if (tex_samples == 16) {
+ nir_ssa_def *sample_low =
+ nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
+ nir_ishl(b, sample, nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+ nir_ssa_def *sample_high =
+ nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
+ nir_ishl(b, nir_iadd(b, sample,
+ nir_imm_int(b, -8)),
+ nir_imm_int(b, 2))),
+ nir_imm_int(b, 0xf));
+
+ sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
+ sample_low, sample_high);
+ }
+ nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
+ nir_channel(b, sample_coords_int, 1),
+ sample);
+ tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
+ }
+
+ nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
+ nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
+ return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
+ nir_flrp(b, tex_data[2], tex_data[3], frac_x),
+ frac_y);
+}
+
+/**
+ * Generator for WM programs used in BLORP blits.
+ *
+ * The bulk of the work done by the WM program is to wrap and unwrap the
+ * coordinate transformations used by the hardware to store surfaces in
+ * memory. The hardware transforms a pixel location (X, Y, S) (where S is the
+ * sample index for a multisampled surface) to a memory offset by the
+ * following formulas:
+ *
+ * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
+ * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
+ *
+ * For a single-sampled surface, or for a multisampled surface using
+ * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
+ * function:
+ *
+ * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ * encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ * decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ *
+ * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bit 1 of the X and Y coordinates:
+ *
+ * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
+ * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
+ * the Y coordinate:
+ *
+ * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+ * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
+ * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+ * where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ * Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For X tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
+ * bytes wide and 8 rows high:
+ *
+ * tile(x_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
+ * offset = (Y' & 0b111) << 9
+ * | (X & 0b111111111)
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(x_tiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * Y' = (tile_num / tile_pitch) << 3
+ * | (A & 0b111000000000) >> 9
+ * X' = (tile_num % tile_pitch) << 9
+ * | (A & 0b111111111)
+ *
+ * (In all tiling formulas, cpp is the number of bytes occupied by a single
+ * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
+ * to fill the width of the surface, and qpitch is the spacing (in rows)
+ * between array slices).
+ *
+ * For Y tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
+ * bytes wide and 32 rows high:
+ *
+ * tile(y_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
+ * offset = (X' & 0b1110000) << 5
+ * | (Y' & 0b11111) << 4
+ * | (X' & 0b1111)
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(y_tiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * Y' = (tile_num / tile_pitch) << 5
+ * | (A & 0b111110000) >> 4
+ * X' = (tile_num % tile_pitch) << 7
+ * | (A & 0b111000000000) >> 5
+ * | (A & 0b1111)
+ *
+ * For W tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
+ * bytes wide and 64 rows high (note that W tiling is only used for stencil
+ * buffers, which always have cpp = 1 and S=0):
+ *
+ * tile(w_tiled, X, Y, S) = A
+ * where A = tile_num << 12 | offset
+ * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
+ * offset = (X' & 0b111000) << 6
+ * | (Y' & 0b111100) << 3
+ * | (X' & 0b100) << 2
+ * | (Y' & 0b10) << 2
+ * | (X' & 0b10) << 1
+ * | (Y' & 0b1) << 1
+ * | (X' & 0b1)
+ * X' = X * cpp = X
+ * Y' = Y + S * qpitch
+ * detile(w_tiled, A) = (X, Y, S)
+ * where X = X' / cpp = X'
+ * Y = Y' % qpitch = Y'
+ * S = Y / qpitch = 0
+ * Y' = (tile_num / tile_pitch) << 6
+ * | (A & 0b111100000) >> 3
+ * | (A & 0b1000) >> 2
+ * | (A & 0b10) >> 1
+ * X' = (tile_num % tile_pitch) << 6
+ * | (A & 0b111000000000) >> 6
+ * | (A & 0b10000) >> 2
+ * | (A & 0b100) >> 1
+ * | (A & 0b1)
+ *
+ * Finally, for a non-tiled surface, tile() simply combines together the X and
+ * Y coordinates in the natural way:
+ *
+ * tile(untiled, X, Y, S) = A
+ * where A = Y * pitch + X'
+ * X' = X * cpp
+ * Y' = Y + S * qpitch
+ * detile(untiled, A) = (X, Y, S)
+ * where X = X' / cpp
+ * Y = Y' % qpitch
+ * S = Y' / qpitch
+ * X' = A % pitch
+ * Y' = A / pitch
+ *
+ * (In these formulas, pitch is the number of bytes occupied by a single row
+ * of samples).
+ */
+static nir_shader *
+brw_blorp_build_nir_shader(struct blorp_context *blorp,
+ const struct brw_blorp_blit_prog_key *key)
+{
+ const struct brw_device_info *devinfo = blorp->isl_dev->info;
+ nir_ssa_def *src_pos, *dst_pos, *color;
+
+ /* Sanity checks */
+ if (key->dst_tiled_w && key->rt_samples > 1) {
+ /* If the destination image is W tiled and multisampled, then the thread
+ * must be dispatched once per sample, not once per pixel. This is
+ * necessary because after conversion between W and Y tiling, there's no
+ * guarantee that all samples corresponding to a single pixel will still
+ * be together.
+ */
+ assert(key->persample_msaa_dispatch);
+ }
+
+ if (key->blend) {
+ /* We are blending, which means we won't have an opportunity to
+ * translate the tiling and sample count for the texture surface. So
+ * the surface state for the texture must be configured with the correct
+ * tiling and sample count.
+ */
+ assert(!key->src_tiled_w);
+ assert(key->tex_samples == key->src_samples);
+ assert(key->tex_layout == key->src_layout);
+ assert(key->tex_samples > 0);
+ }
+
+ if (key->persample_msaa_dispatch) {
+ /* It only makes sense to do persample dispatch if the render target is
+ * configured as multisampled.
+ */
+ assert(key->rt_samples > 0);
+ }
+
+ /* Make sure layout is consistent with sample count */
+ assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->tex_samples <= 1));
+ assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->rt_samples <= 1));
+ assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->src_samples <= 1));
+ assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
+ (key->dst_samples <= 1));
+
+ nir_builder b;
+ nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
+
+ struct brw_blorp_blit_vars v;
+ brw_blorp_blit_vars_init(&b, &v, key);
+
+ dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
+
+ /* Render target and texture hardware don't support W tiling until Gen8. */
+ const bool rt_tiled_w = false;
+ const bool tex_tiled_w = devinfo->gen >= 8 && key->src_tiled_w;
+
+ /* The address that data will be written to is determined by the
+ * coordinates supplied to the WM thread and the tiling and sample count of
+ * the render target, according to the formula:
+ *
+ * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
+ *
+ * If the actual tiling and sample count of the destination surface are not
+ * the same as the configuration of the render target, then these
+ * coordinates are wrong and we have to adjust them to compensate for the
+ * difference.
+ */
+ if (rt_tiled_w != key->dst_tiled_w ||
+ key->rt_samples != key->dst_samples ||
+ key->rt_layout != key->dst_layout) {
+ dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
+ key->rt_layout);
+ /* Now (X, Y, S) = detile(rt_tiling, offset) */
+ if (rt_tiled_w != key->dst_tiled_w)
+ dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
+ /* Now (X, Y, S) = detile(rt_tiling, offset) */
+ dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
+ key->dst_layout);
+ }
+
+ /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
+ *
+ * That is: X, Y and S now contain the true coordinates and sample index of
+ * the data that the WM thread should output.
+ *
+ * If we need to kill pixels that are outside the destination rectangle,
+ * now is the time to do it.
+ */
+ if (key->use_kill) {
+ assert(!(key->blend && key->blit_scaled));
+ blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
+ }
+
+ src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
+ if (dst_pos->num_components == 3) {
+ /* The sample coordinate is an integer that we want left alone but
+ * blorp_blit_apply_transform() blindly applies the transform to all
+ * three coordinates. Grab the original sample index.
+ */
+ src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
+ nir_channel(&b, src_pos, 1),
+ nir_channel(&b, dst_pos, 2));
+ }
+
+ /* If the source image is not multisampled, then we want to fetch sample
+ * number 0, because that's the only sample there is.
+ */
+ if (key->src_samples == 1)
+ src_pos = nir_channels(&b, src_pos, 0x3);
+
+ /* X, Y, and S are now the coordinates of the pixel in the source image
+ * that we want to texture from. Exception: if we are blending, then S is
+ * irrelevant, because we are going to fetch all samples.
+ */
+ if (key->blend && !key->blit_scaled) {
+ /* Resolves (effecively) use texelFetch, so we need integers and we
+ * don't care about the sample index if we got one.
+ */
+ src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
+
+ if (devinfo->gen == 6) {
+ /* Because gen6 only supports 4x interleved MSAA, we can do all the
+ * blending we need with a single linear-interpolated texture lookup
+ * at the center of the sample. The texture coordinates to be odd
+ * integers so that they correspond to the center of a 2x2 block
+ * representing the four samples that maxe up a pixel. So we need
+ * to multiply our X and Y coordinates each by 2 and then add 1.
+ */
+ src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
+ src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
+ src_pos = nir_i2f(&b, src_pos);
+ color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ /* Gen7+ hardware doesn't automaticaly blend. */
+ color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
+ key->tex_aux_usage,
+ key->texture_data_type);
+ }
+ } else if (key->blend && key->blit_scaled) {
+ assert(!key->use_kill);
+ color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
+ } else {
+ if (key->bilinear_filter) {
+ color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ /* We're going to use texelFetch, so we need integers */
+ if (src_pos->num_components == 2) {
+ src_pos = nir_f2i(&b, src_pos);
+ } else {
+ assert(src_pos->num_components == 3);
+ src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
+ nir_channel(&b, nir_f2i(&b, src_pos), 1),
+ nir_channel(&b, src_pos, 2));
+ }
+
+ /* We aren't blending, which means we just want to fetch a single
+ * sample from the source surface. The address that we want to fetch
+ * from is related to the X, Y and S values according to the formula:
+ *
+ * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
+ *
+ * If the actual tiling and sample count of the source surface are
+ * not the same as the configuration of the texture, then we need to
+ * adjust the coordinates to compensate for the difference.
+ */
+ if (tex_tiled_w != key->src_tiled_w ||
+ key->tex_samples != key->src_samples ||
+ key->tex_layout != key->src_layout) {
+ src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
+ key->src_layout);
+ /* Now (X, Y, S) = detile(src_tiling, offset) */
+ if (tex_tiled_w != key->src_tiled_w)
+ src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
+ /* Now (X, Y, S) = detile(tex_tiling, offset) */
+ src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
+ key->tex_layout);
+ }
+
+ /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
+ *
+ * In other words: X, Y, and S now contain values which, when passed to
+ * the texturing unit, will cause data to be read from the correct
+ * memory location. So we can fetch the texel now.
+ */
+ if (key->src_samples == 1) {
+ color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
+ } else {
+ nir_ssa_def *mcs = NULL;
+ if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+ mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
+
+ color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
+ }
+ }
+ }
+
+ nir_store_var(&b, v.color_out, color, 0xf);
+
+ return b.shader;
+}
+
+static void
+brw_blorp_get_blit_kernel(struct blorp_context *blorp,
+ struct blorp_params *params,
+ const struct brw_blorp_blit_prog_key *prog_key)
+{
+ if (blorp->lookup_shader(blorp, prog_key, sizeof(*prog_key),
+ &params->wm_prog_kernel, &params->wm_prog_data))
+ return;
+
+ const unsigned *program;
+ unsigned program_size;
+ struct brw_blorp_prog_data prog_data;
+
+ /* Try and compile with NIR first. If that fails, fall back to the old
+ * method of building shaders manually.
+ */
+ nir_shader *nir = brw_blorp_build_nir_shader(blorp, prog_key);
+ struct brw_wm_prog_key wm_key;
+ brw_blorp_init_wm_prog_key(&wm_key);
+ wm_key.tex.compressed_multisample_layout_mask =
+ prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
+ wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
+ wm_key.multisample_fbo = prog_key->rt_samples > 1;
+
+ program = brw_blorp_compile_nir_shader(blorp, nir, &wm_key, false,
+ &prog_data, &program_size);
+
+ blorp->upload_shader(blorp, prog_key, sizeof(*prog_key),
+ program, program_size,
+ &prog_data, sizeof(prog_data),
+ &params->wm_prog_kernel, &params->wm_prog_data);
+}
+
+static void
+brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
+ GLfloat src0, GLfloat src1,
+ GLfloat dst0, GLfloat dst1,
+ bool mirror)
+{
+ float scale = (src1 - src0) / (dst1 - dst0);
+ if (!mirror) {
+ /* When not mirroring a coordinate (say, X), we need:
+ * src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
+ * Therefore:
+ * src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
+ *
+ * blorp program uses "round toward zero" to convert the
+ * transformed floating point coordinates to integer coordinates,
+ * whereas the behaviour we actually want is "round to nearest",
+ * so 0.5 provides the necessary correction.
+ */
+ xform->multiplier = scale;
+ xform->offset = src0 + (-dst0 + 0.5f) * scale;
+ } else {
+ /* When mirroring X we need:
+ * src_x - src_x0 = dst_x1 - dst_x - 0.5
+ * Therefore:
+ * src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
+ */
+ xform->multiplier = -scale;
+ xform->offset = src0 + (dst1 - 0.5f) * scale;
+ }
+}
+
+/**
+ * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
+ * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
+ *
+ * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
+ * 0 1 2 3 4 5
+ * 4 5 6 7 0 1
+ * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
+ *
+ * which is simply adding 4 then modding by 8 (or anding with 7).
+ *
+ * We then may need to apply workarounds for textureGather hardware bugs.
+ */
+static enum isl_channel_select
+swizzle_to_scs(GLenum swizzle)
+{
+ return (enum isl_channel_select)((swizzle + 4) & 7);
+}
+
+static void
+surf_convert_to_single_slice(const struct isl_device *isl_dev,
+ struct brw_blorp_surface_info *info)
+{
+ /* This only makes sense for a single level and array slice */
+ assert(info->view.levels == 1 && info->view.array_len == 1);
+
+ /* Just bail if we have nothing to do. */
+ if (info->surf.dim == ISL_SURF_DIM_2D &&
+ info->view.base_level == 0 && info->view.base_array_layer == 0 &&
+ info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
+ return;
+
+ uint32_t x_offset_sa, y_offset_sa;
+ isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
+ info->view.base_array_layer, 0,
+ &x_offset_sa, &y_offset_sa);
+
+ uint32_t byte_offset;
+ isl_tiling_get_intratile_offset_sa(isl_dev, info->surf.tiling,
+ info->view.format, info->surf.row_pitch,
+ x_offset_sa, y_offset_sa,
+ &byte_offset,
+ &info->tile_x_sa, &info->tile_y_sa);
+ info->addr.offset += byte_offset;
+
+ /* TODO: Once this file gets converted to C, we shouls just use designated
+ * initializers.
+ */
+ struct isl_surf_init_info init_info = { 0, };
+
+ init_info.dim = ISL_SURF_DIM_2D;
+ init_info.format = ISL_FORMAT_R8_UINT;
+ init_info.width =
+ minify(info->surf.logical_level0_px.width, info->view.base_level);
+ init_info.height =
+ minify(info->surf.logical_level0_px.height, info->view.base_level);
+ init_info.depth = 1;
+ init_info.levels = 1;
+ init_info.array_len = 1;
+ init_info.samples = info->surf.samples;
+ init_info.min_pitch = info->surf.row_pitch;
+ init_info.usage = info->surf.usage;
+ init_info.tiling_flags = 1 << info->surf.tiling;
+
+ isl_surf_init_s(isl_dev, &info->surf, &init_info);
+ assert(info->surf.row_pitch == init_info.min_pitch);
+
+ /* The view is also different now. */
+ info->view.base_level = 0;
+ info->view.levels = 1;
+ info->view.base_array_layer = 0;
+ info->view.array_len = 1;
+}
+
+static void
+surf_fake_interleaved_msaa(const struct isl_device *isl_dev,
+ struct brw_blorp_surface_info *info)
+{
+ assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
+
+ /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+ surf_convert_to_single_slice(isl_dev, info);
+
+ info->surf.logical_level0_px = info->surf.phys_level0_sa;
+ info->surf.samples = 1;
+ info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+}
+
+static void
+surf_retile_w_to_y(const struct isl_device *isl_dev,
+ struct brw_blorp_surface_info *info)
+{
+ assert(info->surf.tiling == ISL_TILING_W);
+
+ /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+ surf_convert_to_single_slice(isl_dev, info);
+
+ /* On gen7+, we don't have interleaved multisampling for color render
+ * targets so we have to fake it.
+ *
+ * TODO: Are we sure we don't also need to fake it on gen6?
+ */
+ if (isl_dev->info->gen > 6 &&
+ info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+ info->surf.logical_level0_px = info->surf.phys_level0_sa;
+ info->surf.samples = 1;
+ info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+ }
+
+ if (isl_dev->info->gen == 6) {
+ /* Gen6 stencil buffers have a very large alignment coming in from the
+ * miptree. It's out-of-bounds for what the surface state can handle.
+ * Since we have a single layer and level, it doesn't really matter as
+ * long as we don't pass a bogus value into isl_surf_fill_state().
+ */
+ info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
+ }
+
+ /* Now that we've converted everything to a simple 2-D surface with only
+ * one miplevel, we can go about retiling it.
+ */
+ const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
+ info->surf.tiling = ISL_TILING_Y0;
+ info->surf.logical_level0_px.width =
+ ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
+ info->surf.logical_level0_px.height =
+ ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
+ info->tile_x_sa *= 2;
+ info->tile_y_sa /= 2;
+}
+
+void
+blorp_blit(struct blorp_batch *batch,
+ const struct blorp_surf *src_surf,
+ unsigned src_level, unsigned src_layer,
+ enum isl_format src_format, int src_swizzle,
+ const struct blorp_surf *dst_surf,
+ unsigned dst_level, unsigned dst_layer,
+ enum isl_format dst_format,
+ float src_x0, float src_y0,
+ float src_x1, float src_y1,
+ float dst_x0, float dst_y0,
+ float dst_x1, float dst_y1,
+ GLenum filter, bool mirror_x, bool mirror_y)
+{
+ const struct brw_device_info *devinfo = batch->blorp->isl_dev->info;
+
+ struct blorp_params params;
+ blorp_params_init(&params);
+
+ brw_blorp_surface_info_init(batch->blorp, &params.src, src_surf, src_level,
+ src_layer, src_format, false);
+ brw_blorp_surface_info_init(batch->blorp, &params.dst, dst_surf, dst_level,
+ dst_layer, dst_format, true);
+
+ struct brw_blorp_blit_prog_key wm_prog_key;
+ memset(&wm_prog_key, 0, sizeof(wm_prog_key));
+
+ if (isl_format_has_sint_channel(params.src.view.format)) {
+ wm_prog_key.texture_data_type = nir_type_int;
+ } else if (isl_format_has_uint_channel(params.src.view.format)) {
+ wm_prog_key.texture_data_type = nir_type_uint;
+ } else {
+ wm_prog_key.texture_data_type = nir_type_float;
+ }
+
+ /* Scaled blitting or not. */
+ wm_prog_key.blit_scaled =
+ ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
+ (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
+
+ /* Scaling factors used for bilinear filtering in multisample scaled
+ * blits.
+ */
+ if (params.src.surf.samples == 16)
+ wm_prog_key.x_scale = 4.0f;
+ else
+ wm_prog_key.x_scale = 2.0f;
+ wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
+
+ if (filter == GL_LINEAR &&
+ params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
+ wm_prog_key.bilinear_filter = true;
+
+ if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
+ (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
+ !isl_format_has_int_channel(params.src.surf.format) &&
+ params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
+ /* We are downsampling a non-integer color buffer, so blend.
+ *
+ * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
+ *
+ * "If the source formats are integer types or stencil values, a
+ * single sample's value is selected for each pixel."
+ *
+ * This implies we should not blend in that case.
+ */
+ wm_prog_key.blend = true;
+ }
+
+ /* src_samples and dst_samples are the true sample counts */
+ wm_prog_key.src_samples = params.src.surf.samples;
+ wm_prog_key.dst_samples = params.dst.surf.samples;
+
+ wm_prog_key.tex_aux_usage = params.src.aux_usage;
+
+ /* src_layout and dst_layout indicate the true MSAA layout used by src and
+ * dst.
+ */
+ wm_prog_key.src_layout = params.src.surf.msaa_layout;
+ wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
+
+ /* Round floating point values to nearest integer to avoid "off by one texel"
+ * kind of errors when blitting.
+ */
+ params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
+ params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
+ params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
+ params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
+
+ params.wm_inputs.rect_grid.x1 =
+ minify(params.src.surf.logical_level0_px.width, src_level) *
+ wm_prog_key.x_scale - 1.0f;
+ params.wm_inputs.rect_grid.y1 =
+ minify(params.src.surf.logical_level0_px.height, src_level) *
+ wm_prog_key.y_scale - 1.0f;
+
+ brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[0],
+ src_x0, src_x1, dst_x0, dst_x1, mirror_x);
+ brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[1],
+ src_y0, src_y1, dst_y0, dst_y1, mirror_y);
+
+ /* For some texture types, we need to pass the layer through the sampler. */
+ params.wm_inputs.src_z = params.src.z_offset;
+
+ if (devinfo->gen > 6 &&
+ params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+ assert(params.dst.surf.samples > 1);
+
+ /* We must expand the rectangle we send through the rendering pipeline,
+ * to account for the fact that we are mapping the destination region as
+ * single-sampled when it is in fact multisampled. We must also align
+ * it to a multiple of the multisampling pattern, because the
+ * differences between multisampled and single-sampled surface formats
+ * will mean that pixels are scrambled within the multisampling pattern.
+ * TODO: what if this makes the coordinates too large?
+ *
+ * Note: this only works if the destination surface uses the IMS layout.
+ * If it's UMS, then we have no choice but to set up the rendering
+ * pipeline as multisampled.
+ */
+ switch (params.dst.surf.samples) {
+ case 2:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+ params.y0 = ROUND_DOWN_TO(params.y0, 4);
+ params.x1 = ALIGN(params.x1 * 2, 4);
+ params.y1 = ALIGN(params.y1, 4);
+ break;
+ case 4:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+ params.x1 = ALIGN(params.x1 * 2, 4);
+ params.y1 = ALIGN(params.y1 * 2, 4);
+ break;
+ case 8:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+ params.x1 = ALIGN(params.x1 * 4, 8);
+ params.y1 = ALIGN(params.y1 * 2, 4);
+ break;
+ case 16:
+ params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+ params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
+ params.x1 = ALIGN(params.x1 * 4, 8);
+ params.y1 = ALIGN(params.y1 * 4, 8);
+ break;
+ default:
+ unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
+ }
+
+ surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
+
+ wm_prog_key.use_kill = true;
+ }
+
+ if (params.dst.surf.tiling == ISL_TILING_W) {
+ /* We must modify the rectangle we send through the rendering pipeline
+ * (and the size and x/y offset of the destination surface), to account
+ * for the fact that we are mapping it as Y-tiled when it is in fact
+ * W-tiled.
+ *
+ * Both Y tiling and W tiling can be understood as organizations of
+ * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
+ * is different, but the layout of the 32-byte sub-tiles within the 4k
+ * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
+ * column-major order). In Y tiling, the sub-tiles are 16 bytes wide
+ * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
+ *
+ * Therefore, to account for the layout differences within the 32-byte
+ * sub-tiles, we must expand the rectangle so the X coordinates of its
+ * edges are multiples of 8 (the W sub-tile width), and its Y
+ * coordinates of its edges are multiples of 4 (the W sub-tile height).
+ * Then we need to scale the X and Y coordinates of the rectangle to
+ * account for the differences in aspect ratio between the Y and W
+ * sub-tiles. We need to modify the layer width and height similarly.
+ *
+ * A correction needs to be applied when MSAA is in use: since
+ * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
+ * we need to align the Y coordinates to multiples of 8, so that when
+ * they are divided by two they are still multiples of 4.
+ *
+ * Note: Since the x/y offset of the surface will be applied using the
+ * SURFACE_STATE command packet, it will be invisible to the swizzling
+ * code in the shader; therefore it needs to be in a multiple of the
+ * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8
+ * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
+ * buffer), and the miplevel alignment used for stencil buffers is 8
+ * pixels horizontally and either 4 or 8 pixels vertically (see
+ * intel_horizontal_texture_alignment_unit() and
+ * intel_vertical_texture_alignment_unit()).
+ *
+ * Note: Also, since the SURFACE_STATE command packet can only apply
+ * offsets that are multiples of 4 pixels horizontally and 2 pixels
+ * vertically, it is important that the offsets will be multiples of
+ * these sizes after they are converted into Y-tiled coordinates.
+ * Fortunately they will be, since we know from above that the offsets
+ * are a multiple of the 32-byte sub-tile size, and in Y-tiled
+ * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
+ *
+ * TODO: what if this makes the coordinates (or the texture size) too
+ * large?
+ */
+ const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
+ params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
+ params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
+ params.x1 = ALIGN(params.x1, x_align) * 2;
+ params.y1 = ALIGN(params.y1, y_align) / 2;
+
+ /* Retile the surface to Y-tiled */
+ surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
+
+ wm_prog_key.dst_tiled_w = true;
+ wm_prog_key.use_kill = true;
+
+ if (params.dst.surf.samples > 1) {
+ /* If the destination surface is a W-tiled multisampled stencil
+ * buffer that we're mapping as Y tiled, then we need to arrange for
+ * the WM program to run once per sample rather than once per pixel,
+ * because the memory layout of related samples doesn't match between
+ * W and Y tiling.
+ */
+ wm_prog_key.persample_msaa_dispatch = true;
+ }
+ }
+
+ if (devinfo->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
+ /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
+ * Broadwell adds support for sampling from stencil.
+ *
+ * See the comments above concerning x/y offset alignment for the
+ * destination surface.
+ *
+ * TODO: what if this makes the texture size too large?
+ */
+ surf_retile_w_to_y(batch->blorp->isl_dev, &params.src);
+
+ wm_prog_key.src_tiled_w = true;
+ }
+
+ /* tex_samples and rt_samples are the sample counts that are set up in
+ * SURFACE_STATE.
+ */
+ wm_prog_key.tex_samples = params.src.surf.samples;
+ wm_prog_key.rt_samples = params.dst.surf.samples;
+
+ /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
+ * use to access the source and destination surfaces.
+ */
+ wm_prog_key.tex_layout = params.src.surf.msaa_layout;
+ wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
+
+ if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
+ /* We are blitting from a multisample buffer to a multisample buffer, so
+ * we must preserve samples within a pixel. This means we have to
+ * arrange for the WM program to run once per sample rather than once
+ * per pixel.
+ */
+ wm_prog_key.persample_msaa_dispatch = true;
+ }
+
+ brw_blorp_get_blit_kernel(batch->blorp, &params, &wm_prog_key);
+
+ for (unsigned i = 0; i < 4; i++) {
+ params.src.view.channel_select[i] =
+ swizzle_to_scs(GET_SWZ(src_swizzle, i));
+ }
+
+ batch->blorp->exec(batch, &params);
+}
diff --git a/src/intel/blorp/blorp_clear.c b/src/intel/blorp/blorp_clear.c
new file mode 100644
index 00000000000..a371dfd31ef
--- /dev/null
+++ b/src/intel/blorp/blorp_clear.c
@@ -0,0 +1,344 @@
+/*
+ * Copyright © 2013 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "util/ralloc.h"
+
+#include "blorp_priv.h"
+#include "brw_defines.h"
+
+#include "compiler/nir/nir_builder.h"
+
+#define FILE_DEBUG_FLAG DEBUG_BLORP
+
+struct brw_blorp_const_color_prog_key
+{
+ bool use_simd16_replicated_data;
+ bool pad[3];
+};
+
+static void
+blorp_params_get_clear_kernel(struct blorp_context *blorp,
+ struct blorp_params *params,
+ bool use_replicated_data)
+{
+ struct brw_blorp_const_color_prog_key blorp_key;
+ memset(&blorp_key, 0, sizeof(blorp_key));
+ blorp_key.use_simd16_replicated_data = use_replicated_data;
+
+ if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
+ &params->wm_prog_kernel, &params->wm_prog_data))
+ return;
+
+ void *mem_ctx = ralloc_context(NULL);
+
+ nir_builder b;
+ nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
+ b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");
+
+ nir_variable *v_color = nir_variable_create(b.shader, nir_var_shader_in,
+ glsl_vec4_type(), "v_color");
+ v_color->data.location = VARYING_SLOT_VAR0;
+ v_color->data.interpolation = INTERP_MODE_FLAT;
+
+ nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
+ glsl_vec4_type(),
+ "gl_FragColor");
+ frag_color->data.location = FRAG_RESULT_COLOR;
+
+ nir_copy_var(&b, frag_color, v_color);
+
+ struct brw_wm_prog_key wm_key;
+ brw_blorp_init_wm_prog_key(&wm_key);
+
+ struct brw_blorp_prog_data prog_data;
+ unsigned program_size;
+ const unsigned *program =
+ brw_blorp_compile_nir_shader(blorp, b.shader, &wm_key, use_replicated_data,
+ &prog_data, &program_size);
+
+ blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
+ program, program_size,
+ &prog_data, sizeof(prog_data),
+ &params->wm_prog_kernel, &params->wm_prog_data);
+
+ ralloc_free(mem_ctx);
+}
+
+/* The x0, y0, x1, and y1 parameters must already be populated with the render
+ * area of the framebuffer to be cleared.
+ */
+static void
+get_fast_clear_rect(const struct isl_device *dev,
+ const struct isl_surf *aux_surf,
+ unsigned *x0, unsigned *y0,
+ unsigned *x1, unsigned *y1)
+{
+ unsigned int x_align, y_align;
+ unsigned int x_scaledown, y_scaledown;
+
+ /* Only single sampled surfaces need to (and actually can) be resolved. */
+ if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
+ /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
+ * Target(s)", beneath the "Fast Color Clear" bullet (p327):
+ *
+ * Clear pass must have a clear rectangle that must follow
+ * alignment rules in terms of pixels and lines as shown in the
+ * table below. Further, the clear-rectangle height and width
+ * must be multiple of the following dimensions. If the height
+ * and width of the render target being cleared do not meet these
+ * requirements, an MCS buffer can be created such that it
+ * follows the requirement and covers the RT.
+ *
+ * The alignment size in the table that follows is related to the
+ * alignment size that is baked into the CCS surface format but with X
+ * alignment multiplied by 16 and Y alignment multiplied by 32.
+ */
+ x_align = isl_format_get_layout(aux_surf->format)->bw;
+ y_align = isl_format_get_layout(aux_surf->format)->bh;
+
+ x_align *= 16;
+
+ /* SKL+ line alignment requirement for Y-tiled are half those of the prior
+ * generations.
+ */
+ if (dev->info->gen >= 9)
+ y_align *= 16;
+ else
+ y_align *= 32;
+
+ /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
+ * Target(s)", beneath the "Fast Color Clear" bullet (p327):
+ *
+ * In order to optimize the performance MCS buffer (when bound to
+ * 1X RT) clear similarly to MCS buffer clear for MSRT case,
+ * clear rect is required to be scaled by the following factors
+ * in the horizontal and vertical directions:
+ *
+ * The X and Y scale down factors in the table that follows are each
+ * equal to half the alignment value computed above.
+ */
+ x_scaledown = x_align / 2;
+ y_scaledown = y_align / 2;
+
+ /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
+ * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
+ * Clear of Non-MultiSampled Render Target Restrictions":
+ *
+ * Clear rectangle must be aligned to two times the number of
+ * pixels in the table shown below due to 16x16 hashing across the
+ * slice.
+ */
+ x_align *= 2;
+ y_align *= 2;
+ } else {
+ assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
+
+ /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
+ * Target(s)", beneath the "MSAA Compression" bullet (p326):
+ *
+ * Clear pass for this case requires that scaled down primitive
+ * is sent down with upper left co-ordinate to coincide with
+ * actual rectangle being cleared. For MSAA, clear rectangle’s
+ * height and width need to as show in the following table in
+ * terms of (width,height) of the RT.
+ *
+ * MSAA Width of Clear Rect Height of Clear Rect
+ * 2X Ceil(1/8*width) Ceil(1/2*height)
+ * 4X Ceil(1/8*width) Ceil(1/2*height)
+ * 8X Ceil(1/2*width) Ceil(1/2*height)
+ * 16X width Ceil(1/2*height)
+ *
+ * The text "with upper left co-ordinate to coincide with actual
+ * rectangle being cleared" is a little confusing--it seems to imply
+ * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
+ * feed the pipeline using the rectangle (x,y) to
+ * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
+ * the number of samples. Experiments indicate that this is not
+ * quite correct; actually, what the hardware appears to do is to
+ * align whatever rectangle is sent down the pipeline to the nearest
+ * multiple of 2x2 blocks, and then scale it up by a factor of N
+ * horizontally and 2 vertically. So the resulting alignment is 4
+ * vertically and either 4 or 16 horizontally, and the scaledown
+ * factor is 2 vertically and either 2 or 8 horizontally.
+ */
+ switch (aux_surf->format) {
+ case ISL_FORMAT_MCS_2X:
+ case ISL_FORMAT_MCS_4X:
+ x_scaledown = 8;
+ break;
+ case ISL_FORMAT_MCS_8X:
+ x_scaledown = 2;
+ break;
+ case ISL_FORMAT_MCS_16X:
+ x_scaledown = 1;
+ break;
+ default:
+ unreachable("Unexpected MCS format for fast clear");
+ }
+ y_scaledown = 2;
+ x_align = x_scaledown * 2;
+ y_align = y_scaledown * 2;
+ }
+
+ *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
+ *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
+ *x1 = ALIGN(*x1, x_align) / x_scaledown;
+ *y1 = ALIGN(*y1, y_align) / y_scaledown;
+}
+
+void
+blorp_fast_clear(struct blorp_batch *batch,
+ const struct blorp_surf *surf,
+ uint32_t level, uint32_t layer,
+ uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
+{
+ struct blorp_params params;
+ blorp_params_init(&params);
+
+ params.x0 = x0;
+ params.y0 = y0;
+ params.x1 = x1;
+ params.y1 = y1;
+
+ memset(&params.wm_inputs, 0xff, 4*sizeof(float));
+ params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
+
+ get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
+ &params.x0, &params.y0, &params.x1, &params.y1);
+
+ blorp_params_get_clear_kernel(batch->blorp, &params, true);
+
+ brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level, layer,
+ surf->surf->format, true);
+
+ batch->blorp->exec(batch, &params);
+}
+
+
+void
+blorp_clear(struct blorp_batch *batch,
+ const struct blorp_surf *surf,
+ uint32_t level, uint32_t layer,
+ uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
+ enum isl_format format, union isl_color_value clear_color,
+ bool color_write_disable[4])
+{
+ struct blorp_params params;
+ blorp_params_init(&params);
+
+ params.x0 = x0;
+ params.y0 = y0;
+ params.x1 = x1;
+ params.y1 = y1;
+
+ memcpy(&params.wm_inputs, clear_color.f32, sizeof(float) * 4);
+
+ bool use_simd16_replicated_data = true;
+
+ /* From the SNB PRM (Vol4_Part1):
+ *
+ * "Replicated data (Message Type = 111) is only supported when
+ * accessing tiled memory. Using this Message Type to access linear
+ * (untiled) memory is UNDEFINED."
+ */
+ if (surf->surf->tiling == ISL_TILING_LINEAR)
+ use_simd16_replicated_data = false;
+
+ /* Constant color writes ignore everyting in blend and color calculator
+ * state. This is not documented.
+ */
+ for (unsigned i = 0; i < 4; i++) {
+ params.color_write_disable[i] = color_write_disable[i];
+ if (color_write_disable[i])
+ use_simd16_replicated_data = false;
+ }
+
+ blorp_params_get_clear_kernel(batch->blorp, &params,
+ use_simd16_replicated_data);
+
+ brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level, layer,
+ format, true);
+
+ batch->blorp->exec(batch, &params);
+}
+
+void
+blorp_ccs_resolve(struct blorp_batch *batch,
+ struct blorp_surf *surf, enum isl_format format)
+{
+ struct blorp_params params;
+ blorp_params_init(&params);
+
+ brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
+ 0 /* level */, 0 /* layer */, format, true);
+
+ /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
+ *
+ * A rectangle primitive must be scaled down by the following factors
+ * with respect to render target being resolved.
+ *
+ * The scaledown factors in the table that follows are related to the block
+ * size of the CCS format. For IVB and HSW, we divide by two, for BDW we
+ * multiply by 8 and 16. On Sky Lake, we multiply by 8.
+ */
+ const struct isl_format_layout *aux_fmtl =
+ isl_format_get_layout(params.dst.aux_surf.format);
+ assert(aux_fmtl->txc == ISL_TXC_CCS);
+
+ unsigned x_scaledown, y_scaledown;
+ if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
+ x_scaledown = aux_fmtl->bw * 8;
+ y_scaledown = aux_fmtl->bh * 8;
+ } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
+ x_scaledown = aux_fmtl->bw * 8;
+ y_scaledown = aux_fmtl->bh * 16;
+ } else {
+ x_scaledown = aux_fmtl->bw / 2;
+ y_scaledown = aux_fmtl->bh / 2;
+ }
+ params.x0 = params.y0 = 0;
+ params.x1 = params.dst.aux_surf.logical_level0_px.width;
+ params.y1 = params.dst.aux_surf.logical_level0_px.height;
+ params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
+ params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
+
+ if (batch->blorp->isl_dev->info->gen >= 9) {
+ if (params.dst.aux_usage == ISL_AUX_USAGE_CCS_E)
+ params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
+ else
+ params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
+ } else {
+ /* Broadwell and earlier do not have a partial resolve */
+ params.fast_clear_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
+ }
+
+ /* Note: there is no need to initialize push constants because it doesn't
+ * matter what data gets dispatched to the render target. However, we must
+ * ensure that the fragment shader delivers the data using the "replicated
+ * color" message.
+ */
+
+ blorp_params_get_clear_kernel(batch->blorp, &params, true);
+
+ batch->blorp->exec(batch, &params);
+}
diff --git a/src/intel/blorp/blorp_genX_exec.h b/src/intel/blorp/blorp_genX_exec.h
new file mode 100644
index 00000000000..f44076e129f
--- /dev/null
+++ b/src/intel/blorp/blorp_genX_exec.h
@@ -0,0 +1,1176 @@
+/*
+ * Copyright © 2016 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "blorp_priv.h"
+#include "brw_device_info.h"
+#include "intel_aub.h"
+
+/**
+ * This file provides the blorp pipeline setup and execution functionality.
+ * It defines the following function:
+ *
+ * static void
+ * blorp_exec(struct blorp_context *blorp, void *batch_data,
+ * const struct blorp_params *params);
+ *
+ * It is the job of whoever includes this header to wrap this in something
+ * to get an externally visible symbol.
+ *
+ * In order for the blorp_exec function to work, the driver must provide
+ * implementations of the following static helper functions.
+ */
+
+static void *
+blorp_emit_dwords(struct blorp_batch *batch, unsigned n);
+
+static uint64_t
+blorp_emit_reloc(struct blorp_batch *batch,
+ void *location, struct blorp_address address, uint32_t delta);
+
+static void *
+blorp_alloc_dynamic_state(struct blorp_batch *batch,
+ enum aub_state_struct_type type,
+ uint32_t size,
+ uint32_t alignment,
+ uint32_t *offset);
+static void *
+blorp_alloc_vertex_buffer(struct blorp_batch *batch, uint32_t size,
+ struct blorp_address *addr);
+
+static void
+blorp_alloc_binding_table(struct blorp_batch *batch, unsigned num_entries,
+ unsigned state_size, unsigned state_alignment,
+ uint32_t *bt_offset, uint32_t **bt_map,
+ void **surface_maps);
+static void
+blorp_surface_reloc(struct blorp_batch *batch, uint32_t ss_offset,
+ struct blorp_address address, uint32_t delta);
+
+static void
+blorp_emit_urb_config(struct blorp_batch *batch, unsigned vs_entry_size);
+static void
+blorp_emit_3dstate_multisample(struct blorp_batch *batch, unsigned samples);
+
+/***** BEGIN blorp_exec implementation ******/
+
+#include "genxml/gen_macros.h"
+
+#define __gen_address_type struct blorp_address
+#define __gen_user_data struct blorp_batch
+
+static uint64_t
+__gen_combine_address(struct blorp_batch *batch, void *location,
+ struct blorp_address address, uint32_t delta)
+{
+ if (address.buffer == NULL) {
+ return address.offset + delta;
+ } else {
+ return blorp_emit_reloc(batch, location, address, delta);
+ }
+}
+
+#include "genxml/genX_pack.h"
+
+#define _blorp_cmd_length(cmd) cmd ## _length
+#define _blorp_cmd_length_bias(cmd) cmd ## _length_bias
+#define _blorp_cmd_header(cmd) cmd ## _header
+#define _blorp_cmd_pack(cmd) cmd ## _pack
+
+#define blorp_emit(batch, cmd, name) \
+ for (struct cmd name = { _blorp_cmd_header(cmd) }, \
+ *_dst = blorp_emit_dwords(batch, _blorp_cmd_length(cmd)); \
+ __builtin_expect(_dst != NULL, 1); \
+ _blorp_cmd_pack(cmd)(batch, (void *)_dst, &name), \
+ _dst = NULL)
+
+#define blorp_emitn(batch, cmd, n) ({ \
+ uint32_t *_dw = blorp_emit_dwords(batch, n); \
+ struct cmd template = { \
+ _blorp_cmd_header(cmd), \
+ .DWordLength = n - _blorp_cmd_length_bias(cmd), \
+ }; \
+ _blorp_cmd_pack(cmd)(batch, _dw, &template); \
+ _dw + 1; /* Array starts at dw[1] */ \
+ })
+
+/* Once vertex fetcher has written full VUE entries with complete
+ * header the space requirement is as follows per vertex (in bytes):
+ *
+ * Header Position Program constants
+ * +--------+------------+-------------------+
+ * | 16 | 16 | n x 16 |
+ * +--------+------------+-------------------+
+ *
+ * where 'n' stands for number of varying inputs expressed as vec4s.
+ *
+ * The URB size is in turn expressed in 64 bytes (512 bits).
+ */
+static inline unsigned
+gen7_blorp_get_vs_entry_size(const struct blorp_params *params)
+{
+ const unsigned num_varyings =
+ params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
+ const unsigned total_needed = 16 + 16 + num_varyings * 16;
+
+ return DIV_ROUND_UP(total_needed, 64);
+}
+
+/* 3DSTATE_URB
+ * 3DSTATE_URB_VS
+ * 3DSTATE_URB_HS
+ * 3DSTATE_URB_DS
+ * 3DSTATE_URB_GS
+ *
+ * Assign the entire URB to the VS. Even though the VS disabled, URB space
+ * is still needed because the clipper loads the VUE's from the URB. From
+ * the Sandybridge PRM, Volume 2, Part 1, Section 3DSTATE,
+ * Dword 1.15:0 "VS Number of URB Entries":
+ * This field is always used (even if VS Function Enable is DISABLED).
+ *
+ * The warning below appears in the PRM (Section 3DSTATE_URB), but we can
+ * safely ignore it because this batch contains only one draw call.
+ * Because of URB corruption caused by allocating a previous GS unit
+ * URB entry to the VS unit, software is required to send a “GS NULL
+ * Fence” (Send URB fence with VS URB size == 1 and GS URB size == 0)
+ * plus a dummy DRAW call before any case where VS will be taking over
+ * GS URB space.
+ *
+ * If the 3DSTATE_URB_VS is emitted, than the others must be also.
+ * From the Ivybridge PRM, Volume 2 Part 1, section 1.7.1 3DSTATE_URB_VS:
+ *
+ * 3DSTATE_URB_HS, 3DSTATE_URB_DS, and 3DSTATE_URB_GS must also be
+ * programmed in order for the programming of this state to be
+ * valid.
+ */
+static void
+emit_urb_config(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ blorp_emit_urb_config(batch, gen7_blorp_get_vs_entry_size(params));
+}
+
+static void
+blorp_emit_vertex_data(struct blorp_batch *batch,
+ const struct blorp_params *params,
+ struct blorp_address *addr,
+ uint32_t *size)
+{
+ const float vertices[] = {
+ /* v0 */ (float)params->x0, (float)params->y1,
+ /* v1 */ (float)params->x1, (float)params->y1,
+ /* v2 */ (float)params->x0, (float)params->y0,
+ };
+
+ void *data = blorp_alloc_vertex_buffer(batch, sizeof(vertices), addr);
+ memcpy(data, vertices, sizeof(vertices));
+ *size = sizeof(vertices);
+}
+
+static void
+blorp_emit_input_varying_data(struct blorp_batch *batch,
+ const struct blorp_params *params,
+ struct blorp_address *addr,
+ uint32_t *size)
+{
+ const unsigned vec4_size_in_bytes = 4 * sizeof(float);
+ const unsigned max_num_varyings =
+ DIV_ROUND_UP(sizeof(params->wm_inputs), vec4_size_in_bytes);
+ const unsigned num_varyings = params->wm_prog_data->num_varying_inputs;
+
+ *size = num_varyings * vec4_size_in_bytes;
+
+ const float *const inputs_src = (const float *)&params->wm_inputs;
+ float *inputs = blorp_alloc_vertex_buffer(batch, *size, addr);
+
+ /* Walk over the attribute slots, determine if the attribute is used by
+ * the program and when necessary copy the values from the input storage to
+ * the vertex data buffer.
+ */
+ for (unsigned i = 0; i < max_num_varyings; i++) {
+ const gl_varying_slot attr = VARYING_SLOT_VAR0 + i;
+
+ if (!(params->wm_prog_data->inputs_read & (1ull << attr)))
+ continue;
+
+ memcpy(inputs, inputs_src + i * 4, vec4_size_in_bytes);
+
+ inputs += 4;
+ }
+}
+
+static void
+blorp_emit_vertex_buffers(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ struct GENX(VERTEX_BUFFER_STATE) vb[2];
+ memset(vb, 0, sizeof(vb));
+
+ unsigned num_buffers = 1;
+
+ uint32_t size;
+ blorp_emit_vertex_data(batch, params, &vb[0].BufferStartingAddress, &size);
+ vb[0].VertexBufferIndex = 0;
+ vb[0].BufferPitch = 2 * sizeof(float);
+ vb[0].VertexBufferMOCS = batch->blorp->mocs.vb;
+#if GEN_GEN >= 7
+ vb[0].AddressModifyEnable = true;
+#endif
+#if GEN_GEN >= 8
+ vb[0].BufferSize = size;
+#else
+ vb[0].BufferAccessType = VERTEXDATA;
+ vb[0].EndAddress = vb[0].BufferStartingAddress;
+ vb[0].EndAddress.offset += size - 1;
+#endif
+
+ if (params->wm_prog_data && params->wm_prog_data->num_varying_inputs) {
+ blorp_emit_input_varying_data(batch, params,
+ &vb[1].BufferStartingAddress, &size);
+ vb[1].VertexBufferIndex = 1;
+ vb[1].BufferPitch = 0;
+ vb[1].VertexBufferMOCS = batch->blorp->mocs.vb;
+#if GEN_GEN >= 7
+ vb[1].AddressModifyEnable = true;
+#endif
+#if GEN_GEN >= 8
+ vb[1].BufferSize = size;
+#else
+ vb[1].BufferAccessType = INSTANCEDATA;
+ vb[1].EndAddress = vb[1].BufferStartingAddress;
+ vb[1].EndAddress.offset += size - 1;
+#endif
+ num_buffers++;
+ }
+
+ const unsigned num_dwords =
+ 1 + GENX(VERTEX_BUFFER_STATE_length) * num_buffers;
+ uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_BUFFERS), num_dwords);
+
+ for (unsigned i = 0; i < num_buffers; i++) {
+ GENX(VERTEX_BUFFER_STATE_pack)(batch, dw, &vb[i]);
+ dw += GENX(VERTEX_BUFFER_STATE_length);
+ }
+}
+
+static void
+blorp_emit_vertex_elements(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ const unsigned num_varyings =
+ params->wm_prog_data ? params->wm_prog_data->num_varying_inputs : 0;
+ const unsigned num_elements = 2 + num_varyings;
+
+ struct GENX(VERTEX_ELEMENT_STATE) ve[num_elements];
+ memset(ve, 0, num_elements * sizeof(*ve));
+
+ /* Setup VBO for the rectangle primitive..
+ *
+ * A rectangle primitive (3DPRIM_RECTLIST) consists of only three
+ * vertices. The vertices reside in screen space with DirectX
+ * coordinates (that is, (0, 0) is the upper left corner).
+ *
+ * v2 ------ implied
+ * | |
+ * | |
+ * v0 ----- v1
+ *
+ * Since the VS is disabled, the clipper loads each VUE directly from
+ * the URB. This is controlled by the 3DSTATE_VERTEX_BUFFERS and
+ * 3DSTATE_VERTEX_ELEMENTS packets below. The VUE contents are as follows:
+ * dw0: Reserved, MBZ.
+ * dw1: Render Target Array Index. The HiZ op does not use indexed
+ * vertices, so set the dword to 0.
+ * dw2: Viewport Index. The HiZ op disables viewport mapping and
+ * scissoring, so set the dword to 0.
+ * dw3: Point Width: The HiZ op does not emit the POINTLIST primitive,
+ * so set the dword to 0.
+ * dw4: Vertex Position X.
+ * dw5: Vertex Position Y.
+ * dw6: Vertex Position Z.
+ * dw7: Vertex Position W.
+ *
+ * dw8: Flat vertex input 0
+ * dw9: Flat vertex input 1
+ * ...
+ * dwn: Flat vertex input n - 8
+ *
+ * For details, see the Sandybridge PRM, Volume 2, Part 1, Section 1.5.1
+ * "Vertex URB Entry (VUE) Formats".
+ *
+ * Only vertex position X and Y are going to be variable, Z is fixed to
+ * zero and W to one. Header words dw0-3 are all zero. There is no need to
+ * include the fixed values in the vertex buffer. Vertex fetcher can be
+ * instructed to fill vertex elements with constant values of one and zero
+ * instead of reading them from the buffer.
+ * Flat inputs are program constants that are not interpolated. Moreover
+ * their values will be the same between vertices.
+ *
+ * See the vertex element setup below.
+ */
+ ve[0].VertexBufferIndex = 0;
+ ve[0].Valid = true;
+ ve[0].SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
+ ve[0].SourceElementOffset = 0;
+ ve[0].Component0Control = VFCOMP_STORE_0;
+ ve[0].Component1Control = VFCOMP_STORE_0;
+ ve[0].Component2Control = VFCOMP_STORE_0;
+ ve[0].Component3Control = VFCOMP_STORE_0;
+
+ ve[1].VertexBufferIndex = 0;
+ ve[1].Valid = true;
+ ve[1].SourceElementFormat = ISL_FORMAT_R32G32_FLOAT;
+ ve[1].SourceElementOffset = 0;
+ ve[1].Component0Control = VFCOMP_STORE_SRC;
+ ve[1].Component1Control = VFCOMP_STORE_SRC;
+ ve[1].Component2Control = VFCOMP_STORE_0;
+ ve[1].Component3Control = VFCOMP_STORE_1_FP;
+
+ for (unsigned i = 0; i < num_varyings; ++i) {
+ ve[i + 2].VertexBufferIndex = 1;
+ ve[i + 2].Valid = true;
+ ve[i + 2].SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
+ ve[i + 2].SourceElementOffset = i * 4 * sizeof(float);
+ ve[i + 2].Component0Control = VFCOMP_STORE_SRC;
+ ve[i + 2].Component1Control = VFCOMP_STORE_SRC;
+ ve[i + 2].Component2Control = VFCOMP_STORE_SRC;
+ ve[i + 2].Component3Control = VFCOMP_STORE_SRC;
+ }
+
+ const unsigned num_dwords =
+ 1 + GENX(VERTEX_ELEMENT_STATE_length) * num_elements;
+ uint32_t *dw = blorp_emitn(batch, GENX(3DSTATE_VERTEX_ELEMENTS), num_dwords);
+
+ for (unsigned i = 0; i < num_elements; i++) {
+ GENX(VERTEX_ELEMENT_STATE_pack)(batch, dw, &ve[i]);
+ dw += GENX(VERTEX_ELEMENT_STATE_length);
+ }
+
+#if GEN_GEN >= 8
+ blorp_emit(batch, GENX(3DSTATE_VF_SGVS), sgvs);
+
+ for (unsigned i = 0; i < num_elements; i++) {
+ blorp_emit(batch, GENX(3DSTATE_VF_INSTANCING), vf) {
+ vf.VertexElementIndex = i;
+ vf.InstancingEnable = false;
+ }
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
+ topo.PrimitiveTopologyType = _3DPRIM_RECTLIST;
+ }
+#endif
+}
+
+static void
+blorp_emit_sf_config(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ const struct brw_blorp_prog_data *prog_data = params->wm_prog_data;
+
+ /* 3DSTATE_SF
+ *
+ * Disable ViewportTransformEnable (dw2.1)
+ *
+ * From the SandyBridge PRM, Volume 2, Part 1, Section 1.3, "3D
+ * Primitives Overview":
+ * RECTLIST: Viewport Mapping must be DISABLED (as is typical with the
+ * use of screen- space coordinates).
+ *
+ * A solid rectangle must be rendered, so set FrontFaceFillMode (dw2.4:3)
+ * and BackFaceFillMode (dw2.5:6) to SOLID(0).
+ *
+ * From the Sandy Bridge PRM, Volume 2, Part 1, Section
+ * 6.4.1.1 3DSTATE_SF, Field FrontFaceFillMode:
+ * SOLID: Any triangle or rectangle object found to be front-facing
+ * is rendered as a solid object. This setting is required when
+ * (rendering rectangle (RECTLIST) objects.
+ */
+
+#if GEN_GEN >= 8
+
+ blorp_emit(batch, GENX(3DSTATE_SF), sf);
+
+ blorp_emit(batch, GENX(3DSTATE_RASTER), raster) {
+ raster.CullMode = CULLMODE_NONE;
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
+ sbe.VertexURBEntryReadOffset = 1;
+ sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
+ sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
+ sbe.ForceVertexURBEntryReadLength = true;
+ sbe.ForceVertexURBEntryReadOffset = true;
+ sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
+
+#if GEN_GEN >= 9
+ for (unsigned i = 0; i < 32; i++)
+ sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
+#endif
+ }
+
+#elif GEN_GEN >= 7
+
+ blorp_emit(batch, GENX(3DSTATE_SF), sf) {
+ sf.FrontFaceFillMode = FILL_MODE_SOLID;
+ sf.BackFaceFillMode = FILL_MODE_SOLID;
+
+ sf.MultisampleRasterizationMode = params->dst.surf.samples > 1 ?
+ MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
+
+#if GEN_GEN == 7
+ sf.DepthBufferSurfaceFormat = params->depth_format;
+#endif
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_SBE), sbe) {
+ sbe.VertexURBEntryReadOffset = 1;
+ if (prog_data) {
+ sbe.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
+ sbe.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
+ sbe.ConstantInterpolationEnable = prog_data->flat_inputs;
+ } else {
+ sbe.NumberofSFOutputAttributes = 0;
+ sbe.VertexURBEntryReadLength = 1;
+ }
+ }
+
+#else /* GEN_GEN <= 6 */
+
+ blorp_emit(batch, GENX(3DSTATE_SF), sf) {
+ sf.FrontFaceFillMode = FILL_MODE_SOLID;
+ sf.BackFaceFillMode = FILL_MODE_SOLID;
+
+ sf.MultisampleRasterizationMode = params->dst.surf.samples > 1 ?
+ MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
+
+ sf.VertexURBEntryReadOffset = 1;
+ if (prog_data) {
+ sf.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
+ sf.VertexURBEntryReadLength = brw_blorp_get_urb_length(prog_data);
+ sf.ConstantInterpolationEnable = prog_data->flat_inputs;
+ } else {
+ sf.NumberofSFOutputAttributes = 0;
+ sf.VertexURBEntryReadLength = 1;
+ }
+ }
+
+#endif /* GEN_GEN */
+}
+
+static void
+blorp_emit_ps_config(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ const struct brw_blorp_prog_data *prog_data = params->wm_prog_data;
+
+ /* Even when thread dispatch is disabled, max threads (dw5.25:31) must be
+ * nonzero to prevent the GPU from hanging. While the documentation doesn't
+ * mention this explicitly, it notes that the valid range for the field is
+ * [1,39] = [2,40] threads, which excludes zero.
+ *
+ * To be safe (and to minimize extraneous code) we go ahead and fully
+ * configure the WM state whether or not there is a WM program.
+ */
+
+#if GEN_GEN >= 8
+
+ blorp_emit(batch, GENX(3DSTATE_WM), wm);
+
+ blorp_emit(batch, GENX(3DSTATE_PS), ps) {
+ if (params->src.addr.buffer) {
+ ps.SamplerCount = 1; /* Up to 4 samplers */
+ ps.BindingTableEntryCount = 2;
+ } else {
+ ps.BindingTableEntryCount = 1;
+ }
+
+ ps.DispatchGRFStartRegisterForConstantSetupData0 =
+ prog_data->first_curbe_grf_0;
+ ps.DispatchGRFStartRegisterForConstantSetupData2 =
+ prog_data->first_curbe_grf_2;
+
+ ps._8PixelDispatchEnable = prog_data->dispatch_8;
+ ps._16PixelDispatchEnable = prog_data->dispatch_16;
+
+ ps.KernelStartPointer0 = params->wm_prog_kernel;
+ ps.KernelStartPointer2 =
+ params->wm_prog_kernel + prog_data->ksp_offset_2;
+
+ /* 3DSTATE_PS expects the number of threads per PSD, which is always 64;
+ * it implicitly scales for different GT levels (which have some # of
+ * PSDs).
+ *
+ * In Gen8 the format is U8-2 whereas in Gen9 it is U8-1.
+ */
+ if (GEN_GEN >= 9)
+ ps.MaximumNumberofThreadsPerPSD = 64 - 1;
+ else
+ ps.MaximumNumberofThreadsPerPSD = 64 - 2;
+
+ switch (params->fast_clear_op) {
+ case BLORP_FAST_CLEAR_OP_NONE:
+ break;
+#if GEN_GEN >= 9
+ case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
+ ps.RenderTargetResolveType = RESOLVE_PARTIAL;
+ break;
+ case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
+ ps.RenderTargetResolveType = RESOLVE_FULL;
+ break;
+#else
+ case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
+ ps.RenderTargetResolveEnable = true;
+ break;
+#endif
+ case BLORP_FAST_CLEAR_OP_CLEAR:
+ ps.RenderTargetFastClearEnable = true;
+ break;
+ default:
+ unreachable("Invalid fast clear op");
+ }
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_PS_EXTRA), psx) {
+ psx.PixelShaderValid = true;
+
+ if (params->src.addr.buffer)
+ psx.PixelShaderKillsPixel = true;
+
+ psx.AttributeEnable = prog_data->num_varying_inputs > 0;
+
+ if (prog_data && prog_data->persample_msaa_dispatch)
+ psx.PixelShaderIsPerSample = true;
+ }
+
+#elif GEN_GEN >= 7
+
+ blorp_emit(batch, GENX(3DSTATE_WM), wm) {
+ switch (params->hiz_op) {
+ case BLORP_HIZ_OP_DEPTH_CLEAR:
+ wm.DepthBufferClear = true;
+ break;
+ case BLORP_HIZ_OP_DEPTH_RESOLVE:
+ wm.DepthBufferResolveEnable = true;
+ break;
+ case BLORP_HIZ_OP_HIZ_RESOLVE:
+ wm.HierarchicalDepthBufferResolveEnable = true;
+ break;
+ case BLORP_HIZ_OP_NONE:
+ break;
+ default:
+ unreachable("not reached");
+ }
+
+ if (prog_data)
+ wm.ThreadDispatchEnable = true;
+
+ if (params->src.addr.buffer)
+ wm.PixelShaderKillPixel = true;
+
+ if (params->dst.surf.samples > 1) {
+ wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
+ wm.MultisampleDispatchMode =
+ (prog_data && prog_data->persample_msaa_dispatch) ?
+ MSDISPMODE_PERSAMPLE : MSDISPMODE_PERPIXEL;
+ } else {
+ wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
+ wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
+ }
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_PS), ps) {
+ ps.MaximumNumberofThreads =
+ batch->blorp->isl_dev->info->max_wm_threads - 1;
+
+#if GEN_IS_HASWELL
+ ps.SampleMask = 1;
+#endif
+
+ if (prog_data) {
+ ps.DispatchGRFStartRegisterforConstantSetupData0 =
+ prog_data->first_curbe_grf_0;
+ ps.DispatchGRFStartRegisterforConstantSetupData2 =
+ prog_data->first_curbe_grf_2;
+
+ ps.KernelStartPointer0 = params->wm_prog_kernel;
+ ps.KernelStartPointer2 =
+ params->wm_prog_kernel + prog_data->ksp_offset_2;
+
+ ps._8PixelDispatchEnable = prog_data->dispatch_8;
+ ps._16PixelDispatchEnable = prog_data->dispatch_16;
+
+ ps.AttributeEnable = prog_data->num_varying_inputs > 0;
+ } else {
+ /* Gen7 hardware gets angry if we don't enable at least one dispatch
+ * mode, so just enable 16-pixel dispatch if we don't have a program.
+ */
+ ps._16PixelDispatchEnable = true;
+ }
+
+ if (params->src.addr.buffer)
+ ps.SamplerCount = 1; /* Up to 4 samplers */
+
+ switch (params->fast_clear_op) {
+ case BLORP_FAST_CLEAR_OP_NONE:
+ break;
+ case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
+ ps.RenderTargetResolveEnable = true;
+ break;
+ case BLORP_FAST_CLEAR_OP_CLEAR:
+ ps.RenderTargetFastClearEnable = true;
+ break;
+ default:
+ unreachable("Invalid fast clear op");
+ }
+ }
+
+#else /* GEN_GEN <= 6 */
+
+ blorp_emit(batch, GENX(3DSTATE_WM), wm) {
+ wm.MaximumNumberofThreads =
+ batch->blorp->isl_dev->info->max_wm_threads - 1;
+
+ switch (params->hiz_op) {
+ case BLORP_HIZ_OP_DEPTH_CLEAR:
+ wm.DepthBufferClear = true;
+ break;
+ case BLORP_HIZ_OP_DEPTH_RESOLVE:
+ wm.DepthBufferResolveEnable = true;
+ break;
+ case BLORP_HIZ_OP_HIZ_RESOLVE:
+ wm.HierarchicalDepthBufferResolveEnable = true;
+ break;
+ case BLORP_HIZ_OP_NONE:
+ break;
+ default:
+ unreachable("not reached");
+ }
+
+ if (prog_data) {
+ wm.ThreadDispatchEnable = true;
+
+ wm.DispatchGRFStartRegisterforConstantSetupData0 =
+ prog_data->first_curbe_grf_0;
+ wm.DispatchGRFStartRegisterforConstantSetupData2 =
+ prog_data->first_curbe_grf_2;
+
+ wm.KernelStartPointer0 = params->wm_prog_kernel;
+ wm.KernelStartPointer2 =
+ params->wm_prog_kernel + prog_data->ksp_offset_2;
+
+ wm._8PixelDispatchEnable = prog_data->dispatch_8;
+ wm._16PixelDispatchEnable = prog_data->dispatch_16;
+
+ wm.NumberofSFOutputAttributes = prog_data->num_varying_inputs;
+ }
+
+ if (params->src.addr.buffer) {
+ wm.SamplerCount = 1; /* Up to 4 samplers */
+ wm.PixelShaderKillPixel = true; /* TODO: temporarily smash on */
+ }
+
+ if (params->dst.surf.samples > 1) {
+ wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
+ wm.MultisampleDispatchMode =
+ (prog_data && prog_data->persample_msaa_dispatch) ?
+ MSDISPMODE_PERSAMPLE : MSDISPMODE_PERPIXEL;
+ } else {
+ wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
+ wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
+ }
+ }
+
+#endif /* GEN_GEN */
+}
+
+
+static void
+blorp_emit_depth_stencil_config(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+#if GEN_GEN >= 7
+ const uint32_t mocs = 1; /* GEN7_MOCS_L3 */
+#else
+ const uint32_t mocs = 0;
+#endif
+
+ blorp_emit(batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
+ switch (params->depth.surf.dim) {
+ case ISL_SURF_DIM_1D:
+ db.SurfaceType = SURFTYPE_1D;
+ break;
+ case ISL_SURF_DIM_2D:
+ db.SurfaceType = SURFTYPE_2D;
+ break;
+ case ISL_SURF_DIM_3D:
+ db.SurfaceType = SURFTYPE_3D;
+ break;
+ }
+
+ db.SurfaceFormat = params->depth_format;
+
+#if GEN_GEN >= 7
+ db.DepthWriteEnable = true;
+#endif
+
+#if GEN_GEN <= 6
+ db.TiledSurface = true;
+ db.TileWalk = TILEWALK_YMAJOR;
+ db.MIPMapLayoutMode = MIPLAYOUT_BELOW;
+ db.SeparateStencilBufferEnable = true;
+#endif
+
+ db.HierarchicalDepthBufferEnable = true;
+
+ db.Width = params->depth.surf.logical_level0_px.width - 1;
+ db.Height = params->depth.surf.logical_level0_px.height - 1;
+ db.RenderTargetViewExtent = db.Depth =
+ MAX2(params->depth.surf.logical_level0_px.depth,
+ params->depth.surf.logical_level0_px.array_len) - 1;
+
+ db.LOD = params->depth.view.base_level;
+ db.MinimumArrayElement = params->depth.view.base_array_layer;
+
+ db.SurfacePitch = params->depth.surf.row_pitch - 1;
+ db.SurfaceBaseAddress = params->depth.addr;
+ db.DepthBufferMOCS = mocs;
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hiz) {
+ hiz.SurfacePitch = params->depth.aux_surf.row_pitch - 1;
+ hiz.SurfaceBaseAddress = params->depth.aux_addr;
+ hiz.HierarchicalDepthBufferMOCS = mocs;
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
+}
+
+static uint32_t
+blorp_emit_blend_state(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ struct GENX(BLEND_STATE) blend;
+ memset(&blend, 0, sizeof(blend));
+
+ for (unsigned i = 0; i < params->num_draw_buffers; ++i) {
+ blend.Entry[i].PreBlendColorClampEnable = true;
+ blend.Entry[i].PostBlendColorClampEnable = true;
+ blend.Entry[i].ColorClampRange = COLORCLAMP_RTFORMAT;
+
+ blend.Entry[i].WriteDisableRed = params->color_write_disable[0];
+ blend.Entry[i].WriteDisableGreen = params->color_write_disable[1];
+ blend.Entry[i].WriteDisableBlue = params->color_write_disable[2];
+ blend.Entry[i].WriteDisableAlpha = params->color_write_disable[3];
+ }
+
+ uint32_t offset;
+ void *state = blorp_alloc_dynamic_state(batch, AUB_TRACE_BLEND_STATE,
+ GENX(BLEND_STATE_length) * 4,
+ 64, &offset);
+ GENX(BLEND_STATE_pack)(NULL, state, &blend);
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), sp) {
+ sp.BlendStatePointer = offset;
+#if GEN_GEN >= 8
+ sp.BlendStatePointerValid = true;
+#endif
+ }
+#endif
+
+#if GEN_GEN >= 8
+ blorp_emit(batch, GENX(3DSTATE_PS_BLEND), ps_blend) {
+ ps_blend.HasWriteableRT = true;
+ }
+#endif
+
+ return offset;
+}
+
+static uint32_t
+blorp_emit_color_calc_state(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ uint32_t offset;
+ void *state = blorp_alloc_dynamic_state(batch, AUB_TRACE_CC_STATE,
+ GENX(COLOR_CALC_STATE_length) * 4,
+ 64, &offset);
+ memset(state, 0, GENX(COLOR_CALC_STATE_length) * 4);
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_CC_STATE_POINTERS), sp) {
+ sp.ColorCalcStatePointer = offset;
+#if GEN_GEN >= 8
+ sp.ColorCalcStatePointerValid = true;
+#endif
+ }
+#endif
+
+ return offset;
+}
+
+static uint32_t
+blorp_emit_depth_stencil_state(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+#if GEN_GEN >= 8
+
+ /* On gen8+, DEPTH_STENCIL state is simply an instruction */
+ blorp_emit(batch, GENX(3DSTATE_WM_DEPTH_STENCIL), ds);
+ return 0;
+
+#else /* GEN_GEN <= 7 */
+
+ /* See the following sections of the Sandy Bridge PRM, Volume 1, Part2:
+ * - 7.5.3.1 Depth Buffer Clear
+ * - 7.5.3.2 Depth Buffer Resolve
+ * - 7.5.3.3 Hierarchical Depth Buffer Resolve
+ */
+ struct GENX(DEPTH_STENCIL_STATE) ds = {
+ .DepthBufferWriteEnable = true,
+ };
+
+ if (params->hiz_op == BLORP_HIZ_OP_DEPTH_RESOLVE) {
+ ds.DepthTestEnable = true;
+ ds.DepthTestFunction = COMPAREFUNCTION_NEVER;
+ }
+
+ uint32_t offset;
+ void *state = blorp_alloc_dynamic_state(batch, AUB_TRACE_DEPTH_STENCIL_STATE,
+ GENX(DEPTH_STENCIL_STATE_length) * 4,
+ 64, &offset);
+ GENX(DEPTH_STENCIL_STATE_pack)(NULL, state, &ds);
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), sp) {
+ sp.PointertoDEPTH_STENCIL_STATE = offset;
+ }
+#endif
+
+ return offset;
+
+#endif /* GEN_GEN */
+}
+
+struct surface_state_info {
+ unsigned num_dwords;
+ unsigned ss_align; /* Required alignment of RENDER_SURFACE_STATE in bytes */
+ unsigned reloc_dw;
+ unsigned aux_reloc_dw;
+};
+
+static const struct surface_state_info surface_state_infos[] = {
+ [6] = {6, 32, 1, 0},
+ [7] = {8, 32, 1, 6},
+ [8] = {13, 64, 8, 10},
+ [9] = {16, 64, 8, 10},
+};
+
+static void
+blorp_emit_surface_state(struct blorp_batch *batch,
+ const struct brw_blorp_surface_info *surface,
+ uint32_t *state, uint32_t state_offset,
+ bool is_render_target)
+{
+ const struct surface_state_info ss_info = surface_state_infos[GEN_GEN];
+
+ struct isl_surf surf = surface->surf;
+
+ if (surf.dim == ISL_SURF_DIM_1D &&
+ surf.dim_layout == ISL_DIM_LAYOUT_GEN4_2D) {
+ assert(surf.logical_level0_px.height == 1);
+ surf.dim = ISL_SURF_DIM_2D;
+ }
+
+ /* Blorp doesn't support HiZ in any of the blit or slow-clear paths */
+ enum isl_aux_usage aux_usage = surface->aux_usage;
+ if (aux_usage == ISL_AUX_USAGE_HIZ)
+ aux_usage = ISL_AUX_USAGE_NONE;
+
+ const uint32_t mocs =
+ is_render_target ? batch->blorp->mocs.rb : batch->blorp->mocs.tex;
+
+ isl_surf_fill_state(batch->blorp->isl_dev, state,
+ .surf = &surf, .view = &surface->view,
+ .aux_surf = &surface->aux_surf, .aux_usage = aux_usage,
+ .mocs = mocs, .clear_color = surface->clear_color,
+ .x_offset_sa = surface->tile_x_sa,
+ .y_offset_sa = surface->tile_y_sa);
+
+ blorp_surface_reloc(batch, state_offset + ss_info.reloc_dw * 4,
+ surface->addr, 0);
+
+ if (aux_usage != ISL_AUX_USAGE_NONE) {
+ /* On gen7 and prior, the bottom 12 bits of the MCS base address are
+ * used to store other information. This should be ok, however, because
+ * surface buffer addresses are always 4K page alinged.
+ */
+ assert((surface->aux_addr.offset & 0xfff) == 0);
+ blorp_surface_reloc(batch, state_offset + ss_info.aux_reloc_dw * 4,
+ surface->aux_addr, state[ss_info.aux_reloc_dw]);
+ }
+}
+
+static void
+blorp_emit_surface_states(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ uint32_t bind_offset, *bind_map;
+ void *surface_maps[2];
+
+ const unsigned ss_size = GENX(RENDER_SURFACE_STATE_length) * 4;
+ const unsigned ss_align = GENX(RENDER_SURFACE_STATE_length) > 8 ? 64 : 32;
+
+ unsigned num_surfaces = 1 + (params->src.addr.buffer != NULL);
+ blorp_alloc_binding_table(batch, num_surfaces, ss_size, ss_align,
+ &bind_offset, &bind_map, surface_maps);
+
+ blorp_emit_surface_state(batch, &params->dst,
+ surface_maps[BLORP_RENDERBUFFER_BT_INDEX],
+ bind_map[BLORP_RENDERBUFFER_BT_INDEX], true);
+ if (params->src.addr.buffer) {
+ blorp_emit_surface_state(batch, &params->src,
+ surface_maps[BLORP_TEXTURE_BT_INDEX],
+ bind_map[BLORP_TEXTURE_BT_INDEX], false);
+ }
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_PS), bt) {
+ bt.PointertoPSBindingTable = bind_offset;
+ }
+#else
+ blorp_emit(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS), bt) {
+ bt.PSBindingTableChange = true;
+ bt.PointertoPSBindingTable = bind_offset;
+ }
+#endif
+}
+
+static void
+blorp_emit_sampler_state(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ struct GENX(SAMPLER_STATE) sampler = {
+ .MipModeFilter = MIPFILTER_NONE,
+ .MagModeFilter = MAPFILTER_LINEAR,
+ .MinModeFilter = MAPFILTER_LINEAR,
+ .MinLOD = 0,
+ .MaxLOD = 0,
+ .TCXAddressControlMode = TCM_CLAMP,
+ .TCYAddressControlMode = TCM_CLAMP,
+ .TCZAddressControlMode = TCM_CLAMP,
+ .MaximumAnisotropy = RATIO21,
+ .RAddressMinFilterRoundingEnable = true,
+ .RAddressMagFilterRoundingEnable = true,
+ .VAddressMinFilterRoundingEnable = true,
+ .VAddressMagFilterRoundingEnable = true,
+ .UAddressMinFilterRoundingEnable = true,
+ .UAddressMagFilterRoundingEnable = true,
+ .NonnormalizedCoordinateEnable = true,
+ };
+
+ uint32_t offset;
+ void *state = blorp_alloc_dynamic_state(batch, AUB_TRACE_SAMPLER_STATE,
+ GENX(SAMPLER_STATE_length) * 4,
+ 32, &offset);
+ GENX(SAMPLER_STATE_pack)(NULL, state, &sampler);
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_PS), ssp) {
+ ssp.PointertoPSSamplerState = offset;
+ }
+#else
+ blorp_emit(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS), ssp) {
+ ssp.VSSamplerStateChange = true;
+ ssp.GSSamplerStateChange = true;
+ ssp.PSSamplerStateChange = true;
+ ssp.PointertoPSSamplerState = offset;
+ }
+#endif
+}
+
+/* 3DSTATE_VIEWPORT_STATE_POINTERS */
+static void
+blorp_emit_viewport_state(struct blorp_batch *batch,
+ const struct blorp_params *params)
+{
+ uint32_t cc_vp_offset;
+
+ void *state = blorp_alloc_dynamic_state(batch, AUB_TRACE_CC_VP_STATE,
+ GENX(CC_VIEWPORT_length) * 4, 32,
+ &cc_vp_offset);
+
+ GENX(CC_VIEWPORT_pack)(batch, state,
+ &(struct GENX(CC_VIEWPORT)) {
+ .MinimumDepth = 0.0,
+ .MaximumDepth = 1.0,
+ });
+
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), vsp) {
+ vsp.CCViewportPointer = cc_vp_offset;
+ }
+#else
+ blorp_emit(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vsp) {
+ vsp.CCViewportStateChange = true;
+ vsp.PointertoCC_VIEWPORT = cc_vp_offset;
+ }
+#endif
+}
+
+
+/**
+ * \brief Execute a blit or render pass operation.
+ *
+ * To execute the operation, this function manually constructs and emits a
+ * batch to draw a rectangle primitive. The batchbuffer is flushed before
+ * constructing and after emitting the batch.
+ *
+ * This function alters no GL state.
+ */
+static void
+blorp_exec(struct blorp_batch *batch, const struct blorp_params *params)
+{
+ uint32_t blend_state_offset = 0;
+ uint32_t color_calc_state_offset = 0;
+ uint32_t depth_stencil_state_offset;
+
+ blorp_emit_vertex_buffers(batch, params);
+ blorp_emit_vertex_elements(batch, params);
+
+ emit_urb_config(batch, params);
+
+ if (params->wm_prog_data) {
+ blend_state_offset = blorp_emit_blend_state(batch, params);
+ color_calc_state_offset = blorp_emit_color_calc_state(batch, params);
+ }
+ depth_stencil_state_offset = blorp_emit_depth_stencil_state(batch, params);
+
+#if GEN_GEN <= 6
+ /* 3DSTATE_CC_STATE_POINTERS
+ *
+ * The pointer offsets are relative to
+ * CMD_STATE_BASE_ADDRESS.DynamicStateBaseAddress.
+ *
+ * The HiZ op doesn't use BLEND_STATE or COLOR_CALC_STATE.
+ *
+ * The dynamic state emit helpers emit their own STATE_POINTERS packets on
+ * gen7+. However, on gen6 and earlier, they're all lumpped together in
+ * one CC_STATE_POINTERS packet so we have to emit that here.
+ */
+ blorp_emit(batch, GENX(3DSTATE_CC_STATE_POINTERS), cc) {
+ cc.BLEND_STATEChange = true;
+ cc.COLOR_CALC_STATEChange = true;
+ cc.DEPTH_STENCIL_STATEChange = true;
+ cc.PointertoBLEND_STATE = blend_state_offset;
+ cc.PointertoCOLOR_CALC_STATE = color_calc_state_offset;
+ cc.PointertoDEPTH_STENCIL_STATE = depth_stencil_state_offset;
+ }
+#else
+ (void)blend_state_offset;
+ (void)color_calc_state_offset;
+ (void)depth_stencil_state_offset;
+#endif
+
+ blorp_emit(batch, GENX(3DSTATE_CONSTANT_VS), vs);
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_CONSTANT_HS), hs);
+ blorp_emit(batch, GENX(3DSTATE_CONSTANT_DS), DS);
+#endif
+ blorp_emit(batch, GENX(3DSTATE_CONSTANT_GS), gs);
+ blorp_emit(batch, GENX(3DSTATE_CONSTANT_PS), ps);
+
+ if (params->wm_prog_data)
+ blorp_emit_surface_states(batch, params);
+
+ if (params->src.addr.buffer)
+ blorp_emit_sampler_state(batch, params);
+
+ blorp_emit_3dstate_multisample(batch, params->dst.surf.samples);
+
+ blorp_emit(batch, GENX(3DSTATE_SAMPLE_MASK), mask) {
+ mask.SampleMask = (1 << params->dst.surf.samples) - 1;
+ }
+
+ /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
+ * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
+ *
+ * [DevSNB] A pipeline flush must be programmed prior to a
+ * 3DSTATE_VS command that causes the VS Function Enable to
+ * toggle. Pipeline flush can be executed by sending a PIPE_CONTROL
+ * command with CS stall bit set and a post sync operation.
+ *
+ * We've already done one at the start of the BLORP operation.
+ */
+ blorp_emit(batch, GENX(3DSTATE_VS), vs);
+#if GEN_GEN >= 7
+ blorp_emit(batch, GENX(3DSTATE_HS), hs);
+ blorp_emit(batch, GENX(3DSTATE_TE), te);
+ blorp_emit(batch, GENX(3DSTATE_DS), DS);
+ blorp_emit(batch, GENX(3DSTATE_STREAMOUT), so);
+#endif
+ blorp_emit(batch, GENX(3DSTATE_GS), gs);
+
+ blorp_emit(batch, GENX(3DSTATE_CLIP), clip) {
+ clip.PerspectiveDivideDisable = true;
+ }
+
+ blorp_emit_sf_config(batch, params);
+ blorp_emit_ps_config(batch, params);
+
+ blorp_emit_viewport_state(batch, params);
+
+ if (params->depth.addr.buffer) {
+ blorp_emit_depth_stencil_config(batch, params);
+ } else {
+ blorp_emit(batch, GENX(3DSTATE_DEPTH_BUFFER), db) {
+ db.SurfaceType = SURFTYPE_NULL;
+ db.SurfaceFormat = D32_FLOAT;
+ }
+ blorp_emit(batch, GENX(3DSTATE_HIER_DEPTH_BUFFER), hiz);
+ blorp_emit(batch, GENX(3DSTATE_STENCIL_BUFFER), sb);
+ }
+
+ /* 3DSTATE_CLEAR_PARAMS
+ *
+ * From the Sandybridge PRM, Volume 2, Part 1, Section 3DSTATE_CLEAR_PARAMS:
+ * [DevSNB] 3DSTATE_CLEAR_PARAMS packet must follow the DEPTH_BUFFER_STATE
+ * packet when HiZ is enabled and the DEPTH_BUFFER_STATE changes.
+ */
+ blorp_emit(batch, GENX(3DSTATE_CLEAR_PARAMS), clear) {
+ clear.DepthClearValueValid = true;
+ clear.DepthClearValue = params->depth.clear_color.u32[0];
+ }
+
+ blorp_emit(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
+ rect.ClippedDrawingRectangleXMax = MAX2(params->x1, params->x0) - 1;
+ rect.ClippedDrawingRectangleYMax = MAX2(params->y1, params->y0) - 1;
+ }
+
+ blorp_emit(batch, GENX(3DPRIMITIVE), prim) {
+ prim.VertexAccessType = SEQUENTIAL;
+ prim.PrimitiveTopologyType = _3DPRIM_RECTLIST;
+ prim.VertexCountPerInstance = 3;
+ prim.InstanceCount = params->num_layers;
+ }
+}
diff --git a/src/intel/blorp/blorp_priv.h b/src/intel/blorp/blorp_priv.h
new file mode 100644
index 00000000000..33f197b523d
--- /dev/null
+++ b/src/intel/blorp/blorp_priv.h
@@ -0,0 +1,291 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#pragma once
+
+#include <stdint.h>
+
+#include "compiler/nir/nir.h"
+#include "brw_compiler.h"
+
+#include "blorp.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * Binding table indices used by BLORP.
+ */
+enum {
+ BLORP_RENDERBUFFER_BT_INDEX,
+ BLORP_TEXTURE_BT_INDEX,
+ BLORP_NUM_BT_ENTRIES
+};
+
+enum blorp_fast_clear_op {
+ BLORP_FAST_CLEAR_OP_NONE = 0,
+ BLORP_FAST_CLEAR_OP_CLEAR,
+ BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL,
+ BLORP_FAST_CLEAR_OP_RESOLVE_FULL,
+};
+
+struct brw_blorp_surface_info
+{
+ struct isl_surf surf;
+ struct blorp_address addr;
+
+ struct isl_surf aux_surf;
+ struct blorp_address aux_addr;
+ enum isl_aux_usage aux_usage;
+
+ union isl_color_value clear_color;
+
+ struct isl_view view;
+
+ /* Z offset into a 3-D texture or slice of a 2-D array texture. */
+ uint32_t z_offset;
+
+ uint32_t tile_x_sa, tile_y_sa;
+};
+
+void
+brw_blorp_surface_info_init(struct blorp_context *blorp,
+ struct brw_blorp_surface_info *info,
+ const struct blorp_surf *surf,
+ unsigned int level, unsigned int layer,
+ enum isl_format format, bool is_render_target);
+
+
+struct brw_blorp_coord_transform
+{
+ float multiplier;
+ float offset;
+};
+
+/**
+ * Bounding rectangle telling pixel discard which pixels are not to be
+ * touched. This is needed in when surfaces are configured as something else
+ * what they really are:
+ *
+ * - writing W-tiled stencil as Y-tiled
+ * - writing interleaved multisampled as single sampled.
+ *
+ * See blorp_nir_discard_if_outside_rect().
+ */
+struct brw_blorp_discard_rect
+{
+ uint32_t x0;
+ uint32_t x1;
+ uint32_t y0;
+ uint32_t y1;
+};
+
+/**
+ * Grid needed for blended and scaled blits of integer formats, see
+ * blorp_nir_manual_blend_bilinear().
+ */
+struct brw_blorp_rect_grid
+{
+ float x1;
+ float y1;
+ float pad[2];
+};
+
+struct brw_blorp_wm_inputs
+{
+ struct brw_blorp_discard_rect discard_rect;
+ struct brw_blorp_rect_grid rect_grid;
+ struct brw_blorp_coord_transform coord_transform[2];
+
+ /* Minimum layer setting works for all the textures types but texture_3d
+ * for which the setting has no effect. Use the z-coordinate instead.
+ */
+ uint32_t src_z;
+
+ /* Pad out to an integral number of registers */
+ uint32_t pad[3];
+};
+
+struct brw_blorp_prog_data
+{
+ bool dispatch_8;
+ bool dispatch_16;
+
+ uint8_t first_curbe_grf_0;
+ uint8_t first_curbe_grf_2;
+
+ uint32_t ksp_offset_2;
+
+ /**
+ * True if the WM program should be run in MSDISPMODE_PERSAMPLE with more
+ * than one sample per pixel.
+ */
+ bool persample_msaa_dispatch;
+
+ /**
+ * Mask of which FS inputs are marked flat by the shader source. This is
+ * needed for setting up 3DSTATE_SF/SBE.
+ */
+ uint32_t flat_inputs;
+ unsigned num_varying_inputs;
+ uint64_t inputs_read;
+};
+
+static inline unsigned
+brw_blorp_get_urb_length(const struct brw_blorp_prog_data *prog_data)
+{
+ if (prog_data == NULL)
+ return 1;
+
+ /* From the BSpec: 3D Pipeline - Strips and Fans - 3DSTATE_SBE
+ *
+ * read_length = ceiling((max_source_attr+1)/2)
+ */
+ return MAX2((prog_data->num_varying_inputs + 1) / 2, 1);
+}
+
+struct blorp_params
+{
+ uint32_t x0;
+ uint32_t y0;
+ uint32_t x1;
+ uint32_t y1;
+ struct brw_blorp_surface_info depth;
+ uint32_t depth_format;
+ struct brw_blorp_surface_info src;
+ struct brw_blorp_surface_info dst;
+ enum blorp_hiz_op hiz_op;
+ enum blorp_fast_clear_op fast_clear_op;
+ bool color_write_disable[4];
+ struct brw_blorp_wm_inputs wm_inputs;
+ unsigned num_draw_buffers;
+ unsigned num_layers;
+ uint32_t wm_prog_kernel;
+ struct brw_blorp_prog_data *wm_prog_data;
+};
+
+void blorp_params_init(struct blorp_params *params);
+
+struct brw_blorp_blit_prog_key
+{
+ /* Number of samples per pixel that have been configured in the surface
+ * state for texturing from.
+ */
+ unsigned tex_samples;
+
+ /* MSAA layout that has been configured in the surface state for texturing
+ * from.
+ */
+ enum isl_msaa_layout tex_layout;
+
+ enum isl_aux_usage tex_aux_usage;
+
+ /* Actual number of samples per pixel in the source image. */
+ unsigned src_samples;
+
+ /* Actual MSAA layout used by the source image. */
+ enum isl_msaa_layout src_layout;
+
+ /* Number of samples per pixel that have been configured in the render
+ * target.
+ */
+ unsigned rt_samples;
+
+ /* MSAA layout that has been configured in the render target. */
+ enum isl_msaa_layout rt_layout;
+
+ /* Actual number of samples per pixel in the destination image. */
+ unsigned dst_samples;
+
+ /* Actual MSAA layout used by the destination image. */
+ enum isl_msaa_layout dst_layout;
+
+ /* Type of the data to be read from the texture (one of
+ * nir_type_(int|uint|float)).
+ */
+ nir_alu_type texture_data_type;
+
+ /* True if the source image is W tiled. If true, the surface state for the
+ * source image must be configured as Y tiled, and tex_samples must be 0.
+ */
+ bool src_tiled_w;
+
+ /* True if the destination image is W tiled. If true, the surface state
+ * for the render target must be configured as Y tiled, and rt_samples must
+ * be 0.
+ */
+ bool dst_tiled_w;
+
+ /* True if all source samples should be blended together to produce each
+ * destination pixel. If true, src_tiled_w must be false, tex_samples must
+ * equal src_samples, and tex_samples must be nonzero.
+ */
+ bool blend;
+
+ /* True if the rectangle being sent through the rendering pipeline might be
+ * larger than the destination rectangle, so the WM program should kill any
+ * pixels that are outside the destination rectangle.
+ */
+ bool use_kill;
+
+ /**
+ * True if the WM program should be run in MSDISPMODE_PERSAMPLE with more
+ * than one sample per pixel.
+ */
+ bool persample_msaa_dispatch;
+
+ /* True for scaled blitting. */
+ bool blit_scaled;
+
+ /* Scale factors between the pixel grid and the grid of samples. We're
+ * using grid of samples for bilinear filetring in multisample scaled blits.
+ */
+ float x_scale;
+ float y_scale;
+
+ /* True for blits with filter = GL_LINEAR. */
+ bool bilinear_filter;
+};
+
+/**
+ * \name BLORP internals
+ * \{
+ *
+ * Used internally by gen6_blorp_exec() and gen7_blorp_exec().
+ */
+
+void brw_blorp_init_wm_prog_key(struct brw_wm_prog_key *wm_key);
+
+const unsigned *
+brw_blorp_compile_nir_shader(struct blorp_context *blorp, struct nir_shader *nir,
+ const struct brw_wm_prog_key *wm_key,
+ bool use_repclear,
+ struct brw_blorp_prog_data *prog_data,
+ unsigned *program_size);
+
+/** \} */
+
+#ifdef __cplusplus
+} /* end extern "C" */
+#endif /* __cplusplus */