aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_cp_dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/radeonsi/si_cp_dma.c')
-rw-r--r--src/gallium/drivers/radeonsi/si_cp_dma.c1018
1 files changed, 492 insertions, 526 deletions
diff --git a/src/gallium/drivers/radeonsi/si_cp_dma.c b/src/gallium/drivers/radeonsi/si_cp_dma.c
index 2ef41e44ded..391c4f8d50b 100644
--- a/src/gallium/drivers/radeonsi/si_cp_dma.c
+++ b/src/gallium/drivers/radeonsi/si_cp_dma.c
@@ -27,232 +27,221 @@
/* Set this if you want the ME to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
-#define CP_DMA_SYNC (1 << 0)
+#define CP_DMA_SYNC (1 << 0)
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
-#define CP_DMA_RAW_WAIT (1 << 1)
-#define CP_DMA_DST_IS_GDS (1 << 2)
-#define CP_DMA_CLEAR (1 << 3)
-#define CP_DMA_PFP_SYNC_ME (1 << 4)
-#define CP_DMA_SRC_IS_GDS (1 << 5)
+#define CP_DMA_RAW_WAIT (1 << 1)
+#define CP_DMA_DST_IS_GDS (1 << 2)
+#define CP_DMA_CLEAR (1 << 3)
+#define CP_DMA_PFP_SYNC_ME (1 << 4)
+#define CP_DMA_SRC_IS_GDS (1 << 5)
/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
{
- unsigned max = sctx->chip_class >= GFX9 ?
- S_414_BYTE_COUNT_GFX9(~0u) :
- S_414_BYTE_COUNT_GFX6(~0u);
+ unsigned max =
+ sctx->chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u);
- /* make it aligned for optimal performance */
- return max & ~(SI_CPDMA_ALIGNMENT - 1);
+ /* make it aligned for optimal performance */
+ return max & ~(SI_CPDMA_ALIGNMENT - 1);
}
-
/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
* a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
* clear value.
*/
-static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs,
- uint64_t dst_va, uint64_t src_va, unsigned size,
- unsigned flags, enum si_cache_policy cache_policy)
+static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs, uint64_t dst_va,
+ uint64_t src_va, unsigned size, unsigned flags,
+ enum si_cache_policy cache_policy)
{
- uint32_t header = 0, command = 0;
-
- assert(size <= cp_dma_max_byte_count(sctx));
- assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS);
-
- if (sctx->chip_class >= GFX9)
- command |= S_414_BYTE_COUNT_GFX9(size);
- else
- command |= S_414_BYTE_COUNT_GFX6(size);
-
- /* Sync flags. */
- if (flags & CP_DMA_SYNC)
- header |= S_411_CP_SYNC(1);
- else {
- if (sctx->chip_class >= GFX9)
- command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
- else
- command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
- }
-
- if (flags & CP_DMA_RAW_WAIT)
- command |= S_414_RAW_WAIT(1);
-
- /* Src and dst flags. */
- if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
- src_va == dst_va) {
- header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
- } else if (flags & CP_DMA_DST_IS_GDS) {
- header |= S_411_DST_SEL(V_411_GDS);
- /* GDS increments the address, not CP. */
- command |= S_414_DAS(V_414_REGISTER) |
- S_414_DAIC(V_414_NO_INCREMENT);
- } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
- header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2) |
- S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM);
- }
-
- if (flags & CP_DMA_CLEAR) {
- header |= S_411_SRC_SEL(V_411_DATA);
- } else if (flags & CP_DMA_SRC_IS_GDS) {
- header |= S_411_SRC_SEL(V_411_GDS);
- /* Both of these are required for GDS. It does increment the address. */
- command |= S_414_SAS(V_414_REGISTER) |
- S_414_SAIC(V_414_NO_INCREMENT);
- } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
- header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) |
- S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM);
- }
-
- if (sctx->chip_class >= GFX7) {
- radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
- radeon_emit(cs, header);
- radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
- radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
- radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
- radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
- radeon_emit(cs, command);
- } else {
- header |= S_411_SRC_ADDR_HI(src_va >> 32);
-
- radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
- radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
- radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
- radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
- radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
- radeon_emit(cs, command);
- }
-
- /* CP DMA is executed in ME, but index buffers are read by PFP.
- * This ensures that ME (CP DMA) is idle before PFP starts fetching
- * indices. If we wanted to execute CP DMA in PFP, this packet
- * should precede it.
- */
- if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) {
- radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
- radeon_emit(cs, 0);
- }
+ uint32_t header = 0, command = 0;
+
+ assert(size <= cp_dma_max_byte_count(sctx));
+ assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS);
+
+ if (sctx->chip_class >= GFX9)
+ command |= S_414_BYTE_COUNT_GFX9(size);
+ else
+ command |= S_414_BYTE_COUNT_GFX6(size);
+
+ /* Sync flags. */
+ if (flags & CP_DMA_SYNC)
+ header |= S_411_CP_SYNC(1);
+ else {
+ if (sctx->chip_class >= GFX9)
+ command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
+ else
+ command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
+ }
+
+ if (flags & CP_DMA_RAW_WAIT)
+ command |= S_414_RAW_WAIT(1);
+
+ /* Src and dst flags. */
+ if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) {
+ header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
+ } else if (flags & CP_DMA_DST_IS_GDS) {
+ header |= S_411_DST_SEL(V_411_GDS);
+ /* GDS increments the address, not CP. */
+ command |= S_414_DAS(V_414_REGISTER) | S_414_DAIC(V_414_NO_INCREMENT);
+ } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
+ header |=
+ S_411_DST_SEL(V_411_DST_ADDR_TC_L2) | S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM);
+ }
+
+ if (flags & CP_DMA_CLEAR) {
+ header |= S_411_SRC_SEL(V_411_DATA);
+ } else if (flags & CP_DMA_SRC_IS_GDS) {
+ header |= S_411_SRC_SEL(V_411_GDS);
+ /* Both of these are required for GDS. It does increment the address. */
+ command |= S_414_SAS(V_414_REGISTER) | S_414_SAIC(V_414_NO_INCREMENT);
+ } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
+ header |=
+ S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM);
+ }
+
+ if (sctx->chip_class >= GFX7) {
+ radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
+ radeon_emit(cs, header);
+ radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
+ radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
+ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
+ radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
+ radeon_emit(cs, command);
+ } else {
+ header |= S_411_SRC_ADDR_HI(src_va >> 32);
+
+ radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
+ radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
+ radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */
+ radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
+ radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
+ radeon_emit(cs, command);
+ }
+
+ /* CP DMA is executed in ME, but index buffers are read by PFP.
+ * This ensures that ME (CP DMA) is idle before PFP starts fetching
+ * indices. If we wanted to execute CP DMA in PFP, this packet
+ * should precede it.
+ */
+ if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) {
+ radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
+ radeon_emit(cs, 0);
+ }
}
void si_cp_dma_wait_for_idle(struct si_context *sctx)
{
- /* Issue a dummy DMA that copies zero bytes.
- *
- * The DMA engine will see that there's no work to do and skip this
- * DMA request, however, the CP will see the sync flag and still wait
- * for all DMAs to complete.
- */
- si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS);
+ /* Issue a dummy DMA that copies zero bytes.
+ *
+ * The DMA engine will see that there's no work to do and skip this
+ * DMA request, however, the CP will see the sync flag and still wait
+ * for all DMAs to complete.
+ */
+ si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS);
}
static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
- struct pipe_resource *src, unsigned byte_count,
- uint64_t remaining_size, unsigned user_flags,
- enum si_coherency coher, bool *is_first,
- unsigned *packet_flags)
+ struct pipe_resource *src, unsigned byte_count,
+ uint64_t remaining_size, unsigned user_flags, enum si_coherency coher,
+ bool *is_first, unsigned *packet_flags)
{
- /* Fast exit for a CPDMA prefetch. */
- if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
- *is_first = false;
- return;
- }
-
- if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
- /* Count memory usage in so that need_cs_space can take it into account. */
- if (dst)
- si_context_add_resource_size(sctx, dst);
- if (src)
- si_context_add_resource_size(sctx, src);
- }
-
- if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
- si_need_gfx_cs_space(sctx);
-
- /* This must be done after need_cs_space. */
- if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
- if (dst)
- radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
- si_resource(dst),
- RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
- if (src)
- radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
- si_resource(src),
- RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
- }
-
- /* Flush the caches for the first copy only.
- * Also wait for the previous CP DMA operations.
- */
- if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
- sctx->emit_cache_flush(sctx);
-
- if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first &&
- !(*packet_flags & CP_DMA_CLEAR))
- *packet_flags |= CP_DMA_RAW_WAIT;
-
- *is_first = false;
-
- /* Do the synchronization after the last dma, so that all data
- * is written to memory.
- */
- if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
- byte_count == remaining_size) {
- *packet_flags |= CP_DMA_SYNC;
-
- if (coher == SI_COHERENCY_SHADER)
- *packet_flags |= CP_DMA_PFP_SYNC_ME;
- }
+ /* Fast exit for a CPDMA prefetch. */
+ if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
+ *is_first = false;
+ return;
+ }
+
+ if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
+ /* Count memory usage in so that need_cs_space can take it into account. */
+ if (dst)
+ si_context_add_resource_size(sctx, dst);
+ if (src)
+ si_context_add_resource_size(sctx, src);
+ }
+
+ if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
+ si_need_gfx_cs_space(sctx);
+
+ /* This must be done after need_cs_space. */
+ if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
+ if (dst)
+ radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(dst), RADEON_USAGE_WRITE,
+ RADEON_PRIO_CP_DMA);
+ if (src)
+ radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(src), RADEON_USAGE_READ,
+ RADEON_PRIO_CP_DMA);
+ }
+
+ /* Flush the caches for the first copy only.
+ * Also wait for the previous CP DMA operations.
+ */
+ if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
+ sctx->emit_cache_flush(sctx);
+
+ if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first && !(*packet_flags & CP_DMA_CLEAR))
+ *packet_flags |= CP_DMA_RAW_WAIT;
+
+ *is_first = false;
+
+ /* Do the synchronization after the last dma, so that all data
+ * is written to memory.
+ */
+ if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && byte_count == remaining_size) {
+ *packet_flags |= CP_DMA_SYNC;
+
+ if (coher == SI_COHERENCY_SHADER)
+ *packet_flags |= CP_DMA_PFP_SYNC_ME;
+ }
}
void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs,
- struct pipe_resource *dst, uint64_t offset,
- uint64_t size, unsigned value, unsigned user_flags,
- enum si_coherency coher, enum si_cache_policy cache_policy)
+ struct pipe_resource *dst, uint64_t offset, uint64_t size,
+ unsigned value, unsigned user_flags, enum si_coherency coher,
+ enum si_cache_policy cache_policy)
{
- struct si_resource *sdst = si_resource(dst);
- uint64_t va = (sdst ? sdst->gpu_address : 0) + offset;
- bool is_first = true;
-
- assert(size && size % 4 == 0);
-
- /* Mark the buffer range of destination as valid (initialized),
- * so that transfer_map knows it should wait for the GPU when mapping
- * that range. */
- if (sdst)
- util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size);
-
- /* Flush the caches. */
- if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
- sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
- SI_CONTEXT_CS_PARTIAL_FLUSH |
- si_get_flush_flags(sctx, coher, cache_policy);
- }
-
- while (size) {
- unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
- unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS);
-
- si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags,
- coher, &is_first, &dma_flags);
-
- /* Emit the clear packet. */
- si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy);
-
- size -= byte_count;
- va += byte_count;
- }
-
- if (sdst && cache_policy != L2_BYPASS)
- sdst->TC_L2_dirty = true;
-
- /* If it's not a framebuffer fast clear... */
- if (coher == SI_COHERENCY_SHADER) {
- sctx->num_cp_dma_calls++;
- si_prim_discard_signal_next_compute_ib_start(sctx);
- }
+ struct si_resource *sdst = si_resource(dst);
+ uint64_t va = (sdst ? sdst->gpu_address : 0) + offset;
+ bool is_first = true;
+
+ assert(size && size % 4 == 0);
+
+ /* Mark the buffer range of destination as valid (initialized),
+ * so that transfer_map knows it should wait for the GPU when mapping
+ * that range. */
+ if (sdst)
+ util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size);
+
+ /* Flush the caches. */
+ if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
+ sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
+ si_get_flush_flags(sctx, coher, cache_policy);
+ }
+
+ while (size) {
+ unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
+ unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS);
+
+ si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags, coher, &is_first,
+ &dma_flags);
+
+ /* Emit the clear packet. */
+ si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy);
+
+ size -= byte_count;
+ va += byte_count;
+ }
+
+ if (sdst && cache_policy != L2_BYPASS)
+ sdst->TC_L2_dirty = true;
+
+ /* If it's not a framebuffer fast clear... */
+ if (coher == SI_COHERENCY_SHADER) {
+ sctx->num_cp_dma_calls++;
+ si_prim_discard_signal_next_compute_ib_start(sctx);
+ }
}
/**
@@ -261,41 +250,34 @@ void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs,
*
* \param size Remaining size to the CP DMA alignment.
*/
-static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
- unsigned user_flags, enum si_coherency coher,
- enum si_cache_policy cache_policy,
- bool *is_first)
+static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, unsigned user_flags,
+ enum si_coherency coher, enum si_cache_policy cache_policy,
+ bool *is_first)
{
- uint64_t va;
- unsigned dma_flags = 0;
- unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
-
- assert(size < SI_CPDMA_ALIGNMENT);
-
- /* Use the scratch buffer as the dummy buffer. The 3D engine should be
- * idle at this point.
- */
- if (!sctx->scratch_buffer ||
- sctx->scratch_buffer->b.b.width0 < scratch_size) {
- si_resource_reference(&sctx->scratch_buffer, NULL);
- sctx->scratch_buffer =
- si_aligned_buffer_create(&sctx->screen->b,
- SI_RESOURCE_FLAG_UNMAPPABLE,
- PIPE_USAGE_DEFAULT,
- scratch_size, 256);
- if (!sctx->scratch_buffer)
- return;
-
- si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
- }
-
- si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
- &sctx->scratch_buffer->b.b, size, size, user_flags,
- coher, is_first, &dma_flags);
-
- va = sctx->scratch_buffer->gpu_address;
- si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
- cache_policy);
+ uint64_t va;
+ unsigned dma_flags = 0;
+ unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
+
+ assert(size < SI_CPDMA_ALIGNMENT);
+
+ /* Use the scratch buffer as the dummy buffer. The 3D engine should be
+ * idle at this point.
+ */
+ if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) {
+ si_resource_reference(&sctx->scratch_buffer, NULL);
+ sctx->scratch_buffer = si_aligned_buffer_create(&sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE,
+ PIPE_USAGE_DEFAULT, scratch_size, 256);
+ if (!sctx->scratch_buffer)
+ return;
+
+ si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
+ }
+
+ si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size,
+ user_flags, coher, is_first, &dma_flags);
+
+ va = sctx->scratch_buffer->gpu_address;
+ si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, cache_policy);
}
/**
@@ -304,141 +286,131 @@ static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
*
* \param user_flags bitmask of SI_CPDMA_*
*/
-void si_cp_dma_copy_buffer(struct si_context *sctx,
- struct pipe_resource *dst, struct pipe_resource *src,
- uint64_t dst_offset, uint64_t src_offset, unsigned size,
- unsigned user_flags, enum si_coherency coher,
- enum si_cache_policy cache_policy)
+void si_cp_dma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst,
+ struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset,
+ unsigned size, unsigned user_flags, enum si_coherency coher,
+ enum si_cache_policy cache_policy)
{
- uint64_t main_dst_offset, main_src_offset;
- unsigned skipped_size = 0;
- unsigned realign_size = 0;
- unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) |
- (src ? 0 : CP_DMA_SRC_IS_GDS);
- bool is_first = true;
-
- assert(size);
-
- if (dst) {
- /* Skip this for the L2 prefetch. */
- if (dst != src || dst_offset != src_offset) {
- /* Mark the buffer range of destination as valid (initialized),
- * so that transfer_map knows it should wait for the GPU when mapping
- * that range. */
- util_range_add(dst, &si_resource(dst)->valid_buffer_range, dst_offset,
- dst_offset + size);
- }
-
- dst_offset += si_resource(dst)->gpu_address;
- }
- if (src)
- src_offset += si_resource(src)->gpu_address;
-
- /* The workarounds aren't needed on Fiji and beyond. */
- if (sctx->family <= CHIP_CARRIZO ||
- sctx->family == CHIP_STONEY) {
- /* If the size is not aligned, we must add a dummy copy at the end
- * just to align the internal counter. Otherwise, the DMA engine
- * would slow down by an order of magnitude for following copies.
- */
- if (size % SI_CPDMA_ALIGNMENT)
- realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
-
- /* If the copy begins unaligned, we must start copying from the next
- * aligned block and the skipped part should be copied after everything
- * else has been copied. Only the src alignment matters, not dst.
- *
- * GDS doesn't need the source address to be aligned.
- */
- if (src && src_offset % SI_CPDMA_ALIGNMENT) {
- skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
- /* The main part will be skipped if the size is too small. */
- skipped_size = MIN2(skipped_size, size);
- size -= skipped_size;
- }
- }
-
- /* Flush the caches. */
- if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
- sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
- SI_CONTEXT_CS_PARTIAL_FLUSH |
- si_get_flush_flags(sctx, coher, cache_policy);
- }
-
- /* This is the main part doing the copying. Src is always aligned. */
- main_dst_offset = dst_offset + skipped_size;
- main_src_offset = src_offset + skipped_size;
-
- while (size) {
- unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
- unsigned dma_flags = gds_flags;
-
- si_cp_dma_prepare(sctx, dst, src, byte_count,
- size + skipped_size + realign_size,
- user_flags, coher, &is_first, &dma_flags);
-
- si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset,
- byte_count, dma_flags, cache_policy);
-
- size -= byte_count;
- main_src_offset += byte_count;
- main_dst_offset += byte_count;
- }
-
- /* Copy the part we skipped because src wasn't aligned. */
- if (skipped_size) {
- unsigned dma_flags = gds_flags;
-
- si_cp_dma_prepare(sctx, dst, src, skipped_size,
- skipped_size + realign_size, user_flags,
- coher, &is_first, &dma_flags);
-
- si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size,
- dma_flags, cache_policy);
- }
-
- /* Finally, realign the engine if the size wasn't aligned. */
- if (realign_size) {
- si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher,
- cache_policy, &is_first);
- }
-
- if (dst && cache_policy != L2_BYPASS)
- si_resource(dst)->TC_L2_dirty = true;
-
- /* If it's not a prefetch or GDS copy... */
- if (dst && src && (dst != src || dst_offset != src_offset)) {
- sctx->num_cp_dma_calls++;
- si_prim_discard_signal_next_compute_ib_start(sctx);
- }
+ uint64_t main_dst_offset, main_src_offset;
+ unsigned skipped_size = 0;
+ unsigned realign_size = 0;
+ unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) | (src ? 0 : CP_DMA_SRC_IS_GDS);
+ bool is_first = true;
+
+ assert(size);
+
+ if (dst) {
+ /* Skip this for the L2 prefetch. */
+ if (dst != src || dst_offset != src_offset) {
+ /* Mark the buffer range of destination as valid (initialized),
+ * so that transfer_map knows it should wait for the GPU when mapping
+ * that range. */
+ util_range_add(dst, &si_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size);
+ }
+
+ dst_offset += si_resource(dst)->gpu_address;
+ }
+ if (src)
+ src_offset += si_resource(src)->gpu_address;
+
+ /* The workarounds aren't needed on Fiji and beyond. */
+ if (sctx->family <= CHIP_CARRIZO || sctx->family == CHIP_STONEY) {
+ /* If the size is not aligned, we must add a dummy copy at the end
+ * just to align the internal counter. Otherwise, the DMA engine
+ * would slow down by an order of magnitude for following copies.
+ */
+ if (size % SI_CPDMA_ALIGNMENT)
+ realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
+
+ /* If the copy begins unaligned, we must start copying from the next
+ * aligned block and the skipped part should be copied after everything
+ * else has been copied. Only the src alignment matters, not dst.
+ *
+ * GDS doesn't need the source address to be aligned.
+ */
+ if (src && src_offset % SI_CPDMA_ALIGNMENT) {
+ skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
+ /* The main part will be skipped if the size is too small. */
+ skipped_size = MIN2(skipped_size, size);
+ size -= skipped_size;
+ }
+ }
+
+ /* Flush the caches. */
+ if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
+ sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH |
+ si_get_flush_flags(sctx, coher, cache_policy);
+ }
+
+ /* This is the main part doing the copying. Src is always aligned. */
+ main_dst_offset = dst_offset + skipped_size;
+ main_src_offset = src_offset + skipped_size;
+
+ while (size) {
+ unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
+ unsigned dma_flags = gds_flags;
+
+ si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, user_flags,
+ coher, &is_first, &dma_flags);
+
+ si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset, byte_count, dma_flags,
+ cache_policy);
+
+ size -= byte_count;
+ main_src_offset += byte_count;
+ main_dst_offset += byte_count;
+ }
+
+ /* Copy the part we skipped because src wasn't aligned. */
+ if (skipped_size) {
+ unsigned dma_flags = gds_flags;
+
+ si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, user_flags,
+ coher, &is_first, &dma_flags);
+
+ si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size, dma_flags,
+ cache_policy);
+ }
+
+ /* Finally, realign the engine if the size wasn't aligned. */
+ if (realign_size) {
+ si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher, cache_policy, &is_first);
+ }
+
+ if (dst && cache_policy != L2_BYPASS)
+ si_resource(dst)->TC_L2_dirty = true;
+
+ /* If it's not a prefetch or GDS copy... */
+ if (dst && src && (dst != src || dst_offset != src_offset)) {
+ sctx->num_cp_dma_calls++;
+ si_prim_discard_signal_next_compute_ib_start(sctx);
+ }
}
-void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
- uint64_t offset, unsigned size)
+void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, uint64_t offset,
+ unsigned size)
{
- assert(sctx->chip_class >= GFX7);
+ assert(sctx->chip_class >= GFX7);
- si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size,
- SI_CPDMA_SKIP_ALL, SI_COHERENCY_SHADER, L2_LRU);
+ si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL,
+ SI_COHERENCY_SHADER, L2_LRU);
}
-static void cik_prefetch_shader_async(struct si_context *sctx,
- struct si_pm4_state *state)
+static void cik_prefetch_shader_async(struct si_context *sctx, struct si_pm4_state *state)
{
- struct pipe_resource *bo = &state->bo[0]->b.b;
- assert(state->nbo == 1);
+ struct pipe_resource *bo = &state->bo[0]->b.b;
+ assert(state->nbo == 1);
- cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
+ cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
}
static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
{
- if (!sctx->vertex_elements || !sctx->vertex_elements->vb_desc_list_alloc_size)
- return;
+ if (!sctx->vertex_elements || !sctx->vertex_elements->vb_desc_list_alloc_size)
+ return;
- cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b,
- sctx->vb_descriptors_offset,
- sctx->vertex_elements->vb_desc_list_alloc_size);
+ cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset,
+ sctx->vertex_elements->vb_desc_list_alloc_size);
}
/**
@@ -449,191 +421,185 @@ static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
*/
void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only)
{
- unsigned mask = sctx->prefetch_L2_mask;
- assert(mask);
-
- /* Prefetch shaders and VBO descriptors to TC L2. */
- if (sctx->chip_class >= GFX9) {
- /* Choose the right spot for the VBO prefetch. */
- if (sctx->queued.named.hs) {
- if (mask & SI_PREFETCH_HS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
-
- if (mask & SI_PREFETCH_GS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- } else if (sctx->queued.named.gs) {
- if (mask & SI_PREFETCH_GS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
-
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- } else {
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
- }
- } else {
- /* GFX6-GFX8 */
- /* Choose the right spot for the VBO prefetch. */
- if (sctx->tes_shader.cso) {
- if (mask & SI_PREFETCH_LS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
-
- if (mask & SI_PREFETCH_HS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
- if (mask & SI_PREFETCH_ES)
- cik_prefetch_shader_async(sctx, sctx->queued.named.es);
- if (mask & SI_PREFETCH_GS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- } else if (sctx->gs_shader.cso) {
- if (mask & SI_PREFETCH_ES)
- cik_prefetch_shader_async(sctx, sctx->queued.named.es);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
-
- if (mask & SI_PREFETCH_GS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- } else {
- if (mask & SI_PREFETCH_VS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
- if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
- cik_prefetch_VBO_descriptors(sctx);
- if (vertex_stage_only) {
- sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
- SI_PREFETCH_VBO_DESCRIPTORS);
- return;
- }
- }
- }
-
- if (mask & SI_PREFETCH_PS)
- cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
-
- sctx->prefetch_L2_mask = 0;
+ unsigned mask = sctx->prefetch_L2_mask;
+ assert(mask);
+
+ /* Prefetch shaders and VBO descriptors to TC L2. */
+ if (sctx->chip_class >= GFX9) {
+ /* Choose the right spot for the VBO prefetch. */
+ if (sctx->queued.named.hs) {
+ if (mask & SI_PREFETCH_HS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+
+ if (mask & SI_PREFETCH_GS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ } else if (sctx->queued.named.gs) {
+ if (mask & SI_PREFETCH_GS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ } else {
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+ }
+ } else {
+ /* GFX6-GFX8 */
+ /* Choose the right spot for the VBO prefetch. */
+ if (sctx->tes_shader.cso) {
+ if (mask & SI_PREFETCH_LS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+
+ if (mask & SI_PREFETCH_HS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
+ if (mask & SI_PREFETCH_ES)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.es);
+ if (mask & SI_PREFETCH_GS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ } else if (sctx->gs_shader.cso) {
+ if (mask & SI_PREFETCH_ES)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.es);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+
+ if (mask & SI_PREFETCH_GS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ } else {
+ if (mask & SI_PREFETCH_VS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
+ if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
+ cik_prefetch_VBO_descriptors(sctx);
+ if (vertex_stage_only) {
+ sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS);
+ return;
+ }
+ }
+ }
+
+ if (mask & SI_PREFETCH_PS)
+ cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
+
+ sctx->prefetch_L2_mask = 0;
}
void si_test_gds(struct si_context *sctx)
{
- struct pipe_context *ctx = &sctx->b;
- struct pipe_resource *src, *dst;
- unsigned r[4] = {};
- unsigned offset = debug_get_num_option("OFFSET", 16);
-
- src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
- dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER, L2_BYPASS);
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER, L2_BYPASS);
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER, L2_BYPASS);
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER, L2_BYPASS);
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER, L2_BYPASS);
-
- si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
- si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
-
- pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
- printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
- r[0] == 0xabcdef01 && r[1] == 0x23456789 &&
- r[2] == 0x87654321 && r[3] == 0xfedcba98 ? "pass" : "fail");
-
- si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE, L2_BYPASS);
- si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
-
- pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
- printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
- r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 &&
- r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146 ? "pass" : "fail");
-
- pipe_resource_reference(&src, NULL);
- pipe_resource_reference(&dst, NULL);
- exit(0);
+ struct pipe_context *ctx = &sctx->b;
+ struct pipe_resource *src, *dst;
+ unsigned r[4] = {};
+ unsigned offset = debug_get_num_option("OFFSET", 16);
+
+ src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
+ dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER,
+ L2_BYPASS);
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER,
+ L2_BYPASS);
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER,
+ L2_BYPASS);
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER,
+ L2_BYPASS);
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER,
+ L2_BYPASS);
+
+ si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
+ si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
+
+ pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
+ printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
+ r[0] == 0xabcdef01 && r[1] == 0x23456789 && r[2] == 0x87654321 && r[3] == 0xfedcba98
+ ? "pass"
+ : "fail");
+
+ si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE,
+ L2_BYPASS);
+ si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
+
+ pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
+ printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
+ r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 && r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146
+ ? "pass"
+ : "fail");
+
+ pipe_resource_reference(&src, NULL);
+ pipe_resource_reference(&dst, NULL);
+ exit(0);
}
-void si_cp_write_data(struct si_context *sctx, struct si_resource *buf,
- unsigned offset, unsigned size, unsigned dst_sel,
- unsigned engine, const void *data)
+void si_cp_write_data(struct si_context *sctx, struct si_resource *buf, unsigned offset,
+ unsigned size, unsigned dst_sel, unsigned engine, const void *data)
{
- struct radeon_cmdbuf *cs = sctx->gfx_cs;
+ struct radeon_cmdbuf *cs = sctx->gfx_cs;
- assert(offset % 4 == 0);
- assert(size % 4 == 0);
+ assert(offset % 4 == 0);
+ assert(size % 4 == 0);
- if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM)
- dst_sel = V_370_MEM_GRBM;
+ if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM)
+ dst_sel = V_370_MEM_GRBM;
- radeon_add_to_buffer_list(sctx, cs, buf,
- RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
- uint64_t va = buf->gpu_address + offset;
+ radeon_add_to_buffer_list(sctx, cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
+ uint64_t va = buf->gpu_address + offset;
- radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size/4, 0));
- radeon_emit(cs, S_370_DST_SEL(dst_sel) |
- S_370_WR_CONFIRM(1) |
- S_370_ENGINE_SEL(engine));
- radeon_emit(cs, va);
- radeon_emit(cs, va >> 32);
- radeon_emit_array(cs, (const uint32_t*)data, size/4);
+ radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size / 4, 0));
+ radeon_emit(cs, S_370_DST_SEL(dst_sel) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine));
+ radeon_emit(cs, va);
+ radeon_emit(cs, va >> 32);
+ radeon_emit_array(cs, (const uint32_t *)data, size / 4);
}
-void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs,
- unsigned dst_sel, struct si_resource *dst, unsigned dst_offset,
- unsigned src_sel, struct si_resource *src, unsigned src_offset)
+void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned dst_sel,
+ struct si_resource *dst, unsigned dst_offset, unsigned src_sel,
+ struct si_resource *src, unsigned src_offset)
{
- /* cs can point to the compute IB, which has the buffer list in gfx_cs. */
- if (dst) {
- radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst,
- RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
- }
- if (src) {
- radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src,
- RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
- }
-
- uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset;
- uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset;
-
- radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
- radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) |
- COPY_DATA_DST_SEL(dst_sel) |
- COPY_DATA_WR_CONFIRM);
- radeon_emit(cs, src_va);
- radeon_emit(cs, src_va >> 32);
- radeon_emit(cs, dst_va);
- radeon_emit(cs, dst_va >> 32);
+ /* cs can point to the compute IB, which has the buffer list in gfx_cs. */
+ if (dst) {
+ radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
+ }
+ if (src) {
+ radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
+ }
+
+ uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset;
+ uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset;
+
+ radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
+ radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) | COPY_DATA_DST_SEL(dst_sel) | COPY_DATA_WR_CONFIRM);
+ radeon_emit(cs, src_va);
+ radeon_emit(cs, src_va >> 32);
+ radeon_emit(cs, dst_va);
+ radeon_emit(cs, dst_va >> 32);
}