diff options
Diffstat (limited to 'src/gallium/drivers/radeon/AMDILISelLowering.cpp')
-rw-r--r-- | src/gallium/drivers/radeon/AMDILISelLowering.cpp | 5612 |
1 files changed, 5612 insertions, 0 deletions
diff --git a/src/gallium/drivers/radeon/AMDILISelLowering.cpp b/src/gallium/drivers/radeon/AMDILISelLowering.cpp new file mode 100644 index 00000000000..6f78d15ad0b --- /dev/null +++ b/src/gallium/drivers/radeon/AMDILISelLowering.cpp @@ -0,0 +1,5612 @@ +//===-- AMDILISelLowering.cpp - AMDIL DAG Lowering Implementation ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//==-----------------------------------------------------------------------===// +// +// This file implements the interfaces that AMDIL uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "AMDILISelLowering.h" +#include "AMDILDevices.h" +#include "AMDILGlobalManager.h" +#include "AMDILIntrinsicInfo.h" +#include "AMDILKernelManager.h" +#include "AMDILMachineFunctionInfo.h" +#include "AMDILSubtarget.h" +#include "AMDILTargetMachine.h" +#include "AMDILUtilityFunctions.h" +#include "llvm/CallingConv.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/Target/TargetOptions.h" + +using namespace llvm; +#define ISDBITCAST ISD::BITCAST +#define MVTGLUE MVT::Glue +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// +#include "AMDILGenCallingConv.inc" + +//===----------------------------------------------------------------------===// +// TargetLowering Implementation Help Functions Begin +//===----------------------------------------------------------------------===// + static SDValue +getConversionNode(SelectionDAG &DAG, SDValue& Src, SDValue& Dst, bool asType) +{ + DebugLoc DL = Src.getDebugLoc(); + EVT svt = Src.getValueType().getScalarType(); + EVT dvt = Dst.getValueType().getScalarType(); + if (svt.isFloatingPoint() && dvt.isFloatingPoint()) { + if (dvt.bitsGT(svt)) { + Src = DAG.getNode(ISD::FP_EXTEND, DL, dvt, Src); + } else if (svt.bitsLT(svt)) { + Src = DAG.getNode(ISD::FP_ROUND, DL, dvt, Src, + DAG.getConstant(1, MVT::i32)); + } + } else if (svt.isInteger() && dvt.isInteger()) { + if (!svt.bitsEq(dvt)) { + Src = DAG.getSExtOrTrunc(Src, DL, dvt); + } else { + Src = DAG.getNode(AMDILISD::MOVE, DL, dvt, Src); + } + } else if (svt.isInteger()) { + unsigned opcode = (asType) ? ISDBITCAST : ISD::SINT_TO_FP; + if (!svt.bitsEq(dvt)) { + if (dvt.getSimpleVT().SimpleTy == MVT::f32) { + Src = DAG.getSExtOrTrunc(Src, DL, MVT::i32); + } else if (dvt.getSimpleVT().SimpleTy == MVT::f64) { + Src = DAG.getSExtOrTrunc(Src, DL, MVT::i64); + } else { + assert(0 && "We only support 32 and 64bit fp types"); + } + } + Src = DAG.getNode(opcode, DL, dvt, Src); + } else if (dvt.isInteger()) { + unsigned opcode = (asType) ? ISDBITCAST : ISD::FP_TO_SINT; + if (svt.getSimpleVT().SimpleTy == MVT::f32) { + Src = DAG.getNode(opcode, DL, MVT::i32, Src); + } else if (svt.getSimpleVT().SimpleTy == MVT::f64) { + Src = DAG.getNode(opcode, DL, MVT::i64, Src); + } else { + assert(0 && "We only support 32 and 64bit fp types"); + } + Src = DAG.getSExtOrTrunc(Src, DL, dvt); + } + return Src; +} +// CondCCodeToCC - Convert a DAG condition code to a AMDIL CC +// condition. + static AMDILCC::CondCodes +CondCCodeToCC(ISD::CondCode CC, const MVT::SimpleValueType& type) +{ + switch (CC) { + default: + { + errs()<<"Condition Code: "<< (unsigned int)CC<<"\n"; + assert(0 && "Unknown condition code!"); + } + case ISD::SETO: + switch(type) { + case MVT::f32: + return AMDILCC::IL_CC_F_O; + case MVT::f64: + return AMDILCC::IL_CC_D_O; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETUO: + switch(type) { + case MVT::f32: + return AMDILCC::IL_CC_F_UO; + case MVT::f64: + return AMDILCC::IL_CC_D_UO; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETGT: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_GT; + case MVT::f32: + return AMDILCC::IL_CC_F_GT; + case MVT::f64: + return AMDILCC::IL_CC_D_GT; + case MVT::i64: + return AMDILCC::IL_CC_L_GT; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETGE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_GE; + case MVT::f32: + return AMDILCC::IL_CC_F_GE; + case MVT::f64: + return AMDILCC::IL_CC_D_GE; + case MVT::i64: + return AMDILCC::IL_CC_L_GE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETLT: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_LT; + case MVT::f32: + return AMDILCC::IL_CC_F_LT; + case MVT::f64: + return AMDILCC::IL_CC_D_LT; + case MVT::i64: + return AMDILCC::IL_CC_L_LT; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETLE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_LE; + case MVT::f32: + return AMDILCC::IL_CC_F_LE; + case MVT::f64: + return AMDILCC::IL_CC_D_LE; + case MVT::i64: + return AMDILCC::IL_CC_L_LE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETNE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_NE; + case MVT::f32: + return AMDILCC::IL_CC_F_NE; + case MVT::f64: + return AMDILCC::IL_CC_D_NE; + case MVT::i64: + return AMDILCC::IL_CC_L_NE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETEQ: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_I_EQ; + case MVT::f32: + return AMDILCC::IL_CC_F_EQ; + case MVT::f64: + return AMDILCC::IL_CC_D_EQ; + case MVT::i64: + return AMDILCC::IL_CC_L_EQ; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETUGT: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_GT; + case MVT::f32: + return AMDILCC::IL_CC_F_UGT; + case MVT::f64: + return AMDILCC::IL_CC_D_UGT; + case MVT::i64: + return AMDILCC::IL_CC_UL_GT; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETUGE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_GE; + case MVT::f32: + return AMDILCC::IL_CC_F_UGE; + case MVT::f64: + return AMDILCC::IL_CC_D_UGE; + case MVT::i64: + return AMDILCC::IL_CC_UL_GE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETULT: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_LT; + case MVT::f32: + return AMDILCC::IL_CC_F_ULT; + case MVT::f64: + return AMDILCC::IL_CC_D_ULT; + case MVT::i64: + return AMDILCC::IL_CC_UL_LT; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETULE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_LE; + case MVT::f32: + return AMDILCC::IL_CC_F_ULE; + case MVT::f64: + return AMDILCC::IL_CC_D_ULE; + case MVT::i64: + return AMDILCC::IL_CC_UL_LE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETUNE: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_NE; + case MVT::f32: + return AMDILCC::IL_CC_F_UNE; + case MVT::f64: + return AMDILCC::IL_CC_D_UNE; + case MVT::i64: + return AMDILCC::IL_CC_UL_NE; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETUEQ: + switch (type) { + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + return AMDILCC::IL_CC_U_EQ; + case MVT::f32: + return AMDILCC::IL_CC_F_UEQ; + case MVT::f64: + return AMDILCC::IL_CC_D_UEQ; + case MVT::i64: + return AMDILCC::IL_CC_UL_EQ; + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETOGT: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_OGT; + case MVT::f64: + return AMDILCC::IL_CC_D_OGT; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETOGE: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_OGE; + case MVT::f64: + return AMDILCC::IL_CC_D_OGE; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETOLT: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_OLT; + case MVT::f64: + return AMDILCC::IL_CC_D_OLT; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETOLE: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_OLE; + case MVT::f64: + return AMDILCC::IL_CC_D_OLE; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETONE: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_ONE; + case MVT::f64: + return AMDILCC::IL_CC_D_ONE; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + case ISD::SETOEQ: + switch (type) { + case MVT::f32: + return AMDILCC::IL_CC_F_OEQ; + case MVT::f64: + return AMDILCC::IL_CC_D_OEQ; + case MVT::i1: + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + default: + assert(0 && "Opcode combination not generated correctly!"); + return AMDILCC::COND_ERROR; + }; + }; +} + + static unsigned int +translateToOpcode(uint64_t CCCode, unsigned int regClass) +{ + switch (CCCode) { + case AMDILCC::IL_CC_D_EQ: + case AMDILCC::IL_CC_D_OEQ: + if (regClass == AMDIL::GPRV2F64RegClassID) { + return (unsigned int)AMDIL::DEQ_v2f64; + } else { + return (unsigned int)AMDIL::DEQ; + } + case AMDILCC::IL_CC_D_LE: + case AMDILCC::IL_CC_D_OLE: + case AMDILCC::IL_CC_D_ULE: + case AMDILCC::IL_CC_D_GE: + case AMDILCC::IL_CC_D_OGE: + case AMDILCC::IL_CC_D_UGE: + return (unsigned int)AMDIL::DGE; + case AMDILCC::IL_CC_D_LT: + case AMDILCC::IL_CC_D_OLT: + case AMDILCC::IL_CC_D_ULT: + case AMDILCC::IL_CC_D_GT: + case AMDILCC::IL_CC_D_OGT: + case AMDILCC::IL_CC_D_UGT: + return (unsigned int)AMDIL::DLT; + case AMDILCC::IL_CC_D_NE: + case AMDILCC::IL_CC_D_UNE: + return (unsigned int)AMDIL::DNE; + case AMDILCC::IL_CC_F_EQ: + case AMDILCC::IL_CC_F_OEQ: + return (unsigned int)AMDIL::FEQ; + case AMDILCC::IL_CC_F_LE: + case AMDILCC::IL_CC_F_ULE: + case AMDILCC::IL_CC_F_OLE: + case AMDILCC::IL_CC_F_GE: + case AMDILCC::IL_CC_F_UGE: + case AMDILCC::IL_CC_F_OGE: + return (unsigned int)AMDIL::FGE; + case AMDILCC::IL_CC_F_LT: + case AMDILCC::IL_CC_F_OLT: + case AMDILCC::IL_CC_F_ULT: + case AMDILCC::IL_CC_F_GT: + case AMDILCC::IL_CC_F_OGT: + case AMDILCC::IL_CC_F_UGT: + if (regClass == AMDIL::GPRV2F32RegClassID) { + return (unsigned int)AMDIL::FLT_v2f32; + } else if (regClass == AMDIL::GPRV4F32RegClassID) { + return (unsigned int)AMDIL::FLT_v4f32; + } else { + return (unsigned int)AMDIL::FLT; + } + case AMDILCC::IL_CC_F_NE: + case AMDILCC::IL_CC_F_UNE: + return (unsigned int)AMDIL::FNE; + case AMDILCC::IL_CC_I_EQ: + case AMDILCC::IL_CC_U_EQ: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::IEQ; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRV2I8RegClassID + || regClass == AMDIL::GPRV2I16RegClassID) { + return (unsigned int)AMDIL::IEQ_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRV4I8RegClassID + || regClass == AMDIL::GPRV4I16RegClassID) { + return (unsigned int)AMDIL::IEQ_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_L_EQ: + case AMDILCC::IL_CC_UL_EQ: + return (unsigned int)AMDIL::LEQ; + case AMDILCC::IL_CC_I_GE: + case AMDILCC::IL_CC_I_LE: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::IGE; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::IGE_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::IGE_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_I_LT: + case AMDILCC::IL_CC_I_GT: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ILT; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ILT_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ILT_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_L_GE: + return (unsigned int)AMDIL::LGE; + case AMDILCC::IL_CC_L_LE: + return (unsigned int)AMDIL::LLE; + case AMDILCC::IL_CC_L_LT: + return (unsigned int)AMDIL::LLT; + case AMDILCC::IL_CC_L_GT: + return (unsigned int)AMDIL::LGT; + case AMDILCC::IL_CC_I_NE: + case AMDILCC::IL_CC_U_NE: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::INE; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::INE_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::INE_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_U_GE: + case AMDILCC::IL_CC_U_LE: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGE; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGE_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGE_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_L_NE: + case AMDILCC::IL_CC_UL_NE: + return (unsigned int)AMDIL::LNE; + case AMDILCC::IL_CC_UL_GE: + return (unsigned int)AMDIL::ULGE; + case AMDILCC::IL_CC_UL_LE: + return (unsigned int)AMDIL::ULLE; + case AMDILCC::IL_CC_U_LT: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ULT; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ULT_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::ULT_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_U_GT: + if (regClass == AMDIL::GPRI32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGT; + } else if (regClass == AMDIL::GPRV2I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGT_v2i32; + } else if (regClass == AMDIL::GPRV4I32RegClassID + || regClass == AMDIL::GPRI8RegClassID + || regClass == AMDIL::GPRI16RegClassID) { + return (unsigned int)AMDIL::UGT_v4i32; + } else { + assert(!"Unknown reg class!"); + } + case AMDILCC::IL_CC_UL_LT: + return (unsigned int)AMDIL::ULLT; + case AMDILCC::IL_CC_UL_GT: + return (unsigned int)AMDIL::ULGT; + case AMDILCC::IL_CC_F_UEQ: + case AMDILCC::IL_CC_D_UEQ: + case AMDILCC::IL_CC_F_ONE: + case AMDILCC::IL_CC_D_ONE: + case AMDILCC::IL_CC_F_O: + case AMDILCC::IL_CC_F_UO: + case AMDILCC::IL_CC_D_O: + case AMDILCC::IL_CC_D_UO: + // we don't care + return 0; + + } + errs()<<"Opcode: "<<CCCode<<"\n"; + assert(0 && "Unknown opcode retrieved"); + return 0; +} +SDValue +AMDILTargetLowering::LowerMemArgument( + SDValue Chain, + CallingConv::ID CallConv, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + MachineFrameInfo *MFI, + unsigned i) const +{ + // Create the nodes corresponding to a load from this parameter slot. + ISD::ArgFlagsTy Flags = Ins[i].Flags; + + bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && + getTargetMachine().Options.GuaranteedTailCallOpt; + bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); + + // FIXME: For now, all byval parameter objects are marked mutable. This can + // be changed with more analysis. + // In case of tail call optimization mark all arguments mutable. Since they + // could be overwritten by lowering of arguments in case of a tail call. + int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, + VA.getLocMemOffset(), isImmutable); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); + + if (Flags.isByVal()) + return FIN; + return DAG.getLoad(VA.getValVT(), dl, Chain, FIN, + MachinePointerInfo::getFixedStack(FI), + false, false, false, 0); +} +//===----------------------------------------------------------------------===// +// TargetLowering Implementation Help Functions End +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// Instruction generation functions +//===----------------------------------------------------------------------===// +uint32_t +AMDILTargetLowering::addExtensionInstructions( + uint32_t reg, bool signedShift, + unsigned int simpleVT) const +{ + int shiftSize = 0; + uint32_t LShift, RShift; + switch(simpleVT) + { + default: + return reg; + case AMDIL::GPRI8RegClassID: + shiftSize = 24; + LShift = AMDIL::SHL_i8; + if (signedShift) { + RShift = AMDIL::SHR_i8; + } else { + RShift = AMDIL::USHR_i8; + } + break; + case AMDIL::GPRV2I8RegClassID: + shiftSize = 24; + LShift = AMDIL::SHL_v2i8; + if (signedShift) { + RShift = AMDIL::SHR_v2i8; + } else { + RShift = AMDIL::USHR_v2i8; + } + break; + case AMDIL::GPRV4I8RegClassID: + shiftSize = 24; + LShift = AMDIL::SHL_v4i8; + if (signedShift) { + RShift = AMDIL::SHR_v4i8; + } else { + RShift = AMDIL::USHR_v4i8; + } + break; + case AMDIL::GPRI16RegClassID: + shiftSize = 16; + LShift = AMDIL::SHL_i16; + if (signedShift) { + RShift = AMDIL::SHR_i16; + } else { + RShift = AMDIL::USHR_i16; + } + break; + case AMDIL::GPRV2I16RegClassID: + shiftSize = 16; + LShift = AMDIL::SHL_v2i16; + if (signedShift) { + RShift = AMDIL::SHR_v2i16; + } else { + RShift = AMDIL::USHR_v2i16; + } + break; + case AMDIL::GPRV4I16RegClassID: + shiftSize = 16; + LShift = AMDIL::SHL_v4i16; + if (signedShift) { + RShift = AMDIL::SHR_v4i16; + } else { + RShift = AMDIL::USHR_v4i16; + } + break; + }; + uint32_t LoadReg = genVReg(simpleVT); + uint32_t tmp1 = genVReg(simpleVT); + uint32_t tmp2 = genVReg(simpleVT); + generateMachineInst(AMDIL::LOADCONST_i32, LoadReg).addImm(shiftSize); + generateMachineInst(LShift, tmp1, reg, LoadReg); + generateMachineInst(RShift, tmp2, tmp1, LoadReg); + return tmp2; +} + +MachineOperand +AMDILTargetLowering::convertToReg(MachineOperand op) const +{ + if (op.isReg()) { + return op; + } else if (op.isImm()) { + uint32_t loadReg + = genVReg(op.getParent()->getDesc().OpInfo[0].RegClass); + generateMachineInst(AMDIL::LOADCONST_i32, loadReg) + .addImm(op.getImm()); + op.ChangeToRegister(loadReg, false); + } else if (op.isFPImm()) { + uint32_t loadReg + = genVReg(op.getParent()->getDesc().OpInfo[0].RegClass); + generateMachineInst(AMDIL::LOADCONST_f32, loadReg) + .addFPImm(op.getFPImm()); + op.ChangeToRegister(loadReg, false); + } else if (op.isMBB()) { + op.ChangeToRegister(0, false); + } else if (op.isFI()) { + op.ChangeToRegister(0, false); + } else if (op.isCPI()) { + op.ChangeToRegister(0, false); + } else if (op.isJTI()) { + op.ChangeToRegister(0, false); + } else if (op.isGlobal()) { + op.ChangeToRegister(0, false); + } else if (op.isSymbol()) { + op.ChangeToRegister(0, false); + }/* else if (op.isMetadata()) { + op.ChangeToRegister(0, false); + }*/ + return op; +} + +void +AMDILTargetLowering::generateCMPInstr( + MachineInstr *MI, + MachineBasicBlock *BB, + const TargetInstrInfo& TII) +const +{ + MachineOperand DST = MI->getOperand(0); + MachineOperand CC = MI->getOperand(1); + MachineOperand LHS = MI->getOperand(2); + MachineOperand RHS = MI->getOperand(3); + int64_t ccCode = CC.getImm(); + unsigned int simpleVT = MI->getDesc().OpInfo[0].RegClass; + unsigned int opCode = translateToOpcode(ccCode, simpleVT); + DebugLoc DL = MI->getDebugLoc(); + MachineBasicBlock::iterator BBI = MI; + setPrivateData(BB, BBI, &DL, &TII); + if (!LHS.isReg()) { + LHS = convertToReg(LHS); + } + if (!RHS.isReg()) { + RHS = convertToReg(RHS); + } + switch (ccCode) { + case AMDILCC::IL_CC_I_EQ: + case AMDILCC::IL_CC_I_NE: + case AMDILCC::IL_CC_I_GE: + case AMDILCC::IL_CC_I_LT: + { + uint32_t lhsreg = addExtensionInstructions( + LHS.getReg(), true, simpleVT); + uint32_t rhsreg = addExtensionInstructions( + RHS.getReg(), true, simpleVT); + generateMachineInst(opCode, DST.getReg(), lhsreg, rhsreg); + } + break; + case AMDILCC::IL_CC_U_EQ: + case AMDILCC::IL_CC_U_NE: + case AMDILCC::IL_CC_U_GE: + case AMDILCC::IL_CC_U_LT: + case AMDILCC::IL_CC_D_EQ: + case AMDILCC::IL_CC_F_EQ: + case AMDILCC::IL_CC_F_OEQ: + case AMDILCC::IL_CC_D_OEQ: + case AMDILCC::IL_CC_D_NE: + case AMDILCC::IL_CC_F_NE: + case AMDILCC::IL_CC_F_UNE: + case AMDILCC::IL_CC_D_UNE: + case AMDILCC::IL_CC_D_GE: + case AMDILCC::IL_CC_F_GE: + case AMDILCC::IL_CC_D_OGE: + case AMDILCC::IL_CC_F_OGE: + case AMDILCC::IL_CC_D_LT: + case AMDILCC::IL_CC_F_LT: + case AMDILCC::IL_CC_F_OLT: + case AMDILCC::IL_CC_D_OLT: + generateMachineInst(opCode, DST.getReg(), + LHS.getReg(), RHS.getReg()); + break; + case AMDILCC::IL_CC_I_GT: + case AMDILCC::IL_CC_I_LE: + { + uint32_t lhsreg = addExtensionInstructions( + LHS.getReg(), true, simpleVT); + uint32_t rhsreg = addExtensionInstructions( + RHS.getReg(), true, simpleVT); + generateMachineInst(opCode, DST.getReg(), rhsreg, lhsreg); + } + break; + case AMDILCC::IL_CC_U_GT: + case AMDILCC::IL_CC_U_LE: + case AMDILCC::IL_CC_F_GT: + case AMDILCC::IL_CC_D_GT: + case AMDILCC::IL_CC_F_OGT: + case AMDILCC::IL_CC_D_OGT: + case AMDILCC::IL_CC_F_LE: + case AMDILCC::IL_CC_D_LE: + case AMDILCC::IL_CC_D_OLE: + case AMDILCC::IL_CC_F_OLE: + generateMachineInst(opCode, DST.getReg(), + RHS.getReg(), LHS.getReg()); + break; + case AMDILCC::IL_CC_F_UGT: + case AMDILCC::IL_CC_F_ULE: + { + uint32_t VReg[4] = { + genVReg(simpleVT), genVReg(simpleVT), + genVReg(simpleVT), genVReg(simpleVT) + }; + generateMachineInst(opCode, VReg[0], + RHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[1], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[2], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_F_ULT: + case AMDILCC::IL_CC_F_UGE: + { + uint32_t VReg[4] = { + genVReg(simpleVT), genVReg(simpleVT), + genVReg(simpleVT), genVReg(simpleVT) + }; + generateMachineInst(opCode, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[1], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[2], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_D_UGT: + case AMDILCC::IL_CC_D_ULE: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[4] = { + genVReg(regID), genVReg(regID), + genVReg(regID), genVReg(regID) + }; + // The result of a double comparison is a 32bit result + generateMachineInst(opCode, VReg[0], + RHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[1], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[2], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_D_UGE: + case AMDILCC::IL_CC_D_ULT: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[4] = { + genVReg(regID), genVReg(regID), + genVReg(regID), genVReg(regID) + }; + // The result of a double comparison is a 32bit result + generateMachineInst(opCode, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[1], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[2], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_F_UEQ: + { + uint32_t VReg[4] = { + genVReg(simpleVT), genVReg(simpleVT), + genVReg(simpleVT), genVReg(simpleVT) + }; + generateMachineInst(AMDIL::FEQ, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[2], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_F_ONE: + { + uint32_t VReg[4] = { + genVReg(simpleVT), genVReg(simpleVT), + genVReg(simpleVT), genVReg(simpleVT) + }; + generateMachineInst(AMDIL::FNE, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FEQ, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::FEQ, VReg[2], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::BINARY_AND_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_AND_f32, + DST.getReg(), VReg[2], VReg[3]); + } + break; + case AMDILCC::IL_CC_D_UEQ: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[4] = { + genVReg(regID), genVReg(regID), + genVReg(regID), genVReg(regID) + }; + // The result of a double comparison is a 32bit result + generateMachineInst(AMDIL::DEQ, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[2], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[2], VReg[3]); + + } + break; + case AMDILCC::IL_CC_D_ONE: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[4] = { + genVReg(regID), genVReg(regID), + genVReg(regID), genVReg(regID) + }; + // The result of a double comparison is a 32bit result + generateMachineInst(AMDIL::DNE, VReg[0], + LHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DEQ, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::DEQ, VReg[2], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::BINARY_AND_f32, + VReg[3], VReg[0], VReg[1]); + generateMachineInst(AMDIL::BINARY_AND_f32, + DST.getReg(), VReg[2], VReg[3]); + + } + break; + case AMDILCC::IL_CC_F_O: + { + uint32_t VReg[2] = { genVReg(simpleVT), genVReg(simpleVT) }; + generateMachineInst(AMDIL::FEQ, VReg[0], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FEQ, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_AND_f32, + DST.getReg(), VReg[0], VReg[1]); + } + break; + case AMDILCC::IL_CC_D_O: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[2] = { genVReg(regID), genVReg(regID) }; + // The result of a double comparison is a 32bit result + generateMachineInst(AMDIL::DEQ, VReg[0], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DEQ, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_AND_f32, + DST.getReg(), VReg[0], VReg[1]); + } + break; + case AMDILCC::IL_CC_F_UO: + { + uint32_t VReg[2] = { genVReg(simpleVT), genVReg(simpleVT) }; + generateMachineInst(AMDIL::FNE, VReg[0], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::FNE, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[0], VReg[1]); + } + break; + case AMDILCC::IL_CC_D_UO: + { + uint32_t regID = AMDIL::GPRF64RegClassID; + uint32_t VReg[2] = { genVReg(regID), genVReg(regID) }; + // The result of a double comparison is a 32bit result + generateMachineInst(AMDIL::DNE, VReg[0], + RHS.getReg(), RHS.getReg()); + generateMachineInst(AMDIL::DNE, VReg[1], + LHS.getReg(), LHS.getReg()); + generateMachineInst(AMDIL::BINARY_OR_f32, + DST.getReg(), VReg[0], VReg[1]); + } + break; + case AMDILCC::IL_CC_L_LE: + case AMDILCC::IL_CC_L_GE: + case AMDILCC::IL_CC_L_EQ: + case AMDILCC::IL_CC_L_NE: + case AMDILCC::IL_CC_L_LT: + case AMDILCC::IL_CC_L_GT: + case AMDILCC::IL_CC_UL_LE: + case AMDILCC::IL_CC_UL_GE: + case AMDILCC::IL_CC_UL_EQ: + case AMDILCC::IL_CC_UL_NE: + case AMDILCC::IL_CC_UL_LT: + case AMDILCC::IL_CC_UL_GT: + { + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->usesHardware(AMDILDeviceInfo::LongOps)) { + generateMachineInst(opCode, DST.getReg(), LHS.getReg(), RHS.getReg()); + } else { + generateLongRelational(MI, opCode); + } + } + break; + case AMDILCC::COND_ERROR: + assert(0 && "Invalid CC code"); + break; + }; +} + +//===----------------------------------------------------------------------===// +// TargetLowering Class Implementation Begins +//===----------------------------------------------------------------------===// + AMDILTargetLowering::AMDILTargetLowering(TargetMachine &TM) +: TargetLowering(TM, new TargetLoweringObjectFileELF()) +{ + int types[] = + { + (int)MVT::i8, + (int)MVT::i16, + (int)MVT::i32, + (int)MVT::f32, + (int)MVT::f64, + (int)MVT::i64, + (int)MVT::v2i8, + (int)MVT::v4i8, + (int)MVT::v2i16, + (int)MVT::v4i16, + (int)MVT::v4f32, + (int)MVT::v4i32, + (int)MVT::v2f32, + (int)MVT::v2i32, + (int)MVT::v2f64, + (int)MVT::v2i64 + }; + + int IntTypes[] = + { + (int)MVT::i8, + (int)MVT::i16, + (int)MVT::i32, + (int)MVT::i64 + }; + + int FloatTypes[] = + { + (int)MVT::f32, + (int)MVT::f64 + }; + + int VectorTypes[] = + { + (int)MVT::v2i8, + (int)MVT::v4i8, + (int)MVT::v2i16, + (int)MVT::v4i16, + (int)MVT::v4f32, + (int)MVT::v4i32, + (int)MVT::v2f32, + (int)MVT::v2i32, + (int)MVT::v2f64, + (int)MVT::v2i64 + }; + size_t numTypes = sizeof(types) / sizeof(*types); + size_t numFloatTypes = sizeof(FloatTypes) / sizeof(*FloatTypes); + size_t numIntTypes = sizeof(IntTypes) / sizeof(*IntTypes); + size_t numVectorTypes = sizeof(VectorTypes) / sizeof(*VectorTypes); + + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + // These are the current register classes that are + // supported + + addRegisterClass(MVT::i32, AMDIL::GPRI32RegisterClass); + addRegisterClass(MVT::f32, AMDIL::GPRF32RegisterClass); + + if (stm->device()->isSupported(AMDILDeviceInfo::DoubleOps)) { + addRegisterClass(MVT::f64, AMDIL::GPRF64RegisterClass); + addRegisterClass(MVT::v2f64, AMDIL::GPRV2F64RegisterClass); + } + if (stm->device()->isSupported(AMDILDeviceInfo::ByteOps)) { + addRegisterClass(MVT::i8, AMDIL::GPRI8RegisterClass); + addRegisterClass(MVT::v2i8, AMDIL::GPRV2I8RegisterClass); + addRegisterClass(MVT::v4i8, AMDIL::GPRV4I8RegisterClass); + setOperationAction(ISD::Constant , MVT::i8 , Legal); + } + if (stm->device()->isSupported(AMDILDeviceInfo::ShortOps)) { + addRegisterClass(MVT::i16, AMDIL::GPRI16RegisterClass); + addRegisterClass(MVT::v2i16, AMDIL::GPRV2I16RegisterClass); + addRegisterClass(MVT::v4i16, AMDIL::GPRV4I16RegisterClass); + setOperationAction(ISD::Constant , MVT::i16 , Legal); + } + addRegisterClass(MVT::v2f32, AMDIL::GPRV2F32RegisterClass); + addRegisterClass(MVT::v4f32, AMDIL::GPRV4F32RegisterClass); + addRegisterClass(MVT::v2i32, AMDIL::GPRV2I32RegisterClass); + addRegisterClass(MVT::v4i32, AMDIL::GPRV4I32RegisterClass); + if (stm->device()->isSupported(AMDILDeviceInfo::LongOps)) { + addRegisterClass(MVT::i64, AMDIL::GPRI64RegisterClass); + addRegisterClass(MVT::v2i64, AMDIL::GPRV2I64RegisterClass); + } + + for (unsigned int x = 0; x < numTypes; ++x) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)types[x]; + + //FIXME: SIGN_EXTEND_INREG is not meaningful for floating point types + // We cannot sextinreg, expand to shifts + setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); + setOperationAction(ISD::FP_ROUND, VT, Expand); + setOperationAction(ISD::OR, VT, Custom); + setOperationAction(ISD::SUBE, VT, Expand); + setOperationAction(ISD::SUBC, VT, Expand); + setOperationAction(ISD::ADD, VT, Custom); + setOperationAction(ISD::ADDE, VT, Expand); + setOperationAction(ISD::ADDC, VT, Expand); + setOperationAction(ISD::SETCC, VT, Custom); + setOperationAction(ISD::BRCOND, VT, Custom); + setOperationAction(ISD::BR_CC, VT, Custom); + setOperationAction(ISD::BR_JT, VT, Expand); + setOperationAction(ISD::BRIND, VT, Expand); + // TODO: Implement custom UREM/SREM routines + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Custom); + setOperationAction(ISD::UINT_TO_FP, VT, Custom); + setOperationAction(ISD::FP_TO_SINT, VT, Custom); + setOperationAction(ISD::FP_TO_UINT, VT, Custom); + setOperationAction(ISDBITCAST, VT, Custom); + setOperationAction(ISD::GlobalAddress, VT, Custom); + setOperationAction(ISD::JumpTable, VT, Custom); + setOperationAction(ISD::ConstantPool, VT, Custom); + setOperationAction(ISD::SELECT_CC, VT, Custom); + setOperationAction(ISD::SELECT, VT, Custom); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + if (VT != MVT::i64 && VT != MVT::v2i64) { + setOperationAction(ISD::SDIV, VT, Custom); + setOperationAction(ISD::UDIV, VT, Custom); + } + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + for (unsigned int x = 0; x < numFloatTypes; ++x) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)FloatTypes[x]; + + // IL does not have these operations for floating point types + setOperationAction(ISD::FP_ROUND_INREG, VT, Expand); + setOperationAction(ISD::FP_ROUND, VT, Custom); + setOperationAction(ISD::SETOLT, VT, Expand); + setOperationAction(ISD::SETOGE, VT, Expand); + setOperationAction(ISD::SETOGT, VT, Expand); + setOperationAction(ISD::SETOLE, VT, Expand); + setOperationAction(ISD::SETULT, VT, Expand); + setOperationAction(ISD::SETUGE, VT, Expand); + setOperationAction(ISD::SETUGT, VT, Expand); + setOperationAction(ISD::SETULE, VT, Expand); + } + + for (unsigned int x = 0; x < numIntTypes; ++x) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)IntTypes[x]; + + // GPU also does not have divrem function for signed or unsigned + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::FP_ROUND, VT, Expand); + + // GPU does not have [S|U]MUL_LOHI functions as a single instruction + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + + // GPU doesn't have a rotl, rotr, or byteswap instruction + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + + // GPU doesn't have any counting operators + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + } + + for ( unsigned int ii = 0; ii < numVectorTypes; ++ii ) + { + MVT::SimpleValueType VT = (MVT::SimpleValueType)VectorTypes[ii]; + + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); + setOperationAction(ISD::FP_ROUND, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + // setOperationAction(ISD::VSETCC, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + setOperationAction(ISD::SELECT, VT, Expand); + + } + setOperationAction(ISD::FP_ROUND, MVT::Other, Expand); + if (stm->device()->isSupported(AMDILDeviceInfo::LongOps)) { + if (stm->calVersion() < CAL_VERSION_SC_139 + || stm->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + setOperationAction(ISD::MUL, MVT::i64, Custom); + } + setOperationAction(ISD::SUB, MVT::i64, Custom); + setOperationAction(ISD::ADD, MVT::i64, Custom); + setOperationAction(ISD::MULHU, MVT::i64, Expand); + setOperationAction(ISD::MULHU, MVT::v2i64, Expand); + setOperationAction(ISD::MULHS, MVT::i64, Expand); + setOperationAction(ISD::MULHS, MVT::v2i64, Expand); + setOperationAction(ISD::MUL, MVT::v2i64, Expand); + setOperationAction(ISD::SUB, MVT::v2i64, Expand); + setOperationAction(ISD::ADD, MVT::v2i64, Expand); + setOperationAction(ISD::SREM, MVT::v2i64, Expand); + setOperationAction(ISD::Constant , MVT::i64 , Legal); + setOperationAction(ISD::UDIV, MVT::v2i64, Expand); + setOperationAction(ISD::SDIV, MVT::v2i64, Expand); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Expand); + setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Expand); + setOperationAction(ISD::TRUNCATE, MVT::v2i64, Expand); + setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Expand); + setOperationAction(ISD::ZERO_EXTEND, MVT::v2i64, Expand); + setOperationAction(ISD::ANY_EXTEND, MVT::v2i64, Expand); + } + if (stm->device()->isSupported(AMDILDeviceInfo::DoubleOps)) { + // we support loading/storing v2f64 but not operations on the type + setOperationAction(ISD::FADD, MVT::v2f64, Expand); + setOperationAction(ISD::FSUB, MVT::v2f64, Expand); + setOperationAction(ISD::FMUL, MVT::v2f64, Expand); + setOperationAction(ISD::FP_ROUND, MVT::v2f64, Expand); + setOperationAction(ISD::FP_ROUND_INREG, MVT::v2f64, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); + setOperationAction(ISD::ConstantFP , MVT::f64 , Legal); + setOperationAction(ISD::FDIV, MVT::v2f64, Expand); + // We want to expand vector conversions into their scalar + // counterparts. + setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Expand); + setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Expand); + setOperationAction(ISD::TRUNCATE, MVT::v2f64, Expand); + setOperationAction(ISD::SIGN_EXTEND, MVT::v2f64, Expand); + setOperationAction(ISD::ZERO_EXTEND, MVT::v2f64, Expand); + setOperationAction(ISD::ANY_EXTEND, MVT::v2f64, Expand); + setOperationAction(ISD::FABS, MVT::f64, Expand); + setOperationAction(ISD::FABS, MVT::v2f64, Expand); + } + // TODO: Fix the UDIV24 algorithm so it works for these + // types correctly. This needs vector comparisons + // for this to work correctly. + setOperationAction(ISD::UDIV, MVT::v2i8, Expand); + setOperationAction(ISD::UDIV, MVT::v4i8, Expand); + setOperationAction(ISD::UDIV, MVT::v2i16, Expand); + setOperationAction(ISD::UDIV, MVT::v4i16, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Custom); + setOperationAction(ISD::SUBC, MVT::Other, Expand); + setOperationAction(ISD::ADDE, MVT::Other, Expand); + setOperationAction(ISD::ADDC, MVT::Other, Expand); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::BR_CC, MVT::Other, Custom); + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BRIND, MVT::Other, Expand); + setOperationAction(ISD::SETCC, MVT::Other, Custom); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand); + setOperationAction(ISD::FDIV, MVT::f32, Custom); + setOperationAction(ISD::FDIV, MVT::v2f32, Custom); + setOperationAction(ISD::FDIV, MVT::v4f32, Custom); + + setOperationAction(ISD::BUILD_VECTOR, MVT::Other, Custom); + // Use the default implementation. + setOperationAction(ISD::VAARG , MVT::Other, Expand); + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); + setOperationAction(ISD::ConstantFP , MVT::f32 , Legal); + setOperationAction(ISD::Constant , MVT::i32 , Legal); + setOperationAction(ISD::TRAP , MVT::Other , Legal); + + setStackPointerRegisterToSaveRestore(AMDIL::SP); + setSchedulingPreference(Sched::RegPressure); + setPow2DivIsCheap(false); + setPrefLoopAlignment(16); + setSelectIsExpensive(true); + setJumpIsExpensive(true); + computeRegisterProperties(); + + maxStoresPerMemcpy = 4096; + maxStoresPerMemmove = 4096; + maxStoresPerMemset = 4096; + +#undef numTypes +#undef numIntTypes +#undef numVectorTypes +#undef numFloatTypes +} + +const char * +AMDILTargetLowering::getTargetNodeName(unsigned Opcode) const +{ + switch (Opcode) { + default: return 0; + case AMDILISD::INTTOANY: return "AMDILISD::INTTOANY"; + case AMDILISD::DP_TO_FP: return "AMDILISD::DP_TO_FP"; + case AMDILISD::FP_TO_DP: return "AMDILISD::FP_TO_DP"; + case AMDILISD::BITCONV: return "AMDILISD::BITCONV"; + case AMDILISD::CMOV: return "AMDILISD::CMOV"; + case AMDILISD::CMOVLOG: return "AMDILISD::CMOVLOG"; + case AMDILISD::INEGATE: return "AMDILISD::INEGATE"; + case AMDILISD::MAD: return "AMDILISD::MAD"; + case AMDILISD::UMAD: return "AMDILISD::UMAD"; + case AMDILISD::CALL: return "AMDILISD::CALL"; + case AMDILISD::RET: return "AMDILISD::RET"; + case AMDILISD::IFFB_HI: return "AMDILISD::IFFB_HI"; + case AMDILISD::IFFB_LO: return "AMDILISD::IFFB_LO"; + case AMDILISD::ADD: return "AMDILISD::ADD"; + case AMDILISD::UMUL: return "AMDILISD::UMUL"; + case AMDILISD::AND: return "AMDILISD::AND"; + case AMDILISD::OR: return "AMDILISD::OR"; + case AMDILISD::NOT: return "AMDILISD::NOT"; + case AMDILISD::XOR: return "AMDILISD::XOR"; + case AMDILISD::DIV_INF: return "AMDILISD::DIV_INF"; + case AMDILISD::SMAX: return "AMDILISD::SMAX"; + case AMDILISD::PHIMOVE: return "AMDILISD::PHIMOVE"; + case AMDILISD::MOVE: return "AMDILISD::MOVE"; + case AMDILISD::VBUILD: return "AMDILISD::VBUILD"; + case AMDILISD::VEXTRACT: return "AMDILISD::VEXTRACT"; + case AMDILISD::VINSERT: return "AMDILISD::VINSERT"; + case AMDILISD::VCONCAT: return "AMDILISD::VCONCAT"; + case AMDILISD::LCREATE: return "AMDILISD::LCREATE"; + case AMDILISD::LCOMPHI: return "AMDILISD::LCOMPHI"; + case AMDILISD::LCOMPLO: return "AMDILISD::LCOMPLO"; + case AMDILISD::DCREATE: return "AMDILISD::DCREATE"; + case AMDILISD::DCOMPHI: return "AMDILISD::DCOMPHI"; + case AMDILISD::DCOMPLO: return "AMDILISD::DCOMPLO"; + case AMDILISD::LCREATE2: return "AMDILISD::LCREATE2"; + case AMDILISD::LCOMPHI2: return "AMDILISD::LCOMPHI2"; + case AMDILISD::LCOMPLO2: return "AMDILISD::LCOMPLO2"; + case AMDILISD::DCREATE2: return "AMDILISD::DCREATE2"; + case AMDILISD::DCOMPHI2: return "AMDILISD::DCOMPHI2"; + case AMDILISD::DCOMPLO2: return "AMDILISD::DCOMPLO2"; + case AMDILISD::CMP: return "AMDILISD::CMP"; + case AMDILISD::IL_CC_I_LT: return "AMDILISD::IL_CC_I_LT"; + case AMDILISD::IL_CC_I_LE: return "AMDILISD::IL_CC_I_LE"; + case AMDILISD::IL_CC_I_GT: return "AMDILISD::IL_CC_I_GT"; + case AMDILISD::IL_CC_I_GE: return "AMDILISD::IL_CC_I_GE"; + case AMDILISD::IL_CC_I_EQ: return "AMDILISD::IL_CC_I_EQ"; + case AMDILISD::IL_CC_I_NE: return "AMDILISD::IL_CC_I_NE"; + case AMDILISD::RET_FLAG: return "AMDILISD::RET_FLAG"; + case AMDILISD::BRANCH_COND: return "AMDILISD::BRANCH_COND"; + case AMDILISD::LOOP_NZERO: return "AMDILISD::LOOP_NZERO"; + case AMDILISD::LOOP_ZERO: return "AMDILISD::LOOP_ZERO"; + case AMDILISD::LOOP_CMP: return "AMDILISD::LOOP_CMP"; + case AMDILISD::ADDADDR: return "AMDILISD::ADDADDR"; + case AMDILISD::ATOM_G_ADD: return "AMDILISD::ATOM_G_ADD"; + case AMDILISD::ATOM_G_AND: return "AMDILISD::ATOM_G_AND"; + case AMDILISD::ATOM_G_CMPXCHG: return "AMDILISD::ATOM_G_CMPXCHG"; + case AMDILISD::ATOM_G_DEC: return "AMDILISD::ATOM_G_DEC"; + case AMDILISD::ATOM_G_INC: return "AMDILISD::ATOM_G_INC"; + case AMDILISD::ATOM_G_MAX: return "AMDILISD::ATOM_G_MAX"; + case AMDILISD::ATOM_G_UMAX: return "AMDILISD::ATOM_G_UMAX"; + case AMDILISD::ATOM_G_MIN: return "AMDILISD::ATOM_G_MIN"; + case AMDILISD::ATOM_G_UMIN: return "AMDILISD::ATOM_G_UMIN"; + case AMDILISD::ATOM_G_OR: return "AMDILISD::ATOM_G_OR"; + case AMDILISD::ATOM_G_SUB: return "AMDILISD::ATOM_G_SUB"; + case AMDILISD::ATOM_G_RSUB: return "AMDILISD::ATOM_G_RSUB"; + case AMDILISD::ATOM_G_XCHG: return "AMDILISD::ATOM_G_XCHG"; + case AMDILISD::ATOM_G_XOR: return "AMDILISD::ATOM_G_XOR"; + case AMDILISD::ATOM_G_ADD_NORET: return "AMDILISD::ATOM_G_ADD_NORET"; + case AMDILISD::ATOM_G_AND_NORET: return "AMDILISD::ATOM_G_AND_NORET"; + case AMDILISD::ATOM_G_CMPXCHG_NORET: return "AMDILISD::ATOM_G_CMPXCHG_NORET"; + case AMDILISD::ATOM_G_DEC_NORET: return "AMDILISD::ATOM_G_DEC_NORET"; + case AMDILISD::ATOM_G_INC_NORET: return "AMDILISD::ATOM_G_INC_NORET"; + case AMDILISD::ATOM_G_MAX_NORET: return "AMDILISD::ATOM_G_MAX_NORET"; + case AMDILISD::ATOM_G_UMAX_NORET: return "AMDILISD::ATOM_G_UMAX_NORET"; + case AMDILISD::ATOM_G_MIN_NORET: return "AMDILISD::ATOM_G_MIN_NORET"; + case AMDILISD::ATOM_G_UMIN_NORET: return "AMDILISD::ATOM_G_UMIN_NORET"; + case AMDILISD::ATOM_G_OR_NORET: return "AMDILISD::ATOM_G_OR_NORET"; + case AMDILISD::ATOM_G_SUB_NORET: return "AMDILISD::ATOM_G_SUB_NORET"; + case AMDILISD::ATOM_G_RSUB_NORET: return "AMDILISD::ATOM_G_RSUB_NORET"; + case AMDILISD::ATOM_G_XCHG_NORET: return "AMDILISD::ATOM_G_XCHG_NORET"; + case AMDILISD::ATOM_G_XOR_NORET: return "AMDILISD::ATOM_G_XOR_NORET"; + case AMDILISD::ATOM_L_ADD: return "AMDILISD::ATOM_L_ADD"; + case AMDILISD::ATOM_L_AND: return "AMDILISD::ATOM_L_AND"; + case AMDILISD::ATOM_L_CMPXCHG: return "AMDILISD::ATOM_L_CMPXCHG"; + case AMDILISD::ATOM_L_DEC: return "AMDILISD::ATOM_L_DEC"; + case AMDILISD::ATOM_L_INC: return "AMDILISD::ATOM_L_INC"; + case AMDILISD::ATOM_L_MAX: return "AMDILISD::ATOM_L_MAX"; + case AMDILISD::ATOM_L_UMAX: return "AMDILISD::ATOM_L_UMAX"; + case AMDILISD::ATOM_L_MIN: return "AMDILISD::ATOM_L_MIN"; + case AMDILISD::ATOM_L_UMIN: return "AMDILISD::ATOM_L_UMIN"; + case AMDILISD::ATOM_L_OR: return "AMDILISD::ATOM_L_OR"; + case AMDILISD::ATOM_L_SUB: return "AMDILISD::ATOM_L_SUB"; + case AMDILISD::ATOM_L_RSUB: return "AMDILISD::ATOM_L_RSUB"; + case AMDILISD::ATOM_L_XCHG: return "AMDILISD::ATOM_L_XCHG"; + case AMDILISD::ATOM_L_XOR: return "AMDILISD::ATOM_L_XOR"; + case AMDILISD::ATOM_L_ADD_NORET: return "AMDILISD::ATOM_L_ADD_NORET"; + case AMDILISD::ATOM_L_AND_NORET: return "AMDILISD::ATOM_L_AND_NORET"; + case AMDILISD::ATOM_L_CMPXCHG_NORET: return "AMDILISD::ATOM_L_CMPXCHG_NORET"; + case AMDILISD::ATOM_L_DEC_NORET: return "AMDILISD::ATOM_L_DEC_NORET"; + case AMDILISD::ATOM_L_INC_NORET: return "AMDILISD::ATOM_L_INC_NORET"; + case AMDILISD::ATOM_L_MAX_NORET: return "AMDILISD::ATOM_L_MAX_NORET"; + case AMDILISD::ATOM_L_UMAX_NORET: return "AMDILISD::ATOM_L_UMAX_NORET"; + case AMDILISD::ATOM_L_MIN_NORET: return "AMDILISD::ATOM_L_MIN_NORET"; + case AMDILISD::ATOM_L_UMIN_NORET: return "AMDILISD::ATOM_L_UMIN_NORET"; + case AMDILISD::ATOM_L_OR_NORET: return "AMDILISD::ATOM_L_OR_NORET"; + case AMDILISD::ATOM_L_SUB_NORET: return "AMDILISD::ATOM_L_SUB_NORET"; + case AMDILISD::ATOM_L_RSUB_NORET: return "AMDILISD::ATOM_L_RSUB_NORET"; + case AMDILISD::ATOM_L_XCHG_NORET: return "AMDILISD::ATOM_L_XCHG_NORET"; + case AMDILISD::ATOM_R_ADD: return "AMDILISD::ATOM_R_ADD"; + case AMDILISD::ATOM_R_AND: return "AMDILISD::ATOM_R_AND"; + case AMDILISD::ATOM_R_CMPXCHG: return "AMDILISD::ATOM_R_CMPXCHG"; + case AMDILISD::ATOM_R_DEC: return "AMDILISD::ATOM_R_DEC"; + case AMDILISD::ATOM_R_INC: return "AMDILISD::ATOM_R_INC"; + case AMDILISD::ATOM_R_MAX: return "AMDILISD::ATOM_R_MAX"; + case AMDILISD::ATOM_R_UMAX: return "AMDILISD::ATOM_R_UMAX"; + case AMDILISD::ATOM_R_MIN: return "AMDILISD::ATOM_R_MIN"; + case AMDILISD::ATOM_R_UMIN: return "AMDILISD::ATOM_R_UMIN"; + case AMDILISD::ATOM_R_OR: return "AMDILISD::ATOM_R_OR"; + case AMDILISD::ATOM_R_MSKOR: return "AMDILISD::ATOM_R_MSKOR"; + case AMDILISD::ATOM_R_SUB: return "AMDILISD::ATOM_R_SUB"; + case AMDILISD::ATOM_R_RSUB: return "AMDILISD::ATOM_R_RSUB"; + case AMDILISD::ATOM_R_XCHG: return "AMDILISD::ATOM_R_XCHG"; + case AMDILISD::ATOM_R_XOR: return "AMDILISD::ATOM_R_XOR"; + case AMDILISD::ATOM_R_ADD_NORET: return "AMDILISD::ATOM_R_ADD_NORET"; + case AMDILISD::ATOM_R_AND_NORET: return "AMDILISD::ATOM_R_AND_NORET"; + case AMDILISD::ATOM_R_CMPXCHG_NORET: return "AMDILISD::ATOM_R_CMPXCHG_NORET"; + case AMDILISD::ATOM_R_DEC_NORET: return "AMDILISD::ATOM_R_DEC_NORET"; + case AMDILISD::ATOM_R_INC_NORET: return "AMDILISD::ATOM_R_INC_NORET"; + case AMDILISD::ATOM_R_MAX_NORET: return "AMDILISD::ATOM_R_MAX_NORET"; + case AMDILISD::ATOM_R_UMAX_NORET: return "AMDILISD::ATOM_R_UMAX_NORET"; + case AMDILISD::ATOM_R_MIN_NORET: return "AMDILISD::ATOM_R_MIN_NORET"; + case AMDILISD::ATOM_R_UMIN_NORET: return "AMDILISD::ATOM_R_UMIN_NORET"; + case AMDILISD::ATOM_R_OR_NORET: return "AMDILISD::ATOM_R_OR_NORET"; + case AMDILISD::ATOM_R_MSKOR_NORET: return "AMDILISD::ATOM_R_MSKOR_NORET"; + case AMDILISD::ATOM_R_SUB_NORET: return "AMDILISD::ATOM_R_SUB_NORET"; + case AMDILISD::ATOM_R_RSUB_NORET: return "AMDILISD::ATOM_R_RSUB_NORET"; + case AMDILISD::ATOM_R_XCHG_NORET: return "AMDILISD::ATOM_R_XCHG_NORET"; + case AMDILISD::ATOM_R_XOR_NORET: return "AMDILISD::ATOM_R_XOR_NORET"; + case AMDILISD::APPEND_ALLOC: return "AMDILISD::APPEND_ALLOC"; + case AMDILISD::APPEND_ALLOC_NORET: return "AMDILISD::APPEND_ALLOC_NORET"; + case AMDILISD::APPEND_CONSUME: return "AMDILISD::APPEND_CONSUME"; + case AMDILISD::APPEND_CONSUME_NORET: return "AMDILISD::APPEND_CONSUME_NORET"; + case AMDILISD::IMAGE2D_READ: return "AMDILISD::IMAGE2D_READ"; + case AMDILISD::IMAGE2D_WRITE: return "AMDILISD::IMAGE2D_WRITE"; + case AMDILISD::IMAGE2D_INFO0: return "AMDILISD::IMAGE2D_INFO0"; + case AMDILISD::IMAGE2D_INFO1: return "AMDILISD::IMAGE2D_INFO1"; + case AMDILISD::IMAGE3D_READ: return "AMDILISD::IMAGE3D_READ"; + case AMDILISD::IMAGE3D_WRITE: return "AMDILISD::IMAGE3D_WRITE"; + case AMDILISD::IMAGE3D_INFO0: return "AMDILISD::IMAGE3D_INFO0"; + case AMDILISD::IMAGE3D_INFO1: return "AMDILISD::IMAGE3D_INFO1"; + + }; +} +bool +AMDILTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, + const CallInst &I, unsigned Intrinsic) const +{ + if (Intrinsic <= AMDGPUIntrinsic::last_non_AMDIL_intrinsic + || Intrinsic > AMDGPUIntrinsic::num_AMDIL_intrinsics) { + return false; + } + bool bitCastToInt = false; + unsigned IntNo; + bool isRet = true; + const AMDILSubtarget *STM = &this->getTargetMachine() + .getSubtarget<AMDILSubtarget>(); + switch (Intrinsic) { + default: return false; // Don't custom lower most intrinsics. + case AMDGPUIntrinsic::AMDIL_atomic_add_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_add_gu32: + IntNo = AMDILISD::ATOM_G_ADD; break; + case AMDGPUIntrinsic::AMDIL_atomic_add_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_add_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_ADD_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_add_lu32: + case AMDGPUIntrinsic::AMDIL_atomic_add_li32: + IntNo = AMDILISD::ATOM_L_ADD; break; + case AMDGPUIntrinsic::AMDIL_atomic_add_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_add_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_ADD_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_add_ru32: + case AMDGPUIntrinsic::AMDIL_atomic_add_ri32: + IntNo = AMDILISD::ATOM_R_ADD; break; + case AMDGPUIntrinsic::AMDIL_atomic_add_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_add_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_ADD_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_and_gu32: + IntNo = AMDILISD::ATOM_G_AND; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_and_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_AND_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_li32: + case AMDGPUIntrinsic::AMDIL_atomic_and_lu32: + IntNo = AMDILISD::ATOM_L_AND; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_and_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_AND_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_and_ru32: + IntNo = AMDILISD::ATOM_R_AND; break; + case AMDGPUIntrinsic::AMDIL_atomic_and_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_and_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_AND_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_gu32: + IntNo = AMDILISD::ATOM_G_CMPXCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_CMPXCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_li32: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_lu32: + IntNo = AMDILISD::ATOM_L_CMPXCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_CMPXCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_ru32: + IntNo = AMDILISD::ATOM_R_CMPXCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_cmpxchg_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_CMPXCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_dec_gu32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_G_DEC; + } else { + IntNo = AMDILISD::ATOM_G_SUB; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_dec_gu32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_G_DEC_NORET; + } else { + IntNo = AMDILISD::ATOM_G_SUB_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_li32: + case AMDGPUIntrinsic::AMDIL_atomic_dec_lu32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_L_DEC; + } else { + IntNo = AMDILISD::ATOM_L_SUB; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_dec_lu32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_L_DEC_NORET; + } else { + IntNo = AMDILISD::ATOM_L_SUB_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_dec_ru32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_R_DEC; + } else { + IntNo = AMDILISD::ATOM_R_SUB; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_dec_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_dec_ru32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_R_DEC_NORET; + } else { + IntNo = AMDILISD::ATOM_R_SUB_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_inc_gu32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_G_INC; + } else { + IntNo = AMDILISD::ATOM_G_ADD; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_inc_gu32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_G_INC_NORET; + } else { + IntNo = AMDILISD::ATOM_G_ADD_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_li32: + case AMDGPUIntrinsic::AMDIL_atomic_inc_lu32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_L_INC; + } else { + IntNo = AMDILISD::ATOM_L_ADD; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_inc_lu32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_L_INC_NORET; + } else { + IntNo = AMDILISD::ATOM_L_ADD_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_inc_ru32: + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_R_INC; + } else { + IntNo = AMDILISD::ATOM_R_ADD; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_inc_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_inc_ru32_noret: + isRet = false; + if (STM->calVersion() >= CAL_VERSION_SC_136) { + IntNo = AMDILISD::ATOM_R_INC_NORET; + } else { + IntNo = AMDILISD::ATOM_R_ADD_NORET; + } + break; + case AMDGPUIntrinsic::AMDIL_atomic_max_gi32: + IntNo = AMDILISD::ATOM_G_MAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_gu32: + IntNo = AMDILISD::ATOM_G_UMAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_gi32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_MAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_UMAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_li32: + IntNo = AMDILISD::ATOM_L_MAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_lu32: + IntNo = AMDILISD::ATOM_L_UMAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_li32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_MAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_UMAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_ri32: + IntNo = AMDILISD::ATOM_R_MAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_ru32: + IntNo = AMDILISD::ATOM_R_UMAX; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_ri32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_MAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_max_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_UMAX_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_gi32: + IntNo = AMDILISD::ATOM_G_MIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_gu32: + IntNo = AMDILISD::ATOM_G_UMIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_gi32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_MIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_UMIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_li32: + IntNo = AMDILISD::ATOM_L_MIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_lu32: + IntNo = AMDILISD::ATOM_L_UMIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_li32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_MIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_UMIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_ri32: + IntNo = AMDILISD::ATOM_R_MIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_ru32: + IntNo = AMDILISD::ATOM_R_UMIN; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_ri32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_MIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_min_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_UMIN_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_or_gu32: + IntNo = AMDILISD::ATOM_G_OR; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_or_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_OR_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_li32: + case AMDGPUIntrinsic::AMDIL_atomic_or_lu32: + IntNo = AMDILISD::ATOM_L_OR; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_or_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_OR_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_or_ru32: + IntNo = AMDILISD::ATOM_R_OR; break; + case AMDGPUIntrinsic::AMDIL_atomic_or_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_or_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_OR_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_sub_gu32: + IntNo = AMDILISD::ATOM_G_SUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_sub_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_SUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_li32: + case AMDGPUIntrinsic::AMDIL_atomic_sub_lu32: + IntNo = AMDILISD::ATOM_L_SUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_sub_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_SUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_sub_ru32: + IntNo = AMDILISD::ATOM_R_SUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_sub_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_sub_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_SUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_gu32: + IntNo = AMDILISD::ATOM_G_RSUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_RSUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_li32: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_lu32: + IntNo = AMDILISD::ATOM_L_RSUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_RSUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_ru32: + IntNo = AMDILISD::ATOM_R_RSUB; break; + case AMDGPUIntrinsic::AMDIL_atomic_rsub_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_rsub_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_RSUB_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gf32: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gu32: + IntNo = AMDILISD::ATOM_G_XCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gf32_noret: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_XCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_lf32: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_li32: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_lu32: + IntNo = AMDILISD::ATOM_L_XCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_lf32_noret: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_XCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_rf32: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_ru32: + IntNo = AMDILISD::ATOM_R_XCHG; break; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_rf32_noret: + bitCastToInt = true; + case AMDGPUIntrinsic::AMDIL_atomic_xchg_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xchg_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_XCHG_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_gi32: + case AMDGPUIntrinsic::AMDIL_atomic_xor_gu32: + IntNo = AMDILISD::ATOM_G_XOR; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_gi32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xor_gu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_G_XOR_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_li32: + case AMDGPUIntrinsic::AMDIL_atomic_xor_lu32: + IntNo = AMDILISD::ATOM_L_XOR; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_li32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xor_lu32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_L_XOR_NORET; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_ri32: + case AMDGPUIntrinsic::AMDIL_atomic_xor_ru32: + IntNo = AMDILISD::ATOM_R_XOR; break; + case AMDGPUIntrinsic::AMDIL_atomic_xor_ri32_noret: + case AMDGPUIntrinsic::AMDIL_atomic_xor_ru32_noret: + isRet = false; + IntNo = AMDILISD::ATOM_R_XOR_NORET; break; + case AMDGPUIntrinsic::AMDIL_append_alloc_i32: + IntNo = AMDILISD::APPEND_ALLOC; break; + case AMDGPUIntrinsic::AMDIL_append_alloc_i32_noret: + isRet = false; + IntNo = AMDILISD::APPEND_ALLOC_NORET; break; + case AMDGPUIntrinsic::AMDIL_append_consume_i32: + IntNo = AMDILISD::APPEND_CONSUME; break; + case AMDGPUIntrinsic::AMDIL_append_consume_i32_noret: + isRet = false; + IntNo = AMDILISD::APPEND_CONSUME_NORET; break; + }; + const AMDILSubtarget *stm = &this->getTargetMachine() + .getSubtarget<AMDILSubtarget>(); + AMDILKernelManager *KM = const_cast<AMDILKernelManager*>( + stm->getKernelManager()); + KM->setOutputInst(); + + Info.opc = IntNo; + Info.memVT = (bitCastToInt) ? MVT::f32 : MVT::i32; + Info.ptrVal = I.getOperand(0); + Info.offset = 0; + Info.align = 4; + Info.vol = true; + Info.readMem = isRet; + Info.writeMem = true; + return true; +} +// The backend supports 32 and 64 bit floating point immediates +bool +AMDILTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const +{ + if (VT.getScalarType().getSimpleVT().SimpleTy == MVT::f32 + || VT.getScalarType().getSimpleVT().SimpleTy == MVT::f64) { + return true; + } else { + return false; + } +} + +bool +AMDILTargetLowering::ShouldShrinkFPConstant(EVT VT) const +{ + if (VT.getScalarType().getSimpleVT().SimpleTy == MVT::f32 + || VT.getScalarType().getSimpleVT().SimpleTy == MVT::f64) { + return false; + } else { + return true; + } +} + + +// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to +// be zero. Op is expected to be a target specific node. Used by DAG +// combiner. + +void +AMDILTargetLowering::computeMaskedBitsForTargetNode( + const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const +{ + APInt KnownZero2; + APInt KnownOne2; + KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything + switch (Op.getOpcode()) { + default: break; + case AMDILISD::SELECT_CC: + DAG.ComputeMaskedBits( + Op.getOperand(1), + KnownZero, + KnownOne, + Depth + 1 + ); + DAG.ComputeMaskedBits( + Op.getOperand(0), + KnownZero2, + KnownOne2 + ); + assert((KnownZero & KnownOne) == 0 + && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 + && "Bits known to be one AND zero?"); + // Only known if known in both the LHS and RHS + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + break; + }; +} + +// This is the function that determines which calling convention should +// be used. Currently there is only one calling convention +CCAssignFn* +AMDILTargetLowering::CCAssignFnForNode(unsigned int Op) const +{ + //uint64_t CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + return CC_AMDIL32; +} + +// LowerCallResult - Lower the result values of an ISD::CALL into the +// appropriate copies out of appropriate physical registers. This assumes that +// Chain/InFlag are the input chain/flag to use, and that TheCall is the call +// being lowered. The returns a SDNode with the same number of values as the +// ISD::CALL. +SDValue +AMDILTargetLowering::LowerCallResult( + SDValue Chain, + SDValue InFlag, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const +{ + // Assign locations to each value returned by this call + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_AMDIL32); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + EVT CopyVT = RVLocs[i].getValVT(); + if (RVLocs[i].isRegLoc()) { + Chain = DAG.getCopyFromReg( + Chain, + dl, + RVLocs[i].getLocReg(), + CopyVT, + InFlag + ).getValue(1); + SDValue Val = Chain.getValue(0); + InFlag = Chain.getValue(2); + InVals.push_back(Val); + } + } + + return Chain; + +} + +//===----------------------------------------------------------------------===// +// Other Lowering Hooks +//===----------------------------------------------------------------------===// + +MachineBasicBlock * +AMDILTargetLowering::EmitInstrWithCustomInserter( + MachineInstr *MI, MachineBasicBlock *BB) const +{ + const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo(); + switch (MI->getOpcode()) { + ExpandCaseToAllTypes(AMDIL::CMP); + generateCMPInstr(MI, BB, TII); + MI->eraseFromParent(); + break; + default: + break; + } + return BB; +} + +// Recursively assign SDNodeOrdering to any unordered nodes +// This is necessary to maintain source ordering of instructions +// under -O0 to avoid odd-looking "skipping around" issues. + static const SDValue +Ordered( SelectionDAG &DAG, unsigned order, const SDValue New ) +{ + if (order != 0 && DAG.GetOrdering( New.getNode() ) == 0) { + DAG.AssignOrdering( New.getNode(), order ); + for (unsigned i = 0, e = New.getNumOperands(); i < e; ++i) + Ordered( DAG, order, New.getOperand(i) ); + } + return New; +} + +#define LOWER(A) \ + case ISD:: A: \ +return Ordered( DAG, DAG.GetOrdering( Op.getNode() ), Lower##A(Op, DAG) ) + +SDValue +AMDILTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const +{ + switch (Op.getOpcode()) { + default: + Op.getNode()->dump(); + assert(0 && "Custom lowering code for this" + "instruction is not implemented yet!"); + break; + LOWER(GlobalAddress); + LOWER(JumpTable); + LOWER(ConstantPool); + LOWER(ExternalSymbol); + LOWER(FP_TO_SINT); + LOWER(FP_TO_UINT); + LOWER(SINT_TO_FP); + LOWER(UINT_TO_FP); + LOWER(ADD); + LOWER(MUL); + LOWER(SUB); + LOWER(FDIV); + LOWER(SDIV); + LOWER(SREM); + LOWER(UDIV); + LOWER(UREM); + LOWER(BUILD_VECTOR); + LOWER(INSERT_VECTOR_ELT); + LOWER(EXTRACT_VECTOR_ELT); + LOWER(EXTRACT_SUBVECTOR); + LOWER(SCALAR_TO_VECTOR); + LOWER(CONCAT_VECTORS); + LOWER(AND); + LOWER(OR); + LOWER(SELECT); + LOWER(SELECT_CC); + LOWER(SETCC); + LOWER(SIGN_EXTEND_INREG); + LOWER(BITCAST); + LOWER(DYNAMIC_STACKALLOC); + LOWER(BRCOND); + LOWER(BR_CC); + LOWER(FP_ROUND); + } + return Op; +} + +int +AMDILTargetLowering::getVarArgsFrameOffset() const +{ + return VarArgsFrameOffset; +} +#undef LOWER + +SDValue +AMDILTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const +{ + SDValue DST = Op; + const GlobalAddressSDNode *GADN = cast<GlobalAddressSDNode>(Op); + const GlobalValue *G = GADN->getGlobal(); + const AMDILSubtarget *stm = &this->getTargetMachine() + .getSubtarget<AMDILSubtarget>(); + const AMDILGlobalManager *GM = stm->getGlobalManager(); + DebugLoc DL = Op.getDebugLoc(); + int64_t base_offset = GADN->getOffset(); + int32_t arrayoffset = GM->getArrayOffset(G->getName()); + int32_t constoffset = GM->getConstOffset(G->getName()); + if (arrayoffset != -1) { + DST = DAG.getConstant(arrayoffset, MVT::i32); + DST = DAG.getNode(ISD::ADD, DL, MVT::i32, + DST, DAG.getConstant(base_offset, MVT::i32)); + } else if (constoffset != -1) { + if (GM->getConstHWBit(G->getName())) { + DST = DAG.getConstant(constoffset, MVT::i32); + DST = DAG.getNode(ISD::ADD, DL, MVT::i32, + DST, DAG.getConstant(base_offset, MVT::i32)); + } else { + SDValue addr = DAG.getTargetGlobalAddress(G, DL, MVT::i32); + SDValue DPReg = DAG.getRegister(AMDIL::SDP, MVT::i32); + DPReg = DAG.getNode(ISD::ADD, DL, MVT::i32, DPReg, + DAG.getConstant(base_offset, MVT::i32)); + DST = DAG.getNode(AMDILISD::ADDADDR, DL, MVT::i32, addr, DPReg); + } + } else { + const GlobalVariable *GV = dyn_cast<GlobalVariable>(G); + if (!GV) { + DST = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); + } else { + if (GV->hasInitializer()) { + const Constant *C = dyn_cast<Constant>(GV->getInitializer()); + if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + DST = DAG.getConstant(CI->getValue(), Op.getValueType()); + + } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(C)) { + DST = DAG.getConstantFP(CF->getValueAPF(), + Op.getValueType()); + } else if (dyn_cast<ConstantAggregateZero>(C)) { + EVT VT = Op.getValueType(); + if (VT.isInteger()) { + DST = DAG.getConstant(0, VT); + } else { + DST = DAG.getConstantFP(0, VT); + } + } else { + assert(!"lowering this type of Global Address " + "not implemented yet!"); + C->dump(); + DST = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); + } + } else { + DST = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); + } + } + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const +{ + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); + return Result; +} +SDValue +AMDILTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const +{ + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + EVT PtrVT = Op.getValueType(); + SDValue Result; + if (CP->isMachineConstantPoolEntry()) { + Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, + CP->getAlignment(), CP->getOffset(), CP->getTargetFlags()); + } else { + Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, + CP->getAlignment(), CP->getOffset(), CP->getTargetFlags()); + } + return Result; +} + +SDValue +AMDILTargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const +{ + const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + SDValue Result = DAG.getTargetExternalSymbol(Sym, MVT::i32); + return Result; +} +/// LowerFORMAL_ARGUMENTS - transform physical registers into +/// virtual registers and generate load operations for +/// arguments places on the stack. +/// TODO: isVarArg, hasStructRet, isMemReg + SDValue +AMDILTargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) +const +{ + + MachineFunction &MF = DAG.getMachineFunction(); + AMDILMachineFunctionInfo *FuncInfo + = MF.getInfo<AMDILMachineFunctionInfo>(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + //const Function *Fn = MF.getFunction(); + //MachineRegisterInfo &RegInfo = MF.getRegInfo(); + + SmallVector<CCValAssign, 16> ArgLocs; + CallingConv::ID CC = MF.getFunction()->getCallingConv(); + //bool hasStructRet = MF.getFunction()->hasStructRetAttr(); + + CCState CCInfo(CC, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + // When more calling conventions are added, they need to be chosen here + CCInfo.AnalyzeFormalArguments(Ins, CC_AMDIL32); + SDValue StackPtr; + + //unsigned int FirstStackArgLoc = 0; + + for (unsigned int i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) { + EVT RegVT = VA.getLocVT(); + const TargetRegisterClass *RC = getRegClassFromType( + RegVT.getSimpleVT().SimpleTy); + + unsigned int Reg = MF.addLiveIn(VA.getLocReg(), RC); + SDValue ArgValue = DAG.getCopyFromReg( + Chain, + dl, + Reg, + RegVT); + // If this is an 8 or 16-bit value, it is really passed + // promoted to 32 bits. Insert an assert[sz]ext to capture + // this, then truncate to the right size. + + if (VA.getLocInfo() == CCValAssign::SExt) { + ArgValue = DAG.getNode( + ISD::AssertSext, + dl, + RegVT, + ArgValue, + DAG.getValueType(VA.getValVT())); + } else if (VA.getLocInfo() == CCValAssign::ZExt) { + ArgValue = DAG.getNode( + ISD::AssertZext, + dl, + RegVT, + ArgValue, + DAG.getValueType(VA.getValVT())); + } + if (VA.getLocInfo() != CCValAssign::Full) { + ArgValue = DAG.getNode( + ISD::TRUNCATE, + dl, + VA.getValVT(), + ArgValue); + } + // Add the value to the list of arguments + // to be passed in registers + InVals.push_back(ArgValue); + if (isVarArg) { + assert(0 && "Variable arguments are not yet supported"); + // See MipsISelLowering.cpp for ideas on how to implement + } + } else if(VA.isMemLoc()) { + InVals.push_back(LowerMemArgument(Chain, CallConv, Ins, + dl, DAG, VA, MFI, i)); + } else { + assert(0 && "found a Value Assign that is " + "neither a register or a memory location"); + } + } + /*if (hasStructRet) { + assert(0 && "Has struct return is not yet implemented"); + // See MipsISelLowering.cpp for ideas on how to implement + }*/ + + unsigned int StackSize = CCInfo.getNextStackOffset(); + if (isVarArg) { + assert(0 && "Variable arguments are not yet supported"); + // See X86/PPC/CellSPU ISelLowering.cpp for ideas on how to implement + } + // This needs to be changed to non-zero if the return function needs + // to pop bytes + FuncInfo->setBytesToPopOnReturn(StackSize); + return Chain; +} +/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified +/// by "Src" to address "Dst" with size and alignment information specified by +/// the specific parameter attribute. The copy will be passed as a byval +/// function parameter. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG) { + assert(0 && "MemCopy does not exist yet"); + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); + + return DAG.getMemcpy(Chain, + Src.getDebugLoc(), + Dst, Src, SizeNode, Flags.getByValAlign(), + /*IsVol=*/false, /*AlwaysInline=*/true, + MachinePointerInfo(), MachinePointerInfo()); +} + +SDValue +AMDILTargetLowering::LowerMemOpCallTo(SDValue Chain, + SDValue StackPtr, SDValue Arg, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + ISD::ArgFlagsTy Flags) const +{ + unsigned int LocMemOffset = VA.getLocMemOffset(); + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); + PtrOff = DAG.getNode(ISD::ADD, + dl, + getPointerTy(), StackPtr, PtrOff); + if (Flags.isByVal()) { + PtrOff = CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); + } else { + PtrOff = DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo::getStack(LocMemOffset), + false, false, 0); + } + return PtrOff; +} +/// LowerCAL - functions arguments are copied from virtual +/// regs to (physical regs)/(stack frame), CALLSEQ_START and +/// CALLSEQ_END are emitted. +/// TODO: isVarArg, isTailCall, hasStructRet +SDValue +AMDILTargetLowering::LowerCall(SDValue Chain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, bool doesNotRet, + bool& isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) +const +{ + isTailCall = false; + MachineFunction& MF = DAG.getMachineFunction(); + // FIXME: DO we need to handle fast calling conventions and tail call + // optimizations?? X86/PPC ISelLowering + /*bool hasStructRet = (TheCall->getNumArgs()) + ? TheCall->getArgFlags(0).device()->isSRet() + : false;*/ + + MachineFrameInfo *MFI = MF.getFrameInfo(); + + // Analyze operands of the call, assigning locations to each operand + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + // Analyize the calling operands, but need to change + // if we have more than one calling convetion + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); + + unsigned int NumBytes = CCInfo.getNextStackOffset(); + if (isTailCall) { + assert(isTailCall && "Tail Call not handled yet!"); + // See X86/PPC ISelLowering + } + + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); + + SmallVector<std::pair<unsigned int, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + //unsigned int FirstStacArgLoc = 0; + //int LastArgStackLoc = 0; + + // Walk the register/memloc assignments, insert copies/loads + for (unsigned int i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + //bool isByVal = Flags.isByVal(); // handle byval/bypointer registers + // Arguments start after the 5 first operands of ISD::CALL + SDValue Arg = OutVals[i]; + //Promote the value if needed + switch(VA.getLocInfo()) { + default: assert(0 && "Unknown loc info!"); + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, + dl, + VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, + dl, + VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, + dl, + VA.getLocVT(), Arg); + break; + } + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else if (VA.isMemLoc()) { + // Create the frame index object for this incoming parameter + int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, + VA.getLocMemOffset(), true); + SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo::getFixedStack(FI), + false, false, 0)); + } else { + assert(0 && "Not a Reg/Mem Loc, major error!"); + } + } + if (!MemOpChains.empty()) { + Chain = DAG.getNode(ISD::TokenFactor, + dl, + MVT::Other, + &MemOpChains[0], + MemOpChains.size()); + } + SDValue InFlag; + if (!isTailCall) { + for (unsigned int i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, + dl, + RegsToPass[i].first, + RegsToPass[i].second, + InFlag); + InFlag = Chain.getValue(1); + } + } + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, + // every direct call is) turn it into a TargetGlobalAddress/ + // TargetExternalSymbol + // node so that legalize doesn't hack it. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy()); + } + else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); + } + else if (isTailCall) { + assert(0 && "Tail calls are not handled yet"); + // see X86 ISelLowering for ideas on implementation: 1708 + } + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVTGLUE); + SmallVector<SDValue, 8> Ops; + + if (isTailCall) { + assert(0 && "Tail calls are not handled yet"); + // see X86 ISelLowering for ideas on implementation: 1721 + } + // If this is a direct call, pass the chain and the callee + if (Callee.getNode()) { + Ops.push_back(Chain); + Ops.push_back(Callee); + } + + if (isTailCall) { + assert(0 && "Tail calls are not handled yet"); + // see X86 ISelLowering for ideas on implementation: 1739 + } + + // Add argument registers to the end of the list so that they are known + // live into the call + for (unsigned int i = 0, e = RegsToPass.size(); i != e; ++i) { + Ops.push_back(DAG.getRegister( + RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + } + if (InFlag.getNode()) { + Ops.push_back(InFlag); + } + + // Emit Tail Call + if (isTailCall) { + assert(0 && "Tail calls are not handled yet"); + // see X86 ISelLowering for ideas on implementation: 1762 + } + + Chain = DAG.getNode(AMDILISD::CALL, + dl, + NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node + Chain = DAG.getCALLSEQ_END( + Chain, + DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), + InFlag); + InFlag = Chain.getValue(1); + // Handle result values, copying them out of physregs into vregs that + // we return + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, + InVals); +} +static void checkMADType( + SDValue Op, const AMDILSubtarget *STM, bool& is24bitMAD, bool& is32bitMAD) +{ + bool globalLoadStore = false; + is24bitMAD = false; + is32bitMAD = false; + return; + assert(Op.getOpcode() == ISD::ADD && "The opcode must be a add in order for " + "this to work correctly!"); + if (Op.getNode()->use_empty()) { + return; + } + for (SDNode::use_iterator nBegin = Op.getNode()->use_begin(), + nEnd = Op.getNode()->use_end(); nBegin != nEnd; ++nBegin) { + SDNode *ptr = *nBegin; + const LSBaseSDNode *lsNode = dyn_cast<LSBaseSDNode>(ptr); + // If we are not a LSBaseSDNode then we don't do this + // optimization. + // If we are a LSBaseSDNode, but the op is not the offset + // or base pointer, then we don't do this optimization + // (i.e. we are the value being stored) + if (!lsNode || + (lsNode->writeMem() && lsNode->getOperand(1) == Op)) { + return; + } + const PointerType *PT = + dyn_cast<PointerType>(lsNode->getSrcValue()->getType()); + unsigned as = PT->getAddressSpace(); + switch(as) { + default: + globalLoadStore = true; + case AMDILAS::PRIVATE_ADDRESS: + if (!STM->device()->usesHardware(AMDILDeviceInfo::PrivateMem)) { + globalLoadStore = true; + } + break; + case AMDILAS::CONSTANT_ADDRESS: + if (!STM->device()->usesHardware(AMDILDeviceInfo::ConstantMem)) { + globalLoadStore = true; + } + break; + case AMDILAS::LOCAL_ADDRESS: + if (!STM->device()->usesHardware(AMDILDeviceInfo::LocalMem)) { + globalLoadStore = true; + } + break; + case AMDILAS::REGION_ADDRESS: + if (!STM->device()->usesHardware(AMDILDeviceInfo::RegionMem)) { + globalLoadStore = true; + } + break; + } + } + if (globalLoadStore) { + is32bitMAD = true; + } else { + is24bitMAD = true; + } +} + +SDValue +AMDILTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const +{ + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue DST; + const AMDILSubtarget *stm = &this->getTargetMachine() + .getSubtarget<AMDILSubtarget>(); + bool isVec = OVT.isVector(); + if (OVT.getScalarType() == MVT::i64) { + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i64) { + INTTY = MVT::v2i32; + } + if (stm->device()->usesHardware(AMDILDeviceInfo::LongOps) + && INTTY == MVT::i32) { + DST = DAG.getNode(AMDILISD::ADD, + DL, + OVT, + LHS, RHS); + } else { + SDValue LHSLO, LHSHI, RHSLO, RHSHI, INTLO, INTHI; + // TODO: need to turn this into a bitcast of i64/v2i64 to v2i32/v4i32 + LHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, LHS); + RHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, RHS); + LHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTTY, LHS); + RHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTTY, RHS); + INTLO = DAG.getNode(ISD::ADD, DL, INTTY, LHSLO, RHSLO); + INTHI = DAG.getNode(ISD::ADD, DL, INTTY, LHSHI, RHSHI); + SDValue cmp; + cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETULT, MVT::i32), MVT::i32), + INTLO, RHSLO); + cmp = DAG.getNode(AMDILISD::INEGATE, DL, INTTY, cmp); + INTHI = DAG.getNode(ISD::ADD, DL, INTTY, INTHI, cmp); + DST = DAG.getNode((isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, OVT, + INTLO, INTHI); + } + } else { + if (LHS.getOpcode() == ISD::FrameIndex || + RHS.getOpcode() == ISD::FrameIndex) { + DST = DAG.getNode(AMDILISD::ADDADDR, + DL, + OVT, + LHS, RHS); + } else { + if (stm->device()->usesHardware(AMDILDeviceInfo::LocalMem) + && LHS.getNumOperands() + && RHS.getNumOperands()) { + bool is24bitMAD = false; + bool is32bitMAD = false; + const ConstantSDNode *LHSConstOpCode = + dyn_cast<ConstantSDNode>(LHS.getOperand(LHS.getNumOperands()-1)); + const ConstantSDNode *RHSConstOpCode = + dyn_cast<ConstantSDNode>(RHS.getOperand(RHS.getNumOperands()-1)); + if ((LHS.getOpcode() == ISD::SHL && LHSConstOpCode) + || (RHS.getOpcode() == ISD::SHL && RHSConstOpCode) + || LHS.getOpcode() == ISD::MUL + || RHS.getOpcode() == ISD::MUL) { + SDValue Op1, Op2, Op3; + // FIXME: Fix this so that it works for unsigned 24bit ops. + if (LHS.getOpcode() == ISD::MUL) { + Op1 = LHS.getOperand(0); + Op2 = LHS.getOperand(1); + Op3 = RHS; + } else if (RHS.getOpcode() == ISD::MUL) { + Op1 = RHS.getOperand(0); + Op2 = RHS.getOperand(1); + Op3 = LHS; + } else if (LHS.getOpcode() == ISD::SHL && LHSConstOpCode) { + Op1 = LHS.getOperand(0); + Op2 = DAG.getConstant( + 1 << LHSConstOpCode->getZExtValue(), MVT::i32); + Op3 = RHS; + } else if (RHS.getOpcode() == ISD::SHL && RHSConstOpCode) { + Op1 = RHS.getOperand(0); + Op2 = DAG.getConstant( + 1 << RHSConstOpCode->getZExtValue(), MVT::i32); + Op3 = LHS; + } + checkMADType(Op, stm, is24bitMAD, is32bitMAD); + // We can possibly do a MAD transform! + if (is24bitMAD && stm->device()->usesHardware(AMDILDeviceInfo::Signed24BitOps)) { + uint32_t opcode = AMDGPUIntrinsic::AMDIL_mad24_i32; + SDVTList Tys = DAG.getVTList(OVT/*, MVT::Other*/); + DST = DAG.getNode(ISD::INTRINSIC_W_CHAIN, + DL, Tys, DAG.getEntryNode(), DAG.getConstant(opcode, MVT::i32), + Op1, Op2, Op3); + } else if(is32bitMAD) { + SDVTList Tys = DAG.getVTList(OVT/*, MVT::Other*/); + DST = DAG.getNode(ISD::INTRINSIC_W_CHAIN, + DL, Tys, DAG.getEntryNode(), + DAG.getConstant( + AMDGPUIntrinsic::AMDIL_mad_i32, MVT::i32), + Op1, Op2, Op3); + } + } + } + DST = DAG.getNode(AMDILISD::ADD, + DL, + OVT, + LHS, RHS); + } + } + return DST; +} +SDValue +AMDILTargetLowering::genCLZuN(SDValue Op, SelectionDAG &DAG, + uint32_t bits) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT INTTY = Op.getValueType(); + EVT FPTY; + if (INTTY.isVector()) { + FPTY = EVT(MVT::getVectorVT(MVT::f32, + INTTY.getVectorNumElements())); + } else { + FPTY = EVT(MVT::f32); + } + /* static inline uint + __clz_Nbit(uint x) + { + int xor = 0x3f800000U | x; + float tp = as_float(xor); + float t = tp + -1.0f; + uint tint = as_uint(t); + int cmp = (x != 0); + uint tsrc = tint >> 23; + uint tmask = tsrc & 0xffU; + uint cst = (103 + N)U - tmask; + return cmp ? cst : N; + } + */ + assert(INTTY.getScalarType().getSimpleVT().SimpleTy == MVT::i32 + && "genCLZu16 only works on 32bit types"); + // uint x = Op + SDValue x = Op; + // xornode = 0x3f800000 | x + SDValue xornode = DAG.getNode(ISD::OR, DL, INTTY, + DAG.getConstant(0x3f800000, INTTY), x); + // float tp = as_float(xornode) + SDValue tp = DAG.getNode(ISDBITCAST, DL, FPTY, xornode); + // float t = tp + -1.0f + SDValue t = DAG.getNode(ISD::FADD, DL, FPTY, tp, + DAG.getConstantFP(-1.0f, FPTY)); + // uint tint = as_uint(t) + SDValue tint = DAG.getNode(ISDBITCAST, DL, INTTY, t); + // int cmp = (x != 0) + SDValue cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETNE, MVT::i32), MVT::i32), x, + DAG.getConstant(0, INTTY)); + // uint tsrc = tint >> 23 + SDValue tsrc = DAG.getNode(ISD::SRL, DL, INTTY, tint, + DAG.getConstant(23, INTTY)); + // uint tmask = tsrc & 0xFF + SDValue tmask = DAG.getNode(ISD::AND, DL, INTTY, tsrc, + DAG.getConstant(0xFFU, INTTY)); + // uint cst = (103 + bits) - tmask + SDValue cst = DAG.getNode(ISD::SUB, DL, INTTY, + DAG.getConstant((103U + bits), INTTY), tmask); + // return cmp ? cst : N + cst = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, cmp, cst, + DAG.getConstant(bits, INTTY)); + return cst; +} + +SDValue +AMDILTargetLowering::genCLZu32(SDValue Op, SelectionDAG &DAG) const +{ + SDValue DST = SDValue(); + DebugLoc DL = Op.getDebugLoc(); + EVT INTTY = Op.getValueType(); + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->getGeneration() >= AMDILDeviceInfo::HD5XXX) { + //__clz_32bit(uint u) + //{ + // int z = __amdil_ffb_hi(u) ; + // return z < 0 ? 32 : z; + // } + // uint u = op + SDValue u = Op; + // int z = __amdil_ffb_hi(u) + SDValue z = DAG.getNode(AMDILISD::IFFB_HI, DL, INTTY, u); + // int cmp = z < 0 + SDValue cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::i32), MVT::i32), + z, DAG.getConstant(0, INTTY)); + // return cmp ? 32 : z + DST = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, cmp, + DAG.getConstant(32, INTTY), z); + } else if (stm->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + // static inline uint + //__clz_32bit(uint x) + //{ + // uint zh = __clz_16bit(x >> 16); + // uint zl = __clz_16bit(x & 0xffffU); + // return zh == 16U ? 16U + zl : zh; + //} + // uint x = Op + SDValue x = Op; + // uint xs16 = x >> 16 + SDValue xs16 = DAG.getNode(ISD::SRL, DL, INTTY, x, + DAG.getConstant(16, INTTY)); + // uint zh = __clz_16bit(xs16) + SDValue zh = genCLZuN(xs16, DAG, 16); + // uint xa16 = x & 0xFFFF + SDValue xa16 = DAG.getNode(ISD::AND, DL, INTTY, x, + DAG.getConstant(0xFFFFU, INTTY)); + // uint zl = __clz_16bit(xa16) + SDValue zl = genCLZuN(xa16, DAG, 16); + // uint cmp = zh == 16U + SDValue cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + zh, DAG.getConstant(16U, INTTY)); + // uint zl16 = zl + 16 + SDValue zl16 = DAG.getNode(ISD::ADD, DL, INTTY, + DAG.getConstant(16, INTTY), zl); + // return cmp ? zl16 : zh + DST = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, + cmp, zl16, zh); + } else { + assert(0 && "Attempting to generate a CLZ function with an" + " unknown graphics card"); + } + return DST; +} +SDValue +AMDILTargetLowering::genCLZu64(SDValue Op, SelectionDAG &DAG) const +{ + SDValue DST = SDValue(); + DebugLoc DL = Op.getDebugLoc(); + EVT INTTY; + EVT LONGTY = Op.getValueType(); + bool isVec = LONGTY.isVector(); + if (isVec) { + INTTY = EVT(MVT::getVectorVT(MVT::i32, Op.getValueType() + .getVectorNumElements())); + } else { + INTTY = EVT(MVT::i32); + } + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->getGeneration() >= AMDILDeviceInfo::HD5XXX) { + // Evergreen: + // static inline uint + // __clz_u64(ulong x) + // { + //uint zhi = __clz_32bit((uint)(x >> 32)); + //uint zlo = __clz_32bit((uint)(x & 0xffffffffUL)); + //return zhi == 32U ? 32U + zlo : zhi; + //} + //ulong x = op + SDValue x = Op; + // uint xhi = x >> 32 + SDValue xlo = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, x); + // uint xlo = x & 0xFFFFFFFF + SDValue xhi = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTTY, x); + // uint zhi = __clz_32bit(xhi) + SDValue zhi = genCLZu32(xhi, DAG); + // uint zlo = __clz_32bit(xlo) + SDValue zlo = genCLZu32(xlo, DAG); + // uint cmp = zhi == 32 + SDValue cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + zhi, DAG.getConstant(32U, INTTY)); + // uint zlop32 = 32 + zlo + SDValue zlop32 = DAG.getNode(AMDILISD::ADD, DL, INTTY, + DAG.getConstant(32U, INTTY), zlo); + // return cmp ? zlop32: zhi + DST = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, cmp, zlop32, zhi); + } else if (stm->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + // HD4XXX: + // static inline uint + //__clz_64bit(ulong x) + //{ + //uint zh = __clz_23bit((uint)(x >> 46)) - 5U; + //uint zm = __clz_23bit((uint)(x >> 23) & 0x7fffffU); + //uint zl = __clz_23bit((uint)x & 0x7fffffU); + //uint r = zh == 18U ? 18U + zm : zh; + //return zh + zm == 41U ? 41U + zl : r; + //} + //ulong x = Op + SDValue x = Op; + // ulong xs46 = x >> 46 + SDValue xs46 = DAG.getNode(ISD::SRL, DL, LONGTY, x, + DAG.getConstant(46, LONGTY)); + // uint ixs46 = (uint)xs46 + SDValue ixs46 = DAG.getNode(ISD::TRUNCATE, DL, INTTY, xs46); + // ulong xs23 = x >> 23 + SDValue xs23 = DAG.getNode(ISD::SRL, DL, LONGTY, x, + DAG.getConstant(23, LONGTY)); + // uint ixs23 = (uint)xs23 + SDValue ixs23 = DAG.getNode(ISD::TRUNCATE, DL, INTTY, xs23); + // uint xs23m23 = ixs23 & 0x7FFFFF + SDValue xs23m23 = DAG.getNode(ISD::AND, DL, INTTY, ixs23, + DAG.getConstant(0x7fffffU, INTTY)); + // uint ix = (uint)x + SDValue ix = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, x); + // uint xm23 = ix & 0x7FFFFF + SDValue xm23 = DAG.getNode(ISD::AND, DL, INTTY, ix, + DAG.getConstant(0x7fffffU, INTTY)); + // uint zh = __clz_23bit(ixs46) + SDValue zh = genCLZuN(ixs46, DAG, 23); + // uint zm = __clz_23bit(xs23m23) + SDValue zm = genCLZuN(xs23m23, DAG, 23); + // uint zl = __clz_23bit(xm23) + SDValue zl = genCLZuN(xm23, DAG, 23); + // uint zhm5 = zh - 5 + SDValue zhm5 = DAG.getNode(ISD::ADD, DL, INTTY, zh, + DAG.getConstant(-5U, INTTY)); + SDValue const18 = DAG.getConstant(18, INTTY); + SDValue const41 = DAG.getConstant(41, INTTY); + // uint cmp1 = zh = 18 + SDValue cmp1 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + zhm5, const18); + // uint zhm5zm = zhm5 + zh + SDValue zhm5zm = DAG.getNode(ISD::ADD, DL, INTTY, zhm5, zm); + // uint cmp2 = zhm5zm == 41 + SDValue cmp2 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + zhm5zm, const41); + // uint zmp18 = zhm5 + 18 + SDValue zmp18 = DAG.getNode(ISD::ADD, DL, INTTY, zm, const18); + // uint zlp41 = zl + 41 + SDValue zlp41 = DAG.getNode(ISD::ADD, DL, INTTY, zl, const41); + // uint r = cmp1 ? zmp18 : zh + SDValue r = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, + cmp1, zmp18, zhm5); + // return cmp2 ? zlp41 : r + DST = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, cmp2, zlp41, r); + } else { + assert(0 && "Attempting to generate a CLZ function with an" + " unknown graphics card"); + } + return DST; +} +SDValue +AMDILTargetLowering::genf64toi64(SDValue RHS, SelectionDAG &DAG, + bool includeSign) const +{ + EVT INTVT; + EVT LONGVT; + SDValue DST; + DebugLoc DL = RHS.getDebugLoc(); + EVT RHSVT = RHS.getValueType(); + bool isVec = RHSVT.isVector(); + if (isVec) { + LONGVT = EVT(MVT::getVectorVT(MVT::i64, RHSVT + .getVectorNumElements())); + INTVT = EVT(MVT::getVectorVT(MVT::i32, RHSVT + .getVectorNumElements())); + } else { + LONGVT = EVT(MVT::i64); + INTVT = EVT(MVT::i32); + } + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // unsigned version: + // uint uhi = (uint)(d * 0x1.0p-32); + // uint ulo = (uint)(mad((double)uhi, -0x1.0p+32, d)); + // return as_ulong2((uint2)(ulo, uhi)); + // + // signed version: + // double ad = fabs(d); + // long l = unsigned_version(ad); + // long nl = -l; + // return d == ad ? l : nl; + SDValue d = RHS; + if (includeSign) { + d = DAG.getNode(ISD::FABS, DL, RHSVT, d); + } + SDValue uhid = DAG.getNode(ISD::FMUL, DL, RHSVT, d, + DAG.getConstantFP(0x2f800000, RHSVT)); + SDValue uhi = DAG.getNode(ISD::FP_TO_UINT, DL, INTVT, uhid); + SDValue ulod = DAG.getNode(ISD::UINT_TO_FP, DL, RHSVT, uhi); + ulod = DAG.getNode(AMDILISD::MAD, DL, RHSVT, ulod, + DAG.getConstantFP(0xcf800000, RHSVT), d); + SDValue ulo = DAG.getNode(ISD::FP_TO_UINT, DL, INTVT, ulod); + SDValue l = DAG.getNode((isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, ulo, uhi); + if (includeSign) { + SDValue nl = DAG.getNode(AMDILISD::INEGATE, DL, LONGVT, l); + SDValue c = DAG.getNode(AMDILISD::CMP, DL, RHSVT, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::f64), MVT::i32), + RHS, d); + l = DAG.getNode(AMDILISD::CMOVLOG, DL, LONGVT, c, l, nl); + } + DST = l; + } else { + /* + __attribute__((always_inline)) long + cast_f64_to_i64(double d) + { + // Convert d in to 32-bit components + long x = as_long(d); + xhi = LCOMPHI(x); + xlo = LCOMPLO(x); + + // Generate 'normalized' mantissa + mhi = xhi | 0x00100000; // hidden bit + mhi <<= 11; + temp = xlo >> (32 - 11); + mhi |= temp + mlo = xlo << 11; + + // Compute shift right count from exponent + e = (xhi >> (52-32)) & 0x7ff; + sr = 1023 + 63 - e; + srge64 = sr >= 64; + srge32 = sr >= 32; + + // Compute result for 0 <= sr < 32 + rhi0 = mhi >> (sr &31); + rlo0 = mlo >> (sr &31); + temp = mhi << (32 - sr); + temp |= rlo0; + rlo0 = sr ? temp : rlo0; + + // Compute result for 32 <= sr + rhi1 = 0; + rlo1 = srge64 ? 0 : rhi0; + + // Pick between the 2 results + rhi = srge32 ? rhi1 : rhi0; + rlo = srge32 ? rlo1 : rlo0; + + // Optional saturate on overflow + srlt0 = sr < 0; + rhi = srlt0 ? MAXVALUE : rhi; + rlo = srlt0 ? MAXVALUE : rlo; + + // Create long + res = LCREATE( rlo, rhi ); + + // Deal with sign bit (ignoring whether result is signed or unsigned value) + if (includeSign) { + sign = ((signed int) xhi) >> 31; fill with sign bit + sign = LCREATE( sign, sign ); + res += sign; + res ^= sign; + } + + return res; + } + */ + SDValue c11 = DAG.getConstant( 63 - 52, INTVT ); + SDValue c32 = DAG.getConstant( 32, INTVT ); + + // Convert d in to 32-bit components + SDValue d = RHS; + SDValue x = DAG.getNode(ISDBITCAST, DL, LONGVT, d); + SDValue xhi = DAG.getNode( (isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, x ); + SDValue xlo = DAG.getNode( (isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, x ); + + // Generate 'normalized' mantissa + SDValue mhi = DAG.getNode( ISD::OR, DL, INTVT, + xhi, DAG.getConstant( 0x00100000, INTVT ) ); + mhi = DAG.getNode( ISD::SHL, DL, INTVT, mhi, c11 ); + SDValue temp = DAG.getNode( ISD::SRL, DL, INTVT, + xlo, DAG.getConstant( 32 - (63 - 52), INTVT ) ); + mhi = DAG.getNode( ISD::OR, DL, INTVT, mhi, temp ); + SDValue mlo = DAG.getNode( ISD::SHL, DL, INTVT, xlo, c11 ); + + // Compute shift right count from exponent + SDValue e = DAG.getNode( ISD::SRL, DL, INTVT, + xhi, DAG.getConstant( 52-32, INTVT ) ); + e = DAG.getNode( ISD::AND, DL, INTVT, + e, DAG.getConstant( 0x7ff, INTVT ) ); + SDValue sr = DAG.getNode( ISD::SUB, DL, INTVT, + DAG.getConstant( 1023 + 63, INTVT ), e ); + SDValue srge64 = DAG.getNode( AMDILISD::CMP, DL, INTVT, + DAG.getConstant(CondCCodeToCC(ISD::SETGE, MVT::i32), MVT::i32), + sr, DAG.getConstant(64, INTVT)); + SDValue srge32 = DAG.getNode( AMDILISD::CMP, DL, INTVT, + DAG.getConstant(CondCCodeToCC(ISD::SETGE, MVT::i32), MVT::i32), + sr, DAG.getConstant(32, INTVT)); + + // Compute result for 0 <= sr < 32 + SDValue rhi0 = DAG.getNode( ISD::SRL, DL, INTVT, mhi, sr ); + SDValue rlo0 = DAG.getNode( ISD::SRL, DL, INTVT, mlo, sr ); + temp = DAG.getNode( ISD::SUB, DL, INTVT, c32, sr ); + temp = DAG.getNode( ISD::SHL, DL, INTVT, mhi, temp ); + temp = DAG.getNode( ISD::OR, DL, INTVT, rlo0, temp ); + rlo0 = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, sr, temp, rlo0 ); + + // Compute result for 32 <= sr + SDValue rhi1 = DAG.getConstant( 0, INTVT ); + SDValue rlo1 = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + srge64, rhi1, rhi0 ); + + // Pick between the 2 results + SDValue rhi = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + srge32, rhi1, rhi0 ); + SDValue rlo = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + srge32, rlo1, rlo0 ); + + // Create long + SDValue res = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, rlo, rhi ); + + // Deal with sign bit + if (includeSign) { + SDValue sign = DAG.getNode( ISD::SRA, DL, INTVT, + xhi, DAG.getConstant( 31, INTVT ) ); + sign = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, sign, sign ); + res = DAG.getNode( ISD::ADD, DL, LONGVT, res, sign ); + res = DAG.getNode( ISD::XOR, DL, LONGVT, res, sign ); + } + DST = res; + } + return DST; +} +SDValue +AMDILTargetLowering::genf64toi32(SDValue RHS, SelectionDAG &DAG, + bool includeSign) const +{ + EVT INTVT; + EVT LONGVT; + DebugLoc DL = RHS.getDebugLoc(); + EVT RHSVT = RHS.getValueType(); + bool isVec = RHSVT.isVector(); + if (isVec) { + LONGVT = EVT(MVT::getVectorVT(MVT::i64, + RHSVT.getVectorNumElements())); + INTVT = EVT(MVT::getVectorVT(MVT::i32, + RHSVT.getVectorNumElements())); + } else { + LONGVT = EVT(MVT::i64); + INTVT = EVT(MVT::i32); + } + /* + __attribute__((always_inline)) int + cast_f64_to_[u|i]32(double d) + { + // Convert d in to 32-bit components + long x = as_long(d); + xhi = LCOMPHI(x); + xlo = LCOMPLO(x); + + // Generate 'normalized' mantissa + mhi = xhi | 0x00100000; // hidden bit + mhi <<= 11; + temp = xlo >> (32 - 11); + mhi |= temp + + // Compute shift right count from exponent + e = (xhi >> (52-32)) & 0x7ff; + sr = 1023 + 31 - e; + srge32 = sr >= 32; + + // Compute result for 0 <= sr < 32 + res = mhi >> (sr &31); + res = srge32 ? 0 : res; + + // Optional saturate on overflow + srlt0 = sr < 0; + res = srlt0 ? MAXVALUE : res; + + // Deal with sign bit (ignoring whether result is signed or unsigned value) + if (includeSign) { + sign = ((signed int) xhi) >> 31; fill with sign bit + res += sign; + res ^= sign; + } + + return res; + } + */ + SDValue c11 = DAG.getConstant( 63 - 52, INTVT ); + + // Convert d in to 32-bit components + SDValue d = RHS; + SDValue x = DAG.getNode(ISDBITCAST, DL, LONGVT, d); + SDValue xhi = DAG.getNode( (isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, x ); + SDValue xlo = DAG.getNode( (isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, x ); + + // Generate 'normalized' mantissa + SDValue mhi = DAG.getNode( ISD::OR, DL, INTVT, + xhi, DAG.getConstant( 0x00100000, INTVT ) ); + mhi = DAG.getNode( ISD::SHL, DL, INTVT, mhi, c11 ); + SDValue temp = DAG.getNode( ISD::SRL, DL, INTVT, + xlo, DAG.getConstant( 32 - (63 - 52), INTVT ) ); + mhi = DAG.getNode( ISD::OR, DL, INTVT, mhi, temp ); + + // Compute shift right count from exponent + SDValue e = DAG.getNode( ISD::SRL, DL, INTVT, + xhi, DAG.getConstant( 52-32, INTVT ) ); + e = DAG.getNode( ISD::AND, DL, INTVT, + e, DAG.getConstant( 0x7ff, INTVT ) ); + SDValue sr = DAG.getNode( ISD::SUB, DL, INTVT, + DAG.getConstant( 1023 + 31, INTVT ), e ); + SDValue srge32 = DAG.getNode( AMDILISD::CMP, DL, INTVT, + DAG.getConstant(CondCCodeToCC(ISD::SETGE, MVT::i32), MVT::i32), + sr, DAG.getConstant(32, INTVT)); + + // Compute result for 0 <= sr < 32 + SDValue res = DAG.getNode( ISD::SRL, DL, INTVT, mhi, sr ); + res = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + srge32, DAG.getConstant(0,INTVT), res ); + + // Deal with sign bit + if (includeSign) { + SDValue sign = DAG.getNode( ISD::SRA, DL, INTVT, + xhi, DAG.getConstant( 31, INTVT ) ); + res = DAG.getNode( ISD::ADD, DL, INTVT, res, sign ); + res = DAG.getNode( ISD::XOR, DL, INTVT, res, sign ); + } + return res; +} +SDValue +AMDILTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const +{ + SDValue RHS = Op.getOperand(0); + EVT RHSVT = RHS.getValueType(); + MVT RST = RHSVT.getScalarType().getSimpleVT(); + EVT LHSVT = Op.getValueType(); + MVT LST = LHSVT.getScalarType().getSimpleVT(); + DebugLoc DL = Op.getDebugLoc(); + SDValue DST; + const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl()); + if (RST == MVT::f64 && RHSVT.isVector() + && stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // We dont support vector 64bit floating point convertions. + for (unsigned x = 0, y = RHSVT.getVectorNumElements(); x < y; ++x) { + SDValue op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, RST, RHS, DAG.getTargetConstant(x, MVT::i32)); + op = DAG.getNode(ISD::FP_TO_SINT, DL, LST, op); + if (!x) { + DST = DAG.getNode(AMDILISD::VBUILD, DL, LHSVT, op); + } else { + DST = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, LHSVT, + DST, op, DAG.getTargetConstant(x, MVT::i32)); + } + } + } else { + if (RST == MVT::f64 + && LST == MVT::i32) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = SDValue(Op.getNode(), 0); + } else { + DST = genf64toi32(RHS, DAG, true); + } + } else if (RST == MVT::f64 + && LST == MVT::i64) { + DST = genf64toi64(RHS, DAG, true); + } else if (RST == MVT::f64 + && (LST == MVT::i8 || LST == MVT::i16)) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = DAG.getNode(ISD::TRUNCATE, DL, LHSVT, SDValue(Op.getNode(), 0)); + } else { + SDValue ToInt = genf64toi32(RHS, DAG, true); + DST = DAG.getNode(ISD::TRUNCATE, DL, LHSVT, ToInt); + } + + } else { + DST = SDValue(Op.getNode(), 0); + } + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const +{ + SDValue DST; + SDValue RHS = Op.getOperand(0); + EVT RHSVT = RHS.getValueType(); + MVT RST = RHSVT.getScalarType().getSimpleVT(); + EVT LHSVT = Op.getValueType(); + MVT LST = LHSVT.getScalarType().getSimpleVT(); + DebugLoc DL = Op.getDebugLoc(); + const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl()); + if (RST == MVT::f64 && RHSVT.isVector() + && stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // We dont support vector 64bit floating point convertions. + for (unsigned x = 0, y = RHSVT.getVectorNumElements(); x < y; ++x) { + SDValue op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, RST, RHS, DAG.getTargetConstant(x, MVT::i32)); + op = DAG.getNode(ISD::FP_TO_SINT, DL, LST, op); + if (!x) { + DST = DAG.getNode(AMDILISD::VBUILD, DL, LHSVT, op); + } else { + DST = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, LHSVT, + DST, op, DAG.getTargetConstant(x, MVT::i32)); + } + + } + } else { + if (RST == MVT::f64 + && LST == MVT::i32) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = SDValue(Op.getNode(), 0); + } else { + DST = genf64toi32(RHS, DAG, false); + } + } else if (RST == MVT::f64 + && LST == MVT::i64) { + DST = genf64toi64(RHS, DAG, false); + } else if (RST == MVT::f64 + && (LST == MVT::i8 || LST == MVT::i16)) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = DAG.getNode(ISD::TRUNCATE, DL, LHSVT, SDValue(Op.getNode(), 0)); + } else { + SDValue ToInt = genf64toi32(RHS, DAG, false); + DST = DAG.getNode(ISD::TRUNCATE, DL, LHSVT, ToInt); + } + + } else { + DST = SDValue(Op.getNode(), 0); + } + } + return DST; +} +SDValue +AMDILTargetLowering::genu32tof64(SDValue RHS, EVT LHSVT, + SelectionDAG &DAG) const +{ + EVT RHSVT = RHS.getValueType(); + DebugLoc DL = RHS.getDebugLoc(); + EVT INTVT; + EVT LONGVT; + bool isVec = RHSVT.isVector(); + if (isVec) { + LONGVT = EVT(MVT::getVectorVT(MVT::i64, + RHSVT.getVectorNumElements())); + INTVT = EVT(MVT::getVectorVT(MVT::i32, + RHSVT.getVectorNumElements())); + } else { + LONGVT = EVT(MVT::i64); + INTVT = EVT(MVT::i32); + } + SDValue x = RHS; + const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl()); + if (stm->calVersion() >= CAL_VERSION_SC_135) { + // unsigned x = RHS; + // ulong xd = (ulong)(0x4330_0000 << 32) | x; + // double d = as_double( xd ); + // return d - 0x1.0p+52; // 0x1.0p+52 == 0x4330_0000_0000_0000 + SDValue xd = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, x, + DAG.getConstant( 0x43300000, INTVT ) ); + SDValue d = DAG.getNode( ISDBITCAST, DL, LHSVT, xd ); + SDValue offsetd = DAG.getNode( ISDBITCAST, DL, LHSVT, + DAG.getConstant( 0x4330000000000000ULL, LONGVT ) ); + return DAG.getNode( ISD::FSUB, DL, LHSVT, d, offsetd ); + } else { + SDValue clz = genCLZu32(x, DAG); + + // Compute the exponent. 1023 is the bias, 31-clz the actual power of 2 + // Except for an input 0... which requires a 0 exponent + SDValue exp = DAG.getNode( ISD::SUB, DL, INTVT, + DAG.getConstant( (1023+31), INTVT), clz ); + exp = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, x, exp, x ); + + // Normalize frac + SDValue rhi = DAG.getNode( ISD::SHL, DL, INTVT, x, clz ); + + // Eliminate hidden bit + rhi = DAG.getNode( ISD::AND, DL, INTVT, + rhi, DAG.getConstant( 0x7fffffff, INTVT ) ); + + // Pack exponent and frac + SDValue rlo = DAG.getNode( ISD::SHL, DL, INTVT, + rhi, DAG.getConstant( (32 - 11), INTVT ) ); + rhi = DAG.getNode( ISD::SRL, DL, INTVT, + rhi, DAG.getConstant( 11, INTVT ) ); + exp = DAG.getNode( ISD::SHL, DL, INTVT, + exp, DAG.getConstant( 20, INTVT ) ); + rhi = DAG.getNode( ISD::OR, DL, INTVT, rhi, exp ); + + // Convert 2 x 32 in to 1 x 64, then to double precision float type + SDValue res = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, rlo, rhi ); + return DAG.getNode(ISDBITCAST, DL, LHSVT, res); + } +} +SDValue +AMDILTargetLowering::genu64tof64(SDValue RHS, EVT LHSVT, + SelectionDAG &DAG) const +{ + EVT RHSVT = RHS.getValueType(); + DebugLoc DL = RHS.getDebugLoc(); + EVT INTVT; + EVT LONGVT; + bool isVec = RHSVT.isVector(); + if (isVec) { + INTVT = EVT(MVT::getVectorVT(MVT::i32, + RHSVT.getVectorNumElements())); + } else { + INTVT = EVT(MVT::i32); + } + LONGVT = RHSVT; + SDValue x = RHS; + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // double dhi = (double)(as_uint2(x).y); + // double dlo = (double)(as_uint2(x).x); + // return mad(dhi, 0x1.0p+32, dlo) + SDValue dhi = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, x); + dhi = DAG.getNode(ISD::UINT_TO_FP, DL, LHSVT, dhi); + SDValue dlo = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, x); + dlo = DAG.getNode(ISD::UINT_TO_FP, DL, LHSVT, dlo); + return DAG.getNode(AMDILISD::MAD, DL, LHSVT, dhi, + DAG.getConstantFP(0x4f800000, LHSVT), dlo); + } else if (stm->calVersion() >= CAL_VERSION_SC_135) { + // double lo = as_double( as_ulong( 0x1.0p+52) | (u & 0xffff_ffffUL)); + // double hi = as_double( as_ulong( 0x1.0p+84) | (u >> 32)); + // return (hi - (0x1.0p+84 + 0x1.0p+52)) + lo; + SDValue xlo = DAG.getNode( (isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, x ); // x & 0xffff_ffffUL + SDValue xd = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, xlo, DAG.getConstant( 0x43300000, INTVT ) ); + SDValue lo = DAG.getNode( ISDBITCAST, DL, LHSVT, xd ); + SDValue xhi = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, x ); // x >> 32 + SDValue xe = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, xhi, DAG.getConstant( 0x45300000, INTVT ) ); + SDValue hi = DAG.getNode( ISDBITCAST, DL, LHSVT, xe ); + SDValue c = DAG.getNode( ISDBITCAST, DL, LHSVT, + DAG.getConstant( 0x4530000000100000ULL, LONGVT ) ); + hi = DAG.getNode( ISD::FSUB, DL, LHSVT, hi, c ); + return DAG.getNode( ISD::FADD, DL, LHSVT, hi, lo ); + + } else { + SDValue clz = genCLZu64(x, DAG); + SDValue xhi = DAG.getNode( (isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, x ); + SDValue xlo = DAG.getNode( (isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, x ); + + // Compute the exponent. 1023 is the bias, 63-clz the actual power of 2 + SDValue exp = DAG.getNode( ISD::SUB, DL, INTVT, + DAG.getConstant( (1023+63), INTVT), clz ); + SDValue mash = DAG.getNode( ISD::OR, DL, INTVT, xhi, xlo ); + exp = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + mash, exp, mash ); // exp = exp, or 0 if input was 0 + + // Normalize frac + SDValue clz31 = DAG.getNode( ISD::AND, DL, INTVT, + clz, DAG.getConstant( 31, INTVT ) ); + SDValue rshift = DAG.getNode( ISD::SUB, DL, INTVT, + DAG.getConstant( 32, INTVT ), clz31 ); + SDValue t1 = DAG.getNode( ISD::SHL, DL, INTVT, xhi, clz31 ); + SDValue t2 = DAG.getNode( ISD::SRL, DL, INTVT, xlo, rshift ); + t2 = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, clz31, t2, t1 ); + SDValue rhi1 = DAG.getNode( ISD::OR, DL, INTVT, t1, t2 ); + SDValue rlo1 = DAG.getNode( ISD::SHL, DL, INTVT, xlo, clz31 ); + SDValue rhi2 = DAG.getNode( ISD::SHL, DL, INTVT, xlo, clz31 ); + SDValue rlo2 = DAG.getConstant( 0, INTVT ); + SDValue clz32 = DAG.getNode( ISD::AND, DL, INTVT, + clz, DAG.getConstant( 32, INTVT ) ); + SDValue rhi = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + clz32, rhi2, rhi1 ); + SDValue rlo = DAG.getNode( AMDILISD::CMOVLOG, DL, INTVT, + clz32, rlo2, rlo1 ); + + // Eliminate hidden bit + rhi = DAG.getNode( ISD::AND, DL, INTVT, + rhi, DAG.getConstant( 0x7fffffff, INTVT ) ); + + // Save bits needed to round properly + SDValue round = DAG.getNode( ISD::AND, DL, INTVT, + rlo, DAG.getConstant( 0x7ff, INTVT ) ); + + // Pack exponent and frac + rlo = DAG.getNode( ISD::SRL, DL, INTVT, + rlo, DAG.getConstant( 11, INTVT ) ); + SDValue temp = DAG.getNode( ISD::SHL, DL, INTVT, + rhi, DAG.getConstant( (32 - 11), INTVT ) ); + rlo = DAG.getNode( ISD::OR, DL, INTVT, rlo, temp ); + rhi = DAG.getNode( ISD::SRL, DL, INTVT, + rhi, DAG.getConstant( 11, INTVT ) ); + exp = DAG.getNode( ISD::SHL, DL, INTVT, + exp, DAG.getConstant( 20, INTVT ) ); + rhi = DAG.getNode( ISD::OR, DL, INTVT, rhi, exp ); + + // Compute rounding bit + SDValue even = DAG.getNode( ISD::AND, DL, INTVT, + rlo, DAG.getConstant( 1, INTVT ) ); + SDValue grs = DAG.getNode( ISD::AND, DL, INTVT, + round, DAG.getConstant( 0x3ff, INTVT ) ); + grs = DAG.getNode( AMDILISD::CMP, DL, INTVT, + DAG.getConstant( CondCCodeToCC( ISD::SETNE, MVT::i32), MVT::i32), + grs, DAG.getConstant( 0, INTVT ) ); // -1 if any GRS set, 0 if none + grs = DAG.getNode( ISD::OR, DL, INTVT, grs, even ); + round = DAG.getNode( ISD::SRL, DL, INTVT, + round, DAG.getConstant( 10, INTVT ) ); + round = DAG.getNode( ISD::AND, DL, INTVT, round, grs ); // 0 or 1 + + // Add rounding bit + SDValue lround = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, + round, DAG.getConstant( 0, INTVT ) ); + SDValue res = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, rlo, rhi ); + res = DAG.getNode( ISD::ADD, DL, LONGVT, res, lround ); + return DAG.getNode(ISDBITCAST, DL, LHSVT, res); + } +} +SDValue +AMDILTargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const +{ + SDValue RHS = Op.getOperand(0); + EVT RHSVT = RHS.getValueType(); + MVT RST = RHSVT.getScalarType().getSimpleVT(); + EVT LHSVT = Op.getValueType(); + MVT LST = LHSVT.getScalarType().getSimpleVT(); + DebugLoc DL = Op.getDebugLoc(); + SDValue DST; + EVT INTVT; + EVT LONGVT; + const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl()); + if (LST == MVT::f64 && LHSVT.isVector() + && stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // We dont support vector 64bit floating point convertions. + DST = Op; + for (unsigned x = 0, y = LHSVT.getVectorNumElements(); x < y; ++x) { + SDValue op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, RST, RHS, DAG.getTargetConstant(x, MVT::i32)); + op = DAG.getNode(ISD::UINT_TO_FP, DL, LST, op); + if (!x) { + DST = DAG.getNode(AMDILISD::VBUILD, DL, LHSVT, op); + } else { + DST = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, LHSVT, DST, + op, DAG.getTargetConstant(x, MVT::i32)); + } + + } + } else { + + if (RST == MVT::i32 + && LST == MVT::f64) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = SDValue(Op.getNode(), 0); + } else { + DST = genu32tof64(RHS, LHSVT, DAG); + } + } else if (RST == MVT::i64 + && LST == MVT::f64) { + DST = genu64tof64(RHS, LHSVT, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const +{ + SDValue RHS = Op.getOperand(0); + EVT RHSVT = RHS.getValueType(); + MVT RST = RHSVT.getScalarType().getSimpleVT(); + EVT INTVT; + EVT LONGVT; + SDValue DST; + bool isVec = RHSVT.isVector(); + DebugLoc DL = Op.getDebugLoc(); + EVT LHSVT = Op.getValueType(); + MVT LST = LHSVT.getScalarType().getSimpleVT(); + const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl()); + if (LST == MVT::f64 && LHSVT.isVector() + && stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + // We dont support vector 64bit floating point convertions. + for (unsigned x = 0, y = LHSVT.getVectorNumElements(); x < y; ++x) { + SDValue op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, RST, RHS, DAG.getTargetConstant(x, MVT::i32)); + op = DAG.getNode(ISD::UINT_TO_FP, DL, LST, op); + if (!x) { + DST = DAG.getNode(AMDILISD::VBUILD, DL, LHSVT, op); + } else { + DST = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, LHSVT, DST, + op, DAG.getTargetConstant(x, MVT::i32)); + } + + } + } else { + + if (isVec) { + LONGVT = EVT(MVT::getVectorVT(MVT::i64, + RHSVT.getVectorNumElements())); + INTVT = EVT(MVT::getVectorVT(MVT::i32, + RHSVT.getVectorNumElements())); + } else { + LONGVT = EVT(MVT::i64); + INTVT = EVT(MVT::i32); + } + MVT RST = RHSVT.getScalarType().getSimpleVT(); + if ((RST == MVT::i32 || RST == MVT::i64) + && LST == MVT::f64) { + if (RST == MVT::i32) { + if (stm->device()->getGeneration() > AMDILDeviceInfo::HD6XXX) { + DST = SDValue(Op.getNode(), 0); + return DST; + } + } + SDValue c31 = DAG.getConstant( 31, INTVT ); + SDValue cSbit = DAG.getConstant( 0x80000000, INTVT ); + + SDValue S; // Sign, as 0 or -1 + SDValue Sbit; // Sign bit, as one bit, MSB only. + if (RST == MVT::i32) { + Sbit = DAG.getNode( ISD::AND, DL, INTVT, RHS, cSbit ); + S = DAG.getNode(ISD::SRA, DL, RHSVT, RHS, c31 ); + } else { // 64-bit case... SRA of 64-bit values is slow + SDValue hi = DAG.getNode( (isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, RHS ); + Sbit = DAG.getNode( ISD::AND, DL, INTVT, hi, cSbit ); + SDValue temp = DAG.getNode( ISD::SRA, DL, INTVT, hi, c31 ); + S = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, RHSVT, temp, temp ); + } + + // get abs() of input value, given sign as S (0 or -1) + // SpI = RHS + S + SDValue SpI = DAG.getNode(ISD::ADD, DL, RHSVT, RHS, S); + // SpIxS = SpI ^ S + SDValue SpIxS = DAG.getNode(ISD::XOR, DL, RHSVT, SpI, S); + + // Convert unsigned value to double precision + SDValue R; + if (RST == MVT::i32) { + // r = cast_u32_to_f64(SpIxS) + R = genu32tof64(SpIxS, LHSVT, DAG); + } else { + // r = cast_u64_to_f64(SpIxS) + R = genu64tof64(SpIxS, LHSVT, DAG); + } + + // drop in the sign bit + SDValue t = DAG.getNode( AMDILISD::BITCONV, DL, LONGVT, R ); + SDValue thi = DAG.getNode( (isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTVT, t ); + SDValue tlo = DAG.getNode( (isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTVT, t ); + thi = DAG.getNode( ISD::OR, DL, INTVT, thi, Sbit ); + t = DAG.getNode( (isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, LONGVT, tlo, thi ); + DST = DAG.getNode( AMDILISD::BITCONV, DL, LHSVT, t ); + } else { + DST = SDValue(Op.getNode(), 0); + } + } + return DST; +} +SDValue +AMDILTargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const +{ + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue DST; + bool isVec = RHS.getValueType().isVector(); + if (OVT.getScalarType() == MVT::i64) { + /*const AMDILTargetMachine* + amdtm = reinterpret_cast<const AMDILTargetMachine*> + (&this->getTargetMachine()); + const AMDILSubtarget* + stm = dynamic_cast<const AMDILSubtarget*>( + amdtm->getSubtargetImpl());*/ + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i64) { + INTTY = MVT::v2i32; + } + SDValue LHSLO, LHSHI, RHSLO, RHSHI, INTLO, INTHI; + // TODO: need to turn this into a bitcast of i64/v2i64 to v2i32/v4i32 + LHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, LHS); + RHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, INTTY, RHS); + LHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTTY, LHS); + RHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, INTTY, RHS); + INTLO = DAG.getNode(ISD::SUB, DL, INTTY, LHSLO, RHSLO); + INTHI = DAG.getNode(ISD::SUB, DL, INTTY, LHSHI, RHSHI); + //TODO: need to use IBORROW on HD5XXX and later hardware + SDValue cmp; + if (OVT == MVT::i64) { + cmp = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETULT, MVT::i32), MVT::i32), + LHSLO, RHSLO); + } else { + SDValue cmplo; + SDValue cmphi; + SDValue LHSRLO = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, MVT::i32, LHSLO, DAG.getTargetConstant(0, MVT::i32)); + SDValue LHSRHI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, MVT::i32, LHSLO, DAG.getTargetConstant(1, MVT::i32)); + SDValue RHSRLO = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, MVT::i32, RHSLO, DAG.getTargetConstant(0, MVT::i32)); + SDValue RHSRHI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, MVT::i32, RHSLO, DAG.getTargetConstant(1, MVT::i32)); + cmplo = DAG.getNode(AMDILISD::CMP, DL, MVT::i32, + DAG.getConstant(CondCCodeToCC(ISD::SETULT, MVT::i32), MVT::i32), + LHSRLO, RHSRLO); + cmphi = DAG.getNode(AMDILISD::CMP, DL, MVT::i32, + DAG.getConstant(CondCCodeToCC(ISD::SETULT, MVT::i32), MVT::i32), + LHSRHI, RHSRHI); + cmp = DAG.getNode(AMDILISD::VBUILD, DL, MVT::v2i32, cmplo); + cmp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i32, + cmp, cmphi, DAG.getTargetConstant(1, MVT::i32)); + } + INTHI = DAG.getNode(ISD::ADD, DL, INTTY, INTHI, cmp); + DST = DAG.getNode((isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, OVT, + INTLO, INTHI); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} +SDValue +AMDILTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const +{ + EVT OVT = Op.getValueType(); + SDValue DST; + if (OVT.getScalarType() == MVT::f64) { + DST = LowerFDIV64(Op, DAG); + } else if (OVT.getScalarType() == MVT::f32) { + DST = LowerFDIV32(Op, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const +{ + EVT OVT = Op.getValueType(); + SDValue DST; + if (OVT.getScalarType() == MVT::i64) { + DST = LowerSDIV64(Op, DAG); + } else if (OVT.getScalarType() == MVT::i32) { + DST = LowerSDIV32(Op, DAG); + } else if (OVT.getScalarType() == MVT::i16 + || OVT.getScalarType() == MVT::i8) { + DST = LowerSDIV24(Op, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerUDIV(SDValue Op, SelectionDAG &DAG) const +{ + EVT OVT = Op.getValueType(); + SDValue DST; + if (OVT.getScalarType() == MVT::i64) { + DST = LowerUDIV64(Op, DAG); + } else if (OVT.getScalarType() == MVT::i32) { + DST = LowerUDIV32(Op, DAG); + } else if (OVT.getScalarType() == MVT::i16 + || OVT.getScalarType() == MVT::i8) { + DST = LowerUDIV24(Op, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerSREM(SDValue Op, SelectionDAG &DAG) const +{ + EVT OVT = Op.getValueType(); + SDValue DST; + if (OVT.getScalarType() == MVT::i64) { + DST = LowerSREM64(Op, DAG); + } else if (OVT.getScalarType() == MVT::i32) { + DST = LowerSREM32(Op, DAG); + } else if (OVT.getScalarType() == MVT::i16) { + DST = LowerSREM16(Op, DAG); + } else if (OVT.getScalarType() == MVT::i8) { + DST = LowerSREM8(Op, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerUREM(SDValue Op, SelectionDAG &DAG) const +{ + EVT OVT = Op.getValueType(); + SDValue DST; + if (OVT.getScalarType() == MVT::i64) { + DST = LowerUREM64(Op, DAG); + } else if (OVT.getScalarType() == MVT::i32) { + DST = LowerUREM32(Op, DAG); + } else if (OVT.getScalarType() == MVT::i16) { + DST = LowerUREM16(Op, DAG); + } else if (OVT.getScalarType() == MVT::i8) { + DST = LowerUREM8(Op, DAG); + } else { + DST = SDValue(Op.getNode(), 0); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue DST; + bool isVec = OVT.isVector(); + if (OVT.getScalarType() != MVT::i64) + { + DST = SDValue(Op.getNode(), 0); + } else { + assert(OVT.getScalarType() == MVT::i64 && "Only 64 bit mul should be lowered!"); + // TODO: This needs to be turned into a tablegen pattern + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i64) { + INTTY = MVT::v2i32; + } + // mul64(h1, l1, h0, l0) + SDValue LHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, + DL, + INTTY, LHS); + SDValue LHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, + DL, + INTTY, LHS); + SDValue RHSLO = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, + DL, + INTTY, RHS); + SDValue RHSHI = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, + DL, + INTTY, RHS); + // MULLO_UINT_1 r1, h0, l1 + SDValue RHILLO = DAG.getNode(AMDILISD::UMUL, + DL, + INTTY, RHSHI, LHSLO); + // MULLO_UINT_1 r2, h1, l0 + SDValue RLOHHI = DAG.getNode(AMDILISD::UMUL, + DL, + INTTY, RHSLO, LHSHI); + // ADD_INT hr, r1, r2 + SDValue ADDHI = DAG.getNode(ISD::ADD, + DL, + INTTY, RHILLO, RLOHHI); + // MULHI_UINT_1 r3, l1, l0 + SDValue RLOLLO = DAG.getNode(ISD::MULHU, + DL, + INTTY, RHSLO, LHSLO); + // ADD_INT hr, hr, r3 + SDValue HIGH = DAG.getNode(ISD::ADD, + DL, + INTTY, ADDHI, RLOLLO); + // MULLO_UINT_1 l3, l1, l0 + SDValue LOW = DAG.getNode(AMDILISD::UMUL, + DL, + INTTY, LHSLO, RHSLO); + DST = DAG.getNode((isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, + DL, + OVT, LOW, HIGH); + } + return DST; +} +SDValue +AMDILTargetLowering::LowerBUILD_VECTOR( SDValue Op, SelectionDAG &DAG ) const +{ + EVT VT = Op.getValueType(); + //printSDValue(Op, 1); + SDValue Nodes1; + SDValue second; + SDValue third; + SDValue fourth; + DebugLoc DL = Op.getDebugLoc(); + Nodes1 = DAG.getNode(AMDILISD::VBUILD, + DL, + VT, Op.getOperand(0)); + bool allEqual = true; + for (unsigned x = 1, y = Op.getNumOperands(); x < y; ++x) { + if (Op.getOperand(0) != Op.getOperand(x)) { + allEqual = false; + break; + } + } + if (allEqual) { + return Nodes1; + } + switch(Op.getNumOperands()) { + default: + case 1: + break; + case 4: + fourth = Op.getOperand(3); + if (fourth.getOpcode() != ISD::UNDEF) { + Nodes1 = DAG.getNode( + ISD::INSERT_VECTOR_ELT, + DL, + Op.getValueType(), + Nodes1, + fourth, + DAG.getConstant(7, MVT::i32)); + } + case 3: + third = Op.getOperand(2); + if (third.getOpcode() != ISD::UNDEF) { + Nodes1 = DAG.getNode( + ISD::INSERT_VECTOR_ELT, + DL, + Op.getValueType(), + Nodes1, + third, + DAG.getConstant(6, MVT::i32)); + } + case 2: + second = Op.getOperand(1); + if (second.getOpcode() != ISD::UNDEF) { + Nodes1 = DAG.getNode( + ISD::INSERT_VECTOR_ELT, + DL, + Op.getValueType(), + Nodes1, + second, + DAG.getConstant(5, MVT::i32)); + } + break; + }; + return Nodes1; +} + +SDValue +AMDILTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + const SDValue *ptr = NULL; + const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(Op.getOperand(2)); + uint32_t swizzleNum = 0; + SDValue DST; + if (!VT.isVector()) { + SDValue Res = Op.getOperand(0); + return Res; + } + + if (Op.getOperand(1).getOpcode() != ISD::UNDEF) { + ptr = &Op.getOperand(1); + } else { + ptr = &Op.getOperand(0); + } + if (CSDN) { + swizzleNum = (uint32_t)CSDN->getZExtValue(); + uint32_t mask2 = 0x04030201 & ~(0xFF << (swizzleNum * 8)); + uint32_t mask3 = 0x01010101 & (0xFF << (swizzleNum * 8)); + DST = DAG.getNode(AMDILISD::VINSERT, + DL, + VT, + Op.getOperand(0), + *ptr, + DAG.getTargetConstant(mask2, MVT::i32), + DAG.getTargetConstant(mask3, MVT::i32)); + } else { + uint32_t mask2 = 0x04030201 & ~(0xFF << (swizzleNum * 8)); + uint32_t mask3 = 0x01010101 & (0xFF << (swizzleNum * 8)); + SDValue res = DAG.getNode(AMDILISD::VINSERT, + DL, VT, Op.getOperand(0), *ptr, + DAG.getTargetConstant(mask2, MVT::i32), + DAG.getTargetConstant(mask3, MVT::i32)); + for (uint32_t x = 1; x < VT.getVectorNumElements(); ++x) { + mask2 = 0x04030201 & ~(0xFF << (x * 8)); + mask3 = 0x01010101 & (0xFF << (x * 8)); + SDValue t = DAG.getNode(AMDILISD::VINSERT, + DL, VT, Op.getOperand(0), *ptr, + DAG.getTargetConstant(mask2, MVT::i32), + DAG.getTargetConstant(mask3, MVT::i32)); + SDValue c = DAG.getNode(AMDILISD::CMP, DL, ptr->getValueType(), + DAG.getConstant(AMDILCC::IL_CC_I_EQ, MVT::i32), + Op.getOperand(2), DAG.getConstant(x, MVT::i32)); + c = DAG.getNode(AMDILISD::VBUILD, DL, Op.getValueType(), c); + res = DAG.getNode(AMDILISD::CMOVLOG, DL, VT, c, t, res); + } + DST = res; + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const +{ + EVT VT = Op.getValueType(); + //printSDValue(Op, 1); + const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + uint64_t swizzleNum = 0; + DebugLoc DL = Op.getDebugLoc(); + SDValue Res; + if (!Op.getOperand(0).getValueType().isVector()) { + Res = Op.getOperand(0); + return Res; + } + if (CSDN) { + // Static vector extraction + swizzleNum = CSDN->getZExtValue() + 1; + Res = DAG.getNode(AMDILISD::VEXTRACT, + DL, VT, + Op.getOperand(0), + DAG.getTargetConstant(swizzleNum, MVT::i32)); + } else { + SDValue Op1 = Op.getOperand(1); + uint32_t vecSize = 4; + SDValue Op0 = Op.getOperand(0); + SDValue res = DAG.getNode(AMDILISD::VEXTRACT, + DL, VT, Op0, + DAG.getTargetConstant(1, MVT::i32)); + if (Op0.getValueType().isVector()) { + vecSize = Op0.getValueType().getVectorNumElements(); + } + for (uint32_t x = 2; x <= vecSize; ++x) { + SDValue t = DAG.getNode(AMDILISD::VEXTRACT, + DL, VT, Op0, + DAG.getTargetConstant(x, MVT::i32)); + SDValue c = DAG.getNode(AMDILISD::CMP, + DL, Op1.getValueType(), + DAG.getConstant(AMDILCC::IL_CC_I_EQ, MVT::i32), + Op1, DAG.getConstant(x, MVT::i32)); + res = DAG.getNode(AMDILISD::CMOVLOG, DL, + VT, c, t, res); + + } + Res = res; + } + return Res; +} + +SDValue +AMDILTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, + SelectionDAG &DAG) const +{ + uint32_t vecSize = Op.getValueType().getVectorNumElements(); + SDValue src = Op.getOperand(0); + const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + uint64_t offset = 0; + EVT vecType = Op.getValueType().getVectorElementType(); + DebugLoc DL = Op.getDebugLoc(); + SDValue Result; + if (CSDN) { + offset = CSDN->getZExtValue(); + Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL,vecType, src, DAG.getConstant(offset, MVT::i32)); + Result = DAG.getNode(AMDILISD::VBUILD, DL, + Op.getValueType(), Result); + for (uint32_t x = 1; x < vecSize; ++x) { + SDValue elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, vecType, + src, DAG.getConstant(offset + x, MVT::i32)); + if (elt.getOpcode() != ISD::UNDEF) { + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, + Op.getValueType(), Result, elt, + DAG.getConstant(x, MVT::i32)); + } + } + } else { + SDValue idx = Op.getOperand(1); + Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, vecType, src, idx); + Result = DAG.getNode(AMDILISD::VBUILD, DL, + Op.getValueType(), Result); + for (uint32_t x = 1; x < vecSize; ++x) { + idx = DAG.getNode(ISD::ADD, DL, vecType, + idx, DAG.getConstant(1, MVT::i32)); + SDValue elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, vecType, + src, idx); + if (elt.getOpcode() != ISD::UNDEF) { + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, + Op.getValueType(), Result, elt, idx); + } + } + } + return Result; +} +SDValue +AMDILTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, + SelectionDAG &DAG) const +{ + SDValue Res = DAG.getNode(AMDILISD::VBUILD, + Op.getDebugLoc(), + Op.getValueType(), + Op.getOperand(0)); + return Res; +} +SDValue +AMDILTargetLowering::LowerAND(SDValue Op, SelectionDAG &DAG) const +{ + SDValue andOp; + andOp = DAG.getNode( + AMDILISD::AND, + Op.getDebugLoc(), + Op.getValueType(), + Op.getOperand(0), + Op.getOperand(1)); + return andOp; +} +SDValue +AMDILTargetLowering::LowerOR(SDValue Op, SelectionDAG &DAG) const +{ + SDValue orOp; + orOp = DAG.getNode(AMDILISD::OR, + Op.getDebugLoc(), + Op.getValueType(), + Op.getOperand(0), + Op.getOperand(1)); + return orOp; +} +SDValue +AMDILTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Cond = Op.getOperand(0); + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + DebugLoc DL = Op.getDebugLoc(); + Cond = getConversionNode(DAG, Cond, Op, true); + Cond = DAG.getNode(AMDILISD::CMOVLOG, + DL, + Op.getValueType(), Cond, LHS, RHS); + return Cond; +} +SDValue +AMDILTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Cond; + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue TRUE = Op.getOperand(2); + SDValue FALSE = Op.getOperand(3); + SDValue CC = Op.getOperand(4); + DebugLoc DL = Op.getDebugLoc(); + bool skipCMov = false; + bool genINot = false; + EVT OVT = Op.getValueType(); + + // Check for possible elimination of cmov + if (TRUE.getValueType().getSimpleVT().SimpleTy == MVT::i32) { + const ConstantSDNode *trueConst + = dyn_cast<ConstantSDNode>( TRUE.getNode() ); + const ConstantSDNode *falseConst + = dyn_cast<ConstantSDNode>( FALSE.getNode() ); + if (trueConst && falseConst) { + // both possible result values are constants + if (trueConst->isAllOnesValue() + && falseConst->isNullValue()) { // and convenient constants + skipCMov = true; + } + else if (trueConst->isNullValue() + && falseConst->isAllOnesValue()) { // less convenient + skipCMov = true; + genINot = true; + } + } + } + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + unsigned int AMDILCC = CondCCodeToCC( + SetCCOpcode, + LHS.getValueType().getSimpleVT().SimpleTy); + assert((AMDILCC != AMDILCC::COND_ERROR) && "Invalid SetCC!"); + Cond = DAG.getNode( + AMDILISD::CMP, + DL, + LHS.getValueType(), + DAG.getConstant(AMDILCC, MVT::i32), + LHS, + RHS); + Cond = getConversionNode(DAG, Cond, Op, true); + if (genINot) { + Cond = DAG.getNode(AMDILISD::NOT, DL, OVT, Cond); + } + if (!skipCMov) { + Cond = DAG.getNode(AMDILISD::CMOVLOG, DL, OVT, Cond, TRUE, FALSE); + } + return Cond; +} +SDValue +AMDILTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Cond; + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + DebugLoc DL = Op.getDebugLoc(); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + unsigned int AMDILCC = CondCCodeToCC( + SetCCOpcode, + LHS.getValueType().getSimpleVT().SimpleTy); + assert((AMDILCC != AMDILCC::COND_ERROR) && "Invalid SetCC!"); + Cond = DAG.getNode( + AMDILISD::CMP, + DL, + LHS.getValueType(), + DAG.getConstant(AMDILCC, MVT::i32), + LHS, + RHS); + Cond = getConversionNode(DAG, Cond, Op, true); + Cond = DAG.getNode( + ISD::AND, + DL, + Cond.getValueType(), + DAG.getConstant(1, Cond.getValueType()), + Cond); + return Cond; +} + +SDValue +AMDILTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Data = Op.getOperand(0); + VTSDNode *BaseType = cast<VTSDNode>(Op.getOperand(1)); + DebugLoc DL = Op.getDebugLoc(); + EVT DVT = Data.getValueType(); + EVT BVT = BaseType->getVT(); + unsigned baseBits = BVT.getScalarType().getSizeInBits(); + unsigned srcBits = DVT.isSimple() ? DVT.getScalarType().getSizeInBits() : 1; + unsigned shiftBits = srcBits - baseBits; + if (srcBits < 32) { + // If the op is less than 32 bits, then it needs to extend to 32bits + // so it can properly keep the upper bits valid. + EVT IVT = genIntType(32, DVT.isVector() ? DVT.getVectorNumElements() : 1); + Data = DAG.getNode(ISD::ZERO_EXTEND, DL, IVT, Data); + shiftBits = 32 - baseBits; + DVT = IVT; + } + SDValue Shift = DAG.getConstant(shiftBits, DVT); + // Shift left by 'Shift' bits. + Data = DAG.getNode(ISD::SHL, DL, DVT, Data, Shift); + // Signed shift Right by 'Shift' bits. + Data = DAG.getNode(ISD::SRA, DL, DVT, Data, Shift); + if (srcBits < 32) { + // Once the sign extension is done, the op needs to be converted to + // its original type. + Data = DAG.getSExtOrTrunc(Data, DL, Op.getOperand(0).getValueType()); + } + return Data; +} +EVT +AMDILTargetLowering::genIntType(uint32_t size, uint32_t numEle) const +{ + int iSize = (size * numEle); + int vEle = (iSize >> ((size == 64) ? 6 : 5)); + if (!vEle) { + vEle = 1; + } + if (size == 64) { + if (vEle == 1) { + return EVT(MVT::i64); + } else { + return EVT(MVT::getVectorVT(MVT::i64, vEle)); + } + } else { + if (vEle == 1) { + return EVT(MVT::i32); + } else { + return EVT(MVT::getVectorVT(MVT::i32, vEle)); + } + } +} + +SDValue +AMDILTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Src = Op.getOperand(0); + SDValue Dst = Op; + SDValue Res; + DebugLoc DL = Op.getDebugLoc(); + EVT SrcVT = Src.getValueType(); + EVT DstVT = Dst.getValueType(); + // Lets bitcast the floating point types to an + // equivalent integer type before converting to vectors. + if (SrcVT.getScalarType().isFloatingPoint()) { + Src = DAG.getNode(AMDILISD::BITCONV, DL, genIntType( + SrcVT.getScalarType().getSimpleVT().getSizeInBits(), + SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1), + Src); + SrcVT = Src.getValueType(); + } + uint32_t ScalarSrcSize = SrcVT.getScalarType() + .getSimpleVT().getSizeInBits(); + uint32_t ScalarDstSize = DstVT.getScalarType() + .getSimpleVT().getSizeInBits(); + uint32_t SrcNumEle = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; + uint32_t DstNumEle = DstVT.isVector() ? DstVT.getVectorNumElements() : 1; + bool isVec = SrcVT.isVector(); + if (DstVT.getScalarType().isInteger() && + (SrcVT.getScalarType().isInteger() + || SrcVT.getScalarType().isFloatingPoint())) { + if ((ScalarDstSize == 64 && SrcNumEle == 4 && ScalarSrcSize == 16) + || (ScalarSrcSize == 64 + && DstNumEle == 4 + && ScalarDstSize == 16)) { + // This is the problematic case when bitcasting i64 <-> <4 x i16> + // This approach is a little different as we cannot generate a + // <4 x i64> vector + // as that is illegal in our backend and we are already past + // the DAG legalizer. + // So, in this case, we will do the following conversion. + // Case 1: + // %dst = <4 x i16> %src bitconvert i64 ==> + // %tmp = <4 x i16> %src convert <4 x i32> + // %tmp = <4 x i32> %tmp and 0xFFFF + // %tmp = <4 x i32> %tmp shift_left <0, 16, 0, 16> + // %tmp = <4 x i32> %tmp or %tmp.xz %tmp.yw + // %dst = <2 x i32> %tmp bitcast i64 + // case 2: + // %dst = i64 %src bitconvert <4 x i16> ==> + // %tmp = i64 %src bitcast <2 x i32> + // %tmp = <4 x i32> %tmp vinsert %tmp.xxyy + // %tmp = <4 x i32> %tmp shift_right <0, 16, 0, 16> + // %tmp = <4 x i32> %tmp and 0xFFFF + // %dst = <4 x i16> %tmp bitcast <4 x i32> + SDValue mask = DAG.getNode(AMDILISD::VBUILD, DL, MVT::v4i32, + DAG.getConstant(0xFFFF, MVT::i32)); + SDValue const16 = DAG.getConstant(16, MVT::i32); + if (ScalarDstSize == 64) { + // case 1 + Op = DAG.getSExtOrTrunc(Src, DL, MVT::v4i32); + Op = DAG.getNode(ISD::AND, DL, Op.getValueType(), Op, mask); + SDValue x = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Op, DAG.getConstant(0, MVT::i32)); + SDValue y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Op, DAG.getConstant(1, MVT::i32)); + y = DAG.getNode(ISD::SHL, DL, MVT::i32, y, const16); + SDValue z = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Op, DAG.getConstant(2, MVT::i32)); + SDValue w = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, + Op, DAG.getConstant(3, MVT::i32)); + w = DAG.getNode(ISD::SHL, DL, MVT::i32, w, const16); + x = DAG.getNode(ISD::OR, DL, MVT::i32, x, y); + y = DAG.getNode(ISD::OR, DL, MVT::i32, z, w); + Res = DAG.getNode((isVec) ? AMDILISD::LCREATE2 : AMDILISD::LCREATE, DL, MVT::i64, x, y); + return Res; + } else { + // case 2 + SDValue lo = DAG.getNode((isVec) ? AMDILISD::LCOMPLO2 : AMDILISD::LCOMPLO, DL, MVT::i32, Src); + SDValue lor16 + = DAG.getNode(ISD::SRL, DL, MVT::i32, lo, const16); + SDValue hi = DAG.getNode((isVec) ? AMDILISD::LCOMPHI2 : AMDILISD::LCOMPHI, DL, MVT::i32, Src); + SDValue hir16 + = DAG.getNode(ISD::SRL, DL, MVT::i32, hi, const16); + SDValue resVec = DAG.getNode(AMDILISD::VBUILD, DL, + MVT::v4i32, lo); + SDValue idxVal = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(1, MVT::i32)); + resVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v4i32, + resVec, lor16, idxVal); + idxVal = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(2, MVT::i32)); + resVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v4i32, + resVec, hi, idxVal); + idxVal = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(3, MVT::i32)); + resVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v4i32, + resVec, hir16, idxVal); + resVec = DAG.getNode(ISD::AND, DL, MVT::v4i32, resVec, mask); + Res = DAG.getSExtOrTrunc(resVec, DL, MVT::v4i16); + return Res; + } + } else { + // There are four cases we need to worry about for bitcasts + // where the size of all + // source, intermediates and result is <= 128 bits, unlike + // the above case + // 1) Sub32bit bitcast 32bitAlign + // %dst = <4 x i8> bitcast i32 + // (also <[2|4] x i16> to <[2|4] x i32>) + // 2) 32bitAlign bitcast Sub32bit + // %dst = i32 bitcast <4 x i8> + // 3) Sub32bit bitcast LargerSub32bit + // %dst = <2 x i8> bitcast i16 + // (also <4 x i8> to <2 x i16>) + // 4) Sub32bit bitcast SmallerSub32bit + // %dst = i16 bitcast <2 x i8> + // (also <2 x i16> to <4 x i8>) + // This also only handles types that are powers of two + if ((ScalarDstSize & (ScalarDstSize - 1)) + || (ScalarSrcSize & (ScalarSrcSize - 1))) { + } else if (ScalarDstSize >= 32 && ScalarSrcSize < 32) { + // case 1: + EVT IntTy = genIntType(ScalarDstSize, SrcNumEle); +#if 0 // TODO: LLVM does not like this for some reason, cannot SignExt vectors + SDValue res = DAG.getSExtOrTrunc(Src, DL, IntTy); +#else + SDValue res = DAG.getNode(AMDILISD::VBUILD, DL, IntTy, + DAG.getUNDEF(IntTy.getScalarType())); + for (uint32_t x = 0; x < SrcNumEle; ++x) { + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(x, MVT::i32)); + SDValue temp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + SrcVT.getScalarType(), Src, + DAG.getConstant(x, MVT::i32)); + temp = DAG.getSExtOrTrunc(temp, DL, IntTy.getScalarType()); + res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntTy, + res, temp, idx); + } +#endif + SDValue mask = DAG.getNode(AMDILISD::VBUILD, DL, IntTy, + DAG.getConstant((1 << ScalarSrcSize) - 1, MVT::i32)); + SDValue *newEle = new SDValue[SrcNumEle]; + res = DAG.getNode(ISD::AND, DL, IntTy, res, mask); + for (uint32_t x = 0; x < SrcNumEle; ++x) { + newEle[x] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + IntTy.getScalarType(), res, + DAG.getConstant(x, MVT::i32)); + } + uint32_t Ratio = SrcNumEle / DstNumEle; + for (uint32_t x = 0; x < SrcNumEle; ++x) { + if (x % Ratio) { + newEle[x] = DAG.getNode(ISD::SHL, DL, + IntTy.getScalarType(), newEle[x], + DAG.getConstant(ScalarSrcSize * (x % Ratio), + MVT::i32)); + } + } + for (uint32_t x = 0; x < SrcNumEle; x += 2) { + newEle[x] = DAG.getNode(ISD::OR, DL, + IntTy.getScalarType(), newEle[x], newEle[x + 1]); + } + if (ScalarSrcSize == 8) { + for (uint32_t x = 0; x < SrcNumEle; x += 4) { + newEle[x] = DAG.getNode(ISD::OR, DL, + IntTy.getScalarType(), newEle[x], newEle[x + 2]); + } + if (DstNumEle == 1) { + Dst = newEle[0]; + } else { + Dst = DAG.getNode(AMDILISD::VBUILD, DL, DstVT, + newEle[0]); + for (uint32_t x = 1; x < DstNumEle; ++x) { + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(x, MVT::i32)); + Dst = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, + DstVT, Dst, newEle[x * 4], idx); + } + } + } else { + if (DstNumEle == 1) { + Dst = newEle[0]; + } else { + Dst = DAG.getNode(AMDILISD::VBUILD, DL, DstVT, + newEle[0]); + for (uint32_t x = 1; x < DstNumEle; ++x) { + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(x, MVT::i32)); + Dst = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, + DstVT, Dst, newEle[x * 2], idx); + } + } + } + delete [] newEle; + return Dst; + } else if (ScalarDstSize < 32 && ScalarSrcSize >= 32) { + // case 2: + EVT IntTy = genIntType(ScalarSrcSize, DstNumEle); + SDValue vec = DAG.getNode(AMDILISD::VBUILD, DL, IntTy, + DAG.getUNDEF(IntTy.getScalarType())); + uint32_t mult = (ScalarDstSize == 8) ? 4 : 2; + for (uint32_t x = 0; x < SrcNumEle; ++x) { + for (uint32_t y = 0; y < mult; ++y) { + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), + DAG.getConstant(x * mult + y, MVT::i32)); + SDValue t; + if (SrcNumEle > 1) { + t = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, + DL, SrcVT.getScalarType(), Src, + DAG.getConstant(x, MVT::i32)); + } else { + t = Src; + } + if (y != 0) { + t = DAG.getNode(ISD::SRL, DL, t.getValueType(), + t, DAG.getConstant(y * ScalarDstSize, + MVT::i32)); + } + vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, + DL, IntTy, vec, t, idx); + } + } + Dst = DAG.getSExtOrTrunc(vec, DL, DstVT); + return Dst; + } else if (ScalarDstSize == 16 && ScalarSrcSize == 8) { + // case 3: + SDValue *numEle = new SDValue[SrcNumEle]; + for (uint32_t x = 0; x < SrcNumEle; ++x) { + numEle[x] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + MVT::i8, Src, DAG.getConstant(x, MVT::i32)); + numEle[x] = DAG.getSExtOrTrunc(numEle[x], DL, MVT::i16); + numEle[x] = DAG.getNode(ISD::AND, DL, MVT::i16, numEle[x], + DAG.getConstant(0xFF, MVT::i16)); + } + for (uint32_t x = 1; x < SrcNumEle; x += 2) { + numEle[x] = DAG.getNode(ISD::SHL, DL, MVT::i16, numEle[x], + DAG.getConstant(8, MVT::i16)); + numEle[x - 1] = DAG.getNode(ISD::OR, DL, MVT::i16, + numEle[x-1], numEle[x]); + } + if (DstNumEle > 1) { + // If we are not a scalar i16, the only other case is a + // v2i16 since we can't have v8i8 at this point, v4i16 + // cannot be generated + Dst = DAG.getNode(AMDILISD::VBUILD, DL, MVT::v2i16, + numEle[0]); + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(1, MVT::i32)); + Dst = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v2i16, + Dst, numEle[2], idx); + } else { + Dst = numEle[0]; + } + delete [] numEle; + return Dst; + } else if (ScalarDstSize == 8 && ScalarSrcSize == 16) { + // case 4: + SDValue *numEle = new SDValue[DstNumEle]; + for (uint32_t x = 0; x < SrcNumEle; ++x) { + numEle[x * 2] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, + MVT::i16, Src, DAG.getConstant(x, MVT::i32)); + numEle[x * 2 + 1] = DAG.getNode(ISD::SRL, DL, MVT::i16, + numEle[x * 2], DAG.getConstant(8, MVT::i16)); + } + MVT ty = (SrcNumEle == 1) ? MVT::v2i16 : MVT::v4i16; + Dst = DAG.getNode(AMDILISD::VBUILD, DL, ty, numEle[0]); + for (uint32_t x = 1; x < DstNumEle; ++x) { + SDValue idx = DAG.getNode(ISD::ZERO_EXTEND, DL, + getPointerTy(), DAG.getConstant(x, MVT::i32)); + Dst = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ty, + Dst, numEle[x], idx); + } + delete [] numEle; + ty = (SrcNumEle == 1) ? MVT::v2i8 : MVT::v4i8; + Res = DAG.getSExtOrTrunc(Dst, DL, ty); + return Res; + } + } + } + Res = DAG.getNode(AMDILISD::BITCONV, + Dst.getDebugLoc(), + Dst.getValueType(), Src); + return Res; +} + +SDValue +AMDILTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const +{ + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + unsigned int SPReg = AMDIL::SP; + DebugLoc DL = Op.getDebugLoc(); + SDValue SP = DAG.getCopyFromReg(Chain, + DL, + SPReg, MVT::i32); + SDValue NewSP = DAG.getNode(ISD::ADD, + DL, + MVT::i32, SP, Size); + Chain = DAG.getCopyToReg(SP.getValue(1), + DL, + SPReg, NewSP); + SDValue Ops[2] = {NewSP, Chain}; + Chain = DAG.getMergeValues(Ops, 2 ,DL); + return Chain; +} +SDValue +AMDILTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Chain = Op.getOperand(0); + SDValue Cond = Op.getOperand(1); + SDValue Jump = Op.getOperand(2); + SDValue Result; + Result = DAG.getNode( + AMDILISD::BRANCH_COND, + Op.getDebugLoc(), + Op.getValueType(), + Chain, Jump, Cond); + return Result; +} + +SDValue +AMDILTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Chain = Op.getOperand(0); + CondCodeSDNode *CCNode = cast<CondCodeSDNode>(Op.getOperand(1)); + SDValue LHS = Op.getOperand(2); + SDValue RHS = Op.getOperand(3); + SDValue JumpT = Op.getOperand(4); + SDValue CmpValue; + ISD::CondCode CC = CCNode->get(); + SDValue Result; + unsigned int cmpOpcode = CondCCodeToCC( + CC, + LHS.getValueType().getSimpleVT().SimpleTy); + CmpValue = DAG.getNode( + AMDILISD::CMP, + Op.getDebugLoc(), + LHS.getValueType(), + DAG.getConstant(cmpOpcode, MVT::i32), + LHS, RHS); + Result = DAG.getNode( + AMDILISD::BRANCH_COND, + CmpValue.getDebugLoc(), + MVT::Other, Chain, + JumpT, CmpValue); + return Result; +} + +SDValue +AMDILTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Result = DAG.getNode( + AMDILISD::DP_TO_FP, + Op.getDebugLoc(), + Op.getValueType(), + Op.getOperand(0), + Op.getOperand(1)); + return Result; +} + +SDValue +AMDILTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Result = DAG.getNode( + AMDILISD::VCONCAT, + Op.getDebugLoc(), + Op.getValueType(), + Op.getOperand(0), + Op.getOperand(1)); + return Result; +} +// LowerRET - Lower an ISD::RET node. +SDValue +AMDILTargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc dl, SelectionDAG &DAG) +const +{ + //MachineFunction& MF = DAG.getMachineFunction(); + // CCValAssign - represent the assignment of the return value + // to a location + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + + // Analyze return values of ISD::RET + CCInfo.AnalyzeReturn(Outs, RetCC_AMDIL32); + // If this is the first return lowered for this function, add + // the regs to the liveout set for the function + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + for (unsigned int i = 0, e = RVLocs.size(); i != e; ++i) { + if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) { + MRI.addLiveOut(RVLocs[i].getLocReg()); + } + } + // FIXME: implement this when tail call is implemented + // Chain = GetPossiblePreceedingTailCall(Chain, AMDILISD::TAILCALL); + // both x86 and ppc implement this in ISelLowering + + // Regular return here + SDValue Flag; + SmallVector<SDValue, 6> RetOps; + RetOps.push_back(Chain); + RetOps.push_back(DAG.getConstant(0/*getBytesToPopOnReturn()*/, MVT::i32)); + for (unsigned int i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + SDValue ValToCopy = OutVals[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + // ISD::Ret => ret chain, (regnum1, val1), ... + // So i * 2 + 1 index only the regnums + Chain = DAG.getCopyToReg(Chain, + dl, + VA.getLocReg(), + ValToCopy, + Flag); + // guarantee that all emitted copies are stuck together + // avoiding something bad + Flag = Chain.getValue(1); + } + /*if (MF.getFunction()->hasStructRetAttr()) { + assert(0 && "Struct returns are not yet implemented!"); + // Both MIPS and X86 have this + }*/ + RetOps[0] = Chain; + if (Flag.getNode()) + RetOps.push_back(Flag); + + Flag = DAG.getNode(AMDILISD::RET_FLAG, + dl, + MVT::Other, &RetOps[0], RetOps.size()); + return Flag; +} +void +AMDILTargetLowering::generateLongRelational(MachineInstr *MI, + unsigned int opCode) const +{ + MachineOperand DST = MI->getOperand(0); + MachineOperand LHS = MI->getOperand(2); + MachineOperand RHS = MI->getOperand(3); + unsigned int opi32Code = 0, si32Code = 0; + unsigned int simpleVT = MI->getDesc().OpInfo[0].RegClass; + uint32_t REGS[12]; + // All the relationals can be generated with with 6 temp registers + for (int x = 0; x < 12; ++x) { + REGS[x] = genVReg(simpleVT); + } + // Pull out the high and low components of each 64 bit register + generateMachineInst(AMDIL::LHI, REGS[0], LHS.getReg()); + generateMachineInst(AMDIL::LLO, REGS[1], LHS.getReg()); + generateMachineInst(AMDIL::LHI, REGS[2], RHS.getReg()); + generateMachineInst(AMDIL::LLO, REGS[3], RHS.getReg()); + // Determine the correct opcode that we should use + switch(opCode) { + default: + assert(!"comparison case not handled!"); + break; + case AMDIL::LEQ: + si32Code = opi32Code = AMDIL::IEQ; + break; + case AMDIL::LNE: + si32Code = opi32Code = AMDIL::INE; + break; + case AMDIL::LLE: + case AMDIL::ULLE: + case AMDIL::LGE: + case AMDIL::ULGE: + if (opCode == AMDIL::LGE || opCode == AMDIL::ULGE) { + std::swap(REGS[0], REGS[2]); + } else { + std::swap(REGS[1], REGS[3]); + } + if (opCode == AMDIL::LLE || opCode == AMDIL::LGE) { + opi32Code = AMDIL::ILT; + } else { + opi32Code = AMDIL::ULT; + } + si32Code = AMDIL::UGE; + break; + case AMDIL::LGT: + case AMDIL::ULGT: + std::swap(REGS[0], REGS[2]); + std::swap(REGS[1], REGS[3]); + case AMDIL::LLT: + case AMDIL::ULLT: + if (opCode == AMDIL::LGT || opCode == AMDIL::LLT) { + opi32Code = AMDIL::ILT; + } else { + opi32Code = AMDIL::ULT; + } + si32Code = AMDIL::ULT; + break; + }; + // Do the initial opcode on the high and low components. + // This leaves the following: + // REGS[4] = L_HI OP R_HI + // REGS[5] = L_LO OP R_LO + generateMachineInst(opi32Code, REGS[4], REGS[0], REGS[2]); + generateMachineInst(si32Code, REGS[5], REGS[1], REGS[3]); + switch(opi32Code) { + case AMDIL::IEQ: + case AMDIL::INE: + { + // combine the results with an and or or depending on if + // we are eq or ne + uint32_t combineOp = (opi32Code == AMDIL::IEQ) + ? AMDIL::BINARY_AND_i32 : AMDIL::BINARY_OR_i32; + generateMachineInst(combineOp, REGS[11], REGS[4], REGS[5]); + } + break; + default: + // this finishes codegen for the following pattern + // REGS[4] || (REGS[5] && (L_HI == R_HI)) + generateMachineInst(AMDIL::IEQ, REGS[9], REGS[0], REGS[2]); + generateMachineInst(AMDIL::BINARY_AND_i32, REGS[10], REGS[5], + REGS[9]); + generateMachineInst(AMDIL::BINARY_OR_i32, REGS[11], REGS[4], + REGS[10]); + break; + } + generateMachineInst(AMDIL::LCREATE, DST.getReg(), REGS[11], REGS[11]); +} + +unsigned int +AMDILTargetLowering::getFunctionAlignment(const Function *) const +{ + return 0; +} + +void +AMDILTargetLowering::setPrivateData(MachineBasicBlock *BB, + MachineBasicBlock::iterator &BBI, + DebugLoc *DL, const TargetInstrInfo *TII) const +{ + mBB = BB; + mBBI = BBI; + mDL = DL; + mTII = TII; +} +uint32_t +AMDILTargetLowering::genVReg(uint32_t regType) const +{ + return mBB->getParent()->getRegInfo().createVirtualRegister( + getRegClassFromID(regType)); +} + +MachineInstrBuilder +AMDILTargetLowering::generateMachineInst(uint32_t opcode, uint32_t dst) const +{ + return BuildMI(*mBB, mBBI, *mDL, mTII->get(opcode), dst); +} + +MachineInstrBuilder +AMDILTargetLowering::generateMachineInst(uint32_t opcode, uint32_t dst, + uint32_t src1) const +{ + return generateMachineInst(opcode, dst).addReg(src1); +} + +MachineInstrBuilder +AMDILTargetLowering::generateMachineInst(uint32_t opcode, uint32_t dst, + uint32_t src1, uint32_t src2) const +{ + return generateMachineInst(opcode, dst, src1).addReg(src2); +} + +MachineInstrBuilder +AMDILTargetLowering::generateMachineInst(uint32_t opcode, uint32_t dst, + uint32_t src1, uint32_t src2, uint32_t src3) const +{ + return generateMachineInst(opcode, dst, src1, src2).addReg(src3); +} + + +SDValue +AMDILTargetLowering::LowerSDIV24(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + MVT INTTY; + MVT FLTTY; + if (!OVT.isVector()) { + INTTY = MVT::i32; + FLTTY = MVT::f32; + } else if (OVT.getVectorNumElements() == 2) { + INTTY = MVT::v2i32; + FLTTY = MVT::v2f32; + } else if (OVT.getVectorNumElements() == 4) { + INTTY = MVT::v4i32; + FLTTY = MVT::v4f32; + } + unsigned bitsize = OVT.getScalarType().getSizeInBits(); + // char|short jq = ia ^ ib; + SDValue jq = DAG.getNode(ISD::XOR, DL, OVT, LHS, RHS); + + // jq = jq >> (bitsize - 2) + jq = DAG.getNode(ISD::SRA, DL, OVT, jq, DAG.getConstant(bitsize - 2, OVT)); + + // jq = jq | 0x1 + jq = DAG.getNode(ISD::OR, DL, OVT, jq, DAG.getConstant(1, OVT)); + + // jq = (int)jq + jq = DAG.getSExtOrTrunc(jq, DL, INTTY); + + // int ia = (int)LHS; + SDValue ia = DAG.getSExtOrTrunc(LHS, DL, INTTY); + + // int ib, (int)RHS; + SDValue ib = DAG.getSExtOrTrunc(RHS, DL, INTTY); + + // float fa = (float)ia; + SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia); + + // float fb = (float)ib; + SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib); + + // float fq = native_divide(fa, fb); + SDValue fq = DAG.getNode(AMDILISD::DIV_INF, DL, FLTTY, fa, fb); + + // fq = trunc(fq); + fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq); + + // float fqneg = -fq; + SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FLTTY, fq); + + // float fr = mad(fqneg, fb, fa); + SDValue fr = DAG.getNode(AMDILISD::MAD, DL, FLTTY, fqneg, fb, fa); + + // int iq = (int)fq; + SDValue iq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq); + + // fr = fabs(fr); + fr = DAG.getNode(ISD::FABS, DL, FLTTY, fr); + + // fb = fabs(fb); + fb = DAG.getNode(ISD::FABS, DL, FLTTY, fb); + + // int cv = fr >= fb; + SDValue cv; + if (INTTY == MVT::i32) { + cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE); + } else { + cv = DAG.getSetCC(DL, INTTY, fr, fb, ISD::SETOGE); + } + // jq = (cv ? jq : 0); + jq = DAG.getNode(AMDILISD::CMOVLOG, DL, OVT, cv, jq, + DAG.getConstant(0, OVT)); + // dst = iq + jq; + iq = DAG.getSExtOrTrunc(iq, DL, OVT); + iq = DAG.getNode(ISD::ADD, DL, OVT, iq, jq); + return iq; +} + +SDValue +AMDILTargetLowering::LowerSDIV32(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + // The LowerSDIV32 function generates equivalent to the following IL. + // mov r0, LHS + // mov r1, RHS + // ilt r10, r0, 0 + // ilt r11, r1, 0 + // iadd r0, r0, r10 + // iadd r1, r1, r11 + // ixor r0, r0, r10 + // ixor r1, r1, r11 + // udiv r0, r0, r1 + // ixor r10, r10, r11 + // iadd r0, r0, r10 + // ixor DST, r0, r10 + + // mov r0, LHS + SDValue r0 = LHS; + + // mov r1, RHS + SDValue r1 = RHS; + + // ilt r10, r0, 0 + SDValue r10 = DAG.getNode(AMDILISD::CMP, DL, OVT, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::i32), MVT::i32), + r0, DAG.getConstant(0, OVT)); + + // ilt r11, r1, 0 + SDValue r11 = DAG.getNode(AMDILISD::CMP, DL, OVT, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::i32), MVT::i32), + r1, DAG.getConstant(0, OVT)); + + // iadd r0, r0, r10 + r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10); + + // iadd r1, r1, r11 + r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11); + + // ixor r0, r0, r10 + r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10); + + // ixor r1, r1, r11 + r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11); + + // udiv r0, r0, r1 + r0 = DAG.getNode(ISD::UDIV, DL, OVT, r0, r1); + + // ixor r10, r10, r11 + r10 = DAG.getNode(ISD::XOR, DL, OVT, r10, r11); + + // iadd r0, r0, r10 + r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10); + + // ixor DST, r0, r10 + SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10); + return DST; +} + +SDValue +AMDILTargetLowering::LowerSDIV64(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} + +SDValue +AMDILTargetLowering::LowerUDIV24(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + MVT INTTY; + MVT FLTTY; + if (!OVT.isVector()) { + INTTY = MVT::i32; + FLTTY = MVT::f32; + } else if (OVT.getVectorNumElements() == 2) { + INTTY = MVT::v2i32; + FLTTY = MVT::v2f32; + } else if (OVT.getVectorNumElements() == 4) { + INTTY = MVT::v4i32; + FLTTY = MVT::v4f32; + } + + // The LowerUDIV24 function implements the following CL. + // int ia = (int)LHS + // float fa = (float)ia + // int ib = (int)RHS + // float fb = (float)ib + // float fq = native_divide(fa, fb) + // fq = trunc(fq) + // float t = mad(fq, fb, fb) + // int iq = (int)fq - (t <= fa) + // return (type)iq + + // int ia = (int)LHS + SDValue ia = DAG.getZExtOrTrunc(LHS, DL, INTTY); + + // float fa = (float)ia + SDValue fa = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ia); + + // int ib = (int)RHS + SDValue ib = DAG.getZExtOrTrunc(RHS, DL, INTTY); + + // float fb = (float)ib + SDValue fb = DAG.getNode(ISD::SINT_TO_FP, DL, FLTTY, ib); + + // float fq = native_divide(fa, fb) + SDValue fq = DAG.getNode(AMDILISD::DIV_INF, DL, FLTTY, fa, fb); + + // fq = trunc(fq) + fq = DAG.getNode(ISD::FTRUNC, DL, FLTTY, fq); + + // float t = mad(fq, fb, fb) + SDValue t = DAG.getNode(AMDILISD::MAD, DL, FLTTY, fq, fb, fb); + + // int iq = (int)fq - (t <= fa) // This is sub and not add because GPU returns 0, -1 + SDValue iq; + fq = DAG.getNode(ISD::FP_TO_SINT, DL, INTTY, fq); + if (INTTY == MVT::i32) { + iq = DAG.getSetCC(DL, INTTY, t, fa, ISD::SETOLE); + } else { + iq = DAG.getSetCC(DL, INTTY, t, fa, ISD::SETOLE); + } + iq = DAG.getNode(ISD::ADD, DL, INTTY, fq, iq); + + + // return (type)iq + iq = DAG.getZExtOrTrunc(iq, DL, OVT); + return iq; + +} + +SDValue +AMDILTargetLowering::LowerUDIV32(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} + +SDValue +AMDILTargetLowering::LowerUDIV64(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} +SDValue +AMDILTargetLowering::LowerSREM8(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i8) { + INTTY = MVT::v2i32; + } else if (OVT == MVT::v4i8) { + INTTY = MVT::v4i32; + } + SDValue LHS = DAG.getSExtOrTrunc(Op.getOperand(0), DL, INTTY); + SDValue RHS = DAG.getSExtOrTrunc(Op.getOperand(1), DL, INTTY); + LHS = DAG.getNode(ISD::SREM, DL, INTTY, LHS, RHS); + LHS = DAG.getSExtOrTrunc(LHS, DL, OVT); + return LHS; +} + +SDValue +AMDILTargetLowering::LowerSREM16(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i16) { + INTTY = MVT::v2i32; + } else if (OVT == MVT::v4i16) { + INTTY = MVT::v4i32; + } + SDValue LHS = DAG.getSExtOrTrunc(Op.getOperand(0), DL, INTTY); + SDValue RHS = DAG.getSExtOrTrunc(Op.getOperand(1), DL, INTTY); + LHS = DAG.getNode(ISD::SREM, DL, INTTY, LHS, RHS); + LHS = DAG.getSExtOrTrunc(LHS, DL, OVT); + return LHS; +} + +SDValue +AMDILTargetLowering::LowerSREM32(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + // The LowerSREM32 function generates equivalent to the following IL. + // mov r0, LHS + // mov r1, RHS + // ilt r10, r0, 0 + // ilt r11, r1, 0 + // iadd r0, r0, r10 + // iadd r1, r1, r11 + // ixor r0, r0, r10 + // ixor r1, r1, r11 + // udiv r20, r0, r1 + // umul r20, r20, r1 + // sub r0, r0, r20 + // iadd r0, r0, r10 + // ixor DST, r0, r10 + + // mov r0, LHS + SDValue r0 = LHS; + + // mov r1, RHS + SDValue r1 = RHS; + + // ilt r10, r0, 0 + SDValue r10 = DAG.getNode(AMDILISD::CMP, DL, OVT, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::i32), MVT::i32), + r0, DAG.getConstant(0, OVT)); + + // ilt r11, r1, 0 + SDValue r11 = DAG.getNode(AMDILISD::CMP, DL, OVT, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::i32), MVT::i32), + r1, DAG.getConstant(0, OVT)); + + // iadd r0, r0, r10 + r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10); + + // iadd r1, r1, r11 + r1 = DAG.getNode(ISD::ADD, DL, OVT, r1, r11); + + // ixor r0, r0, r10 + r0 = DAG.getNode(ISD::XOR, DL, OVT, r0, r10); + + // ixor r1, r1, r11 + r1 = DAG.getNode(ISD::XOR, DL, OVT, r1, r11); + + // udiv r20, r0, r1 + SDValue r20 = DAG.getNode(ISD::UREM, DL, OVT, r0, r1); + + // umul r20, r20, r1 + r20 = DAG.getNode(AMDILISD::UMUL, DL, OVT, r20, r1); + + // sub r0, r0, r20 + r0 = DAG.getNode(ISD::SUB, DL, OVT, r0, r20); + + // iadd r0, r0, r10 + r0 = DAG.getNode(ISD::ADD, DL, OVT, r0, r10); + + // ixor DST, r0, r10 + SDValue DST = DAG.getNode(ISD::XOR, DL, OVT, r0, r10); + return DST; +} + +SDValue +AMDILTargetLowering::LowerSREM64(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} + +SDValue +AMDILTargetLowering::LowerUREM8(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i8) { + INTTY = MVT::v2i32; + } else if (OVT == MVT::v4i8) { + INTTY = MVT::v4i32; + } + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + // The LowerUREM8 function generates equivalent to the following IL. + // mov r0, as_u32(LHS) + // mov r1, as_u32(RHS) + // and r10, r0, 0xFF + // and r11, r1, 0xFF + // cmov_logical r3, r11, r11, 0x1 + // udiv r3, r10, r3 + // cmov_logical r3, r11, r3, 0 + // umul r3, r3, r11 + // sub r3, r10, r3 + // and as_u8(DST), r3, 0xFF + + // mov r0, as_u32(LHS) + SDValue r0 = DAG.getSExtOrTrunc(LHS, DL, INTTY); + + // mov r1, as_u32(RHS) + SDValue r1 = DAG.getSExtOrTrunc(RHS, DL, INTTY); + + // and r10, r0, 0xFF + SDValue r10 = DAG.getNode(ISD::AND, DL, INTTY, r0, + DAG.getConstant(0xFF, INTTY)); + + // and r11, r1, 0xFF + SDValue r11 = DAG.getNode(ISD::AND, DL, INTTY, r1, + DAG.getConstant(0xFF, INTTY)); + + // cmov_logical r3, r11, r11, 0x1 + SDValue r3 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, r11, r11, + DAG.getConstant(0x01, INTTY)); + + // udiv r3, r10, r3 + r3 = DAG.getNode(ISD::UREM, DL, INTTY, r10, r3); + + // cmov_logical r3, r11, r3, 0 + r3 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, r11, r3, + DAG.getConstant(0, INTTY)); + + // umul r3, r3, r11 + r3 = DAG.getNode(AMDILISD::UMUL, DL, INTTY, r3, r11); + + // sub r3, r10, r3 + r3 = DAG.getNode(ISD::SUB, DL, INTTY, r10, r3); + + // and as_u8(DST), r3, 0xFF + SDValue DST = DAG.getNode(ISD::AND, DL, INTTY, r3, + DAG.getConstant(0xFF, INTTY)); + DST = DAG.getZExtOrTrunc(DST, DL, OVT); + return DST; +} + +SDValue +AMDILTargetLowering::LowerUREM16(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + MVT INTTY = MVT::i32; + if (OVT == MVT::v2i16) { + INTTY = MVT::v2i32; + } else if (OVT == MVT::v4i16) { + INTTY = MVT::v4i32; + } + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + // The LowerUREM16 function generatest equivalent to the following IL. + // mov r0, LHS + // mov r1, RHS + // DIV = LowerUDIV16(LHS, RHS) + // and r10, r0, 0xFFFF + // and r11, r1, 0xFFFF + // cmov_logical r3, r11, r11, 0x1 + // udiv as_u16(r3), as_u32(r10), as_u32(r3) + // and r3, r3, 0xFFFF + // cmov_logical r3, r11, r3, 0 + // umul r3, r3, r11 + // sub r3, r10, r3 + // and DST, r3, 0xFFFF + + // mov r0, LHS + SDValue r0 = LHS; + + // mov r1, RHS + SDValue r1 = RHS; + + // and r10, r0, 0xFFFF + SDValue r10 = DAG.getNode(ISD::AND, DL, OVT, r0, + DAG.getConstant(0xFFFF, OVT)); + + // and r11, r1, 0xFFFF + SDValue r11 = DAG.getNode(ISD::AND, DL, OVT, r1, + DAG.getConstant(0xFFFF, OVT)); + + // cmov_logical r3, r11, r11, 0x1 + SDValue r3 = DAG.getNode(AMDILISD::CMOVLOG, DL, OVT, r11, r11, + DAG.getConstant(0x01, OVT)); + + // udiv as_u16(r3), as_u32(r10), as_u32(r3) + r10 = DAG.getZExtOrTrunc(r10, DL, INTTY); + r3 = DAG.getZExtOrTrunc(r3, DL, INTTY); + r3 = DAG.getNode(ISD::UREM, DL, INTTY, r10, r3); + r3 = DAG.getZExtOrTrunc(r3, DL, OVT); + r10 = DAG.getZExtOrTrunc(r10, DL, OVT); + + // and r3, r3, 0xFFFF + r3 = DAG.getNode(ISD::AND, DL, OVT, r3, + DAG.getConstant(0xFFFF, OVT)); + + // cmov_logical r3, r11, r3, 0 + r3 = DAG.getNode(AMDILISD::CMOVLOG, DL, OVT, r11, r3, + DAG.getConstant(0, OVT)); + // umul r3, r3, r11 + r3 = DAG.getNode(AMDILISD::UMUL, DL, OVT, r3, r11); + + // sub r3, r10, r3 + r3 = DAG.getNode(ISD::SUB, DL, OVT, r10, r3); + + // and DST, r3, 0xFFFF + SDValue DST = DAG.getNode(ISD::AND, DL, OVT, r3, + DAG.getConstant(0xFFFF, OVT)); + return DST; +} + +SDValue +AMDILTargetLowering::LowerUREM32(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + // The LowerUREM32 function generates equivalent to the following IL. + // udiv r20, LHS, RHS + // umul r20, r20, RHS + // sub DST, LHS, r20 + + // udiv r20, LHS, RHS + SDValue r20 = DAG.getNode(ISD::UDIV, DL, OVT, LHS, RHS); + + // umul r20, r20, RHS + r20 = DAG.getNode(AMDILISD::UMUL, DL, OVT, r20, RHS); + + // sub DST, LHS, r20 + SDValue DST = DAG.getNode(ISD::SUB, DL, OVT, LHS, r20); + return DST; +} + +SDValue +AMDILTargetLowering::LowerUREM64(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} + + +SDValue +AMDILTargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const +{ + DebugLoc DL = Op.getDebugLoc(); + EVT OVT = Op.getValueType(); + MVT INTTY = MVT::i32; + if (OVT == MVT::v2f32) { + INTTY = MVT::v2i32; + } else if (OVT == MVT::v4f32) { + INTTY = MVT::v4i32; + } + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue DST; + const AMDILSubtarget *stm = reinterpret_cast<const AMDILTargetMachine*>( + &this->getTargetMachine())->getSubtargetImpl(); + if (stm->device()->getGeneration() == AMDILDeviceInfo::HD4XXX) { + // TODO: This doesn't work for vector types yet + // The LowerFDIV32 function generates equivalent to the following + // IL: + // mov r20, as_int(LHS) + // mov r21, as_int(RHS) + // and r30, r20, 0x7f800000 + // and r31, r20, 0x807FFFFF + // and r32, r21, 0x7f800000 + // and r33, r21, 0x807FFFFF + // ieq r40, r30, 0x7F800000 + // ieq r41, r31, 0x7F800000 + // ieq r42, r32, 0 + // ieq r43, r33, 0 + // and r50, r20, 0x80000000 + // and r51, r21, 0x80000000 + // ior r32, r32, 0x3f800000 + // ior r33, r33, 0x3f800000 + // cmov_logical r32, r42, r50, r32 + // cmov_logical r33, r43, r51, r33 + // cmov_logical r32, r40, r20, r32 + // cmov_logical r33, r41, r21, r33 + // ior r50, r40, r41 + // ior r51, r42, r43 + // ior r50, r50, r51 + // inegate r52, r31 + // iadd r30, r30, r52 + // cmov_logical r30, r50, 0, r30 + // div_zeroop(infinity) r21, 1.0, r33 + // mul_ieee r20, r32, r21 + // and r22, r20, 0x7FFFFFFF + // and r23, r20, 0x80000000 + // ishr r60, r22, 0x00000017 + // ishr r61, r30, 0x00000017 + // iadd r20, r20, r30 + // iadd r21, r22, r30 + // iadd r60, r60, r61 + // ige r42, 0, R60 + // ior r41, r23, 0x7F800000 + // ige r40, r60, 0x000000FF + // cmov_logical r40, r50, 0, r40 + // cmov_logical r20, r42, r23, r20 + // cmov_logical DST, r40, r41, r20 + // as_float(DST) + + // mov r20, as_int(LHS) + SDValue R20 = DAG.getNode(ISDBITCAST, DL, INTTY, LHS); + + // mov r21, as_int(RHS) + SDValue R21 = DAG.getNode(ISDBITCAST, DL, INTTY, RHS); + + // and r30, r20, 0x7f800000 + SDValue R30 = DAG.getNode(ISD::AND, DL, INTTY, R20, + DAG.getConstant(0x7F800000, INTTY)); + + // and r31, r21, 0x7f800000 + SDValue R31 = DAG.getNode(ISD::AND, DL, INTTY, R21, + DAG.getConstant(0x7f800000, INTTY)); + + // and r32, r20, 0x807FFFFF + SDValue R32 = DAG.getNode(ISD::AND, DL, INTTY, R20, + DAG.getConstant(0x807FFFFF, INTTY)); + + // and r33, r21, 0x807FFFFF + SDValue R33 = DAG.getNode(ISD::AND, DL, INTTY, R21, + DAG.getConstant(0x807FFFFF, INTTY)); + + // ieq r40, r30, 0x7F800000 + SDValue R40 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + R30, DAG.getConstant(0x7F800000, INTTY)); + + // ieq r41, r31, 0x7F800000 + SDValue R41 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + R31, DAG.getConstant(0x7F800000, INTTY)); + + // ieq r42, r30, 0 + SDValue R42 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + R30, DAG.getConstant(0, INTTY)); + + // ieq r43, r31, 0 + SDValue R43 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETEQ, MVT::i32), MVT::i32), + R31, DAG.getConstant(0, INTTY)); + + // and r50, r20, 0x80000000 + SDValue R50 = DAG.getNode(ISD::AND, DL, INTTY, R20, + DAG.getConstant(0x80000000, INTTY)); + + // and r51, r21, 0x80000000 + SDValue R51 = DAG.getNode(ISD::AND, DL, INTTY, R21, + DAG.getConstant(0x80000000, INTTY)); + + // ior r32, r32, 0x3f800000 + R32 = DAG.getNode(ISD::OR, DL, INTTY, R32, + DAG.getConstant(0x3F800000, INTTY)); + + // ior r33, r33, 0x3f800000 + R33 = DAG.getNode(ISD::OR, DL, INTTY, R33, + DAG.getConstant(0x3F800000, INTTY)); + + // cmov_logical r32, r42, r50, r32 + R32 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R42, R50, R32); + + // cmov_logical r33, r43, r51, r33 + R33 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R43, R51, R33); + + // cmov_logical r32, r40, r20, r32 + R32 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R40, R20, R32); + + // cmov_logical r33, r41, r21, r33 + R33 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R41, R21, R33); + + // ior r50, r40, r41 + R50 = DAG.getNode(ISD::OR, DL, INTTY, R40, R41); + + // ior r51, r42, r43 + R51 = DAG.getNode(ISD::OR, DL, INTTY, R42, R43); + + // ior r50, r50, r51 + R50 = DAG.getNode(ISD::OR, DL, INTTY, R50, R51); + + // inegate r52, r31 + SDValue R52 = DAG.getNode(AMDILISD::INEGATE, DL, INTTY, R31); + + // iadd r30, r30, r52 + R30 = DAG.getNode(ISD::ADD, DL, INTTY, R30, R52); + + // cmov_logical r30, r50, 0, r30 + R30 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R50, + DAG.getConstant(0, INTTY), R30); + + // div_zeroop(infinity) r21, 1.0, as_float(r33) + R33 = DAG.getNode(ISDBITCAST, DL, OVT, R33); + R21 = DAG.getNode(AMDILISD::DIV_INF, DL, OVT, + DAG.getConstantFP(1.0f, OVT), R33); + + // mul_ieee as_int(r20), as_float(r32), r21 + R32 = DAG.getNode(ISDBITCAST, DL, OVT, R32); + R20 = DAG.getNode(ISD::FMUL, DL, OVT, R32, R21); + R20 = DAG.getNode(ISDBITCAST, DL, INTTY, R20); + + // div_zeroop(infinity) r21, 1.0, as_float(r33) + R33 = DAG.getNode(ISDBITCAST, DL, OVT, R33); + R21 = DAG.getNode(AMDILISD::DIV_INF, DL, OVT, + DAG.getConstantFP(1.0f, OVT), R33); + + // mul_ieee as_int(r20), as_float(r32), r21 + R32 = DAG.getNode(ISDBITCAST, DL, OVT, R32); + R20 = DAG.getNode(ISD::FMUL, DL, OVT, R32, R21); + R20 = DAG.getNode(ISDBITCAST, DL, INTTY, R20); + + // and r22, r20, 0x7FFFFFFF + SDValue R22 = DAG.getNode(ISD::AND, DL, INTTY, R20, + DAG.getConstant(0x7FFFFFFF, INTTY)); + + // and r23, r20, 0x80000000 + SDValue R23 = DAG.getNode(ISD::AND, DL, INTTY, R20, + DAG.getConstant(0x80000000, INTTY)); + + // ishr r60, r22, 0x00000017 + SDValue R60 = DAG.getNode(ISD::SRA, DL, INTTY, R22, + DAG.getConstant(0x00000017, INTTY)); + + // ishr r61, r30, 0x00000017 + SDValue R61 = DAG.getNode(ISD::SRA, DL, INTTY, R30, + DAG.getConstant(0x00000017, INTTY)); + + // iadd r20, r20, r30 + R20 = DAG.getNode(ISD::ADD, DL, INTTY, R20, R30); + + // iadd r21, r22, r30 + R21 = DAG.getNode(ISD::ADD, DL, INTTY, R22, R30); + + // iadd r60, r60, r61 + R60 = DAG.getNode(ISD::ADD, DL, INTTY, R60, R61); + + // ige r42, 0, R60 + R42 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETGE, MVT::i32), MVT::i32), + DAG.getConstant(0, INTTY), + R60); + + // ior r41, r23, 0x7F800000 + R41 = DAG.getNode(ISD::OR, DL, INTTY, R23, + DAG.getConstant(0x7F800000, INTTY)); + + // ige r40, r60, 0x000000FF + R40 = DAG.getNode(AMDILISD::CMP, DL, INTTY, + DAG.getConstant(CondCCodeToCC(ISD::SETGE, MVT::i32), MVT::i32), + R60, + DAG.getConstant(0x0000000FF, INTTY)); + + // cmov_logical r40, r50, 0, r40 + R40 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R50, + DAG.getConstant(0, INTTY), + R40); + + // cmov_logical r20, r42, r23, r20 + R20 = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R42, R23, R20); + + // cmov_logical DST, r40, r41, r20 + DST = DAG.getNode(AMDILISD::CMOVLOG, DL, INTTY, R40, R41, R20); + + // as_float(DST) + DST = DAG.getNode(ISDBITCAST, DL, OVT, DST); + } else { + // The following sequence of DAG nodes produce the following IL: + // fabs r1, RHS + // lt r2, 0x1.0p+96f, r1 + // cmov_logical r3, r2, 0x1.0p-23f, 1.0f + // mul_ieee r1, RHS, r3 + // div_zeroop(infinity) r0, LHS, r1 + // mul_ieee DST, r0, r3 + + // fabs r1, RHS + SDValue r1 = DAG.getNode(ISD::FABS, DL, OVT, RHS); + // lt r2, 0x1.0p+96f, r1 + SDValue r2 = DAG.getNode(AMDILISD::CMP, DL, OVT, + DAG.getConstant(CondCCodeToCC(ISD::SETLT, MVT::f32), MVT::i32), + DAG.getConstant(0x6f800000, INTTY), r1); + // cmov_logical r3, r2, 0x1.0p-23f, 1.0f + SDValue r3 = DAG.getNode(AMDILISD::CMOVLOG, DL, OVT, r2, + DAG.getConstant(0x2f800000, INTTY), + DAG.getConstant(0x3f800000, INTTY)); + // mul_ieee r1, RHS, r3 + r1 = DAG.getNode(ISD::FMUL, DL, OVT, RHS, r3); + // div_zeroop(infinity) r0, LHS, r1 + SDValue r0 = DAG.getNode(AMDILISD::DIV_INF, DL, OVT, LHS, r1); + // mul_ieee DST, r0, r3 + DST = DAG.getNode(ISD::FMUL, DL, OVT, r0, r3); + } + return DST; +} + +SDValue +AMDILTargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const +{ + return SDValue(Op.getNode(), 0); +} |