diff options
Diffstat (limited to 'src/glu/mini/project.c')
-rw-r--r-- | src/glu/mini/project.c | 402 |
1 files changed, 0 insertions, 402 deletions
diff --git a/src/glu/mini/project.c b/src/glu/mini/project.c deleted file mode 100644 index 97cba892211..00000000000 --- a/src/glu/mini/project.c +++ /dev/null @@ -1,402 +0,0 @@ -/* $Id: project.c,v 1.2 2003-08-22 20:11:43 brianp Exp $ */ - -/* - * Mesa 3-D graphics library - * Version: 3.3 - * Copyright (C) 1995-2000 Brian Paul - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the Free - * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - */ - - -#ifdef PC_HEADER -#include "all.h" -#else -#include <stdio.h> -#include <string.h> -#include <math.h> -#include "gluP.h" -#endif - - -/* - * This code was contributed by Marc Buffat ([email protected]). - * Thanks Marc!!! - */ - - - -/* implementation de gluProject et gluUnproject */ -/* M. Buffat 17/2/95 */ - - - -/* - * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in - * Input: m - the 4x4 matrix - * in - the 4x1 vector - * Output: out - the resulting 4x1 vector. - */ -static void -transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4]) -{ -#define M(row,col) m[col*4+row] - out[0] = - M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3]; - out[1] = - M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3]; - out[2] = - M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3]; - out[3] = - M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3]; -#undef M -} - - - - -/* - * Perform a 4x4 matrix multiplication (product = a x b). - * Input: a, b - matrices to multiply - * Output: product - product of a and b - */ -static void -matmul(GLdouble * product, const GLdouble * a, const GLdouble * b) -{ - /* This matmul was contributed by Thomas Malik */ - GLdouble temp[16]; - GLint i; - -#define A(row,col) a[(col<<2)+row] -#define B(row,col) b[(col<<2)+row] -#define T(row,col) temp[(col<<2)+row] - - /* i-te Zeile */ - for (i = 0; i < 4; i++) { - T(i, 0) = - A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, - 3) * - B(3, 0); - T(i, 1) = - A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, - 3) * - B(3, 1); - T(i, 2) = - A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, - 3) * - B(3, 2); - T(i, 3) = - A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, - 3) * - B(3, 3); - } - -#undef A -#undef B -#undef T - MEMCPY(product, temp, 16 * sizeof(GLdouble)); -} - - - -/* - * Compute inverse of 4x4 transformation matrix. - * Code contributed by Jacques Leroy [email protected] - * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) - */ -static GLboolean -invert_matrix(const GLdouble * m, GLdouble * out) -{ -/* NB. OpenGL Matrices are COLUMN major. */ -#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } -#define MAT(m,r,c) (m)[(c)*4+(r)] - - GLdouble wtmp[4][8]; - GLdouble m0, m1, m2, m3, s; - GLdouble *r0, *r1, *r2, *r3; - - r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; - - r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), - r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), - r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, - r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), - r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), - r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, - r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), - r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), - r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, - r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), - r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), - r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; - - /* choose pivot - or die */ - if (fabs(r3[0]) > fabs(r2[0])) - SWAP_ROWS(r3, r2); - if (fabs(r2[0]) > fabs(r1[0])) - SWAP_ROWS(r2, r1); - if (fabs(r1[0]) > fabs(r0[0])) - SWAP_ROWS(r1, r0); - if (0.0 == r0[0]) - return GL_FALSE; - - /* eliminate first variable */ - m1 = r1[0] / r0[0]; - m2 = r2[0] / r0[0]; - m3 = r3[0] / r0[0]; - s = r0[1]; - r1[1] -= m1 * s; - r2[1] -= m2 * s; - r3[1] -= m3 * s; - s = r0[2]; - r1[2] -= m1 * s; - r2[2] -= m2 * s; - r3[2] -= m3 * s; - s = r0[3]; - r1[3] -= m1 * s; - r2[3] -= m2 * s; - r3[3] -= m3 * s; - s = r0[4]; - if (s != 0.0) { - r1[4] -= m1 * s; - r2[4] -= m2 * s; - r3[4] -= m3 * s; - } - s = r0[5]; - if (s != 0.0) { - r1[5] -= m1 * s; - r2[5] -= m2 * s; - r3[5] -= m3 * s; - } - s = r0[6]; - if (s != 0.0) { - r1[6] -= m1 * s; - r2[6] -= m2 * s; - r3[6] -= m3 * s; - } - s = r0[7]; - if (s != 0.0) { - r1[7] -= m1 * s; - r2[7] -= m2 * s; - r3[7] -= m3 * s; - } - - /* choose pivot - or die */ - if (fabs(r3[1]) > fabs(r2[1])) - SWAP_ROWS(r3, r2); - if (fabs(r2[1]) > fabs(r1[1])) - SWAP_ROWS(r2, r1); - if (0.0 == r1[1]) - return GL_FALSE; - - /* eliminate second variable */ - m2 = r2[1] / r1[1]; - m3 = r3[1] / r1[1]; - r2[2] -= m2 * r1[2]; - r3[2] -= m3 * r1[2]; - r2[3] -= m2 * r1[3]; - r3[3] -= m3 * r1[3]; - s = r1[4]; - if (0.0 != s) { - r2[4] -= m2 * s; - r3[4] -= m3 * s; - } - s = r1[5]; - if (0.0 != s) { - r2[5] -= m2 * s; - r3[5] -= m3 * s; - } - s = r1[6]; - if (0.0 != s) { - r2[6] -= m2 * s; - r3[6] -= m3 * s; - } - s = r1[7]; - if (0.0 != s) { - r2[7] -= m2 * s; - r3[7] -= m3 * s; - } - - /* choose pivot - or die */ - if (fabs(r3[2]) > fabs(r2[2])) - SWAP_ROWS(r3, r2); - if (0.0 == r2[2]) - return GL_FALSE; - - /* eliminate third variable */ - m3 = r3[2] / r2[2]; - r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], - r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; - - /* last check */ - if (0.0 == r3[3]) - return GL_FALSE; - - s = 1.0 / r3[3]; /* now back substitute row 3 */ - r3[4] *= s; - r3[5] *= s; - r3[6] *= s; - r3[7] *= s; - - m2 = r2[3]; /* now back substitute row 2 */ - s = 1.0 / r2[2]; - r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), - r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); - m1 = r1[3]; - r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, - r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; - m0 = r0[3]; - r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, - r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; - - m1 = r1[2]; /* now back substitute row 1 */ - s = 1.0 / r1[1]; - r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), - r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); - m0 = r0[2]; - r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, - r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; - - m0 = r0[1]; /* now back substitute row 0 */ - s = 1.0 / r0[0]; - r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), - r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); - - MAT(out, 0, 0) = r0[4]; - MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; - MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; - MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; - MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; - MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; - MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; - MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; - MAT(out, 3, 3) = r3[7]; - - return GL_TRUE; - -#undef MAT -#undef SWAP_ROWS -} - - - -/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */ -GLint GLAPIENTRY -gluProject(GLdouble objx, GLdouble objy, GLdouble objz, - const GLdouble model[16], const GLdouble proj[16], - const GLint viewport[4], - GLdouble * winx, GLdouble * winy, GLdouble * winz) -{ - /* matrice de transformation */ - GLdouble in[4], out[4]; - - /* initilise la matrice et le vecteur a transformer */ - in[0] = objx; - in[1] = objy; - in[2] = objz; - in[3] = 1.0; - transform_point(out, model, in); - transform_point(in, proj, out); - - /* d'ou le resultat normalise entre -1 et 1 */ - if (in[3] == 0.0) - return GL_FALSE; - - in[0] /= in[3]; - in[1] /= in[3]; - in[2] /= in[3]; - - /* en coordonnees ecran */ - *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2; - *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2; - /* entre 0 et 1 suivant z */ - *winz = (1 + in[2]) / 2; - return GL_TRUE; -} - - - -/* transformation du point ecran (winx,winy,winz) en point objet */ -GLint GLAPIENTRY -gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, - const GLdouble model[16], const GLdouble proj[16], - const GLint viewport[4], - GLdouble * objx, GLdouble * objy, GLdouble * objz) -{ - /* matrice de transformation */ - GLdouble m[16], A[16]; - GLdouble in[4], out[4]; - - /* transformation coordonnees normalisees entre -1 et 1 */ - in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; - in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; - in[2] = 2 * winz - 1.0; - in[3] = 1.0; - - /* calcul transformation inverse */ - matmul(A, proj, model); - invert_matrix(A, m); - - /* d'ou les coordonnees objets */ - transform_point(out, m, in); - if (out[3] == 0.0) - return GL_FALSE; - *objx = out[0] / out[3]; - *objy = out[1] / out[3]; - *objz = out[2] / out[3]; - return GL_TRUE; -} - - -/* - * New in GLU 1.3 - * This is like gluUnProject but also takes near and far DepthRange values. - */ -#ifdef GLU_VERSION_1_3 -GLint GLAPIENTRY -gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw, - const GLdouble modelMatrix[16], - const GLdouble projMatrix[16], - const GLint viewport[4], - GLclampd nearZ, GLclampd farZ, - GLdouble * objx, GLdouble * objy, GLdouble * objz, - GLdouble * objw) -{ - /* matrice de transformation */ - GLdouble m[16], A[16]; - GLdouble in[4], out[4]; - GLdouble z = nearZ + winz * (farZ - nearZ); - - /* transformation coordonnees normalisees entre -1 et 1 */ - in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; - in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; - in[2] = 2.0 * z - 1.0; - in[3] = clipw; - - /* calcul transformation inverse */ - matmul(A, projMatrix, modelMatrix); - invert_matrix(A, m); - - /* d'ou les coordonnees objets */ - transform_point(out, m, in); - if (out[3] == 0.0) - return GL_FALSE; - *objx = out[0] / out[3]; - *objy = out[1] / out[3]; - *objz = out[2] / out[3]; - *objw = out[3]; - return GL_TRUE; -} -#endif |