diff options
Diffstat (limited to 'src/glu/mini/project.c')
-rw-r--r-- | src/glu/mini/project.c | 402 |
1 files changed, 402 insertions, 0 deletions
diff --git a/src/glu/mini/project.c b/src/glu/mini/project.c new file mode 100644 index 00000000000..a2747de55f2 --- /dev/null +++ b/src/glu/mini/project.c @@ -0,0 +1,402 @@ +/* $Id: project.c,v 1.2 2003/08/22 20:11:43 brianp Exp $ */ + +/* + * Mesa 3-D graphics library + * Version: 3.3 + * Copyright (C) 1995-2000 Brian Paul + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + + +#ifdef PC_HEADER +#include "all.h" +#else +#include <stdio.h> +#include <string.h> +#include <math.h> +#include "gluP.h" +#endif + + +/* + * This code was contributed by Marc Buffat ([email protected]). + * Thanks Marc!!! + */ + + + +/* implementation de gluProject et gluUnproject */ +/* M. Buffat 17/2/95 */ + + + +/* + * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in + * Input: m - the 4x4 matrix + * in - the 4x1 vector + * Output: out - the resulting 4x1 vector. + */ +static void +transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4]) +{ +#define M(row,col) m[col*4+row] + out[0] = + M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3]; + out[1] = + M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3]; + out[2] = + M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3]; + out[3] = + M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3]; +#undef M +} + + + + +/* + * Perform a 4x4 matrix multiplication (product = a x b). + * Input: a, b - matrices to multiply + * Output: product - product of a and b + */ +static void +matmul(GLdouble * product, const GLdouble * a, const GLdouble * b) +{ + /* This matmul was contributed by Thomas Malik */ + GLdouble temp[16]; + GLint i; + +#define A(row,col) a[(col<<2)+row] +#define B(row,col) b[(col<<2)+row] +#define T(row,col) temp[(col<<2)+row] + + /* i-te Zeile */ + for (i = 0; i < 4; i++) { + T(i, 0) = + A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, + 3) * + B(3, 0); + T(i, 1) = + A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, + 3) * + B(3, 1); + T(i, 2) = + A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, + 3) * + B(3, 2); + T(i, 3) = + A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, + 3) * + B(3, 3); + } + +#undef A +#undef B +#undef T + MEMCPY(product, temp, 16 * sizeof(GLdouble)); +} + + + +/* + * Compute inverse of 4x4 transformation matrix. + * Code contributed by Jacques Leroy [email protected] + * Return GL_TRUE for success, GL_FALSE for failure (singular matrix) + */ +static GLboolean +invert_matrix(const GLdouble * m, GLdouble * out) +{ +/* NB. OpenGL Matrices are COLUMN major. */ +#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; } +#define MAT(m,r,c) (m)[(c)*4+(r)] + + GLdouble wtmp[4][8]; + GLdouble m0, m1, m2, m3, s; + GLdouble *r0, *r1, *r2, *r3; + + r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; + + r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1), + r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3), + r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, + r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1), + r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3), + r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, + r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1), + r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3), + r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, + r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1), + r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3), + r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; + + /* choose pivot - or die */ + if (fabs(r3[0]) > fabs(r2[0])) + SWAP_ROWS(r3, r2); + if (fabs(r2[0]) > fabs(r1[0])) + SWAP_ROWS(r2, r1); + if (fabs(r1[0]) > fabs(r0[0])) + SWAP_ROWS(r1, r0); + if (0.0 == r0[0]) + return GL_FALSE; + + /* eliminate first variable */ + m1 = r1[0] / r0[0]; + m2 = r2[0] / r0[0]; + m3 = r3[0] / r0[0]; + s = r0[1]; + r1[1] -= m1 * s; + r2[1] -= m2 * s; + r3[1] -= m3 * s; + s = r0[2]; + r1[2] -= m1 * s; + r2[2] -= m2 * s; + r3[2] -= m3 * s; + s = r0[3]; + r1[3] -= m1 * s; + r2[3] -= m2 * s; + r3[3] -= m3 * s; + s = r0[4]; + if (s != 0.0) { + r1[4] -= m1 * s; + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r0[5]; + if (s != 0.0) { + r1[5] -= m1 * s; + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r0[6]; + if (s != 0.0) { + r1[6] -= m1 * s; + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r0[7]; + if (s != 0.0) { + r1[7] -= m1 * s; + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + /* choose pivot - or die */ + if (fabs(r3[1]) > fabs(r2[1])) + SWAP_ROWS(r3, r2); + if (fabs(r2[1]) > fabs(r1[1])) + SWAP_ROWS(r2, r1); + if (0.0 == r1[1]) + return GL_FALSE; + + /* eliminate second variable */ + m2 = r2[1] / r1[1]; + m3 = r3[1] / r1[1]; + r2[2] -= m2 * r1[2]; + r3[2] -= m3 * r1[2]; + r2[3] -= m2 * r1[3]; + r3[3] -= m3 * r1[3]; + s = r1[4]; + if (0.0 != s) { + r2[4] -= m2 * s; + r3[4] -= m3 * s; + } + s = r1[5]; + if (0.0 != s) { + r2[5] -= m2 * s; + r3[5] -= m3 * s; + } + s = r1[6]; + if (0.0 != s) { + r2[6] -= m2 * s; + r3[6] -= m3 * s; + } + s = r1[7]; + if (0.0 != s) { + r2[7] -= m2 * s; + r3[7] -= m3 * s; + } + + /* choose pivot - or die */ + if (fabs(r3[2]) > fabs(r2[2])) + SWAP_ROWS(r3, r2); + if (0.0 == r2[2]) + return GL_FALSE; + + /* eliminate third variable */ + m3 = r3[2] / r2[2]; + r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], + r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; + + /* last check */ + if (0.0 == r3[3]) + return GL_FALSE; + + s = 1.0 / r3[3]; /* now back substitute row 3 */ + r3[4] *= s; + r3[5] *= s; + r3[6] *= s; + r3[7] *= s; + + m2 = r2[3]; /* now back substitute row 2 */ + s = 1.0 / r2[2]; + r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), + r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); + m1 = r1[3]; + r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, + r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; + m0 = r0[3]; + r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, + r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; + + m1 = r1[2]; /* now back substitute row 1 */ + s = 1.0 / r1[1]; + r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), + r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); + m0 = r0[2]; + r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, + r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; + + m0 = r0[1]; /* now back substitute row 0 */ + s = 1.0 / r0[0]; + r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), + r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); + + MAT(out, 0, 0) = r0[4]; + MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6]; + MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4]; + MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6]; + MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4]; + MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6]; + MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4]; + MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6]; + MAT(out, 3, 3) = r3[7]; + + return GL_TRUE; + +#undef MAT +#undef SWAP_ROWS +} + + + +/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */ +GLint GLAPIENTRY +gluProject(GLdouble objx, GLdouble objy, GLdouble objz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble * winx, GLdouble * winy, GLdouble * winz) +{ + /* matrice de transformation */ + GLdouble in[4], out[4]; + + /* initilise la matrice et le vecteur a transformer */ + in[0] = objx; + in[1] = objy; + in[2] = objz; + in[3] = 1.0; + transform_point(out, model, in); + transform_point(in, proj, out); + + /* d'ou le resultat normalise entre -1 et 1 */ + if (in[3] == 0.0) + return GL_FALSE; + + in[0] /= in[3]; + in[1] /= in[3]; + in[2] /= in[3]; + + /* en coordonnees ecran */ + *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2; + *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2; + /* entre 0 et 1 suivant z */ + *winz = (1 + in[2]) / 2; + return GL_TRUE; +} + + + +/* transformation du point ecran (winx,winy,winz) en point objet */ +GLint GLAPIENTRY +gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, + const GLdouble model[16], const GLdouble proj[16], + const GLint viewport[4], + GLdouble * objx, GLdouble * objy, GLdouble * objz) +{ + /* matrice de transformation */ + GLdouble m[16], A[16]; + GLdouble in[4], out[4]; + + /* transformation coordonnees normalisees entre -1 et 1 */ + in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; + in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; + in[2] = 2 * winz - 1.0; + in[3] = 1.0; + + /* calcul transformation inverse */ + matmul(A, proj, model); + invert_matrix(A, m); + + /* d'ou les coordonnees objets */ + transform_point(out, m, in); + if (out[3] == 0.0) + return GL_FALSE; + *objx = out[0] / out[3]; + *objy = out[1] / out[3]; + *objz = out[2] / out[3]; + return GL_TRUE; +} + + +/* + * New in GLU 1.3 + * This is like gluUnProject but also takes near and far DepthRange values. + */ +#ifdef GLU_VERSION_1_3 +GLint GLAPIENTRY +gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw, + const GLdouble modelMatrix[16], + const GLdouble projMatrix[16], + const GLint viewport[4], + GLclampd nearZ, GLclampd farZ, + GLdouble * objx, GLdouble * objy, GLdouble * objz, + GLdouble * objw) +{ + /* matrice de transformation */ + GLdouble m[16], A[16]; + GLdouble in[4], out[4]; + GLdouble z = nearZ + winz * (farZ - nearZ); + + /* transformation coordonnees normalisees entre -1 et 1 */ + in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0; + in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0; + in[2] = 2.0 * z - 1.0; + in[3] = clipw; + + /* calcul transformation inverse */ + matmul(A, projMatrix, modelMatrix); + invert_matrix(A, m); + + /* d'ou les coordonnees objets */ + transform_point(out, m, in); + if (out[3] == 0.0) + return GL_FALSE; + *objx = out[0] / out[3]; + *objy = out[1] / out[3]; + *objz = out[2] / out[3]; + *objw = out[3]; + return GL_TRUE; +} +#endif |