diff options
Diffstat (limited to 'src/gallium/drivers/panfrost/include/panfrost-job.h')
-rw-r--r-- | src/gallium/drivers/panfrost/include/panfrost-job.h | 1481 |
1 files changed, 1481 insertions, 0 deletions
diff --git a/src/gallium/drivers/panfrost/include/panfrost-job.h b/src/gallium/drivers/panfrost/include/panfrost-job.h new file mode 100644 index 00000000000..dbb5486bfa4 --- /dev/null +++ b/src/gallium/drivers/panfrost/include/panfrost-job.h @@ -0,0 +1,1481 @@ +/* + * © Copyright 2017-2018 Alyssa Rosenzweig + * © Copyright 2017-2018 Connor Abbott + * © Copyright 2017-2018 Lyude Paul + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + */ + +#ifndef __PANFROST_JOB_H__ +#define __PANFROST_JOB_H__ + +#include <stdint.h> +#include <panfrost-misc.h> + +#define T8XX + +#define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8) + +#define MALI_FBD_HIERARCHY_WEIGHTS 8 + +#define MALI_PAYLOAD_SIZE 256 + +typedef u32 mali_jd_core_req; + +enum mali_job_type { + JOB_NOT_STARTED = 0, + JOB_TYPE_NULL = 1, + JOB_TYPE_SET_VALUE = 2, + JOB_TYPE_CACHE_FLUSH = 3, + JOB_TYPE_COMPUTE = 4, + JOB_TYPE_VERTEX = 5, + JOB_TYPE_GEOMETRY = 6, + JOB_TYPE_TILER = 7, + JOB_TYPE_FUSED = 8, + JOB_TYPE_FRAGMENT = 9, +}; + +enum mali_draw_mode { + MALI_DRAW_NONE = 0x0, + MALI_POINTS = 0x1, + MALI_LINES = 0x2, + MALI_LINE_STRIP = 0x4, + MALI_LINE_LOOP = 0x6, + MALI_TRIANGLES = 0x8, + MALI_TRIANGLE_STRIP = 0xA, + MALI_TRIANGLE_FAN = 0xC, + MALI_POLYGON = 0xD, + MALI_QUADS = 0xE, + MALI_QUAD_STRIP = 0xF, + + /* All other modes invalid */ +}; + +/* Applies to tiler_gl_enables */ + +#define MALI_CULL_FACE_BACK 0x80 +#define MALI_CULL_FACE_FRONT 0x40 + +#define MALI_FRONT_FACE(v) (v << 5) +#define MALI_CCW (0) +#define MALI_CW (1) + +#define MALI_OCCLUSION_BOOLEAN 0x8 + +/* TODO: Might this actually be a finer bitfield? */ +#define MALI_DEPTH_STENCIL_ENABLE 0x6400 + +#define DS_ENABLE(field) \ + (field == MALI_DEPTH_STENCIL_ENABLE) \ + ? "MALI_DEPTH_STENCIL_ENABLE" \ + : (field == 0) ? "0" \ + : "0 /* XXX: Unknown, check hexdump */" + +/* Used in stencil and depth tests */ + +enum mali_func { + MALI_FUNC_NEVER = 0, + MALI_FUNC_LESS = 1, + MALI_FUNC_EQUAL = 2, + MALI_FUNC_LEQUAL = 3, + MALI_FUNC_GREATER = 4, + MALI_FUNC_NOTEQUAL = 5, + MALI_FUNC_GEQUAL = 6, + MALI_FUNC_ALWAYS = 7 +}; + +/* Same OpenGL, but mixed up. Why? Because forget me, that's why! */ + +enum mali_alt_func { + MALI_ALT_FUNC_NEVER = 0, + MALI_ALT_FUNC_GREATER = 1, + MALI_ALT_FUNC_EQUAL = 2, + MALI_ALT_FUNC_GEQUAL = 3, + MALI_ALT_FUNC_LESS = 4, + MALI_ALT_FUNC_NOTEQUAL = 5, + MALI_ALT_FUNC_LEQUAL = 6, + MALI_ALT_FUNC_ALWAYS = 7 +}; + +/* Flags apply to unknown2_3? */ + +#define MALI_HAS_MSAA (1 << 0) +#define MALI_CAN_DISCARD (1 << 5) + +/* Applies on T6XX, specifying that programmable blending is in use */ +#define MALI_HAS_BLEND_SHADER (1 << 6) + +/* func is mali_func */ +#define MALI_DEPTH_FUNC(func) (func << 8) +#define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7) +#define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7) + +#define MALI_DEPTH_TEST (1 << 11) + +/* Next flags to unknown2_4 */ +#define MALI_STENCIL_TEST (1 << 0) + +/* What?! */ +#define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1) + +#define MALI_NO_DITHER (1 << 9) +#define MALI_DEPTH_RANGE_A (1 << 12) +#define MALI_DEPTH_RANGE_B (1 << 13) +#define MALI_NO_MSAA (1 << 14) + +/* Stencil test state is all encoded in a single u32, just with a lot of + * enums... */ + +enum mali_stencil_op { + MALI_STENCIL_KEEP = 0, + MALI_STENCIL_REPLACE = 1, + MALI_STENCIL_ZERO = 2, + MALI_STENCIL_INVERT = 3, + MALI_STENCIL_INCR_WRAP = 4, + MALI_STENCIL_DECR_WRAP = 5, + MALI_STENCIL_INCR = 6, + MALI_STENCIL_DECR = 7 +}; + +struct mali_stencil_test { + unsigned ref : 8; + unsigned mask : 8; + enum mali_func func : 3; + enum mali_stencil_op sfail : 3; + enum mali_stencil_op dpfail : 3; + enum mali_stencil_op dppass : 3; + unsigned zero : 4; +} __attribute__((packed)); + +/* Blending is a mess, since anything fancy triggers a blend shader, and + * -those- are not understood whatsover yet */ + +#define MALI_MASK_R (1 << 0) +#define MALI_MASK_G (1 << 1) +#define MALI_MASK_B (1 << 2) +#define MALI_MASK_A (1 << 3) + +enum mali_nondominant_mode { + MALI_BLEND_NON_MIRROR = 0, + MALI_BLEND_NON_ZERO = 1 +}; + +enum mali_dominant_blend { + MALI_BLEND_DOM_SOURCE = 0, + MALI_BLEND_DOM_DESTINATION = 1 +}; + +enum mali_dominant_factor { + MALI_DOMINANT_UNK0 = 0, + MALI_DOMINANT_ZERO = 1, + MALI_DOMINANT_SRC_COLOR = 2, + MALI_DOMINANT_DST_COLOR = 3, + MALI_DOMINANT_UNK4 = 4, + MALI_DOMINANT_SRC_ALPHA = 5, + MALI_DOMINANT_DST_ALPHA = 6, + MALI_DOMINANT_CONSTANT = 7, +}; + +enum mali_blend_modifier { + MALI_BLEND_MOD_UNK0 = 0, + MALI_BLEND_MOD_NORMAL = 1, + MALI_BLEND_MOD_SOURCE_ONE = 2, + MALI_BLEND_MOD_DEST_ONE = 3, +}; + +struct mali_blend_mode { + enum mali_blend_modifier clip_modifier : 2; + unsigned unused_0 : 1; + unsigned negate_source : 1; + + enum mali_dominant_blend dominant : 1; + + enum mali_nondominant_mode nondominant_mode : 1; + + unsigned unused_1 : 1; + + unsigned negate_dest : 1; + + enum mali_dominant_factor dominant_factor : 3; + unsigned complement_dominant : 1; +} __attribute__((packed)); + +struct mali_blend_equation { + /* Of type mali_blend_mode */ + unsigned rgb_mode : 12; + unsigned alpha_mode : 12; + + unsigned zero1 : 4; + + /* Corresponds to MALI_MASK_* above and glColorMask arguments */ + + unsigned color_mask : 4; + + /* Attached constant for CONSTANT_ALPHA, etc */ + +#ifndef BIFROST + float constant; +#endif +} __attribute__((packed)); + +/* Used with channel swizzling */ +enum mali_channel { + MALI_CHANNEL_RED = 0, + MALI_CHANNEL_GREEN = 1, + MALI_CHANNEL_BLUE = 2, + MALI_CHANNEL_ALPHA = 3, + MALI_CHANNEL_ZERO = 4, + MALI_CHANNEL_ONE = 5, + MALI_CHANNEL_RESERVED_0 = 6, + MALI_CHANNEL_RESERVED_1 = 7, +}; + +struct mali_channel_swizzle { + enum mali_channel r : 3; + enum mali_channel g : 3; + enum mali_channel b : 3; + enum mali_channel a : 3; +} __attribute__((packed)); + +/* Compressed per-pixel formats. Each of these formats expands to one to four + * floating-point or integer numbers, as defined by the OpenGL specification. + * There are various places in OpenGL where the user can specify a compressed + * format in memory, which all use the same 8-bit enum in the various + * descriptors, although different hardware units support different formats. + */ + +/* The top 3 bits specify how the bits of each component are interpreted. */ + +/* e.g. R11F_G11F_B10F */ +#define MALI_FORMAT_SPECIAL (2 << 5) + +/* signed normalized, e.g. RGBA8_SNORM */ +#define MALI_FORMAT_SNORM (3 << 5) + +/* e.g. RGBA8UI */ +#define MALI_FORMAT_UINT (4 << 5) + +/* e.g. RGBA8 and RGBA32F */ +#define MALI_FORMAT_UNORM (5 << 5) + +/* e.g. RGBA8I and RGBA16F */ +#define MALI_FORMAT_SINT (6 << 5) + +/* These formats seem to largely duplicate the others. They're used at least + * for Bifrost framebuffer output. + */ +#define MALI_FORMAT_SPECIAL2 (7 << 5) + +/* If the high 3 bits are 3 to 6 these two bits say how many components + * there are. + */ +#define MALI_NR_CHANNELS(n) ((n - 1) << 3) + +/* If the high 3 bits are 3 to 6, then the low 3 bits say how big each + * component is, except the special MALI_CHANNEL_FLOAT which overrides what the + * bits mean. + */ + +#define MALI_CHANNEL_8 3 + +#define MALI_CHANNEL_16 4 + +#define MALI_CHANNEL_32 5 + +/* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For + * MALI_FORMAT_UNORM, it means a 32-bit float. + */ +#define MALI_CHANNEL_FLOAT 7 + +enum mali_format { + MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3, + MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5, + MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7, + MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9, + + /* YUV formats */ + MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc, + + MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD, + MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11, + MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12, + MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13, + MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14, + MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19, + /* Only used for varyings, to indicate the transformed gl_Position */ + MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e, + /* Only used for varyings, to indicate that the write should be + * discarded. + */ + MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f, + + MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8, + MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16, + MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32, + MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8, + MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16, + MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32, + MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8, + MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16, + MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32, + MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8, + MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16, + MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32, + + MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8, + MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16, + MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32, + MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8, + MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16, + MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32, + MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8, + MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16, + MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32, + MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8, + MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16, + MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32, + + MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8, + MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16, + MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32, + MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT, + MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8, + MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16, + MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32, + MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT, + MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8, + MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16, + MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32, + MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT, + MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8, + MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16, + MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32, + MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT, + + MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8, + MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16, + MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32, + MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT, + MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8, + MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16, + MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32, + MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT, + MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8, + MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16, + MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32, + MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT, + MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8, + MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16, + MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32, + MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT, + + MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8, + MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd, + MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe, +}; + + +/* Alpha coverage is encoded as 4-bits (from a clampf), with inversion + * literally performing a bitwise invert. This function produces slightly wrong + * results and I'm not sure why; some rounding issue I suppose... */ + +#define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f)) +#define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f) + +/* Applies to unknown1 */ +#define MALI_NO_ALPHA_TO_COVERAGE (1 << 10) + +struct mali_blend_meta { +#ifdef T8XX + /* Base value of 0x200. + * OR with 0x1 for blending (anything other than REPLACE). + * OR with 0x2 for programmable blending + */ + + u64 unk1; + + /* For programmable blending, these turn into the blend_shader address */ + struct mali_blend_equation blend_equation_1; + + u64 zero2; + struct mali_blend_equation blend_equation_2; +#else + u32 unk1; // = 0x200 + struct mali_blend_equation blend_equation; + /* + * - 0x19 normally + * - 0x3 when this slot is unused (everything else is 0 except the index) + * - 0x11 when this is the fourth slot (and it's used) ++ * - 0 when there is a blend shader + */ + u16 unk2; + /* increments from 0 to 3 */ + u16 index; + + union { + struct { + /* So far, I've only seen: + * - R001 for 1-component formats + * - RG01 for 2-component formats + * - RGB1 for 3-component formats + * - RGBA for 4-component formats + */ + u32 swizzle : 12; + enum mali_format format : 8; + + /* Type of the shader output variable. Note, this can + * be different from the format. + * + * 0: f16 (mediump float) + * 1: f32 (highp float) + * 2: i32 (highp int) + * 3: u32 (highp uint) + * 4: i16 (mediump int) + * 5: u16 (mediump uint) + */ + u32 shader_type : 3; + u32 zero : 9; + }; + + /* Only the low 32 bits of the blend shader are stored, the + * high 32 bits are implicitly the same as the original shader. + * According to the kernel driver, the program counter for + * shaders is actually only 24 bits, so shaders cannot cross + * the 2^24-byte boundary, and neither can the blend shader. + * The blob handles this by allocating a 2^24 byte pool for + * shaders, and making sure that any blend shaders are stored + * in the same pool as the original shader. The kernel will + * make sure this allocation is aligned to 2^24 bytes. + */ + u32 blend_shader; + }; +#endif +} __attribute__((packed)); + +struct mali_shader_meta { + mali_ptr shader; + u16 texture_count; + u16 sampler_count; + u16 attribute_count; + u16 varying_count; + + union { + struct { + u32 uniform_buffer_count : 4; + u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler + } bifrost1; + struct { + /* 0x200 except MALI_NO_ALPHA_TO_COVERAGE. Mysterious 1 + * other times. Who knows really? */ + u16 unknown1; + + /* Whole number of uniform registers used, times two; + * whole number of work registers used (no scale). + */ + unsigned work_count : 5; + unsigned uniform_count : 5; + unsigned unknown2 : 6; + } midgard1; + }; + + /* On bifrost: Exactly the same as glPolygonOffset() for both. + * On midgard: Depth factor is exactly as passed to glPolygonOffset. + * Depth units is equal to the value passed to glDeptOhffset + 1.0f + * (use MALI_NEGATIVE) + */ + float depth_units; + float depth_factor; + + u32 unknown2_2; + + u16 alpha_coverage; + u16 unknown2_3; + + u8 stencil_mask_front; + u8 stencil_mask_back; + u16 unknown2_4; + + struct mali_stencil_test stencil_front; + struct mali_stencil_test stencil_back; + + union { + struct { + u32 unk3 : 7; + /* On Bifrost, some system values are preloaded in + * registers R55-R62 by the thread dispatcher prior to + * the start of shader execution. This is a bitfield + * with one entry for each register saying which + * registers need to be preloaded. Right now, the known + * values are: + * + * Vertex/compute: + * - R55 : gl_LocalInvocationID.xy + * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits + * - R57 : gl_WorkGroupID.x + * - R58 : gl_WorkGroupID.y + * - R59 : gl_WorkGroupID.z + * - R60 : gl_GlobalInvocationID.x + * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base) + * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base) + * + * Fragment: + * - R55 : unknown, never seen (but the bit for this is + * always set?) + * - R56 : unknown (bit always unset) + * - R57 : gl_PrimitiveID + * - R58 : gl_FrontFacing in low bit, potentially other stuff + * - R59 : u16 fragment coordinates (used to compute + * gl_FragCoord.xy, together with sample positions) + * - R60 : gl_SampleMask (used in epilog, so pretty + * much always used, but the bit is always 0 -- is + * this just always pushed?) + * - R61 : gl_SampleMaskIn and gl_SampleID, used by + * varying interpolation. + * - R62 : unknown (bit always unset). + */ + u32 preload_regs : 8; + /* In units of 8 bytes or 64 bits, since the + * uniform/const port loads 64 bits at a time. + */ + u32 uniform_count : 7; + u32 unk4 : 10; // = 2 + } bifrost2; + struct { + u32 unknown2_7; + } midgard2; + }; + + /* zero on bifrost */ + u32 unknown2_8; + + /* Blending information for the older non-MRT Midgard HW. Check for + * MALI_HAS_BLEND_SHADER to decide how to interpret. + */ + + union { + mali_ptr blend_shader; + struct mali_blend_equation blend_equation; + }; + + /* There can be up to 4 blend_meta's. None of them are required for + * vertex shaders or the non-MRT case for Midgard (so the blob doesn't + * allocate any space). + */ + struct mali_blend_meta blend_meta[]; + +} __attribute__((packed)); + +/* This only concerns hardware jobs */ + +/* Possible values for job_descriptor_size */ + +#define MALI_JOB_32 0 +#define MALI_JOB_64 1 + +struct mali_job_descriptor_header { + u32 exception_status; + u32 first_incomplete_task; + u64 fault_pointer; + u8 job_descriptor_size : 1; + enum mali_job_type job_type : 7; + u8 job_barrier : 1; + u8 unknown_flags : 7; + u16 job_index; + u16 job_dependency_index_1; + u16 job_dependency_index_2; + + union { + u64 next_job_64; + u32 next_job_32; + }; +} __attribute__((packed)); + +struct mali_payload_set_value { + u64 out; + u64 unknown; +} __attribute__((packed)); + +/* Special attributes have a fixed index */ +#define MALI_SPECIAL_ATTRIBUTE_BASE 16 +#define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0) +#define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1) + +/* + * Mali Attributes + * + * This structure lets the attribute unit compute the address of an attribute + * given the vertex and instance ID. Unfortunately, the way this works is + * rather complicated when instancing is enabled. + * + * To explain this, first we need to explain how compute and vertex threads are + * dispatched. This is a guess (although a pretty firm guess!) since the + * details are mostly hidden from the driver, except for attribute instancing. + * When a quad is dispatched, it receives a single, linear index. However, we + * need to translate that index into a (vertex id, instance id) pair, or a + * (local id x, local id y, local id z) triple for compute shaders (although + * vertex shaders and compute shaders are handled almost identically). + * Focusing on vertex shaders, one option would be to do: + * + * vertex_id = linear_id % num_vertices + * instance_id = linear_id / num_vertices + * + * but this involves a costly division and modulus by an arbitrary number. + * Instead, we could pad num_vertices. We dispatch padded_num_vertices * + * num_instances threads instead of num_vertices * num_instances, which results + * in some "extra" threads with vertex_id >= num_vertices, which we have to + * discard. The more we pad num_vertices, the more "wasted" threads we + * dispatch, but the division is potentially easier. + * + * One straightforward choice is to pad num_vertices to the next power of two, + * which means that the division and modulus are just simple bit shifts and + * masking. But the actual algorithm is a bit more complicated. The thread + * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition + * to dividing by a power of two. This is possibly using the technique + * described in patent US20170010862A1. As a result, padded_num_vertices can be + * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads, + * since we need less padding. + * + * padded_num_vertices is picked by the hardware. The driver just specifies the + * actual number of vertices. At least for Mali G71, the first few cases are + * given by: + * + * num_vertices | padded_num_vertices + * 3 | 4 + * 4-7 | 8 + * 8-11 | 12 (3 * 4) + * 12-15 | 16 + * 16-19 | 20 (5 * 4) + * + * Note that padded_num_vertices is a multiple of four (presumably because + * threads are dispatched in groups of 4). Also, padded_num_vertices is always + * at least one more than num_vertices, which seems like a quirk of the + * hardware. For larger num_vertices, the hardware uses the following + * algorithm: using the binary representation of num_vertices, we look at the + * most significant set bit as well as the following 3 bits. Let n be the + * number of bits after those 4 bits. Then we set padded_num_vertices according + * to the following table: + * + * high bits | padded_num_vertices + * 1000 | 9 * 2^n + * 1001 | 5 * 2^(n+1) + * 101x | 3 * 2^(n+2) + * 110x | 7 * 2^(n+1) + * 111x | 2^(n+4) + * + * For example, if num_vertices = 70 is passed to glDraw(), its binary + * representation is 1000110, so n = 3 and the high bits are 1000, and + * therefore padded_num_vertices = 9 * 2^3 = 72. + * + * The attribute unit works in terms of the original linear_id. if + * num_instances = 1, then they are the same, and everything is simple. + * However, with instancing things get more complicated. There are four + * possible modes, two of them we can group together: + * + * 1. Use the linear_id directly. Only used when there is no instancing. + * + * 2. Use the linear_id modulo a constant. This is used for per-vertex + * attributes with instancing enabled by making the constant equal + * padded_num_vertices. Because the modulus is always padded_num_vertices, this + * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9. + * The shift field specifies the power of two, while the extra_flags field + * specifies the odd number. If shift = n and extra_flags = m, then the modulus + * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed + * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and + * shift = 3. Note that we must exactly follow the hardware algorithm used to + * get padded_num_vertices in order to correctly implement per-vertex + * attributes. + * + * 3. Divide the linear_id by a constant. In order to correctly implement + * instance divisors, we have to divide linear_id by padded_num_vertices times + * to user-specified divisor. So first we compute padded_num_vertices, again + * following the exact same algorithm that the hardware uses, then multiply it + * by the GL-level divisor to get the hardware-level divisor. This case is + * further divided into two more cases. If the hardware-level divisor is a + * power of two, then we just need to shift. The shift amount is specified by + * the shift field, so that the hardware-level divisor is just 2^shift. + * + * If it isn't a power of two, then we have to divide by an arbitrary integer. + * For that, we use the well-known technique of multiplying by an approximation + * of the inverse. The driver must compute the magic multiplier and shift + * amount, and then the hardware does the multiplication and shift. The + * hardware and driver also use the "round-down" optimization as described in + * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf. + * The hardware further assumes the multiplier is between 2^31 and 2^32, so the + * high bit is implicitly set to 1 even though it is set to 0 by the driver -- + * presumably this simplifies the hardware multiplier a little. The hardware + * first multiplies linear_id by the multiplier and takes the high 32 bits, + * then applies the round-down correction if extra_flags = 1, then finally + * shifts right by the shift field. + * + * There are some differences between ridiculousfish's algorithm and the Mali + * hardware algorithm, which means that the reference code from ridiculousfish + * doesn't always produce the right constants. Mali does not use the pre-shift + * optimization, since that would make a hardware implementation slower (it + * would have to always do the pre-shift, multiply, and post-shift operations). + * It also forces the multplier to be at least 2^31, which means that the + * exponent is entirely fixed, so there is no trial-and-error. Altogether, + * given the divisor d, the algorithm the driver must follow is: + * + * 1. Set shift = floor(log2(d)). + * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d. + * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set + * magic_divisor = m - 1 and extra_flags = 1. + * 4. Otherwise, set magic_divisor = m and extra_flags = 0. + */ + +enum mali_attr_mode { + MALI_ATTR_UNUSED = 0, + MALI_ATTR_LINEAR = 1, + MALI_ATTR_POT_DIVIDE = 2, + MALI_ATTR_MODULO = 3, + MALI_ATTR_NPOT_DIVIDE = 4, +}; + +union mali_attr { + /* This is used for actual attributes. */ + struct { + /* The bottom 3 bits are the mode */ + mali_ptr elements : 64 - 8; + u32 shift : 5; + u32 extra_flags : 3; + u32 stride; + u32 size; + }; + /* The entry after an NPOT_DIVIDE entry has this format. It stores + * extra information that wouldn't fit in a normal entry. + */ + struct { + u32 unk; /* = 0x20 */ + u32 magic_divisor; + u32 zero; + /* This is the original, GL-level divisor. */ + u32 divisor; + }; +} __attribute__((packed)); + +struct mali_attr_meta { + /* Vertex buffer index */ + u8 index; + + unsigned unknown1 : 2; + unsigned swizzle : 12; + enum mali_format format : 8; + + /* Always observed to be zero at the moment */ + unsigned unknown3 : 2; + + /* When packing multiple attributes in a buffer, offset addresses by this value */ + uint32_t src_offset; +} __attribute__((packed)); + +enum mali_fbd_type { + MALI_SFBD = 0, + MALI_MFBD = 1, +}; + +#define FBD_TYPE (1) +#define FBD_MASK (~0x3f) + +struct mali_uniform_buffer_meta { + /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16 + * bytes. This gives a maximum of 2^14 bytes, which just so happens to + * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE. + */ + u64 size : 10; + + /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits + * should be 0 for userspace pointers, according to + * https://lwn.net/Articles/718895/. By reusing these bits, we can make + * each entry in the table only 64 bits. + */ + mali_ptr ptr : 64 - 10; +}; + +/* On Bifrost, these fields are the same between the vertex and tiler payloads. + * They also seem to be the same between Bifrost and Midgard. They're shared in + * fused payloads. + */ + +/* Applies to unknown_draw */ +#define MALI_DRAW_INDEXED_UINT8 (0x10) +#define MALI_DRAW_INDEXED_UINT16 (0x20) +#define MALI_DRAW_INDEXED_UINT32 (0x30) +#define MALI_DRAW_VARYING_SIZE (0x100) + +struct mali_vertex_tiler_prefix { + /* This is a dynamic bitfield containing the following things in this order: + * + * - gl_WorkGroupSize.x + * - gl_WorkGroupSize.y + * - gl_WorkGroupSize.z + * - gl_NumWorkGroups.x + * - gl_NumWorkGroups.y + * - gl_NumWorkGroups.z + * + * The number of bits allocated for each number is based on the *_shift + * fields below. For example, workgroups_y_shift gives the bit that + * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit + * that gl_NumWorkGroups.z starts at (and therefore one after the bit + * that gl_NumWorkGroups.y ends at). The actual value for each gl_* + * value is one more than the stored value, since if any of the values + * are zero, then there would be no invocations (and hence no job). If + * there were 0 bits allocated to a given field, then it must be zero, + * and hence the real value is one. + * + * Vertex jobs reuse the same job dispatch mechanism as compute jobs, + * effectively doing glDispatchCompute(1, vertex_count, instance_count) + * where vertex count is the number of vertices. + */ + u32 invocation_count; + + u32 size_y_shift : 5; + u32 size_z_shift : 5; + u32 workgroups_x_shift : 6; + u32 workgroups_y_shift : 6; + u32 workgroups_z_shift : 6; + /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */ + u32 workgroups_x_shift_2 : 4; + + u32 draw_mode : 4; + u32 unknown_draw : 22; + + /* This is the the same as workgroups_x_shift_2 in compute shaders, but + * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has + * something to do with how many quads get put in the same execution + * engine, which is a balance (you don't want to starve the engine, but + * you also want to distribute work evenly). + */ + u32 workgroups_x_shift_3 : 6; + + + /* Negative of draw_start for TILER jobs from what I've seen */ + int32_t negative_start; + u32 zero1; + + /* Like many other strictly nonzero quantities, index_count is + * subtracted by one. For an indexed cube, this is equal to 35 = 6 + * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is, + * for an indexed draw, index_count is the number of actual vertices + * rendered whereas invocation_count is the number of unique vertices + * rendered (the number of times the vertex shader must be invoked). + * For non-indexed draws, this is just equal to invocation_count. */ + + u32 index_count; + + /* No hidden structure; literally just a pointer to an array of uint + * indices (width depends on flags). Thanks, guys, for not making my + * life insane for once! NULL for non-indexed draws. */ + + uintptr_t indices; +} __attribute__((packed)); + +/* Point size / line width can either be specified as a 32-bit float (for + * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer + * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler + * payload, the contents of varying_pointer will be intepreted as an array of + * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by + * creating a special MALI_R16F varying writing to varying_pointer. */ + +union midgard_primitive_size { + float constant; + uintptr_t pointer; +}; + +struct bifrost_vertex_only { + u32 unk2; /* =0x2 */ + + u32 zero0; + + u64 zero1; +} __attribute__((packed)); + +struct bifrost_tiler_heap_meta { + u32 zero; + u32 heap_size; + /* note: these are just guesses! */ + mali_ptr tiler_heap_start; + mali_ptr tiler_heap_free; + mali_ptr tiler_heap_end; + + /* hierarchy weights? but they're still 0 after the job has run... */ + u32 zeros[12]; +} __attribute__((packed)); + +struct bifrost_tiler_meta { + u64 zero0; + u32 unk; // = 0xf0 + u16 width; + u16 height; + u64 zero1; + mali_ptr tiler_heap_meta; + /* TODO what is this used for? */ + u64 zeros[20]; +} __attribute__((packed)); + +struct bifrost_tiler_only { + /* 0x20 */ + union midgard_primitive_size primitive_size; + + mali_ptr tiler_meta; + + u64 zero1, zero2, zero3, zero4, zero5, zero6; + + u32 gl_enables; + u32 zero7; + u64 zero8; +} __attribute__((packed)); + +struct bifrost_scratchpad { + u32 zero; + u32 flags; // = 0x1f + /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated + * during startup. It seems to serve the same purpose as the + * gpu_scratchpad in the SFBD for Midgard, although it's slightly + * larger. + */ + mali_ptr gpu_scratchpad; +} __attribute__((packed)); + +struct mali_vertex_tiler_postfix { + /* Zero for vertex jobs. Pointer to the position (gl_Position) varying + * output from the vertex shader for tiler jobs. + */ + + uintptr_t position_varying; + + /* An array of mali_uniform_buffer_meta's. The size is given by the + * shader_meta. + */ + uintptr_t uniform_buffers; + + /* This is a pointer to an array of pointers to the texture + * descriptors, number of pointers bounded by number of textures. The + * indirection is needed to accomodate varying numbers and sizes of + * texture descriptors */ + uintptr_t texture_trampoline; + + /* For OpenGL, from what I've seen, this is intimately connected to + * texture_meta. cwabbott says this is not the case under Vulkan, hence + * why this field is seperate (Midgard is Vulkan capable). Pointer to + * array of sampler descriptors (which are uniform in size) */ + uintptr_t sampler_descriptor; + + uintptr_t uniforms; + u8 flags : 4; + uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */ + uintptr_t attributes; /* struct attribute_buffer[] */ + uintptr_t attribute_meta; /* attribute_meta[] */ + uintptr_t varyings; /* struct attr */ + uintptr_t varying_meta; /* pointer */ + uintptr_t viewport; + uintptr_t occlusion_counter; /* A single bit as far as I can tell */ + + /* Note: on Bifrost, this isn't actually the FBD. It points to + * bifrost_scratchpad instead. However, it does point to the same thing + * in vertex and tiler jobs. + */ + mali_ptr framebuffer; + +#ifdef __LP64__ +#ifndef T8XX + /* most likely padding to make this a multiple of 64 bytes */ + u64 zero7; +#endif +#endif +} __attribute__((packed)); + +struct midgard_payload_vertex_tiler { +#ifdef T6XX + union midgard_primitive_size primitive_size; +#endif + + struct mali_vertex_tiler_prefix prefix; + +#ifdef T6XX + u32 zero3; +#endif + u32 gl_enables; // 0x5 + + /* Offset for first vertex in buffer */ + u32 draw_start; + +#ifdef T6XX + u32 zero5; +#else + u64 zero5; +#endif + + struct mali_vertex_tiler_postfix postfix; + +#ifdef T8XX + union midgard_primitive_size primitive_size; +#endif +} __attribute__((packed)); + +struct bifrost_payload_vertex { + struct mali_vertex_tiler_prefix prefix; + struct bifrost_vertex_only vertex; + struct mali_vertex_tiler_postfix postfix; +} __attribute__((packed)); + +struct bifrost_payload_tiler { + struct mali_vertex_tiler_prefix prefix; + struct bifrost_tiler_only tiler; + struct mali_vertex_tiler_postfix postfix; +} __attribute__((packed)); + +struct bifrost_payload_fused { + struct mali_vertex_tiler_prefix prefix; + struct bifrost_tiler_only tiler; + struct mali_vertex_tiler_postfix tiler_postfix; + struct bifrost_vertex_only vertex; + struct mali_vertex_tiler_postfix vertex_postfix; +} __attribute__((packed)); + +/* Pointed to from texture_trampoline, mostly unknown still, haven't + * managed to replay successfully */ + +/* Purposeful off-by-one in width, height fields. For example, a (64, 64) + * texture is stored as (63, 63) in these fields. This adjusts for that. + * There's an identical pattern in the framebuffer descriptor. Even vertex + * count fields work this way, hence the generic name -- integral fields that + * are strictly positive generally need this adjustment. */ + +#define MALI_POSITIVE(dim) (dim - 1) + +/* Opposite of MALI_POSITIVE, found in the depth_units field */ + +#define MALI_NEGATIVE(dim) (dim + 1) + +/* Used with wrapping. Incomplete (this is a 4-bit field...) */ + +enum mali_wrap_mode { + MALI_WRAP_REPEAT = 0x8, + MALI_WRAP_CLAMP_TO_EDGE = 0x9, + MALI_WRAP_CLAMP_TO_BORDER = 0xB, + MALI_WRAP_MIRRORED_REPEAT = 0xC +}; + +/* 8192x8192 */ +#define MAX_MIP_LEVELS (13) + +/* Cubemap bloats everything up */ +#define MAX_FACES (6) + +/* Corresponds to the type passed to glTexImage2D and so forth */ + +struct mali_texture_format { + unsigned swizzle : 12; + enum mali_format format : 8; + + unsigned usage1 : 3; + unsigned is_not_cubemap : 1; + unsigned usage2 : 8; +} __attribute__((packed)); + +struct mali_texture_descriptor { + uint16_t width; + uint16_t height; + uint16_t depth; + + uint16_t unknown1; + + struct mali_texture_format format; + + uint16_t unknown3; + + /* One for non-mipmapped, zero for mipmapped */ + uint8_t unknown3A; + + /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */ + uint8_t nr_mipmap_levels; + + /* Swizzling is a single 32-bit word, broken up here for convenience. + * Here, swizzling refers to the ES 3.0 texture parameters for channel + * level swizzling, not the internal pixel-level swizzling which is + * below OpenGL's reach */ + + unsigned swizzle : 12; + unsigned swizzle_zero : 20; + + uint32_t unknown5; + uint32_t unknown6; + uint32_t unknown7; + + mali_ptr swizzled_bitmaps[MAX_MIP_LEVELS * MAX_FACES]; +} __attribute__((packed)); + +/* Used as part of filter_mode */ + +#define MALI_LINEAR 0 +#define MALI_NEAREST 1 +#define MALI_MIP_LINEAR (0x18) + +/* Used to construct low bits of filter_mode */ + +#define MALI_TEX_MAG(mode) (((mode) & 1) << 0) +#define MALI_TEX_MIN(mode) (((mode) & 1) << 1) + +#define MALI_TEX_MAG_MASK (1) +#define MALI_TEX_MIN_MASK (2) + +#define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR") + +/* Used for lod encoding. Thanks @urjaman for pointing out these routines can + * be cleaned up a lot. */ + +#define DECODE_FIXED_16(x) ((float) (x / 256.0)) + +static inline uint16_t +FIXED_16(float x) +{ + /* Clamp inputs, accounting for float error */ + float max_lod = (32.0 - (1.0 / 512.0)); + + x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x)); + + return (int) (x * 256.0); +} + +struct mali_sampler_descriptor { + uint32_t filter_mode; + + /* Fixed point. Upper 8-bits is before the decimal point, although it + * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x * + * 256)) */ + + uint16_t min_lod; + uint16_t max_lod; + + /* All one word in reality, but packed a bit */ + + enum mali_wrap_mode wrap_s : 4; + enum mali_wrap_mode wrap_t : 4; + enum mali_wrap_mode wrap_r : 4; + enum mali_alt_func compare_func : 3; + + /* A single set bit of unknown, ha! */ + unsigned unknown2 : 1; + + unsigned zero : 16; + + uint32_t zero2; + float border_color[4]; +} __attribute__((packed)); + +/* TODO: What are the floats? Apparently always { -inf, -inf, inf, inf }, + * unless the scissor test is enabled. + * + * viewport0/viewport1 form the arguments to glViewport. viewport1 is modified + * by MALI_POSITIVE; viewport0 is as-is. + */ + +struct mali_viewport { + float floats[4]; + + float depth_range_n; + float depth_range_f; + + u16 viewport0[2]; + u16 viewport1[2]; +} __attribute__((packed)); + +/* TODO: Varying meta is symmetrical with attr_meta, but there is some + * weirdness associated. Figure it out. */ + +struct mali_unknown6 { + u64 unknown0; + u64 unknown1; +}; + +/* From presentations, 16x16 tiles externally. Use shift for fast computation + * of tile numbers. */ + +#define MALI_TILE_SHIFT 4 +#define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT) + +/* Tile coordinates are stored as a compact u32, as only 12 bits are needed to + * each component. Notice that this provides a theoretical upper bound of (1 << + * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size + * 65536x65536. Multiplying that together, times another four given that Mali + * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16 + * gigabytes of RAM just to store the uncompressed framebuffer itself, let + * alone rendering in real-time to such a buffer. + * + * Nice job, guys.*/ + +/* From mali_kbase_10969_workaround.c */ +#define MALI_X_COORD_MASK 0x00000FFF +#define MALI_Y_COORD_MASK 0x0FFF0000 + +/* Extract parts of a tile coordinate */ + +#define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK) +#define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16) +#define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK)) + +/* No known flags yet, but just in case...? */ + +#define MALI_TILE_NO_FLAG (0) + +/* Helpers to generate tile coordinates based on the boundary coordinates in + * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these + * functions would convert it to the bounding tiles (0, 0) to (7, 7). + * Intentional "off-by-one"; finding the tile number is a form of fencepost + * problem. */ + +#define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16)) +#define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT) +#define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias)) +#define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0) +#define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1) + +struct mali_payload_fragment { + u32 min_tile_coord; + u32 max_tile_coord; + mali_ptr framebuffer; +} __attribute__((packed)); + +/* (Single?) Framebuffer Descriptor */ + +/* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is + * configured for 4x. With MSAA_8, it is configured for 8x. */ + +#define MALI_FRAMEBUFFER_MSAA_8 (1 << 3) +#define MALI_FRAMEBUFFER_MSAA_A (1 << 4) +#define MALI_FRAMEBUFFER_MSAA_B (1 << 23) + +/* Fast/slow based on whether all three buffers are cleared at once */ + +#define MALI_CLEAR_FAST (1 << 18) +#define MALI_CLEAR_SLOW (1 << 28) +#define MALI_CLEAR_SLOW_STENCIL (1 << 31) + +struct mali_single_framebuffer { + u32 unknown1; + u32 unknown2; + u64 unknown_address_0; + u64 zero1; + u64 zero0; + + /* Exact format is ironically not known, since EGL is finnicky with the + * blob. MSAA, colourspace, etc are configured here. */ + + u32 format; + + u32 clear_flags; + u32 zero2; + + /* Purposeful off-by-one in these fields should be accounted for by the + * MALI_DIMENSION macro */ + + u16 width; + u16 height; + + u32 zero3[8]; + + /* By default, the framebuffer is upside down from OpenGL's + * perspective. Set framebuffer to the end and negate the stride to + * flip in the Y direction */ + + mali_ptr framebuffer; + int32_t stride; + + u32 zero4; + + /* Depth and stencil buffers are interleaved, it appears, as they are + * set to the same address in captures. Both fields set to zero if the + * buffer is not being cleared. Depending on GL_ENABLE magic, you might + * get a zero enable despite the buffer being present; that still is + * disabled. */ + + mali_ptr depth_buffer; // not SAME_VA + u64 depth_buffer_enable; + + mali_ptr stencil_buffer; // not SAME_VA + u64 stencil_buffer_enable; + + u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware + u32 clear_color_2; // always equal, but unclear function? + u32 clear_color_3; // always equal, but unclear function? + u32 clear_color_4; // always equal, but unclear function? + + /* Set to zero if not cleared */ + + float clear_depth_1; // float32, ditto + float clear_depth_2; // float32, ditto + float clear_depth_3; // float32, ditto + float clear_depth_4; // float32, ditto + + u32 clear_stencil; // Exactly as it appears in OpenGL + + u32 zero6[7]; + + /* Very weird format, see generation code in trans_builder.c */ + u32 resolution_check; + + u32 tiler_flags; + + u64 unknown_address_1; /* Pointing towards... a zero buffer? */ + u64 unknown_address_2; + + /* See mali_kbase_replay.c */ + u64 tiler_heap_free; + u64 tiler_heap_end; + + /* More below this, maybe */ +} __attribute__((packed)); + +/* Format bits for the render target */ + +#define MALI_MFBD_FORMAT_AFBC (1 << 10) +#define MALI_MFBD_FORMAT_MSAA (1 << 12) +#define MALI_MFBD_FORMAT_NO_ALPHA (1 << 25) + +struct bifrost_render_target { + u32 unk1; // = 0x4000000 + u32 format; + + u64 zero1; + + union { + struct { + /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled, + * there is an extra metadata buffer that contains 16 bytes per tile. + * The framebuffer needs to be the same size as before, since we don't + * know ahead of time how much space it will take up. The + * framebuffer_stride is set to 0, since the data isn't stored linearly + * anymore. + */ + + mali_ptr metadata; + u32 stride; // stride in units of tiles + u32 unk; // = 0x20000 + } afbc; + + struct { + /* Heck if I know */ + u64 unk; + mali_ptr pointer; + } chunknown; + }; + + mali_ptr framebuffer; + + u32 zero2 : 4; + u32 framebuffer_stride : 28; // in units of bytes + u32 zero3; + + u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware + u32 clear_color_2; // always equal, but unclear function? + u32 clear_color_3; // always equal, but unclear function? + u32 clear_color_4; // always equal, but unclear function? +} __attribute__((packed)); + +/* An optional part of bifrost_framebuffer. It comes between the main structure + * and the array of render targets. It must be included if any of these are + * enabled: + * + * - Transaction Elimination + * - Depth/stencil + * - TODO: Anything else? + */ + +struct bifrost_fb_extra { + mali_ptr checksum; + /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */ + u32 checksum_stride; + + u32 unk; + + union { + /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */ + struct { + mali_ptr depth_stencil_afbc_metadata; + u32 depth_stencil_afbc_stride; // in units of tiles + u32 zero1; + + mali_ptr depth_stencil; + + u64 padding; + } ds_afbc; + + struct { + /* Depth becomes depth/stencil in case of combined D/S */ + mali_ptr depth; + u32 depth_stride_zero : 4; + u32 depth_stride : 28; + u32 zero1; + + mali_ptr stencil; + u32 stencil_stride_zero : 4; + u32 stencil_stride : 28; + u32 zero2; + } ds_linear; + }; + + + u64 zero3, zero4; +} __attribute__((packed)); + +/* flags for unk3 */ +#define MALI_MFBD_EXTRA (1 << 13) + +struct bifrost_framebuffer { + u32 unk0; // = 0x10 + + u32 unknown2; // = 0x1f, same as SFBD + mali_ptr scratchpad; + + /* 0x10 */ + mali_ptr sample_locations; + mali_ptr unknown1; + /* 0x20 */ + u16 width1, height1; + u32 zero3; + u16 width2, height2; + u32 unk1 : 19; // = 0x01000 + u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE) + u32 unk2 : 3; // = 0 + u32 rt_count_2 : 3; // no off-by-one + u32 zero4 : 5; + /* 0x30 */ + u32 clear_stencil : 8; + u32 unk3 : 24; // = 0x100 + float clear_depth; + mali_ptr tiler_meta; + /* 0x40 */ + + /* Note: these are guesses! */ + mali_ptr tiler_scratch_start; + mali_ptr tiler_scratch_middle; + + /* These are not, since we see symmetry with replay jobs which name these explicitly */ + mali_ptr tiler_heap_start; + mali_ptr tiler_heap_end; + + u64 zero9, zero10, zero11, zero12; + + /* optional: struct bifrost_fb_extra extra */ + /* struct bifrost_render_target rts[] */ +} __attribute__((packed)); + +#endif /* __PANFROST_JOB_H__ */ |