diff options
Diffstat (limited to 'src/glsl/ast_to_hir.cpp')
-rw-r--r-- | src/glsl/ast_to_hir.cpp | 2751 |
1 files changed, 2751 insertions, 0 deletions
diff --git a/src/glsl/ast_to_hir.cpp b/src/glsl/ast_to_hir.cpp new file mode 100644 index 00000000000..762f802c2b7 --- /dev/null +++ b/src/glsl/ast_to_hir.cpp @@ -0,0 +1,2751 @@ +/* + * Copyright © 2010 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +/** + * \file ast_to_hir.c + * Convert abstract syntax to to high-level intermediate reprensentation (HIR). + * + * During the conversion to HIR, the majority of the symantic checking is + * preformed on the program. This includes: + * + * * Symbol table management + * * Type checking + * * Function binding + * + * The majority of this work could be done during parsing, and the parser could + * probably generate HIR directly. However, this results in frequent changes + * to the parser code. Since we do not assume that every system this complier + * is built on will have Flex and Bison installed, we have to store the code + * generated by these tools in our version control system. In other parts of + * the system we've seen problems where a parser was changed but the generated + * code was not committed, merge conflicts where created because two developers + * had slightly different versions of Bison installed, etc. + * + * I have also noticed that running Bison generated parsers in GDB is very + * irritating. When you get a segfault on '$$ = $1->foo', you can't very + * well 'print $1' in GDB. + * + * As a result, my preference is to put as little C code as possible in the + * parser (and lexer) sources. + */ + +#include "main/core.h" /* for struct gl_extensions */ +#include "glsl_symbol_table.h" +#include "glsl_parser_extras.h" +#include "ast.h" +#include "glsl_types.h" +#include "ir.h" + +void +_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) +{ + _mesa_glsl_initialize_variables(instructions, state); + _mesa_glsl_initialize_functions(instructions, state); + + state->current_function = NULL; + + /* Section 4.2 of the GLSL 1.20 specification states: + * "The built-in functions are scoped in a scope outside the global scope + * users declare global variables in. That is, a shader's global scope, + * available for user-defined functions and global variables, is nested + * inside the scope containing the built-in functions." + * + * Since built-in functions like ftransform() access built-in variables, + * it follows that those must be in the outer scope as well. + * + * We push scope here to create this nesting effect...but don't pop. + * This way, a shader's globals are still in the symbol table for use + * by the linker. + */ + state->symbols->push_scope(); + + foreach_list_typed (ast_node, ast, link, & state->translation_unit) + ast->hir(instructions, state); +} + + +/** + * If a conversion is available, convert one operand to a different type + * + * The \c from \c ir_rvalue is converted "in place". + * + * \param to Type that the operand it to be converted to + * \param from Operand that is being converted + * \param state GLSL compiler state + * + * \return + * If a conversion is possible (or unnecessary), \c true is returned. + * Otherwise \c false is returned. + */ +bool +apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + if (to->base_type == from->type->base_type) + return true; + + /* This conversion was added in GLSL 1.20. If the compilation mode is + * GLSL 1.10, the conversion is skipped. + */ + if (state->language_version < 120) + return false; + + /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec: + * + * "There are no implicit array or structure conversions. For + * example, an array of int cannot be implicitly converted to an + * array of float. There are no implicit conversions between + * signed and unsigned integers." + */ + /* FINISHME: The above comment is partially a lie. There is int/uint + * FINISHME: conversion for immediate constants. + */ + if (!to->is_float() || !from->type->is_numeric()) + return false; + + /* Convert to a floating point type with the same number of components + * as the original type - i.e. int to float, not int to vec4. + */ + to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements, + from->type->matrix_columns); + + switch (from->type->base_type) { + case GLSL_TYPE_INT: + from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL); + break; + case GLSL_TYPE_UINT: + from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL); + break; + case GLSL_TYPE_BOOL: + from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL); + break; + default: + assert(0); + } + + return true; +} + + +static const struct glsl_type * +arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, + bool multiply, + struct _mesa_glsl_parse_state *state, YYLTYPE *loc) +{ + const glsl_type *type_a = value_a->type; + const glsl_type *type_b = value_b->type; + + /* From GLSL 1.50 spec, page 56: + * + * "The arithmetic binary operators add (+), subtract (-), + * multiply (*), and divide (/) operate on integer and + * floating-point scalars, vectors, and matrices." + */ + if (!type_a->is_numeric() || !type_b->is_numeric()) { + _mesa_glsl_error(loc, state, + "Operands to arithmetic operators must be numeric"); + return glsl_type::error_type; + } + + + /* "If one operand is floating-point based and the other is + * not, then the conversions from Section 4.1.10 "Implicit + * Conversions" are applied to the non-floating-point-based operand." + */ + if (!apply_implicit_conversion(type_a, value_b, state) + && !apply_implicit_conversion(type_b, value_a, state)) { + _mesa_glsl_error(loc, state, + "Could not implicitly convert operands to " + "arithmetic operator"); + return glsl_type::error_type; + } + type_a = value_a->type; + type_b = value_b->type; + + /* "If the operands are integer types, they must both be signed or + * both be unsigned." + * + * From this rule and the preceeding conversion it can be inferred that + * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT. + * The is_numeric check above already filtered out the case where either + * type is not one of these, so now the base types need only be tested for + * equality. + */ + if (type_a->base_type != type_b->base_type) { + _mesa_glsl_error(loc, state, + "base type mismatch for arithmetic operator"); + return glsl_type::error_type; + } + + /* "All arithmetic binary operators result in the same fundamental type + * (signed integer, unsigned integer, or floating-point) as the + * operands they operate on, after operand type conversion. After + * conversion, the following cases are valid + * + * * The two operands are scalars. In this case the operation is + * applied, resulting in a scalar." + */ + if (type_a->is_scalar() && type_b->is_scalar()) + return type_a; + + /* "* One operand is a scalar, and the other is a vector or matrix. + * In this case, the scalar operation is applied independently to each + * component of the vector or matrix, resulting in the same size + * vector or matrix." + */ + if (type_a->is_scalar()) { + if (!type_b->is_scalar()) + return type_b; + } else if (type_b->is_scalar()) { + return type_a; + } + + /* All of the combinations of <scalar, scalar>, <vector, scalar>, + * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been + * handled. + */ + assert(!type_a->is_scalar()); + assert(!type_b->is_scalar()); + + /* "* The two operands are vectors of the same size. In this case, the + * operation is done component-wise resulting in the same size + * vector." + */ + if (type_a->is_vector() && type_b->is_vector()) { + if (type_a == type_b) { + return type_a; + } else { + _mesa_glsl_error(loc, state, + "vector size mismatch for arithmetic operator"); + return glsl_type::error_type; + } + } + + /* All of the combinations of <scalar, scalar>, <vector, scalar>, + * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and + * <vector, vector> have been handled. At least one of the operands must + * be matrix. Further, since there are no integer matrix types, the base + * type of both operands must be float. + */ + assert(type_a->is_matrix() || type_b->is_matrix()); + assert(type_a->base_type == GLSL_TYPE_FLOAT); + assert(type_b->base_type == GLSL_TYPE_FLOAT); + + /* "* The operator is add (+), subtract (-), or divide (/), and the + * operands are matrices with the same number of rows and the same + * number of columns. In this case, the operation is done component- + * wise resulting in the same size matrix." + * * The operator is multiply (*), where both operands are matrices or + * one operand is a vector and the other a matrix. A right vector + * operand is treated as a column vector and a left vector operand as a + * row vector. In all these cases, it is required that the number of + * columns of the left operand is equal to the number of rows of the + * right operand. Then, the multiply (*) operation does a linear + * algebraic multiply, yielding an object that has the same number of + * rows as the left operand and the same number of columns as the right + * operand. Section 5.10 "Vector and Matrix Operations" explains in + * more detail how vectors and matrices are operated on." + */ + if (! multiply) { + if (type_a == type_b) + return type_a; + } else { + if (type_a->is_matrix() && type_b->is_matrix()) { + /* Matrix multiply. The columns of A must match the rows of B. Given + * the other previously tested constraints, this means the vector type + * of a row from A must be the same as the vector type of a column from + * B. + */ + if (type_a->row_type() == type_b->column_type()) { + /* The resulting matrix has the number of columns of matrix B and + * the number of rows of matrix A. We get the row count of A by + * looking at the size of a vector that makes up a column. The + * transpose (size of a row) is done for B. + */ + const glsl_type *const type = + glsl_type::get_instance(type_a->base_type, + type_a->column_type()->vector_elements, + type_b->row_type()->vector_elements); + assert(type != glsl_type::error_type); + + return type; + } + } else if (type_a->is_matrix()) { + /* A is a matrix and B is a column vector. Columns of A must match + * rows of B. Given the other previously tested constraints, this + * means the vector type of a row from A must be the same as the + * vector the type of B. + */ + if (type_a->row_type() == type_b) { + /* The resulting vector has a number of elements equal to + * the number of rows of matrix A. */ + const glsl_type *const type = + glsl_type::get_instance(type_a->base_type, + type_a->column_type()->vector_elements, + 1); + assert(type != glsl_type::error_type); + + return type; + } + } else { + assert(type_b->is_matrix()); + + /* A is a row vector and B is a matrix. Columns of A must match rows + * of B. Given the other previously tested constraints, this means + * the type of A must be the same as the vector type of a column from + * B. + */ + if (type_a == type_b->column_type()) { + /* The resulting vector has a number of elements equal to + * the number of columns of matrix B. */ + const glsl_type *const type = + glsl_type::get_instance(type_a->base_type, + type_b->row_type()->vector_elements, + 1); + assert(type != glsl_type::error_type); + + return type; + } + } + + _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication"); + return glsl_type::error_type; + } + + + /* "All other cases are illegal." + */ + _mesa_glsl_error(loc, state, "type mismatch"); + return glsl_type::error_type; +} + + +static const struct glsl_type * +unary_arithmetic_result_type(const struct glsl_type *type, + struct _mesa_glsl_parse_state *state, YYLTYPE *loc) +{ + /* From GLSL 1.50 spec, page 57: + * + * "The arithmetic unary operators negate (-), post- and pre-increment + * and decrement (-- and ++) operate on integer or floating-point + * values (including vectors and matrices). All unary operators work + * component-wise on their operands. These result with the same type + * they operated on." + */ + if (!type->is_numeric()) { + _mesa_glsl_error(loc, state, + "Operands to arithmetic operators must be numeric"); + return glsl_type::error_type; + } + + return type; +} + + +static const struct glsl_type * +modulus_result_type(const struct glsl_type *type_a, + const struct glsl_type *type_b, + struct _mesa_glsl_parse_state *state, YYLTYPE *loc) +{ + /* From GLSL 1.50 spec, page 56: + * "The operator modulus (%) operates on signed or unsigned integers or + * integer vectors. The operand types must both be signed or both be + * unsigned." + */ + if (!type_a->is_integer() || !type_b->is_integer() + || (type_a->base_type != type_b->base_type)) { + _mesa_glsl_error(loc, state, "type mismatch"); + return glsl_type::error_type; + } + + /* "The operands cannot be vectors of differing size. If one operand is + * a scalar and the other vector, then the scalar is applied component- + * wise to the vector, resulting in the same type as the vector. If both + * are vectors of the same size, the result is computed component-wise." + */ + if (type_a->is_vector()) { + if (!type_b->is_vector() + || (type_a->vector_elements == type_b->vector_elements)) + return type_a; + } else + return type_b; + + /* "The operator modulus (%) is not defined for any other data types + * (non-integer types)." + */ + _mesa_glsl_error(loc, state, "type mismatch"); + return glsl_type::error_type; +} + + +static const struct glsl_type * +relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b, + struct _mesa_glsl_parse_state *state, YYLTYPE *loc) +{ + const glsl_type *type_a = value_a->type; + const glsl_type *type_b = value_b->type; + + /* From GLSL 1.50 spec, page 56: + * "The relational operators greater than (>), less than (<), greater + * than or equal (>=), and less than or equal (<=) operate only on + * scalar integer and scalar floating-point expressions." + */ + if (!type_a->is_numeric() + || !type_b->is_numeric() + || !type_a->is_scalar() + || !type_b->is_scalar()) { + _mesa_glsl_error(loc, state, + "Operands to relational operators must be scalar and " + "numeric"); + return glsl_type::error_type; + } + + /* "Either the operands' types must match, or the conversions from + * Section 4.1.10 "Implicit Conversions" will be applied to the integer + * operand, after which the types must match." + */ + if (!apply_implicit_conversion(type_a, value_b, state) + && !apply_implicit_conversion(type_b, value_a, state)) { + _mesa_glsl_error(loc, state, + "Could not implicitly convert operands to " + "relational operator"); + return glsl_type::error_type; + } + type_a = value_a->type; + type_b = value_b->type; + + if (type_a->base_type != type_b->base_type) { + _mesa_glsl_error(loc, state, "base type mismatch"); + return glsl_type::error_type; + } + + /* "The result is scalar Boolean." + */ + return glsl_type::bool_type; +} + + +/** + * Validates that a value can be assigned to a location with a specified type + * + * Validates that \c rhs can be assigned to some location. If the types are + * not an exact match but an automatic conversion is possible, \c rhs will be + * converted. + * + * \return + * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type. + * Otherwise the actual RHS to be assigned will be returned. This may be + * \c rhs, or it may be \c rhs after some type conversion. + * + * \note + * In addition to being used for assignments, this function is used to + * type-check return values. + */ +ir_rvalue * +validate_assignment(struct _mesa_glsl_parse_state *state, + const glsl_type *lhs_type, ir_rvalue *rhs) +{ + const glsl_type *rhs_type = rhs->type; + + /* If there is already some error in the RHS, just return it. Anything + * else will lead to an avalanche of error message back to the user. + */ + if (rhs_type->is_error()) + return rhs; + + /* If the types are identical, the assignment can trivially proceed. + */ + if (rhs_type == lhs_type) + return rhs; + + /* If the array element types are the same and the size of the LHS is zero, + * the assignment is okay. + * + * Note: Whole-array assignments are not permitted in GLSL 1.10, but this + * is handled by ir_dereference::is_lvalue. + */ + if (lhs_type->is_array() && rhs->type->is_array() + && (lhs_type->element_type() == rhs->type->element_type()) + && (lhs_type->array_size() == 0)) { + return rhs; + } + + /* Check for implicit conversion in GLSL 1.20 */ + if (apply_implicit_conversion(lhs_type, rhs, state)) { + rhs_type = rhs->type; + if (rhs_type == lhs_type) + return rhs; + } + + return NULL; +} + +ir_rvalue * +do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state, + ir_rvalue *lhs, ir_rvalue *rhs, + YYLTYPE lhs_loc) +{ + void *ctx = state; + bool error_emitted = (lhs->type->is_error() || rhs->type->is_error()); + + if (!error_emitted) { + if (!lhs->is_lvalue()) { + _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment"); + error_emitted = true; + } + } + + ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs); + if (new_rhs == NULL) { + _mesa_glsl_error(& lhs_loc, state, "type mismatch"); + } else { + rhs = new_rhs; + + /* If the LHS array was not declared with a size, it takes it size from + * the RHS. If the LHS is an l-value and a whole array, it must be a + * dereference of a variable. Any other case would require that the LHS + * is either not an l-value or not a whole array. + */ + if (lhs->type->array_size() == 0) { + ir_dereference *const d = lhs->as_dereference(); + + assert(d != NULL); + + ir_variable *const var = d->variable_referenced(); + + assert(var != NULL); + + if (var->max_array_access >= unsigned(rhs->type->array_size())) { + /* FINISHME: This should actually log the location of the RHS. */ + _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to " + "previous access", + var->max_array_access); + } + + var->type = glsl_type::get_array_instance(lhs->type->element_type(), + rhs->type->array_size()); + d->type = var->type; + } + } + + /* Most callers of do_assignment (assign, add_assign, pre_inc/dec, + * but not post_inc) need the converted assigned value as an rvalue + * to handle things like: + * + * i = j += 1; + * + * So we always just store the computed value being assigned to a + * temporary and return a deref of that temporary. If the rvalue + * ends up not being used, the temp will get copy-propagated out. + */ + ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp", + ir_var_temporary); + ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var); + instructions->push_tail(var); + instructions->push_tail(new(ctx) ir_assignment(deref_var, + rhs, + NULL)); + deref_var = new(ctx) ir_dereference_variable(var); + + if (!error_emitted) + instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL)); + + return new(ctx) ir_dereference_variable(var); +} + +static ir_rvalue * +get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue) +{ + void *ctx = talloc_parent(lvalue); + ir_variable *var; + + var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp", + ir_var_temporary); + instructions->push_tail(var); + var->mode = ir_var_auto; + + instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var), + lvalue, NULL)); + + /* Once we've created this temporary, mark it read only so it's no + * longer considered an lvalue. + */ + var->read_only = true; + + return new(ctx) ir_dereference_variable(var); +} + + +ir_rvalue * +ast_node::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + (void) instructions; + (void) state; + + return NULL; +} + + +ir_rvalue * +ast_expression::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + static const int operations[AST_NUM_OPERATORS] = { + -1, /* ast_assign doesn't convert to ir_expression. */ + -1, /* ast_plus doesn't convert to ir_expression. */ + ir_unop_neg, + ir_binop_add, + ir_binop_sub, + ir_binop_mul, + ir_binop_div, + ir_binop_mod, + ir_binop_lshift, + ir_binop_rshift, + ir_binop_less, + ir_binop_greater, + ir_binop_lequal, + ir_binop_gequal, + ir_binop_equal, + ir_binop_nequal, + ir_binop_bit_and, + ir_binop_bit_xor, + ir_binop_bit_or, + ir_unop_bit_not, + ir_binop_logic_and, + ir_binop_logic_xor, + ir_binop_logic_or, + ir_unop_logic_not, + + /* Note: The following block of expression types actually convert + * to multiple IR instructions. + */ + ir_binop_mul, /* ast_mul_assign */ + ir_binop_div, /* ast_div_assign */ + ir_binop_mod, /* ast_mod_assign */ + ir_binop_add, /* ast_add_assign */ + ir_binop_sub, /* ast_sub_assign */ + ir_binop_lshift, /* ast_ls_assign */ + ir_binop_rshift, /* ast_rs_assign */ + ir_binop_bit_and, /* ast_and_assign */ + ir_binop_bit_xor, /* ast_xor_assign */ + ir_binop_bit_or, /* ast_or_assign */ + + -1, /* ast_conditional doesn't convert to ir_expression. */ + ir_binop_add, /* ast_pre_inc. */ + ir_binop_sub, /* ast_pre_dec. */ + ir_binop_add, /* ast_post_inc. */ + ir_binop_sub, /* ast_post_dec. */ + -1, /* ast_field_selection doesn't conv to ir_expression. */ + -1, /* ast_array_index doesn't convert to ir_expression. */ + -1, /* ast_function_call doesn't conv to ir_expression. */ + -1, /* ast_identifier doesn't convert to ir_expression. */ + -1, /* ast_int_constant doesn't convert to ir_expression. */ + -1, /* ast_uint_constant doesn't conv to ir_expression. */ + -1, /* ast_float_constant doesn't conv to ir_expression. */ + -1, /* ast_bool_constant doesn't conv to ir_expression. */ + -1, /* ast_sequence doesn't convert to ir_expression. */ + }; + ir_rvalue *result = NULL; + ir_rvalue *op[3]; + const struct glsl_type *type = glsl_type::error_type; + bool error_emitted = false; + YYLTYPE loc; + + loc = this->get_location(); + + switch (this->oper) { + case ast_assign: { + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + result = do_assignment(instructions, state, op[0], op[1], + this->subexpressions[0]->get_location()); + error_emitted = result->type->is_error(); + type = result->type; + break; + } + + case ast_plus: + op[0] = this->subexpressions[0]->hir(instructions, state); + + type = unary_arithmetic_result_type(op[0]->type, state, & loc); + + error_emitted = type->is_error(); + + result = op[0]; + break; + + case ast_neg: + op[0] = this->subexpressions[0]->hir(instructions, state); + + type = unary_arithmetic_result_type(op[0]->type, state, & loc); + + error_emitted = type->is_error(); + + result = new(ctx) ir_expression(operations[this->oper], type, + op[0], NULL); + break; + + case ast_add: + case ast_sub: + case ast_mul: + case ast_div: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + type = arithmetic_result_type(op[0], op[1], + (this->oper == ast_mul), + state, & loc); + error_emitted = type->is_error(); + + result = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + break; + + case ast_mod: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + type = modulus_result_type(op[0]->type, op[1]->type, state, & loc); + + assert(operations[this->oper] == ir_binop_mod); + + result = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + error_emitted = type->is_error(); + break; + + case ast_lshift: + case ast_rshift: + _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators"); + error_emitted = true; + break; + + case ast_less: + case ast_greater: + case ast_lequal: + case ast_gequal: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + type = relational_result_type(op[0], op[1], state, & loc); + + /* The relational operators must either generate an error or result + * in a scalar boolean. See page 57 of the GLSL 1.50 spec. + */ + assert(type->is_error() + || ((type->base_type == GLSL_TYPE_BOOL) + && type->is_scalar())); + + result = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + error_emitted = type->is_error(); + break; + + case ast_nequal: + case ast_equal: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec: + * + * "The equality operators equal (==), and not equal (!=) + * operate on all types. They result in a scalar Boolean. If + * the operand types do not match, then there must be a + * conversion from Section 4.1.10 "Implicit Conversions" + * applied to one operand that can make them match, in which + * case this conversion is done." + */ + if ((!apply_implicit_conversion(op[0]->type, op[1], state) + && !apply_implicit_conversion(op[1]->type, op[0], state)) + || (op[0]->type != op[1]->type)) { + _mesa_glsl_error(& loc, state, "operands of `%s' must have the same " + "type", (this->oper == ast_equal) ? "==" : "!="); + error_emitted = true; + } else if ((state->language_version <= 110) + && (op[0]->type->is_array() || op[1]->type->is_array())) { + _mesa_glsl_error(& loc, state, "array comparisons forbidden in " + "GLSL 1.10"); + error_emitted = true; + } + + result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, + op[0], op[1]); + type = glsl_type::bool_type; + + assert(result->type == glsl_type::bool_type); + break; + + case ast_bit_and: + case ast_bit_xor: + case ast_bit_or: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + if (state->language_version < 130) { + _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30"); + error_emitted = true; + } + + if (!op[0]->type->is_integer()) { + _mesa_glsl_error(&loc, state, "LHS of `%s' must be an integer", + operator_string(this->oper)); + error_emitted = true; + } + + if (!op[1]->type->is_integer()) { + _mesa_glsl_error(&loc, state, "RHS of `%s' must be an integer", + operator_string(this->oper)); + error_emitted = true; + } + + if (op[0]->type->base_type != op[1]->type->base_type) { + _mesa_glsl_error(&loc, state, "operands of `%s' must have the same " + "base type", operator_string(this->oper)); + error_emitted = true; + } + + if (op[0]->type->is_vector() && op[1]->type->is_vector() + && op[0]->type->vector_elements != op[1]->type->vector_elements) { + _mesa_glsl_error(&loc, state, "operands of `%s' cannot be vectors of " + "different sizes", operator_string(this->oper)); + error_emitted = true; + } + + type = op[0]->type->is_scalar() ? op[1]->type : op[0]->type; + result = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); + break; + + case ast_bit_not: + op[0] = this->subexpressions[0]->hir(instructions, state); + + if (state->language_version < 130) { + _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30"); + error_emitted = true; + } + + if (!op[0]->type->is_integer()) { + _mesa_glsl_error(&loc, state, "operand of `~' must be an integer"); + error_emitted = true; + } + + type = op[0]->type; + result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL); + break; + + case ast_logic_and: { + op[0] = this->subexpressions[0]->hir(instructions, state); + + if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[0]->get_location(); + + _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + + ir_constant *op0_const = op[0]->constant_expression_value(); + if (op0_const) { + if (op0_const->value.b[0]) { + op[1] = this->subexpressions[1]->hir(instructions, state); + + if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[1]->get_location(); + + _mesa_glsl_error(& loc, state, + "RHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + result = op[1]; + } else { + result = op0_const; + } + type = glsl_type::bool_type; + } else { + ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, + "and_tmp", + ir_var_temporary); + instructions->push_tail(tmp); + + ir_if *const stmt = new(ctx) ir_if(op[0]); + instructions->push_tail(stmt); + + op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state); + + if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[1]->get_location(); + + _mesa_glsl_error(& loc, state, + "RHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + + ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); + ir_assignment *const then_assign = + new(ctx) ir_assignment(then_deref, op[1], NULL); + stmt->then_instructions.push_tail(then_assign); + + ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); + ir_assignment *const else_assign = + new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL); + stmt->else_instructions.push_tail(else_assign); + + result = new(ctx) ir_dereference_variable(tmp); + type = tmp->type; + } + break; + } + + case ast_logic_or: { + op[0] = this->subexpressions[0]->hir(instructions, state); + + if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[0]->get_location(); + + _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + + ir_constant *op0_const = op[0]->constant_expression_value(); + if (op0_const) { + if (op0_const->value.b[0]) { + result = op0_const; + } else { + op[1] = this->subexpressions[1]->hir(instructions, state); + + if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[1]->get_location(); + + _mesa_glsl_error(& loc, state, + "RHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + result = op[1]; + } + type = glsl_type::bool_type; + } else { + ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type, + "or_tmp", + ir_var_temporary); + instructions->push_tail(tmp); + + ir_if *const stmt = new(ctx) ir_if(op[0]); + instructions->push_tail(stmt); + + op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state); + + if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[1]->get_location(); + + _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean", + operator_string(this->oper)); + error_emitted = true; + } + + ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp); + ir_assignment *const then_assign = + new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL); + stmt->then_instructions.push_tail(then_assign); + + ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp); + ir_assignment *const else_assign = + new(ctx) ir_assignment(else_deref, op[1], NULL); + stmt->else_instructions.push_tail(else_assign); + + result = new(ctx) ir_dereference_variable(tmp); + type = tmp->type; + } + break; + } + + case ast_logic_xor: + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + + result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, + op[0], op[1]); + type = glsl_type::bool_type; + break; + + case ast_logic_not: + op[0] = this->subexpressions[0]->hir(instructions, state); + + if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[0]->get_location(); + + _mesa_glsl_error(& loc, state, + "operand of `!' must be scalar boolean"); + error_emitted = true; + } + + result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type, + op[0], NULL); + type = glsl_type::bool_type; + break; + + case ast_mul_assign: + case ast_div_assign: + case ast_add_assign: + case ast_sub_assign: { + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + type = arithmetic_result_type(op[0], op[1], + (this->oper == ast_mul_assign), + state, & loc); + + ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + + result = do_assignment(instructions, state, + op[0]->clone(ctx, NULL), temp_rhs, + this->subexpressions[0]->get_location()); + type = result->type; + error_emitted = (op[0]->type->is_error()); + + /* GLSL 1.10 does not allow array assignment. However, we don't have to + * explicitly test for this because none of the binary expression + * operators allow array operands either. + */ + + break; + } + + case ast_mod_assign: { + op[0] = this->subexpressions[0]->hir(instructions, state); + op[1] = this->subexpressions[1]->hir(instructions, state); + + type = modulus_result_type(op[0]->type, op[1]->type, state, & loc); + + assert(operations[this->oper] == ir_binop_mod); + + ir_rvalue *temp_rhs; + temp_rhs = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + + result = do_assignment(instructions, state, + op[0]->clone(ctx, NULL), temp_rhs, + this->subexpressions[0]->get_location()); + type = result->type; + error_emitted = type->is_error(); + break; + } + + case ast_ls_assign: + case ast_rs_assign: + _mesa_glsl_error(& loc, state, + "FINISHME: implement bit-shift assignment operators"); + error_emitted = true; + break; + + case ast_and_assign: + case ast_xor_assign: + case ast_or_assign: + _mesa_glsl_error(& loc, state, + "FINISHME: implement logic assignment operators"); + error_emitted = true; + break; + + case ast_conditional: { + op[0] = this->subexpressions[0]->hir(instructions, state); + + /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: + * + * "The ternary selection operator (?:). It operates on three + * expressions (exp1 ? exp2 : exp3). This operator evaluates the + * first expression, which must result in a scalar Boolean." + */ + if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) { + YYLTYPE loc = this->subexpressions[0]->get_location(); + + _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean"); + error_emitted = true; + } + + /* The :? operator is implemented by generating an anonymous temporary + * followed by an if-statement. The last instruction in each branch of + * the if-statement assigns a value to the anonymous temporary. This + * temporary is the r-value of the expression. + */ + exec_list then_instructions; + exec_list else_instructions; + + op[1] = this->subexpressions[1]->hir(&then_instructions, state); + op[2] = this->subexpressions[2]->hir(&else_instructions, state); + + /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec: + * + * "The second and third expressions can be any type, as + * long their types match, or there is a conversion in + * Section 4.1.10 "Implicit Conversions" that can be applied + * to one of the expressions to make their types match. This + * resulting matching type is the type of the entire + * expression." + */ + if ((!apply_implicit_conversion(op[1]->type, op[2], state) + && !apply_implicit_conversion(op[2]->type, op[1], state)) + || (op[1]->type != op[2]->type)) { + YYLTYPE loc = this->subexpressions[1]->get_location(); + + _mesa_glsl_error(& loc, state, "Second and third operands of ?: " + "operator must have matching types."); + error_emitted = true; + type = glsl_type::error_type; + } else { + type = op[1]->type; + } + + ir_constant *cond_val = op[0]->constant_expression_value(); + ir_constant *then_val = op[1]->constant_expression_value(); + ir_constant *else_val = op[2]->constant_expression_value(); + + if (then_instructions.is_empty() + && else_instructions.is_empty() + && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) { + result = (cond_val->value.b[0]) ? then_val : else_val; + } else { + ir_variable *const tmp = + new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary); + instructions->push_tail(tmp); + + ir_if *const stmt = new(ctx) ir_if(op[0]); + instructions->push_tail(stmt); + + then_instructions.move_nodes_to(& stmt->then_instructions); + ir_dereference *const then_deref = + new(ctx) ir_dereference_variable(tmp); + ir_assignment *const then_assign = + new(ctx) ir_assignment(then_deref, op[1], NULL); + stmt->then_instructions.push_tail(then_assign); + + else_instructions.move_nodes_to(& stmt->else_instructions); + ir_dereference *const else_deref = + new(ctx) ir_dereference_variable(tmp); + ir_assignment *const else_assign = + new(ctx) ir_assignment(else_deref, op[2], NULL); + stmt->else_instructions.push_tail(else_assign); + + result = new(ctx) ir_dereference_variable(tmp); + } + break; + } + + case ast_pre_inc: + case ast_pre_dec: { + op[0] = this->subexpressions[0]->hir(instructions, state); + if (op[0]->type->base_type == GLSL_TYPE_FLOAT) + op[1] = new(ctx) ir_constant(1.0f); + else + op[1] = new(ctx) ir_constant(1); + + type = arithmetic_result_type(op[0], op[1], false, state, & loc); + + ir_rvalue *temp_rhs; + temp_rhs = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + + result = do_assignment(instructions, state, + op[0]->clone(ctx, NULL), temp_rhs, + this->subexpressions[0]->get_location()); + type = result->type; + error_emitted = op[0]->type->is_error(); + break; + } + + case ast_post_inc: + case ast_post_dec: { + op[0] = this->subexpressions[0]->hir(instructions, state); + if (op[0]->type->base_type == GLSL_TYPE_FLOAT) + op[1] = new(ctx) ir_constant(1.0f); + else + op[1] = new(ctx) ir_constant(1); + + error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); + + type = arithmetic_result_type(op[0], op[1], false, state, & loc); + + ir_rvalue *temp_rhs; + temp_rhs = new(ctx) ir_expression(operations[this->oper], type, + op[0], op[1]); + + /* Get a temporary of a copy of the lvalue before it's modified. + * This may get thrown away later. + */ + result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL)); + + (void)do_assignment(instructions, state, + op[0]->clone(ctx, NULL), temp_rhs, + this->subexpressions[0]->get_location()); + + type = result->type; + error_emitted = op[0]->type->is_error(); + break; + } + + case ast_field_selection: + result = _mesa_ast_field_selection_to_hir(this, instructions, state); + type = result->type; + break; + + case ast_array_index: { + YYLTYPE index_loc = subexpressions[1]->get_location(); + + op[0] = subexpressions[0]->hir(instructions, state); + op[1] = subexpressions[1]->hir(instructions, state); + + error_emitted = op[0]->type->is_error() || op[1]->type->is_error(); + + ir_rvalue *const array = op[0]; + + result = new(ctx) ir_dereference_array(op[0], op[1]); + + /* Do not use op[0] after this point. Use array. + */ + op[0] = NULL; + + + if (error_emitted) + break; + + if (!array->type->is_array() + && !array->type->is_matrix() + && !array->type->is_vector()) { + _mesa_glsl_error(& index_loc, state, + "cannot dereference non-array / non-matrix / " + "non-vector"); + error_emitted = true; + } + + if (!op[1]->type->is_integer()) { + _mesa_glsl_error(& index_loc, state, + "array index must be integer type"); + error_emitted = true; + } else if (!op[1]->type->is_scalar()) { + _mesa_glsl_error(& index_loc, state, + "array index must be scalar"); + error_emitted = true; + } + + /* If the array index is a constant expression and the array has a + * declared size, ensure that the access is in-bounds. If the array + * index is not a constant expression, ensure that the array has a + * declared size. + */ + ir_constant *const const_index = op[1]->constant_expression_value(); + if (const_index != NULL) { + const int idx = const_index->value.i[0]; + const char *type_name; + unsigned bound = 0; + + if (array->type->is_matrix()) { + type_name = "matrix"; + } else if (array->type->is_vector()) { + type_name = "vector"; + } else { + type_name = "array"; + } + + /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec: + * + * "It is illegal to declare an array with a size, and then + * later (in the same shader) index the same array with an + * integral constant expression greater than or equal to the + * declared size. It is also illegal to index an array with a + * negative constant expression." + */ + if (array->type->is_matrix()) { + if (array->type->row_type()->vector_elements <= idx) { + bound = array->type->row_type()->vector_elements; + } + } else if (array->type->is_vector()) { + if (array->type->vector_elements <= idx) { + bound = array->type->vector_elements; + } + } else { + if ((array->type->array_size() > 0) + && (array->type->array_size() <= idx)) { + bound = array->type->array_size(); + } + } + + if (bound > 0) { + _mesa_glsl_error(& loc, state, "%s index must be < %u", + type_name, bound); + error_emitted = true; + } else if (idx < 0) { + _mesa_glsl_error(& loc, state, "%s index must be >= 0", + type_name); + error_emitted = true; + } + + if (array->type->is_array()) { + /* If the array is a variable dereference, it dereferences the + * whole array, by definition. Use this to get the variable. + * + * FINISHME: Should some methods for getting / setting / testing + * FINISHME: array access limits be added to ir_dereference? + */ + ir_variable *const v = array->whole_variable_referenced(); + if ((v != NULL) && (unsigned(idx) > v->max_array_access)) + v->max_array_access = idx; + } + } else if (array->type->array_size() == 0) { + _mesa_glsl_error(&loc, state, "unsized array index must be constant"); + } else { + if (array->type->is_array()) { + /* whole_variable_referenced can return NULL if the array is a + * member of a structure. In this case it is safe to not update + * the max_array_access field because it is never used for fields + * of structures. + */ + ir_variable *v = array->whole_variable_referenced(); + if (v != NULL) + v->max_array_access = array->type->array_size(); + } + } + + if (error_emitted) + result->type = glsl_type::error_type; + + type = result->type; + break; + } + + case ast_function_call: + /* Should *NEVER* get here. ast_function_call should always be handled + * by ast_function_expression::hir. + */ + assert(0); + break; + + case ast_identifier: { + /* ast_identifier can appear several places in a full abstract syntax + * tree. This particular use must be at location specified in the grammar + * as 'variable_identifier'. + */ + ir_variable *var = + state->symbols->get_variable(this->primary_expression.identifier); + + result = new(ctx) ir_dereference_variable(var); + + if (var != NULL) { + type = result->type; + } else { + _mesa_glsl_error(& loc, state, "`%s' undeclared", + this->primary_expression.identifier); + + error_emitted = true; + } + break; + } + + case ast_int_constant: + type = glsl_type::int_type; + result = new(ctx) ir_constant(this->primary_expression.int_constant); + break; + + case ast_uint_constant: + type = glsl_type::uint_type; + result = new(ctx) ir_constant(this->primary_expression.uint_constant); + break; + + case ast_float_constant: + type = glsl_type::float_type; + result = new(ctx) ir_constant(this->primary_expression.float_constant); + break; + + case ast_bool_constant: + type = glsl_type::bool_type; + result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant)); + break; + + case ast_sequence: { + /* It should not be possible to generate a sequence in the AST without + * any expressions in it. + */ + assert(!this->expressions.is_empty()); + + /* The r-value of a sequence is the last expression in the sequence. If + * the other expressions in the sequence do not have side-effects (and + * therefore add instructions to the instruction list), they get dropped + * on the floor. + */ + foreach_list_typed (ast_node, ast, link, &this->expressions) + result = ast->hir(instructions, state); + + type = result->type; + + /* Any errors should have already been emitted in the loop above. + */ + error_emitted = true; + break; + } + } + + if (type->is_error() && !error_emitted) + _mesa_glsl_error(& loc, state, "type mismatch"); + + return result; +} + + +ir_rvalue * +ast_expression_statement::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + /* It is possible to have expression statements that don't have an + * expression. This is the solitary semicolon: + * + * for (i = 0; i < 5; i++) + * ; + * + * In this case the expression will be NULL. Test for NULL and don't do + * anything in that case. + */ + if (expression != NULL) + expression->hir(instructions, state); + + /* Statements do not have r-values. + */ + return NULL; +} + + +ir_rvalue * +ast_compound_statement::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + if (new_scope) + state->symbols->push_scope(); + + foreach_list_typed (ast_node, ast, link, &this->statements) + ast->hir(instructions, state); + + if (new_scope) + state->symbols->pop_scope(); + + /* Compound statements do not have r-values. + */ + return NULL; +} + + +static const glsl_type * +process_array_type(const glsl_type *base, ast_node *array_size, + struct _mesa_glsl_parse_state *state) +{ + unsigned length = 0; + + /* FINISHME: Reject delcarations of multidimensional arrays. */ + + if (array_size != NULL) { + exec_list dummy_instructions; + ir_rvalue *const ir = array_size->hir(& dummy_instructions, state); + YYLTYPE loc = array_size->get_location(); + + /* FINISHME: Verify that the grammar forbids side-effects in array + * FINISHME: sizes. i.e., 'vec4 [x = 12] data' + */ + assert(dummy_instructions.is_empty()); + + if (ir != NULL) { + if (!ir->type->is_integer()) { + _mesa_glsl_error(& loc, state, "array size must be integer type"); + } else if (!ir->type->is_scalar()) { + _mesa_glsl_error(& loc, state, "array size must be scalar type"); + } else { + ir_constant *const size = ir->constant_expression_value(); + + if (size == NULL) { + _mesa_glsl_error(& loc, state, "array size must be a " + "constant valued expression"); + } else if (size->value.i[0] <= 0) { + _mesa_glsl_error(& loc, state, "array size must be > 0"); + } else { + assert(size->type == ir->type); + length = size->value.u[0]; + } + } + } + } + + return glsl_type::get_array_instance(base, length); +} + + +const glsl_type * +ast_type_specifier::glsl_type(const char **name, + struct _mesa_glsl_parse_state *state) const +{ + const struct glsl_type *type; + + if ((this->type_specifier == ast_struct) && (this->type_name == NULL)) { + /* FINISHME: Handle annonymous structures. */ + type = NULL; + } else { + type = state->symbols->get_type(this->type_name); + *name = this->type_name; + + if (this->is_array) { + type = process_array_type(type, this->array_size, state); + } + } + + return type; +} + + +static void +apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual, + ir_variable *var, + struct _mesa_glsl_parse_state *state, + YYLTYPE *loc) +{ + if (qual->invariant) + var->invariant = 1; + + /* FINISHME: Mark 'in' variables at global scope as read-only. */ + if (qual->constant || qual->attribute || qual->uniform + || (qual->varying && (state->target == fragment_shader))) + var->read_only = 1; + + if (qual->centroid) + var->centroid = 1; + + if (qual->attribute && state->target != vertex_shader) { + var->type = glsl_type::error_type; + _mesa_glsl_error(loc, state, + "`attribute' variables may not be declared in the " + "%s shader", + _mesa_glsl_shader_target_name(state->target)); + } + + /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec: + * + * "The varying qualifier can be used only with the data types + * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of + * these." + */ + if (qual->varying) { + const glsl_type *non_array_type; + + if (var->type && var->type->is_array()) + non_array_type = var->type->fields.array; + else + non_array_type = var->type; + + if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) { + var->type = glsl_type::error_type; + _mesa_glsl_error(loc, state, + "varying variables must be of base type float"); + } + } + + /* If there is no qualifier that changes the mode of the variable, leave + * the setting alone. + */ + if (qual->in && qual->out) + var->mode = ir_var_inout; + else if (qual->attribute || qual->in + || (qual->varying && (state->target == fragment_shader))) + var->mode = ir_var_in; + else if (qual->out || (qual->varying && (state->target == vertex_shader))) + var->mode = ir_var_out; + else if (qual->uniform) + var->mode = ir_var_uniform; + + if (qual->flat) + var->interpolation = ir_var_flat; + else if (qual->noperspective) + var->interpolation = ir_var_noperspective; + else + var->interpolation = ir_var_smooth; + + var->pixel_center_integer = qual->pixel_center_integer; + var->origin_upper_left = qual->origin_upper_left; + if ((qual->origin_upper_left || qual->pixel_center_integer) + && (strcmp(var->name, "gl_FragCoord") != 0)) { + const char *const qual_string = (qual->origin_upper_left) + ? "origin_upper_left" : "pixel_center_integer"; + + _mesa_glsl_error(loc, state, + "layout qualifier `%s' can only be applied to " + "fragment shader input `gl_FragCoord'", + qual_string); + } + + if (var->type->is_array() && (state->language_version >= 120)) { + var->array_lvalue = true; + } +} + + +ir_rvalue * +ast_declarator_list::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + const struct glsl_type *decl_type; + const char *type_name = NULL; + ir_rvalue *result = NULL; + YYLTYPE loc = this->get_location(); + + /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec: + * + * "To ensure that a particular output variable is invariant, it is + * necessary to use the invariant qualifier. It can either be used to + * qualify a previously declared variable as being invariant + * + * invariant gl_Position; // make existing gl_Position be invariant" + * + * In these cases the parser will set the 'invariant' flag in the declarator + * list, and the type will be NULL. + */ + if (this->invariant) { + assert(this->type == NULL); + + if (state->current_function != NULL) { + _mesa_glsl_error(& loc, state, + "All uses of `invariant' keyword must be at global " + "scope\n"); + } + + foreach_list_typed (ast_declaration, decl, link, &this->declarations) { + assert(!decl->is_array); + assert(decl->array_size == NULL); + assert(decl->initializer == NULL); + + ir_variable *const earlier = + state->symbols->get_variable(decl->identifier); + if (earlier == NULL) { + _mesa_glsl_error(& loc, state, + "Undeclared variable `%s' cannot be marked " + "invariant\n", decl->identifier); + } else if ((state->target == vertex_shader) + && (earlier->mode != ir_var_out)) { + _mesa_glsl_error(& loc, state, + "`%s' cannot be marked invariant, vertex shader " + "outputs only\n", decl->identifier); + } else if ((state->target == fragment_shader) + && (earlier->mode != ir_var_in)) { + _mesa_glsl_error(& loc, state, + "`%s' cannot be marked invariant, fragment shader " + "inputs only\n", decl->identifier); + } else { + earlier->invariant = true; + } + } + + /* Invariant redeclarations do not have r-values. + */ + return NULL; + } + + assert(this->type != NULL); + assert(!this->invariant); + + /* The type specifier may contain a structure definition. Process that + * before any of the variable declarations. + */ + (void) this->type->specifier->hir(instructions, state); + + decl_type = this->type->specifier->glsl_type(& type_name, state); + if (this->declarations.is_empty()) { + /* The only valid case where the declaration list can be empty is when + * the declaration is setting the default precision of a built-in type + * (e.g., 'precision highp vec4;'). + */ + + if (decl_type != NULL) { + } else { + _mesa_glsl_error(& loc, state, "incomplete declaration"); + } + } + + foreach_list_typed (ast_declaration, decl, link, &this->declarations) { + const struct glsl_type *var_type; + ir_variable *var; + + /* FINISHME: Emit a warning if a variable declaration shadows a + * FINISHME: declaration at a higher scope. + */ + + if ((decl_type == NULL) || decl_type->is_void()) { + if (type_name != NULL) { + _mesa_glsl_error(& loc, state, + "invalid type `%s' in declaration of `%s'", + type_name, decl->identifier); + } else { + _mesa_glsl_error(& loc, state, + "invalid type in declaration of `%s'", + decl->identifier); + } + continue; + } + + if (decl->is_array) { + var_type = process_array_type(decl_type, decl->array_size, state); + } else { + var_type = decl_type; + } + + var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto); + + /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification; + * + * "Global variables can only use the qualifiers const, + * attribute, uni form, or varying. Only one may be + * specified. + * + * Local variables can only use the qualifier const." + * + * This is relaxed in GLSL 1.30. + */ + if (state->language_version < 120) { + if (this->type->qualifier.out) { + _mesa_glsl_error(& loc, state, + "`out' qualifier in declaration of `%s' " + "only valid for function parameters in GLSL 1.10.", + decl->identifier); + } + if (this->type->qualifier.in) { + _mesa_glsl_error(& loc, state, + "`in' qualifier in declaration of `%s' " + "only valid for function parameters in GLSL 1.10.", + decl->identifier); + } + /* FINISHME: Test for other invalid qualifiers. */ + } + + apply_type_qualifier_to_variable(& this->type->qualifier, var, state, + & loc); + + if (this->type->qualifier.invariant) { + if ((state->target == vertex_shader) && !(var->mode == ir_var_out || + var->mode == ir_var_inout)) { + /* FINISHME: Note that this doesn't work for invariant on + * a function signature outval + */ + _mesa_glsl_error(& loc, state, + "`%s' cannot be marked invariant, vertex shader " + "outputs only\n", var->name); + } else if ((state->target == fragment_shader) && + !(var->mode == ir_var_in || var->mode == ir_var_inout)) { + /* FINISHME: Note that this doesn't work for invariant on + * a function signature inval + */ + _mesa_glsl_error(& loc, state, + "`%s' cannot be marked invariant, fragment shader " + "inputs only\n", var->name); + } + } + + if (state->current_function != NULL) { + const char *mode = NULL; + const char *extra = ""; + + /* There is no need to check for 'inout' here because the parser will + * only allow that in function parameter lists. + */ + if (this->type->qualifier.attribute) { + mode = "attribute"; + } else if (this->type->qualifier.uniform) { + mode = "uniform"; + } else if (this->type->qualifier.varying) { + mode = "varying"; + } else if (this->type->qualifier.in) { + mode = "in"; + extra = " or in function parameter list"; + } else if (this->type->qualifier.out) { + mode = "out"; + extra = " or in function parameter list"; + } + + if (mode) { + _mesa_glsl_error(& loc, state, + "%s variable `%s' must be declared at " + "global scope%s", + mode, var->name, extra); + } + } else if (var->mode == ir_var_in) { + if (state->target == vertex_shader) { + bool error_emitted = false; + + /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: + * + * "Vertex shader inputs can only be float, floating-point + * vectors, matrices, signed and unsigned integers and integer + * vectors. Vertex shader inputs can also form arrays of these + * types, but not structures." + * + * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec: + * + * "Vertex shader inputs can only be float, floating-point + * vectors, matrices, signed and unsigned integers and integer + * vectors. They cannot be arrays or structures." + * + * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec: + * + * "The attribute qualifier can be used only with float, + * floating-point vectors, and matrices. Attribute variables + * cannot be declared as arrays or structures." + */ + const glsl_type *check_type = var->type->is_array() + ? var->type->fields.array : var->type; + + switch (check_type->base_type) { + case GLSL_TYPE_FLOAT: + break; + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + if (state->language_version > 120) + break; + /* FALLTHROUGH */ + default: + _mesa_glsl_error(& loc, state, + "vertex shader input / attribute cannot have " + "type %s`%s'", + var->type->is_array() ? "array of " : "", + check_type->name); + error_emitted = true; + } + + if (!error_emitted && (state->language_version <= 130) + && var->type->is_array()) { + _mesa_glsl_error(& loc, state, + "vertex shader input / attribute cannot have " + "array type"); + error_emitted = true; + } + } + } + + /* Process the initializer and add its instructions to a temporary + * list. This list will be added to the instruction stream (below) after + * the declaration is added. This is done because in some cases (such as + * redeclarations) the declaration may not actually be added to the + * instruction stream. + */ + exec_list initializer_instructions; + if (decl->initializer != NULL) { + YYLTYPE initializer_loc = decl->initializer->get_location(); + + /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec: + * + * "All uniform variables are read-only and are initialized either + * directly by an application via API commands, or indirectly by + * OpenGL." + */ + if ((state->language_version <= 110) + && (var->mode == ir_var_uniform)) { + _mesa_glsl_error(& initializer_loc, state, + "cannot initialize uniforms in GLSL 1.10"); + } + + if (var->type->is_sampler()) { + _mesa_glsl_error(& initializer_loc, state, + "cannot initialize samplers"); + } + + if ((var->mode == ir_var_in) && (state->current_function == NULL)) { + _mesa_glsl_error(& initializer_loc, state, + "cannot initialize %s shader input / %s", + _mesa_glsl_shader_target_name(state->target), + (state->target == vertex_shader) + ? "attribute" : "varying"); + } + + ir_dereference *const lhs = new(ctx) ir_dereference_variable(var); + ir_rvalue *rhs = decl->initializer->hir(&initializer_instructions, + state); + + /* Calculate the constant value if this is a const or uniform + * declaration. + */ + if (this->type->qualifier.constant || this->type->qualifier.uniform) { + ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs); + if (new_rhs != NULL) { + rhs = new_rhs; + + ir_constant *constant_value = rhs->constant_expression_value(); + if (!constant_value) { + _mesa_glsl_error(& initializer_loc, state, + "initializer of %s variable `%s' must be a " + "constant expression", + (this->type->qualifier.constant) + ? "const" : "uniform", + decl->identifier); + if (var->type->is_numeric()) { + /* Reduce cascading errors. */ + var->constant_value = ir_constant::zero(ctx, var->type); + } + } else { + rhs = constant_value; + var->constant_value = constant_value; + } + } else { + _mesa_glsl_error(&initializer_loc, state, + "initializer of type %s cannot be assigned to " + "variable of type %s", + rhs->type->name, var->type->name); + if (var->type->is_numeric()) { + /* Reduce cascading errors. */ + var->constant_value = ir_constant::zero(ctx, var->type); + } + } + } + + if (rhs && !rhs->type->is_error()) { + bool temp = var->read_only; + if (this->type->qualifier.constant) + var->read_only = false; + + /* Never emit code to initialize a uniform. + */ + if (!this->type->qualifier.uniform) + result = do_assignment(&initializer_instructions, state, + lhs, rhs, + this->get_location()); + var->read_only = temp; + } + } + + /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec: + * + * "It is an error to write to a const variable outside of + * its declaration, so they must be initialized when + * declared." + */ + if (this->type->qualifier.constant && decl->initializer == NULL) { + _mesa_glsl_error(& loc, state, + "const declaration of `%s' must be initialized"); + } + + /* Check if this declaration is actually a re-declaration, either to + * resize an array or add qualifiers to an existing variable. + * + * This is allowed for variables in the current scope, or when at + * global scope (for built-ins in the implicit outer scope). + */ + ir_variable *earlier = state->symbols->get_variable(decl->identifier); + if (earlier != NULL && (state->current_function == NULL || + state->symbols->name_declared_this_scope(decl->identifier))) { + + /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec, + * + * "It is legal to declare an array without a size and then + * later re-declare the same name as an array of the same + * type and specify a size." + */ + if ((earlier->type->array_size() == 0) + && var->type->is_array() + && (var->type->element_type() == earlier->type->element_type())) { + /* FINISHME: This doesn't match the qualifiers on the two + * FINISHME: declarations. It's not 100% clear whether this is + * FINISHME: required or not. + */ + + /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec: + * + * "The size [of gl_TexCoord] can be at most + * gl_MaxTextureCoords." + */ + const unsigned size = unsigned(var->type->array_size()); + if ((strcmp("gl_TexCoord", var->name) == 0) + && (size > state->Const.MaxTextureCoords)) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot " + "be larger than gl_MaxTextureCoords (%u)\n", + state->Const.MaxTextureCoords); + } else if ((size > 0) && (size <= earlier->max_array_access)) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "array size must be > %u due to " + "previous access", + earlier->max_array_access); + } + + earlier->type = var->type; + delete var; + var = NULL; + } else if (state->extensions->ARB_fragment_coord_conventions + && strcmp(var->name, "gl_FragCoord") == 0 + && earlier->type == var->type + && earlier->mode == var->mode) { + /* Allow redeclaration of gl_FragCoord for ARB_fcc layout + * qualifiers. + */ + earlier->origin_upper_left = var->origin_upper_left; + earlier->pixel_center_integer = var->pixel_center_integer; + } else { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier); + } + + continue; + } + + /* By now, we know it's a new variable declaration (we didn't hit the + * above "continue"). + * + * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, + * + * "Identifiers starting with "gl_" are reserved for use by + * OpenGL, and may not be declared in a shader as either a + * variable or a function." + */ + if (strncmp(decl->identifier, "gl_", 3) == 0) + _mesa_glsl_error(& loc, state, + "identifier `%s' uses reserved `gl_' prefix", + decl->identifier); + + /* Add the variable to the symbol table. Note that the initializer's + * IR was already processed earlier (though it hasn't been emitted yet), + * without the variable in scope. + * + * This differs from most C-like languages, but it follows the GLSL + * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50 + * spec: + * + * "Within a declaration, the scope of a name starts immediately + * after the initializer if present or immediately after the name + * being declared if not." + */ + if (!state->symbols->add_variable(var->name, var)) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(&loc, state, "name `%s' already taken in the " + "current scope", decl->identifier); + continue; + } + + /* Push the variable declaration to the top. It means that all + * the variable declarations will appear in a funny + * last-to-first order, but otherwise we run into trouble if a + * function is prototyped, a global var is decled, then the + * function is defined with usage of the global var. See + * glslparsertest's CorrectModule.frag. + */ + instructions->push_head(var); + instructions->append_list(&initializer_instructions); + } + + + /* Generally, variable declarations do not have r-values. However, + * one is used for the declaration in + * + * while (bool b = some_condition()) { + * ... + * } + * + * so we return the rvalue from the last seen declaration here. + */ + return result; +} + + +ir_rvalue * +ast_parameter_declarator::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + const struct glsl_type *type; + const char *name = NULL; + YYLTYPE loc = this->get_location(); + + type = this->type->specifier->glsl_type(& name, state); + + if (type == NULL) { + if (name != NULL) { + _mesa_glsl_error(& loc, state, + "invalid type `%s' in declaration of `%s'", + name, this->identifier); + } else { + _mesa_glsl_error(& loc, state, + "invalid type in declaration of `%s'", + this->identifier); + } + + type = glsl_type::error_type; + } + + /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec: + * + * "Functions that accept no input arguments need not use void in the + * argument list because prototypes (or definitions) are required and + * therefore there is no ambiguity when an empty argument list "( )" is + * declared. The idiom "(void)" as a parameter list is provided for + * convenience." + * + * Placing this check here prevents a void parameter being set up + * for a function, which avoids tripping up checks for main taking + * parameters and lookups of an unnamed symbol. + */ + if (type->is_void()) { + if (this->identifier != NULL) + _mesa_glsl_error(& loc, state, + "named parameter cannot have type `void'"); + + is_void = true; + return NULL; + } + + if (formal_parameter && (this->identifier == NULL)) { + _mesa_glsl_error(& loc, state, "formal parameter lacks a name"); + return NULL; + } + + /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...) + * call already handled the "vec4[..] foo" case. + */ + if (this->is_array) { + type = process_array_type(type, this->array_size, state); + } + + if (type->array_size() == 0) { + _mesa_glsl_error(&loc, state, "arrays passed as parameters must have " + "a declared size."); + type = glsl_type::error_type; + } + + is_void = false; + ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in); + + /* Apply any specified qualifiers to the parameter declaration. Note that + * for function parameters the default mode is 'in'. + */ + apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc); + + instructions->push_tail(var); + + /* Parameter declarations do not have r-values. + */ + return NULL; +} + + +void +ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters, + bool formal, + exec_list *ir_parameters, + _mesa_glsl_parse_state *state) +{ + ast_parameter_declarator *void_param = NULL; + unsigned count = 0; + + foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) { + param->formal_parameter = formal; + param->hir(ir_parameters, state); + + if (param->is_void) + void_param = param; + + count++; + } + + if ((void_param != NULL) && (count > 1)) { + YYLTYPE loc = void_param->get_location(); + + _mesa_glsl_error(& loc, state, + "`void' parameter must be only parameter"); + } +} + + +ir_rvalue * +ast_function::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + ir_function *f = NULL; + ir_function_signature *sig = NULL; + exec_list hir_parameters; + + const char *const name = identifier; + + /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec, + * + * "Function declarations (prototypes) cannot occur inside of functions; + * they must be at global scope, or for the built-in functions, outside + * the global scope." + * + * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec, + * + * "User defined functions may only be defined within the global scope." + * + * Note that this language does not appear in GLSL 1.10. + */ + if ((state->current_function != NULL) && (state->language_version != 110)) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(&loc, state, + "declaration of function `%s' not allowed within " + "function body", name); + } + + /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec, + * + * "Identifiers starting with "gl_" are reserved for use by + * OpenGL, and may not be declared in a shader as either a + * variable or a function." + */ + if (strncmp(name, "gl_", 3) == 0) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(&loc, state, + "identifier `%s' uses reserved `gl_' prefix", name); + } + + /* Convert the list of function parameters to HIR now so that they can be + * used below to compare this function's signature with previously seen + * signatures for functions with the same name. + */ + ast_parameter_declarator::parameters_to_hir(& this->parameters, + is_definition, + & hir_parameters, state); + + const char *return_type_name; + const glsl_type *return_type = + this->return_type->specifier->glsl_type(& return_type_name, state); + + if (!return_type) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(&loc, state, + "function `%s' has undeclared return type `%s'", + name, return_type_name); + return_type = glsl_type::error_type; + } + + /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec: + * "No qualifier is allowed on the return type of a function." + */ + if (this->return_type->has_qualifiers()) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(& loc, state, + "function `%s' return type has qualifiers", name); + } + + /* Verify that this function's signature either doesn't match a previously + * seen signature for a function with the same name, or, if a match is found, + * that the previously seen signature does not have an associated definition. + */ + f = state->symbols->get_function(name); + if (f != NULL && !f->is_builtin) { + sig = f->exact_matching_signature(&hir_parameters); + if (sig != NULL) { + const char *badvar = sig->qualifiers_match(&hir_parameters); + if (badvar != NULL) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' " + "qualifiers don't match prototype", name, badvar); + } + + if (sig->return_type != return_type) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(&loc, state, "function `%s' return type doesn't " + "match prototype", name); + } + + if (is_definition && sig->is_defined) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "function `%s' redefined", name); + } + } + } else { + f = new(ctx) ir_function(name); + if (!state->symbols->add_function(f->name, f)) { + /* This function name shadows a non-function use of the same name. */ + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(&loc, state, "function name `%s' conflicts with " + "non-function", name); + return NULL; + } + + /* Emit the new function header */ + if (state->current_function == NULL) + instructions->push_tail(f); + else { + /* IR invariants disallow function declarations or definitions nested + * within other function definitions. Insert the new ir_function + * block in the instruction sequence before the ir_function block + * containing the current ir_function_signature. + * + * This can only happen in a GLSL 1.10 shader. In all other GLSL + * versions this nesting is disallowed. There is a check for this at + * the top of this function. + */ + ir_function *const curr = + const_cast<ir_function *>(state->current_function->function()); + + curr->insert_before(f); + } + } + + /* Verify the return type of main() */ + if (strcmp(name, "main") == 0) { + if (! return_type->is_void()) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "main() must return void"); + } + + if (!hir_parameters.is_empty()) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "main() must not take any parameters"); + } + } + + /* Finish storing the information about this new function in its signature. + */ + if (sig == NULL) { + sig = new(ctx) ir_function_signature(return_type); + f->add_signature(sig); + } + + sig->replace_parameters(&hir_parameters); + signature = sig; + + /* Function declarations (prototypes) do not have r-values. + */ + return NULL; +} + + +ir_rvalue * +ast_function_definition::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + prototype->is_definition = true; + prototype->hir(instructions, state); + + ir_function_signature *signature = prototype->signature; + if (signature == NULL) + return NULL; + + assert(state->current_function == NULL); + state->current_function = signature; + state->found_return = false; + + /* Duplicate parameters declared in the prototype as concrete variables. + * Add these to the symbol table. + */ + state->symbols->push_scope(); + foreach_iter(exec_list_iterator, iter, signature->parameters) { + ir_variable *const var = ((ir_instruction *) iter.get())->as_variable(); + + assert(var != NULL); + + /* The only way a parameter would "exist" is if two parameters have + * the same name. + */ + if (state->symbols->name_declared_this_scope(var->name)) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name); + } else { + state->symbols->add_variable(var->name, var); + } + } + + /* Convert the body of the function to HIR. */ + this->body->hir(&signature->body, state); + signature->is_defined = true; + + state->symbols->pop_scope(); + + assert(state->current_function == signature); + state->current_function = NULL; + + if (!signature->return_type->is_void() && !state->found_return) { + YYLTYPE loc = this->get_location(); + _mesa_glsl_error(& loc, state, "function `%s' has non-void return type " + "%s, but no return statement", + signature->function_name(), + signature->return_type->name); + } + + /* Function definitions do not have r-values. + */ + return NULL; +} + + +ir_rvalue * +ast_jump_statement::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + + switch (mode) { + case ast_return: { + ir_return *inst; + assert(state->current_function); + + if (opt_return_value) { + if (state->current_function->return_type->base_type == + GLSL_TYPE_VOID) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, + "`return` with a value, in function `%s' " + "returning void", + state->current_function->function_name()); + } + + ir_expression *const ret = (ir_expression *) + opt_return_value->hir(instructions, state); + assert(ret != NULL); + + /* Implicit conversions are not allowed for return values. */ + if (state->current_function->return_type != ret->type) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, + "`return' with wrong type %s, in function `%s' " + "returning %s", + ret->type->name, + state->current_function->function_name(), + state->current_function->return_type->name); + } + + inst = new(ctx) ir_return(ret); + } else { + if (state->current_function->return_type->base_type != + GLSL_TYPE_VOID) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, + "`return' with no value, in function %s returning " + "non-void", + state->current_function->function_name()); + } + inst = new(ctx) ir_return; + } + + state->found_return = true; + instructions->push_tail(inst); + break; + } + + case ast_discard: + if (state->target != fragment_shader) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, + "`discard' may only appear in a fragment shader"); + } + instructions->push_tail(new(ctx) ir_discard); + break; + + case ast_break: + case ast_continue: + /* FINISHME: Handle switch-statements. They cannot contain 'continue', + * FINISHME: and they use a different IR instruction for 'break'. + */ + /* FINISHME: Correctly handle the nesting. If a switch-statement is + * FINISHME: inside a loop, a 'continue' is valid and will bind to the + * FINISHME: loop. + */ + if (state->loop_or_switch_nesting == NULL) { + YYLTYPE loc = this->get_location(); + + _mesa_glsl_error(& loc, state, + "`%s' may only appear in a loop", + (mode == ast_break) ? "break" : "continue"); + } else { + ir_loop *const loop = state->loop_or_switch_nesting->as_loop(); + + /* Inline the for loop expression again, since we don't know + * where near the end of the loop body the normal copy of it + * is going to be placed. + */ + if (mode == ast_continue && + state->loop_or_switch_nesting_ast->rest_expression) { + state->loop_or_switch_nesting_ast->rest_expression->hir(instructions, + state); + } + + if (loop != NULL) { + ir_loop_jump *const jump = + new(ctx) ir_loop_jump((mode == ast_break) + ? ir_loop_jump::jump_break + : ir_loop_jump::jump_continue); + instructions->push_tail(jump); + } + } + + break; + } + + /* Jump instructions do not have r-values. + */ + return NULL; +} + + +ir_rvalue * +ast_selection_statement::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + + ir_rvalue *const condition = this->condition->hir(instructions, state); + + /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec: + * + * "Any expression whose type evaluates to a Boolean can be used as the + * conditional expression bool-expression. Vector types are not accepted + * as the expression to if." + * + * The checks are separated so that higher quality diagnostics can be + * generated for cases where both rules are violated. + */ + if (!condition->type->is_boolean() || !condition->type->is_scalar()) { + YYLTYPE loc = this->condition->get_location(); + + _mesa_glsl_error(& loc, state, "if-statement condition must be scalar " + "boolean"); + } + + ir_if *const stmt = new(ctx) ir_if(condition); + + if (then_statement != NULL) { + state->symbols->push_scope(); + then_statement->hir(& stmt->then_instructions, state); + state->symbols->pop_scope(); + } + + if (else_statement != NULL) { + state->symbols->push_scope(); + else_statement->hir(& stmt->else_instructions, state); + state->symbols->pop_scope(); + } + + instructions->push_tail(stmt); + + /* if-statements do not have r-values. + */ + return NULL; +} + + +void +ast_iteration_statement::condition_to_hir(ir_loop *stmt, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + + if (condition != NULL) { + ir_rvalue *const cond = + condition->hir(& stmt->body_instructions, state); + + if ((cond == NULL) + || !cond->type->is_boolean() || !cond->type->is_scalar()) { + YYLTYPE loc = condition->get_location(); + + _mesa_glsl_error(& loc, state, + "loop condition must be scalar boolean"); + } else { + /* As the first code in the loop body, generate a block that looks + * like 'if (!condition) break;' as the loop termination condition. + */ + ir_rvalue *const not_cond = + new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond, + NULL); + + ir_if *const if_stmt = new(ctx) ir_if(not_cond); + + ir_jump *const break_stmt = + new(ctx) ir_loop_jump(ir_loop_jump::jump_break); + + if_stmt->then_instructions.push_tail(break_stmt); + stmt->body_instructions.push_tail(if_stmt); + } + } +} + + +ir_rvalue * +ast_iteration_statement::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + void *ctx = state; + + /* For-loops and while-loops start a new scope, but do-while loops do not. + */ + if (mode != ast_do_while) + state->symbols->push_scope(); + + if (init_statement != NULL) + init_statement->hir(instructions, state); + + ir_loop *const stmt = new(ctx) ir_loop(); + instructions->push_tail(stmt); + + /* Track the current loop and / or switch-statement nesting. + */ + ir_instruction *const nesting = state->loop_or_switch_nesting; + ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast; + + state->loop_or_switch_nesting = stmt; + state->loop_or_switch_nesting_ast = this; + + if (mode != ast_do_while) + condition_to_hir(stmt, state); + + if (body != NULL) + body->hir(& stmt->body_instructions, state); + + if (rest_expression != NULL) + rest_expression->hir(& stmt->body_instructions, state); + + if (mode == ast_do_while) + condition_to_hir(stmt, state); + + if (mode != ast_do_while) + state->symbols->pop_scope(); + + /* Restore previous nesting before returning. + */ + state->loop_or_switch_nesting = nesting; + state->loop_or_switch_nesting_ast = nesting_ast; + + /* Loops do not have r-values. + */ + return NULL; +} + + +ir_rvalue * +ast_type_specifier::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + if (this->structure != NULL) + return this->structure->hir(instructions, state); + + return NULL; +} + + +ir_rvalue * +ast_struct_specifier::hir(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + unsigned decl_count = 0; + + /* Make an initial pass over the list of structure fields to determine how + * many there are. Each element in this list is an ast_declarator_list. + * This means that we actually need to count the number of elements in the + * 'declarations' list in each of the elements. + */ + foreach_list_typed (ast_declarator_list, decl_list, link, + &this->declarations) { + foreach_list_const (decl_ptr, & decl_list->declarations) { + decl_count++; + } + } + + + /* Allocate storage for the structure fields and process the field + * declarations. As the declarations are processed, try to also convert + * the types to HIR. This ensures that structure definitions embedded in + * other structure definitions are processed. + */ + glsl_struct_field *const fields = talloc_array(state, glsl_struct_field, + decl_count); + + unsigned i = 0; + foreach_list_typed (ast_declarator_list, decl_list, link, + &this->declarations) { + const char *type_name; + + decl_list->type->specifier->hir(instructions, state); + + const glsl_type *decl_type = + decl_list->type->specifier->glsl_type(& type_name, state); + + foreach_list_typed (ast_declaration, decl, link, + &decl_list->declarations) { + const struct glsl_type *const field_type = + (decl->is_array) + ? process_array_type(decl_type, decl->array_size, state) + : decl_type; + + fields[i].type = (field_type != NULL) + ? field_type : glsl_type::error_type; + fields[i].name = decl->identifier; + i++; + } + } + + assert(i == decl_count); + + const char *name; + if (this->name == NULL) { + static unsigned anon_count = 1; + char buf[32]; + + snprintf(buf, sizeof(buf), "#anon_struct_%04x", anon_count); + anon_count++; + + name = strdup(buf); + } else { + name = this->name; + } + + const glsl_type *t = + glsl_type::get_record_instance(fields, decl_count, name); + + YYLTYPE loc = this->get_location(); + if (!state->symbols->add_type(name, t)) { + _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name); + } else { + + const glsl_type **s = (const glsl_type **) + realloc(state->user_structures, + sizeof(state->user_structures[0]) * + (state->num_user_structures + 1)); + if (s != NULL) { + s[state->num_user_structures] = t; + state->user_structures = s; + state->num_user_structures++; + } + } + + /* Structure type definitions do not have r-values. + */ + return NULL; +} |