summaryrefslogtreecommitdiffstats
path: root/src/glu/mini/project.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/glu/mini/project.c')
-rw-r--r--src/glu/mini/project.c402
1 files changed, 402 insertions, 0 deletions
diff --git a/src/glu/mini/project.c b/src/glu/mini/project.c
new file mode 100644
index 00000000000..a2747de55f2
--- /dev/null
+++ b/src/glu/mini/project.c
@@ -0,0 +1,402 @@
+/* $Id: project.c,v 1.2 2003/08/22 20:11:43 brianp Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 3.3
+ * Copyright (C) 1995-2000 Brian Paul
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Library General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Library General Public
+ * License along with this library; if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+
+#ifdef PC_HEADER
+#include "all.h"
+#else
+#include <stdio.h>
+#include <string.h>
+#include <math.h>
+#include "gluP.h"
+#endif
+
+
+/*
+ * This code was contributed by Marc Buffat ([email protected]).
+ * Thanks Marc!!!
+ */
+
+
+
+/* implementation de gluProject et gluUnproject */
+/* M. Buffat 17/2/95 */
+
+
+
+/*
+ * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
+ * Input: m - the 4x4 matrix
+ * in - the 4x1 vector
+ * Output: out - the resulting 4x1 vector.
+ */
+static void
+transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4])
+{
+#define M(row,col) m[col*4+row]
+ out[0] =
+ M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3];
+ out[1] =
+ M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3];
+ out[2] =
+ M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3];
+ out[3] =
+ M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3];
+#undef M
+}
+
+
+
+
+/*
+ * Perform a 4x4 matrix multiplication (product = a x b).
+ * Input: a, b - matrices to multiply
+ * Output: product - product of a and b
+ */
+static void
+matmul(GLdouble * product, const GLdouble * a, const GLdouble * b)
+{
+ /* This matmul was contributed by Thomas Malik */
+ GLdouble temp[16];
+ GLint i;
+
+#define A(row,col) a[(col<<2)+row]
+#define B(row,col) b[(col<<2)+row]
+#define T(row,col) temp[(col<<2)+row]
+
+ /* i-te Zeile */
+ for (i = 0; i < 4; i++) {
+ T(i, 0) =
+ A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i,
+ 3) *
+ B(3, 0);
+ T(i, 1) =
+ A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i,
+ 3) *
+ B(3, 1);
+ T(i, 2) =
+ A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i,
+ 3) *
+ B(3, 2);
+ T(i, 3) =
+ A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i,
+ 3) *
+ B(3, 3);
+ }
+
+#undef A
+#undef B
+#undef T
+ MEMCPY(product, temp, 16 * sizeof(GLdouble));
+}
+
+
+
+/*
+ * Compute inverse of 4x4 transformation matrix.
+ * Code contributed by Jacques Leroy [email protected]
+ * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
+ */
+static GLboolean
+invert_matrix(const GLdouble * m, GLdouble * out)
+{
+/* NB. OpenGL Matrices are COLUMN major. */
+#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
+#define MAT(m,r,c) (m)[(c)*4+(r)]
+
+ GLdouble wtmp[4][8];
+ GLdouble m0, m1, m2, m3, s;
+ GLdouble *r0, *r1, *r2, *r3;
+
+ r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
+
+ r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
+ r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
+ r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
+ r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
+ r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
+ r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
+ r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
+ r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
+ r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
+ r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
+ r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
+ r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
+
+ /* choose pivot - or die */
+ if (fabs(r3[0]) > fabs(r2[0]))
+ SWAP_ROWS(r3, r2);
+ if (fabs(r2[0]) > fabs(r1[0]))
+ SWAP_ROWS(r2, r1);
+ if (fabs(r1[0]) > fabs(r0[0]))
+ SWAP_ROWS(r1, r0);
+ if (0.0 == r0[0])
+ return GL_FALSE;
+
+ /* eliminate first variable */
+ m1 = r1[0] / r0[0];
+ m2 = r2[0] / r0[0];
+ m3 = r3[0] / r0[0];
+ s = r0[1];
+ r1[1] -= m1 * s;
+ r2[1] -= m2 * s;
+ r3[1] -= m3 * s;
+ s = r0[2];
+ r1[2] -= m1 * s;
+ r2[2] -= m2 * s;
+ r3[2] -= m3 * s;
+ s = r0[3];
+ r1[3] -= m1 * s;
+ r2[3] -= m2 * s;
+ r3[3] -= m3 * s;
+ s = r0[4];
+ if (s != 0.0) {
+ r1[4] -= m1 * s;
+ r2[4] -= m2 * s;
+ r3[4] -= m3 * s;
+ }
+ s = r0[5];
+ if (s != 0.0) {
+ r1[5] -= m1 * s;
+ r2[5] -= m2 * s;
+ r3[5] -= m3 * s;
+ }
+ s = r0[6];
+ if (s != 0.0) {
+ r1[6] -= m1 * s;
+ r2[6] -= m2 * s;
+ r3[6] -= m3 * s;
+ }
+ s = r0[7];
+ if (s != 0.0) {
+ r1[7] -= m1 * s;
+ r2[7] -= m2 * s;
+ r3[7] -= m3 * s;
+ }
+
+ /* choose pivot - or die */
+ if (fabs(r3[1]) > fabs(r2[1]))
+ SWAP_ROWS(r3, r2);
+ if (fabs(r2[1]) > fabs(r1[1]))
+ SWAP_ROWS(r2, r1);
+ if (0.0 == r1[1])
+ return GL_FALSE;
+
+ /* eliminate second variable */
+ m2 = r2[1] / r1[1];
+ m3 = r3[1] / r1[1];
+ r2[2] -= m2 * r1[2];
+ r3[2] -= m3 * r1[2];
+ r2[3] -= m2 * r1[3];
+ r3[3] -= m3 * r1[3];
+ s = r1[4];
+ if (0.0 != s) {
+ r2[4] -= m2 * s;
+ r3[4] -= m3 * s;
+ }
+ s = r1[5];
+ if (0.0 != s) {
+ r2[5] -= m2 * s;
+ r3[5] -= m3 * s;
+ }
+ s = r1[6];
+ if (0.0 != s) {
+ r2[6] -= m2 * s;
+ r3[6] -= m3 * s;
+ }
+ s = r1[7];
+ if (0.0 != s) {
+ r2[7] -= m2 * s;
+ r3[7] -= m3 * s;
+ }
+
+ /* choose pivot - or die */
+ if (fabs(r3[2]) > fabs(r2[2]))
+ SWAP_ROWS(r3, r2);
+ if (0.0 == r2[2])
+ return GL_FALSE;
+
+ /* eliminate third variable */
+ m3 = r3[2] / r2[2];
+ r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
+ r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
+
+ /* last check */
+ if (0.0 == r3[3])
+ return GL_FALSE;
+
+ s = 1.0 / r3[3]; /* now back substitute row 3 */
+ r3[4] *= s;
+ r3[5] *= s;
+ r3[6] *= s;
+ r3[7] *= s;
+
+ m2 = r2[3]; /* now back substitute row 2 */
+ s = 1.0 / r2[2];
+ r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
+ r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
+ m1 = r1[3];
+ r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
+ r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
+ m0 = r0[3];
+ r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
+ r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
+
+ m1 = r1[2]; /* now back substitute row 1 */
+ s = 1.0 / r1[1];
+ r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
+ r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
+ m0 = r0[2];
+ r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
+ r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
+
+ m0 = r0[1]; /* now back substitute row 0 */
+ s = 1.0 / r0[0];
+ r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
+ r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
+
+ MAT(out, 0, 0) = r0[4];
+ MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
+ MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
+ MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
+ MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
+ MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
+ MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
+ MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
+ MAT(out, 3, 3) = r3[7];
+
+ return GL_TRUE;
+
+#undef MAT
+#undef SWAP_ROWS
+}
+
+
+
+/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
+GLint GLAPIENTRY
+gluProject(GLdouble objx, GLdouble objy, GLdouble objz,
+ const GLdouble model[16], const GLdouble proj[16],
+ const GLint viewport[4],
+ GLdouble * winx, GLdouble * winy, GLdouble * winz)
+{
+ /* matrice de transformation */
+ GLdouble in[4], out[4];
+
+ /* initilise la matrice et le vecteur a transformer */
+ in[0] = objx;
+ in[1] = objy;
+ in[2] = objz;
+ in[3] = 1.0;
+ transform_point(out, model, in);
+ transform_point(in, proj, out);
+
+ /* d'ou le resultat normalise entre -1 et 1 */
+ if (in[3] == 0.0)
+ return GL_FALSE;
+
+ in[0] /= in[3];
+ in[1] /= in[3];
+ in[2] /= in[3];
+
+ /* en coordonnees ecran */
+ *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2;
+ *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2;
+ /* entre 0 et 1 suivant z */
+ *winz = (1 + in[2]) / 2;
+ return GL_TRUE;
+}
+
+
+
+/* transformation du point ecran (winx,winy,winz) en point objet */
+GLint GLAPIENTRY
+gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
+ const GLdouble model[16], const GLdouble proj[16],
+ const GLint viewport[4],
+ GLdouble * objx, GLdouble * objy, GLdouble * objz)
+{
+ /* matrice de transformation */
+ GLdouble m[16], A[16];
+ GLdouble in[4], out[4];
+
+ /* transformation coordonnees normalisees entre -1 et 1 */
+ in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
+ in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
+ in[2] = 2 * winz - 1.0;
+ in[3] = 1.0;
+
+ /* calcul transformation inverse */
+ matmul(A, proj, model);
+ invert_matrix(A, m);
+
+ /* d'ou les coordonnees objets */
+ transform_point(out, m, in);
+ if (out[3] == 0.0)
+ return GL_FALSE;
+ *objx = out[0] / out[3];
+ *objy = out[1] / out[3];
+ *objz = out[2] / out[3];
+ return GL_TRUE;
+}
+
+
+/*
+ * New in GLU 1.3
+ * This is like gluUnProject but also takes near and far DepthRange values.
+ */
+#ifdef GLU_VERSION_1_3
+GLint GLAPIENTRY
+gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
+ const GLdouble modelMatrix[16],
+ const GLdouble projMatrix[16],
+ const GLint viewport[4],
+ GLclampd nearZ, GLclampd farZ,
+ GLdouble * objx, GLdouble * objy, GLdouble * objz,
+ GLdouble * objw)
+{
+ /* matrice de transformation */
+ GLdouble m[16], A[16];
+ GLdouble in[4], out[4];
+ GLdouble z = nearZ + winz * (farZ - nearZ);
+
+ /* transformation coordonnees normalisees entre -1 et 1 */
+ in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
+ in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
+ in[2] = 2.0 * z - 1.0;
+ in[3] = clipw;
+
+ /* calcul transformation inverse */
+ matmul(A, projMatrix, modelMatrix);
+ invert_matrix(A, m);
+
+ /* d'ou les coordonnees objets */
+ transform_point(out, m, in);
+ if (out[3] == 0.0)
+ return GL_FALSE;
+ *objx = out[0] / out[3];
+ *objy = out[1] / out[3];
+ *objz = out[2] / out[3];
+ *objw = out[3];
+ return GL_TRUE;
+}
+#endif