diff options
Diffstat (limited to 'src/gallium/drivers/radeonsi/si_fence.c')
-rw-r--r-- | src/gallium/drivers/radeonsi/si_fence.c | 1020 |
1 files changed, 491 insertions, 529 deletions
diff --git a/src/gallium/drivers/radeonsi/si_fence.c b/src/gallium/drivers/radeonsi/si_fence.c index 26b5fc4bdba..91d1bed505d 100644 --- a/src/gallium/drivers/radeonsi/si_fence.c +++ b/src/gallium/drivers/radeonsi/si_fence.c @@ -23,34 +23,33 @@ * */ -#include <libsync.h> - +#include "si_build_pm4.h" #include "util/os_time.h" #include "util/u_memory.h" #include "util/u_queue.h" #include "util/u_upload_mgr.h" -#include "si_build_pm4.h" +#include <libsync.h> struct si_fine_fence { - struct si_resource *buf; - unsigned offset; + struct si_resource *buf; + unsigned offset; }; struct si_multi_fence { - struct pipe_reference reference; - struct pipe_fence_handle *gfx; - struct pipe_fence_handle *sdma; - struct tc_unflushed_batch_token *tc_token; - struct util_queue_fence ready; - - /* If the context wasn't flushed at fence creation, this is non-NULL. */ - struct { - struct si_context *ctx; - unsigned ib_index; - } gfx_unflushed; - - struct si_fine_fence fine; + struct pipe_reference reference; + struct pipe_fence_handle *gfx; + struct pipe_fence_handle *sdma; + struct tc_unflushed_batch_token *tc_token; + struct util_queue_fence ready; + + /* If the context wasn't flushed at fence creation, this is non-NULL. */ + struct { + struct si_context *ctx; + unsigned ib_index; + } gfx_unflushed; + + struct si_fine_fence fine; }; /** @@ -66,591 +65,554 @@ struct si_multi_fence { * \param old_value Previous fence value (for a bug workaround) * \param new_value Fence value to write for this event. */ -void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, - unsigned event, unsigned event_flags, - unsigned dst_sel, unsigned int_sel, unsigned data_sel, - struct si_resource *buf, uint64_t va, - uint32_t new_fence, unsigned query_type) +void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event, + unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel, + struct si_resource *buf, uint64_t va, uint32_t new_fence, + unsigned query_type) { - unsigned op = EVENT_TYPE(event) | - EVENT_INDEX(event == V_028A90_CS_DONE || - event == V_028A90_PS_DONE ? 6 : 5) | - event_flags; - unsigned sel = EOP_DST_SEL(dst_sel) | - EOP_INT_SEL(int_sel) | - EOP_DATA_SEL(data_sel); - bool compute_ib = !ctx->has_graphics || - cs == ctx->prim_discard_compute_cs; - - if (ctx->chip_class >= GFX9 || - (compute_ib && ctx->chip_class >= GFX7)) { - /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion - * counters) must immediately precede every timestamp event to - * prevent a GPU hang on GFX9. - * - * Occlusion queries don't need to do it here, because they - * always do ZPASS_DONE before the timestamp. - */ - if (ctx->chip_class == GFX9 && !compute_ib && - query_type != PIPE_QUERY_OCCLUSION_COUNTER && - query_type != PIPE_QUERY_OCCLUSION_PREDICATE && - query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { - struct si_resource *scratch = ctx->eop_bug_scratch; - - assert(16 * ctx->screen->info.num_render_backends <= - scratch->b.b.width0); - radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); - radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); - radeon_emit(cs, scratch->gpu_address); - radeon_emit(cs, scratch->gpu_address >> 32); - - radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, - RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); - } - - radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0)); - radeon_emit(cs, op); - radeon_emit(cs, sel); - radeon_emit(cs, va); /* address lo */ - radeon_emit(cs, va >> 32); /* address hi */ - radeon_emit(cs, new_fence); /* immediate data lo */ - radeon_emit(cs, 0); /* immediate data hi */ - if (ctx->chip_class >= GFX9) - radeon_emit(cs, 0); /* unused */ - } else { - if (ctx->chip_class == GFX7 || - ctx->chip_class == GFX8) { - struct si_resource *scratch = ctx->eop_bug_scratch; - uint64_t va = scratch->gpu_address; - - /* Two EOP events are required to make all engines go idle - * (and optional cache flushes executed) before the timestamp - * is written. - */ - radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); - radeon_emit(cs, op); - radeon_emit(cs, va); - radeon_emit(cs, ((va >> 32) & 0xffff) | sel); - radeon_emit(cs, 0); /* immediate data */ - radeon_emit(cs, 0); /* unused */ - - radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, - RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); - } - - radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); - radeon_emit(cs, op); - radeon_emit(cs, va); - radeon_emit(cs, ((va >> 32) & 0xffff) | sel); - radeon_emit(cs, new_fence); /* immediate data */ - radeon_emit(cs, 0); /* unused */ - } - - if (buf) { - radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, - RADEON_PRIO_QUERY); - } + unsigned op = EVENT_TYPE(event) | + EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) | + event_flags; + unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel); + bool compute_ib = !ctx->has_graphics || cs == ctx->prim_discard_compute_cs; + + if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) { + /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion + * counters) must immediately precede every timestamp event to + * prevent a GPU hang on GFX9. + * + * Occlusion queries don't need to do it here, because they + * always do ZPASS_DONE before the timestamp. + */ + if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER && + query_type != PIPE_QUERY_OCCLUSION_PREDICATE && + query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { + struct si_resource *scratch = ctx->eop_bug_scratch; + + assert(16 * ctx->screen->info.num_render_backends <= scratch->b.b.width0); + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); + radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); + radeon_emit(cs, scratch->gpu_address); + radeon_emit(cs, scratch->gpu_address >> 32); + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, + RADEON_PRIO_QUERY); + } + + radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0)); + radeon_emit(cs, op); + radeon_emit(cs, sel); + radeon_emit(cs, va); /* address lo */ + radeon_emit(cs, va >> 32); /* address hi */ + radeon_emit(cs, new_fence); /* immediate data lo */ + radeon_emit(cs, 0); /* immediate data hi */ + if (ctx->chip_class >= GFX9) + radeon_emit(cs, 0); /* unused */ + } else { + if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) { + struct si_resource *scratch = ctx->eop_bug_scratch; + uint64_t va = scratch->gpu_address; + + /* Two EOP events are required to make all engines go idle + * (and optional cache flushes executed) before the timestamp + * is written. + */ + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); + radeon_emit(cs, op); + radeon_emit(cs, va); + radeon_emit(cs, ((va >> 32) & 0xffff) | sel); + radeon_emit(cs, 0); /* immediate data */ + radeon_emit(cs, 0); /* unused */ + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, + RADEON_PRIO_QUERY); + } + + radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); + radeon_emit(cs, op); + radeon_emit(cs, va); + radeon_emit(cs, ((va >> 32) & 0xffff) | sel); + radeon_emit(cs, new_fence); /* immediate data */ + radeon_emit(cs, 0); /* unused */ + } + + if (buf) { + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); + } } unsigned si_cp_write_fence_dwords(struct si_screen *screen) { - unsigned dwords = 6; + unsigned dwords = 6; - if (screen->info.chip_class == GFX7 || - screen->info.chip_class == GFX8) - dwords *= 2; + if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8) + dwords *= 2; - return dwords; + return dwords; } -void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, - uint64_t va, uint32_t ref, uint32_t mask, unsigned flags) +void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref, + uint32_t mask, unsigned flags) { - radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); - radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags); - radeon_emit(cs, va); - radeon_emit(cs, va >> 32); - radeon_emit(cs, ref); /* reference value */ - radeon_emit(cs, mask); /* mask */ - radeon_emit(cs, 4); /* poll interval */ + radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); + radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags); + radeon_emit(cs, va); + radeon_emit(cs, va >> 32); + radeon_emit(cs, ref); /* reference value */ + radeon_emit(cs, mask); /* mask */ + radeon_emit(cs, 4); /* poll interval */ } -static void si_add_fence_dependency(struct si_context *sctx, - struct pipe_fence_handle *fence) +static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence) { - struct radeon_winsys *ws = sctx->ws; + struct radeon_winsys *ws = sctx->ws; - if (sctx->sdma_cs) - ws->cs_add_fence_dependency(sctx->sdma_cs, fence, 0); - ws->cs_add_fence_dependency(sctx->gfx_cs, fence, 0); + if (sctx->sdma_cs) + ws->cs_add_fence_dependency(sctx->sdma_cs, fence, 0); + ws->cs_add_fence_dependency(sctx->gfx_cs, fence, 0); } -static void si_add_syncobj_signal(struct si_context *sctx, - struct pipe_fence_handle *fence) +static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence) { - sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); + sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); } -static void si_fence_reference(struct pipe_screen *screen, - struct pipe_fence_handle **dst, - struct pipe_fence_handle *src) +static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, + struct pipe_fence_handle *src) { - struct radeon_winsys *ws = ((struct si_screen*)screen)->ws; - struct si_multi_fence **sdst = (struct si_multi_fence **)dst; - struct si_multi_fence *ssrc = (struct si_multi_fence *)src; - - if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { - ws->fence_reference(&(*sdst)->gfx, NULL); - ws->fence_reference(&(*sdst)->sdma, NULL); - tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); - si_resource_reference(&(*sdst)->fine.buf, NULL); - FREE(*sdst); - } - *sdst = ssrc; + struct radeon_winsys *ws = ((struct si_screen *)screen)->ws; + struct si_multi_fence **sdst = (struct si_multi_fence **)dst; + struct si_multi_fence *ssrc = (struct si_multi_fence *)src; + + if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { + ws->fence_reference(&(*sdst)->gfx, NULL); + ws->fence_reference(&(*sdst)->sdma, NULL); + tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); + si_resource_reference(&(*sdst)->fine.buf, NULL); + FREE(*sdst); + } + *sdst = ssrc; } static struct si_multi_fence *si_create_multi_fence() { - struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); - if (!fence) - return NULL; + struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); + if (!fence) + return NULL; - pipe_reference_init(&fence->reference, 1); - util_queue_fence_init(&fence->ready); + pipe_reference_init(&fence->reference, 1); + util_queue_fence_init(&fence->ready); - return fence; + return fence; } struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, - struct tc_unflushed_batch_token *tc_token) + struct tc_unflushed_batch_token *tc_token) { - struct si_multi_fence *fence = si_create_multi_fence(); - if (!fence) - return NULL; + struct si_multi_fence *fence = si_create_multi_fence(); + if (!fence) + return NULL; - util_queue_fence_reset(&fence->ready); - tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); + util_queue_fence_reset(&fence->ready); + tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); - return (struct pipe_fence_handle *)fence; + return (struct pipe_fence_handle *)fence; } -static bool si_fine_fence_signaled(struct radeon_winsys *rws, - const struct si_fine_fence *fine) +static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine) { - char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | - PIPE_TRANSFER_UNSYNCHRONIZED); - if (!map) - return false; + char *map = + rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | PIPE_TRANSFER_UNSYNCHRONIZED); + if (!map) + return false; - uint32_t *fence = (uint32_t*)(map + fine->offset); - return *fence != 0; + uint32_t *fence = (uint32_t *)(map + fine->offset); + return *fence != 0; } -static void si_fine_fence_set(struct si_context *ctx, - struct si_fine_fence *fine, - unsigned flags) +static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags) { - uint32_t *fence_ptr; - - assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); - - /* Use cached system memory for the fence. */ - u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, - &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); - if (!fine->buf) - return; - - *fence_ptr = 0; - - if (flags & PIPE_FLUSH_TOP_OF_PIPE) { - uint32_t value = 0x80000000; - - si_cp_write_data(ctx, fine->buf, fine->offset, 4, - V_370_MEM, V_370_PFP, &value); - } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { - uint64_t fence_va = fine->buf->gpu_address + fine->offset; - - radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, - RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); - si_cp_release_mem(ctx, ctx->gfx_cs, - V_028A90_BOTTOM_OF_PIPE_TS, 0, - EOP_DST_SEL_MEM, EOP_INT_SEL_NONE, - EOP_DATA_SEL_VALUE_32BIT, - NULL, fence_va, 0x80000000, - PIPE_QUERY_GPU_FINISHED); - } else { - assert(false); - } + uint32_t *fence_ptr; + + assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); + + /* Use cached system memory for the fence. */ + u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset, + (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); + if (!fine->buf) + return; + + *fence_ptr = 0; + + if (flags & PIPE_FLUSH_TOP_OF_PIPE) { + uint32_t value = 0x80000000; + + si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value); + } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { + uint64_t fence_va = fine->buf->gpu_address + fine->offset; + + radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); + si_cp_release_mem(ctx, ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, + EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000, + PIPE_QUERY_GPU_FINISHED); + } else { + assert(false); + } } -static bool si_fence_finish(struct pipe_screen *screen, - struct pipe_context *ctx, - struct pipe_fence_handle *fence, - uint64_t timeout) +static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, + struct pipe_fence_handle *fence, uint64_t timeout) { - struct radeon_winsys *rws = ((struct si_screen*)screen)->ws; - struct si_multi_fence *sfence = (struct si_multi_fence *)fence; - struct si_context *sctx; - int64_t abs_timeout = os_time_get_absolute_timeout(timeout); - - ctx = threaded_context_unwrap_sync(ctx); - sctx = (struct si_context*)(ctx ? ctx : NULL); - - if (!util_queue_fence_is_signalled(&sfence->ready)) { - if (sfence->tc_token) { - /* Ensure that si_flush_from_st will be called for - * this fence, but only if we're in the API thread - * where the context is current. - * - * Note that the batch containing the flush may already - * be in flight in the driver thread, so the fence - * may not be ready yet when this call returns. - */ - threaded_context_flush(ctx, sfence->tc_token, - timeout == 0); - } - - if (!timeout) - return false; - - if (timeout == PIPE_TIMEOUT_INFINITE) { - util_queue_fence_wait(&sfence->ready); - } else { - if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) - return false; - } - - if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { - int64_t time = os_time_get_nano(); - timeout = abs_timeout > time ? abs_timeout - time : 0; - } - } - - if (sfence->sdma) { - if (!rws->fence_wait(rws, sfence->sdma, timeout)) - return false; - - /* Recompute the timeout after waiting. */ - if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { - int64_t time = os_time_get_nano(); - timeout = abs_timeout > time ? abs_timeout - time : 0; - } - } - - if (!sfence->gfx) - return true; - - if (sfence->fine.buf && - si_fine_fence_signaled(rws, &sfence->fine)) { - rws->fence_reference(&sfence->gfx, NULL); - si_resource_reference(&sfence->fine.buf, NULL); - return true; - } - - /* Flush the gfx IB if it hasn't been flushed yet. */ - if (sctx && sfence->gfx_unflushed.ctx == sctx && - sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { - /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) - * spec says: - * - * "If the sync object being blocked upon will not be - * signaled in finite time (for example, by an associated - * fence command issued previously, but not yet flushed to - * the graphics pipeline), then ClientWaitSync may hang - * forever. To help prevent this behavior, if - * ClientWaitSync is called and all of the following are - * true: - * - * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, - * * sync is unsignaled when ClientWaitSync is called, - * * and the calls to ClientWaitSync and FenceSync were - * issued from the same context, - * - * then the GL will behave as if the equivalent of Flush - * were inserted immediately after the creation of sync." - * - * This means we need to flush for such fences even when we're - * not going to wait. - */ - si_flush_gfx_cs(sctx, - (timeout ? 0 : PIPE_FLUSH_ASYNC) | - RADEON_FLUSH_START_NEXT_GFX_IB_NOW, - NULL); - sfence->gfx_unflushed.ctx = NULL; - - if (!timeout) - return false; - - /* Recompute the timeout after all that. */ - if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { - int64_t time = os_time_get_nano(); - timeout = abs_timeout > time ? abs_timeout - time : 0; - } - } - - if (rws->fence_wait(rws, sfence->gfx, timeout)) - return true; - - /* Re-check in case the GPU is slow or hangs, but the commands before - * the fine-grained fence have completed. */ - if (sfence->fine.buf && - si_fine_fence_signaled(rws, &sfence->fine)) - return true; - - return false; + struct radeon_winsys *rws = ((struct si_screen *)screen)->ws; + struct si_multi_fence *sfence = (struct si_multi_fence *)fence; + struct si_context *sctx; + int64_t abs_timeout = os_time_get_absolute_timeout(timeout); + + ctx = threaded_context_unwrap_sync(ctx); + sctx = (struct si_context *)(ctx ? ctx : NULL); + + if (!util_queue_fence_is_signalled(&sfence->ready)) { + if (sfence->tc_token) { + /* Ensure that si_flush_from_st will be called for + * this fence, but only if we're in the API thread + * where the context is current. + * + * Note that the batch containing the flush may already + * be in flight in the driver thread, so the fence + * may not be ready yet when this call returns. + */ + threaded_context_flush(ctx, sfence->tc_token, timeout == 0); + } + + if (!timeout) + return false; + + if (timeout == PIPE_TIMEOUT_INFINITE) { + util_queue_fence_wait(&sfence->ready); + } else { + if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) + return false; + } + + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (sfence->sdma) { + if (!rws->fence_wait(rws, sfence->sdma, timeout)) + return false; + + /* Recompute the timeout after waiting. */ + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (!sfence->gfx) + return true; + + if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) { + rws->fence_reference(&sfence->gfx, NULL); + si_resource_reference(&sfence->fine.buf, NULL); + return true; + } + + /* Flush the gfx IB if it hasn't been flushed yet. */ + if (sctx && sfence->gfx_unflushed.ctx == sctx && + sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { + /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) + * spec says: + * + * "If the sync object being blocked upon will not be + * signaled in finite time (for example, by an associated + * fence command issued previously, but not yet flushed to + * the graphics pipeline), then ClientWaitSync may hang + * forever. To help prevent this behavior, if + * ClientWaitSync is called and all of the following are + * true: + * + * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, + * * sync is unsignaled when ClientWaitSync is called, + * * and the calls to ClientWaitSync and FenceSync were + * issued from the same context, + * + * then the GL will behave as if the equivalent of Flush + * were inserted immediately after the creation of sync." + * + * This means we need to flush for such fences even when we're + * not going to wait. + */ + si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW, + NULL); + sfence->gfx_unflushed.ctx = NULL; + + if (!timeout) + return false; + + /* Recompute the timeout after all that. */ + if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { + int64_t time = os_time_get_nano(); + timeout = abs_timeout > time ? abs_timeout - time : 0; + } + } + + if (rws->fence_wait(rws, sfence->gfx, timeout)) + return true; + + /* Re-check in case the GPU is slow or hangs, but the commands before + * the fine-grained fence have completed. */ + if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) + return true; + + return false; } -static void si_create_fence_fd(struct pipe_context *ctx, - struct pipe_fence_handle **pfence, int fd, - enum pipe_fd_type type) +static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd, + enum pipe_fd_type type) { - struct si_screen *sscreen = (struct si_screen*)ctx->screen; - struct radeon_winsys *ws = sscreen->ws; - struct si_multi_fence *sfence; + struct si_screen *sscreen = (struct si_screen *)ctx->screen; + struct radeon_winsys *ws = sscreen->ws; + struct si_multi_fence *sfence; - *pfence = NULL; + *pfence = NULL; - sfence = si_create_multi_fence(); - if (!sfence) - return; + sfence = si_create_multi_fence(); + if (!sfence) + return; - switch (type) { - case PIPE_FD_TYPE_NATIVE_SYNC: - if (!sscreen->info.has_fence_to_handle) - goto finish; + switch (type) { + case PIPE_FD_TYPE_NATIVE_SYNC: + if (!sscreen->info.has_fence_to_handle) + goto finish; - sfence->gfx = ws->fence_import_sync_file(ws, fd); - break; + sfence->gfx = ws->fence_import_sync_file(ws, fd); + break; - case PIPE_FD_TYPE_SYNCOBJ: - if (!sscreen->info.has_syncobj) - goto finish; + case PIPE_FD_TYPE_SYNCOBJ: + if (!sscreen->info.has_syncobj) + goto finish; - sfence->gfx = ws->fence_import_syncobj(ws, fd); - break; + sfence->gfx = ws->fence_import_syncobj(ws, fd); + break; - default: - unreachable("bad fence fd type when importing"); - } + default: + unreachable("bad fence fd type when importing"); + } finish: - if (!sfence->gfx) { - FREE(sfence); - return; - } + if (!sfence->gfx) { + FREE(sfence); + return; + } - *pfence = (struct pipe_fence_handle*)sfence; + *pfence = (struct pipe_fence_handle *)sfence; } -static int si_fence_get_fd(struct pipe_screen *screen, - struct pipe_fence_handle *fence) +static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) { - struct si_screen *sscreen = (struct si_screen*)screen; - struct radeon_winsys *ws = sscreen->ws; - struct si_multi_fence *sfence = (struct si_multi_fence *)fence; - int gfx_fd = -1, sdma_fd = -1; - - if (!sscreen->info.has_fence_to_handle) - return -1; - - util_queue_fence_wait(&sfence->ready); - - /* Deferred fences aren't supported. */ - assert(!sfence->gfx_unflushed.ctx); - if (sfence->gfx_unflushed.ctx) - return -1; - - if (sfence->sdma) { - sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma); - if (sdma_fd == -1) - return -1; - } - if (sfence->gfx) { - gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); - if (gfx_fd == -1) { - if (sdma_fd != -1) - close(sdma_fd); - return -1; - } - } - - /* If we don't have FDs at this point, it means we don't have fences - * either. */ - if (sdma_fd == -1 && gfx_fd == -1) - return ws->export_signalled_sync_file(ws); - if (sdma_fd == -1) - return gfx_fd; - if (gfx_fd == -1) - return sdma_fd; - - /* Get a fence that will be a combination of both fences. */ - sync_accumulate("radeonsi", &gfx_fd, sdma_fd); - close(sdma_fd); - return gfx_fd; + struct si_screen *sscreen = (struct si_screen *)screen; + struct radeon_winsys *ws = sscreen->ws; + struct si_multi_fence *sfence = (struct si_multi_fence *)fence; + int gfx_fd = -1, sdma_fd = -1; + + if (!sscreen->info.has_fence_to_handle) + return -1; + + util_queue_fence_wait(&sfence->ready); + + /* Deferred fences aren't supported. */ + assert(!sfence->gfx_unflushed.ctx); + if (sfence->gfx_unflushed.ctx) + return -1; + + if (sfence->sdma) { + sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma); + if (sdma_fd == -1) + return -1; + } + if (sfence->gfx) { + gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); + if (gfx_fd == -1) { + if (sdma_fd != -1) + close(sdma_fd); + return -1; + } + } + + /* If we don't have FDs at this point, it means we don't have fences + * either. */ + if (sdma_fd == -1 && gfx_fd == -1) + return ws->export_signalled_sync_file(ws); + if (sdma_fd == -1) + return gfx_fd; + if (gfx_fd == -1) + return sdma_fd; + + /* Get a fence that will be a combination of both fences. */ + sync_accumulate("radeonsi", &gfx_fd, sdma_fd); + close(sdma_fd); + return gfx_fd; } -static void si_flush_from_st(struct pipe_context *ctx, - struct pipe_fence_handle **fence, - unsigned flags) +static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, + unsigned flags) { - struct pipe_screen *screen = ctx->screen; - struct si_context *sctx = (struct si_context *)ctx; - struct radeon_winsys *ws = sctx->ws; - struct pipe_fence_handle *gfx_fence = NULL; - struct pipe_fence_handle *sdma_fence = NULL; - bool deferred_fence = false; - struct si_fine_fence fine = {}; - unsigned rflags = PIPE_FLUSH_ASYNC; - - if (flags & PIPE_FLUSH_END_OF_FRAME) - rflags |= PIPE_FLUSH_END_OF_FRAME; - - if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { - assert(flags & PIPE_FLUSH_DEFERRED); - assert(fence); - - si_fine_fence_set(sctx, &fine, flags); - } - - /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ - if (sctx->sdma_cs) - si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); - - if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { - if (fence) - ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); - if (!(flags & PIPE_FLUSH_DEFERRED)) - ws->cs_sync_flush(sctx->gfx_cs); - } else { - /* Instead of flushing, create a deferred fence. Constraints: - * - The state tracker must allow a deferred flush. - * - The state tracker must request a fence. - * - fence_get_fd is not allowed. - * Thread safety in fence_finish must be ensured by the state tracker. - */ - if (flags & PIPE_FLUSH_DEFERRED && - !(flags & PIPE_FLUSH_FENCE_FD) && - fence) { - gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); - deferred_fence = true; - } else { - si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); - } - } - - /* Both engines can signal out of order, so we need to keep both fences. */ - if (fence) { - struct si_multi_fence *multi_fence; - - if (flags & TC_FLUSH_ASYNC) { - multi_fence = (struct si_multi_fence *)*fence; - assert(multi_fence); - } else { - multi_fence = si_create_multi_fence(); - if (!multi_fence) { - ws->fence_reference(&sdma_fence, NULL); - ws->fence_reference(&gfx_fence, NULL); - goto finish; - } - - screen->fence_reference(screen, fence, NULL); - *fence = (struct pipe_fence_handle*)multi_fence; - } - - /* If both fences are NULL, fence_finish will always return true. */ - multi_fence->gfx = gfx_fence; - multi_fence->sdma = sdma_fence; - - if (deferred_fence) { - multi_fence->gfx_unflushed.ctx = sctx; - multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; - } - - multi_fence->fine = fine; - fine.buf = NULL; - - if (flags & TC_FLUSH_ASYNC) { - util_queue_fence_signal(&multi_fence->ready); - tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); - } - } - assert(!fine.buf); + struct pipe_screen *screen = ctx->screen; + struct si_context *sctx = (struct si_context *)ctx; + struct radeon_winsys *ws = sctx->ws; + struct pipe_fence_handle *gfx_fence = NULL; + struct pipe_fence_handle *sdma_fence = NULL; + bool deferred_fence = false; + struct si_fine_fence fine = {}; + unsigned rflags = PIPE_FLUSH_ASYNC; + + if (flags & PIPE_FLUSH_END_OF_FRAME) + rflags |= PIPE_FLUSH_END_OF_FRAME; + + if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { + assert(flags & PIPE_FLUSH_DEFERRED); + assert(fence); + + si_fine_fence_set(sctx, &fine, flags); + } + + /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ + if (sctx->sdma_cs) + si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); + + if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { + if (fence) + ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); + if (!(flags & PIPE_FLUSH_DEFERRED)) + ws->cs_sync_flush(sctx->gfx_cs); + } else { + /* Instead of flushing, create a deferred fence. Constraints: + * - The state tracker must allow a deferred flush. + * - The state tracker must request a fence. + * - fence_get_fd is not allowed. + * Thread safety in fence_finish must be ensured by the state tracker. + */ + if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { + gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); + deferred_fence = true; + } else { + si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); + } + } + + /* Both engines can signal out of order, so we need to keep both fences. */ + if (fence) { + struct si_multi_fence *multi_fence; + + if (flags & TC_FLUSH_ASYNC) { + multi_fence = (struct si_multi_fence *)*fence; + assert(multi_fence); + } else { + multi_fence = si_create_multi_fence(); + if (!multi_fence) { + ws->fence_reference(&sdma_fence, NULL); + ws->fence_reference(&gfx_fence, NULL); + goto finish; + } + + screen->fence_reference(screen, fence, NULL); + *fence = (struct pipe_fence_handle *)multi_fence; + } + + /* If both fences are NULL, fence_finish will always return true. */ + multi_fence->gfx = gfx_fence; + multi_fence->sdma = sdma_fence; + + if (deferred_fence) { + multi_fence->gfx_unflushed.ctx = sctx; + multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; + } + + multi_fence->fine = fine; + fine.buf = NULL; + + if (flags & TC_FLUSH_ASYNC) { + util_queue_fence_signal(&multi_fence->ready); + tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); + } + } + assert(!fine.buf); finish: - if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { - if (sctx->sdma_cs) - ws->cs_sync_flush(sctx->sdma_cs); - ws->cs_sync_flush(sctx->gfx_cs); - } + if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { + if (sctx->sdma_cs) + ws->cs_sync_flush(sctx->sdma_cs); + ws->cs_sync_flush(sctx->gfx_cs); + } } -static void si_fence_server_signal(struct pipe_context *ctx, - struct pipe_fence_handle *fence) +static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence) { - struct si_context *sctx = (struct si_context *)ctx; - struct si_multi_fence *sfence = (struct si_multi_fence *)fence; - - /* We should have at least one syncobj to signal */ - assert(sfence->sdma || sfence->gfx); - - if (sfence->sdma) - si_add_syncobj_signal(sctx, sfence->sdma); - if (sfence->gfx) - si_add_syncobj_signal(sctx, sfence->gfx); - - /** - * The spec does not require a flush here. We insert a flush - * because syncobj based signals are not directly placed into - * the command stream. Instead the signal happens when the - * submission associated with the syncobj finishes execution. - * - * Therefore, we must make sure that we flush the pipe to avoid - * new work being emitted and getting executed before the signal - * operation. - * - * Set sctx->initial_gfx_cs_size to force IB submission even if - * it is empty. - */ - sctx->initial_gfx_cs_size = 0; - si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); + struct si_context *sctx = (struct si_context *)ctx; + struct si_multi_fence *sfence = (struct si_multi_fence *)fence; + + /* We should have at least one syncobj to signal */ + assert(sfence->sdma || sfence->gfx); + + if (sfence->sdma) + si_add_syncobj_signal(sctx, sfence->sdma); + if (sfence->gfx) + si_add_syncobj_signal(sctx, sfence->gfx); + + /** + * The spec does not require a flush here. We insert a flush + * because syncobj based signals are not directly placed into + * the command stream. Instead the signal happens when the + * submission associated with the syncobj finishes execution. + * + * Therefore, we must make sure that we flush the pipe to avoid + * new work being emitted and getting executed before the signal + * operation. + * + * Set sctx->initial_gfx_cs_size to force IB submission even if + * it is empty. + */ + sctx->initial_gfx_cs_size = 0; + si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); } -static void si_fence_server_sync(struct pipe_context *ctx, - struct pipe_fence_handle *fence) +static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) { - struct si_context *sctx = (struct si_context *)ctx; - struct si_multi_fence *sfence = (struct si_multi_fence *)fence; - - util_queue_fence_wait(&sfence->ready); - - /* Unflushed fences from the same context are no-ops. */ - if (sfence->gfx_unflushed.ctx && - sfence->gfx_unflushed.ctx == sctx) - return; - - /* All unflushed commands will not start execution before - * this fence dependency is signalled. - * - * Therefore we must flush before inserting the dependency - */ - si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); - - if (sfence->sdma) - si_add_fence_dependency(sctx, sfence->sdma); - if (sfence->gfx) - si_add_fence_dependency(sctx, sfence->gfx); + struct si_context *sctx = (struct si_context *)ctx; + struct si_multi_fence *sfence = (struct si_multi_fence *)fence; + + util_queue_fence_wait(&sfence->ready); + + /* Unflushed fences from the same context are no-ops. */ + if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx) + return; + + /* All unflushed commands will not start execution before + * this fence dependency is signalled. + * + * Therefore we must flush before inserting the dependency + */ + si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); + + if (sfence->sdma) + si_add_fence_dependency(sctx, sfence->sdma); + if (sfence->gfx) + si_add_fence_dependency(sctx, sfence->gfx); } void si_init_fence_functions(struct si_context *ctx) { - ctx->b.flush = si_flush_from_st; - ctx->b.create_fence_fd = si_create_fence_fd; - ctx->b.fence_server_sync = si_fence_server_sync; - ctx->b.fence_server_signal = si_fence_server_signal; + ctx->b.flush = si_flush_from_st; + ctx->b.create_fence_fd = si_create_fence_fd; + ctx->b.fence_server_sync = si_fence_server_sync; + ctx->b.fence_server_signal = si_fence_server_signal; } void si_init_screen_fence_functions(struct si_screen *screen) { - screen->b.fence_finish = si_fence_finish; - screen->b.fence_reference = si_fence_reference; - screen->b.fence_get_fd = si_fence_get_fd; + screen->b.fence_finish = si_fence_finish; + screen->b.fence_reference = si_fence_reference; + screen->b.fence_get_fd = si_fence_get_fd; } |