summaryrefslogtreecommitdiffstats
path: root/src/glu/mesa/project.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/glu/mesa/project.c')
-rw-r--r--src/glu/mesa/project.c401
1 files changed, 0 insertions, 401 deletions
diff --git a/src/glu/mesa/project.c b/src/glu/mesa/project.c
deleted file mode 100644
index 6fa03267e53..00000000000
--- a/src/glu/mesa/project.c
+++ /dev/null
@@ -1,401 +0,0 @@
-
-/*
- * Mesa 3-D graphics library
- * Version: 3.3
- * Copyright (C) 1995-2000 Brian Paul
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the Free
- * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-
-#ifdef PC_HEADER
-#include "all.h"
-#else
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "gluP.h"
-#endif
-
-
-/*
- * This code was contributed by Marc Buffat ([email protected]).
- * Thanks Marc!!!
- */
-
-
-
-/* implementation de gluProject et gluUnproject */
-/* M. Buffat 17/2/95 */
-
-
-
-/*
- * Transform a point (column vector) by a 4x4 matrix. I.e. out = m * in
- * Input: m - the 4x4 matrix
- * in - the 4x1 vector
- * Output: out - the resulting 4x1 vector.
- */
-static void
-transform_point(GLdouble out[4], const GLdouble m[16], const GLdouble in[4])
-{
-#define M(row,col) m[col*4+row]
- out[0] =
- M(0, 0) * in[0] + M(0, 1) * in[1] + M(0, 2) * in[2] + M(0, 3) * in[3];
- out[1] =
- M(1, 0) * in[0] + M(1, 1) * in[1] + M(1, 2) * in[2] + M(1, 3) * in[3];
- out[2] =
- M(2, 0) * in[0] + M(2, 1) * in[1] + M(2, 2) * in[2] + M(2, 3) * in[3];
- out[3] =
- M(3, 0) * in[0] + M(3, 1) * in[1] + M(3, 2) * in[2] + M(3, 3) * in[3];
-#undef M
-}
-
-
-
-
-/*
- * Perform a 4x4 matrix multiplication (product = a x b).
- * Input: a, b - matrices to multiply
- * Output: product - product of a and b
- */
-static void
-matmul(GLdouble * product, const GLdouble * a, const GLdouble * b)
-{
- /* This matmul was contributed by Thomas Malik */
- GLdouble temp[16];
- GLint i;
-
-#define A(row,col) a[(col<<2)+row]
-#define B(row,col) b[(col<<2)+row]
-#define T(row,col) temp[(col<<2)+row]
-
- /* i-te Zeile */
- for (i = 0; i < 4; i++) {
- T(i, 0) =
- A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i,
- 3) *
- B(3, 0);
- T(i, 1) =
- A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i,
- 3) *
- B(3, 1);
- T(i, 2) =
- A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i,
- 3) *
- B(3, 2);
- T(i, 3) =
- A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i,
- 3) *
- B(3, 3);
- }
-
-#undef A
-#undef B
-#undef T
- MEMCPY(product, temp, 16 * sizeof(GLdouble));
-}
-
-
-
-/*
- * Compute inverse of 4x4 transformation matrix.
- * Code contributed by Jacques Leroy [email protected]
- * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
- */
-static GLboolean
-invert_matrix(const GLdouble * m, GLdouble * out)
-{
-/* NB. OpenGL Matrices are COLUMN major. */
-#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
-#define MAT(m,r,c) (m)[(c)*4+(r)]
-
- GLdouble wtmp[4][8];
- GLdouble m0, m1, m2, m3, s;
- GLdouble *r0, *r1, *r2, *r3;
-
- r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
-
- r0[0] = MAT(m, 0, 0), r0[1] = MAT(m, 0, 1),
- r0[2] = MAT(m, 0, 2), r0[3] = MAT(m, 0, 3),
- r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
- r1[0] = MAT(m, 1, 0), r1[1] = MAT(m, 1, 1),
- r1[2] = MAT(m, 1, 2), r1[3] = MAT(m, 1, 3),
- r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
- r2[0] = MAT(m, 2, 0), r2[1] = MAT(m, 2, 1),
- r2[2] = MAT(m, 2, 2), r2[3] = MAT(m, 2, 3),
- r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
- r3[0] = MAT(m, 3, 0), r3[1] = MAT(m, 3, 1),
- r3[2] = MAT(m, 3, 2), r3[3] = MAT(m, 3, 3),
- r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
-
- /* choose pivot - or die */
- if (fabs(r3[0]) > fabs(r2[0]))
- SWAP_ROWS(r3, r2);
- if (fabs(r2[0]) > fabs(r1[0]))
- SWAP_ROWS(r2, r1);
- if (fabs(r1[0]) > fabs(r0[0]))
- SWAP_ROWS(r1, r0);
- if (0.0 == r0[0])
- return GL_FALSE;
-
- /* eliminate first variable */
- m1 = r1[0] / r0[0];
- m2 = r2[0] / r0[0];
- m3 = r3[0] / r0[0];
- s = r0[1];
- r1[1] -= m1 * s;
- r2[1] -= m2 * s;
- r3[1] -= m3 * s;
- s = r0[2];
- r1[2] -= m1 * s;
- r2[2] -= m2 * s;
- r3[2] -= m3 * s;
- s = r0[3];
- r1[3] -= m1 * s;
- r2[3] -= m2 * s;
- r3[3] -= m3 * s;
- s = r0[4];
- if (s != 0.0) {
- r1[4] -= m1 * s;
- r2[4] -= m2 * s;
- r3[4] -= m3 * s;
- }
- s = r0[5];
- if (s != 0.0) {
- r1[5] -= m1 * s;
- r2[5] -= m2 * s;
- r3[5] -= m3 * s;
- }
- s = r0[6];
- if (s != 0.0) {
- r1[6] -= m1 * s;
- r2[6] -= m2 * s;
- r3[6] -= m3 * s;
- }
- s = r0[7];
- if (s != 0.0) {
- r1[7] -= m1 * s;
- r2[7] -= m2 * s;
- r3[7] -= m3 * s;
- }
-
- /* choose pivot - or die */
- if (fabs(r3[1]) > fabs(r2[1]))
- SWAP_ROWS(r3, r2);
- if (fabs(r2[1]) > fabs(r1[1]))
- SWAP_ROWS(r2, r1);
- if (0.0 == r1[1])
- return GL_FALSE;
-
- /* eliminate second variable */
- m2 = r2[1] / r1[1];
- m3 = r3[1] / r1[1];
- r2[2] -= m2 * r1[2];
- r3[2] -= m3 * r1[2];
- r2[3] -= m2 * r1[3];
- r3[3] -= m3 * r1[3];
- s = r1[4];
- if (0.0 != s) {
- r2[4] -= m2 * s;
- r3[4] -= m3 * s;
- }
- s = r1[5];
- if (0.0 != s) {
- r2[5] -= m2 * s;
- r3[5] -= m3 * s;
- }
- s = r1[6];
- if (0.0 != s) {
- r2[6] -= m2 * s;
- r3[6] -= m3 * s;
- }
- s = r1[7];
- if (0.0 != s) {
- r2[7] -= m2 * s;
- r3[7] -= m3 * s;
- }
-
- /* choose pivot - or die */
- if (fabs(r3[2]) > fabs(r2[2]))
- SWAP_ROWS(r3, r2);
- if (0.0 == r2[2])
- return GL_FALSE;
-
- /* eliminate third variable */
- m3 = r3[2] / r2[2];
- r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
- r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7];
-
- /* last check */
- if (0.0 == r3[3])
- return GL_FALSE;
-
- s = 1.0 / r3[3]; /* now back substitute row 3 */
- r3[4] *= s;
- r3[5] *= s;
- r3[6] *= s;
- r3[7] *= s;
-
- m2 = r2[3]; /* now back substitute row 2 */
- s = 1.0 / r2[2];
- r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
- r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
- m1 = r1[3];
- r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
- r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
- m0 = r0[3];
- r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
- r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
-
- m1 = r1[2]; /* now back substitute row 1 */
- s = 1.0 / r1[1];
- r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
- r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
- m0 = r0[2];
- r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
- r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
-
- m0 = r0[1]; /* now back substitute row 0 */
- s = 1.0 / r0[0];
- r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
- r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
-
- MAT(out, 0, 0) = r0[4];
- MAT(out, 0, 1) = r0[5], MAT(out, 0, 2) = r0[6];
- MAT(out, 0, 3) = r0[7], MAT(out, 1, 0) = r1[4];
- MAT(out, 1, 1) = r1[5], MAT(out, 1, 2) = r1[6];
- MAT(out, 1, 3) = r1[7], MAT(out, 2, 0) = r2[4];
- MAT(out, 2, 1) = r2[5], MAT(out, 2, 2) = r2[6];
- MAT(out, 2, 3) = r2[7], MAT(out, 3, 0) = r3[4];
- MAT(out, 3, 1) = r3[5], MAT(out, 3, 2) = r3[6];
- MAT(out, 3, 3) = r3[7];
-
- return GL_TRUE;
-
-#undef MAT
-#undef SWAP_ROWS
-}
-
-
-
-/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
-GLint GLAPIENTRY
-gluProject(GLdouble objx, GLdouble objy, GLdouble objz,
- const GLdouble model[16], const GLdouble proj[16],
- const GLint viewport[4],
- GLdouble * winx, GLdouble * winy, GLdouble * winz)
-{
- /* matrice de transformation */
- GLdouble in[4], out[4];
-
- /* initilise la matrice et le vecteur a transformer */
- in[0] = objx;
- in[1] = objy;
- in[2] = objz;
- in[3] = 1.0;
- transform_point(out, model, in);
- transform_point(in, proj, out);
-
- /* d'ou le resultat normalise entre -1 et 1 */
- if (in[3] == 0.0)
- return GL_FALSE;
-
- in[0] /= in[3];
- in[1] /= in[3];
- in[2] /= in[3];
-
- /* en coordonnees ecran */
- *winx = viewport[0] + (1 + in[0]) * viewport[2] / 2;
- *winy = viewport[1] + (1 + in[1]) * viewport[3] / 2;
- /* entre 0 et 1 suivant z */
- *winz = (1 + in[2]) / 2;
- return GL_TRUE;
-}
-
-
-
-/* transformation du point ecran (winx,winy,winz) en point objet */
-GLint GLAPIENTRY
-gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz,
- const GLdouble model[16], const GLdouble proj[16],
- const GLint viewport[4],
- GLdouble * objx, GLdouble * objy, GLdouble * objz)
-{
- /* matrice de transformation */
- GLdouble m[16], A[16];
- GLdouble in[4], out[4];
-
- /* transformation coordonnees normalisees entre -1 et 1 */
- in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
- in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
- in[2] = 2 * winz - 1.0;
- in[3] = 1.0;
-
- /* calcul transformation inverse */
- matmul(A, proj, model);
- invert_matrix(A, m);
-
- /* d'ou les coordonnees objets */
- transform_point(out, m, in);
- if (out[3] == 0.0)
- return GL_FALSE;
- *objx = out[0] / out[3];
- *objy = out[1] / out[3];
- *objz = out[2] / out[3];
- return GL_TRUE;
-}
-
-
-/*
- * New in GLU 1.3
- * This is like gluUnProject but also takes near and far DepthRange values.
- */
-#ifdef GLU_VERSION_1_3
-GLint GLAPIENTRY
-gluUnProject4(GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
- const GLdouble modelMatrix[16],
- const GLdouble projMatrix[16],
- const GLint viewport[4],
- GLclampd nearZ, GLclampd farZ,
- GLdouble * objx, GLdouble * objy, GLdouble * objz,
- GLdouble * objw)
-{
- /* matrice de transformation */
- GLdouble m[16], A[16];
- GLdouble in[4], out[4];
- GLdouble z = nearZ + winz * (farZ - nearZ);
-
- /* transformation coordonnees normalisees entre -1 et 1 */
- in[0] = (winx - viewport[0]) * 2 / viewport[2] - 1.0;
- in[1] = (winy - viewport[1]) * 2 / viewport[3] - 1.0;
- in[2] = 2.0 * z - 1.0;
- in[3] = clipw;
-
- /* calcul transformation inverse */
- matmul(A, projMatrix, modelMatrix);
- invert_matrix(A, m);
-
- /* d'ou les coordonnees objets */
- transform_point(out, m, in);
- if (out[3] == 0.0)
- return GL_FALSE;
- *objx = out[0] / out[3];
- *objy = out[1] / out[3];
- *objz = out[2] / out[3];
- *objw = out[3];
- return GL_TRUE;
-}
-#endif