diff options
Diffstat (limited to 'src/gallium/drivers/llvmpipe/sse_mathfun.h')
-rw-r--r-- | src/gallium/drivers/llvmpipe/sse_mathfun.h | 724 |
1 files changed, 0 insertions, 724 deletions
diff --git a/src/gallium/drivers/llvmpipe/sse_mathfun.h b/src/gallium/drivers/llvmpipe/sse_mathfun.h deleted file mode 100644 index 0077f34b5c8..00000000000 --- a/src/gallium/drivers/llvmpipe/sse_mathfun.h +++ /dev/null @@ -1,724 +0,0 @@ -/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log - - Inspired by Intel Approximate Math library, and based on the - corresponding algorithms of the cephes math library - - The default is to use the SSE1 version. If you define USE_SSE2 the - the SSE2 intrinsics will be used in place of the MMX intrinsics. Do - not expect any significant performance improvement with SSE2. -*/ - -/* Copyright (C) 2007 Julien Pommier - - This software is provided 'as-is', without any express or implied - warranty. In no event will the authors be held liable for any damages - arising from the use of this software. - - Permission is granted to anyone to use this software for any purpose, - including commercial applications, and to alter it and redistribute it - freely, subject to the following restrictions: - - 1. The origin of this software must not be misrepresented; you must not - claim that you wrote the original software. If you use this software - in a product, an acknowledgment in the product documentation would be - appreciated but is not required. - 2. Altered source versions must be plainly marked as such, and must not be - misrepresented as being the original software. - 3. This notice may not be removed or altered from any source distribution. - - (this is the zlib license) -*/ - -#include <xmmintrin.h> - -/* yes I know, the top of this file is quite ugly */ - -#ifdef _MSC_VER /* visual c++ */ -# define ALIGN16_BEG __declspec(align(16)) -# define ALIGN16_END -#else /* gcc or icc */ -# define ALIGN16_BEG -# define ALIGN16_END __attribute__((aligned(16))) -#endif - -/* __m128 is ugly to write */ -typedef __m128 v4sf; // vector of 4 float (sse1) - -#ifdef USE_SSE2 -# include <emmintrin.h> -typedef __m128i v4si; // vector of 4 int (sse2) -#else -typedef __m64 v2si; // vector of 2 int (mmx) -#endif - -/* declare some SSE constants -- why can't I figure a better way to do that? */ -#define _PS_CONST(Name, Val) \ - static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val } -#define _PI32_CONST(Name, Val) \ - static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val } -#define _PS_CONST_TYPE(Name, Type, Val) \ - static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val } - -_PS_CONST(1 , 1.0f); -_PS_CONST(0p5, 0.5f); -/* the smallest non denormalized float number */ -_PS_CONST_TYPE(min_norm_pos, int, 0x00800000); -_PS_CONST_TYPE(mant_mask, int, 0x7f800000); -_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000); - -_PS_CONST_TYPE(sign_mask, int, 0x80000000); -_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000); - -_PI32_CONST(1, 1); -_PI32_CONST(inv1, ~1); -_PI32_CONST(2, 2); -_PI32_CONST(4, 4); -_PI32_CONST(0x7f, 0x7f); - -_PS_CONST(cephes_SQRTHF, 0.707106781186547524); -_PS_CONST(cephes_log_p0, 7.0376836292E-2); -_PS_CONST(cephes_log_p1, - 1.1514610310E-1); -_PS_CONST(cephes_log_p2, 1.1676998740E-1); -_PS_CONST(cephes_log_p3, - 1.2420140846E-1); -_PS_CONST(cephes_log_p4, + 1.4249322787E-1); -_PS_CONST(cephes_log_p5, - 1.6668057665E-1); -_PS_CONST(cephes_log_p6, + 2.0000714765E-1); -_PS_CONST(cephes_log_p7, - 2.4999993993E-1); -_PS_CONST(cephes_log_p8, + 3.3333331174E-1); -_PS_CONST(cephes_log_q1, -2.12194440e-4); -_PS_CONST(cephes_log_q2, 0.693359375); - -v4sf log_ps(v4sf x); -v4sf exp_ps(v4sf x); -v4sf sin_ps(v4sf x); -v4sf cos_ps(v4sf x); -void sincos_ps(v4sf x, v4sf *s, v4sf *c); - -#ifndef USE_SSE2 -typedef union xmm_mm_union { - __m128 xmm; - __m64 mm[2]; -} xmm_mm_union; - -#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \ - xmm_mm_union u; u.xmm = xmm_; \ - mm0_ = u.mm[0]; \ - mm1_ = u.mm[1]; \ -} - -#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \ - xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \ - } - -#endif // USE_SSE2 - -/* natural logarithm computed for 4 simultaneous float - return NaN for x <= 0 -*/ -v4sf log_ps(v4sf x) { -#ifdef USE_SSE2 - v4si emm0; -#else - v2si mm0, mm1; -#endif - v4sf one = *(v4sf*)_ps_1; - - v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps()); - v4sf e, mask, tmp, z, y; - - x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */ - -#ifndef USE_SSE2 - /* part 1: x = frexpf(x, &e); */ - COPY_XMM_TO_MM(x, mm0, mm1); - mm0 = _mm_srli_pi32(mm0, 23); - mm1 = _mm_srli_pi32(mm1, 23); -#else - emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23); -#endif - /* keep only the fractional part */ - x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask); - x = _mm_or_ps(x, *(v4sf*)_ps_0p5); - -#ifndef USE_SSE2 - /* now e=mm0:mm1 contain the really base-2 exponent */ - mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f); - mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f); - e = _mm_cvtpi32x2_ps(mm0, mm1); - _mm_empty(); /* bye bye mmx */ -#else - emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f); - e = _mm_cvtepi32_ps(emm0); -#endif - - e = _mm_add_ps(e, one); - - /* part2: - if( x < SQRTHF ) { - e -= 1; - x = x + x - 1.0; - } else { x = x - 1.0; } - */ - - mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF); - tmp = _mm_and_ps(x, mask); - x = _mm_sub_ps(x, one); - e = _mm_sub_ps(e, _mm_and_ps(one, mask)); - x = _mm_add_ps(x, tmp); - - - z = _mm_mul_ps(x,x); - - y = *(v4sf*)_ps_cephes_log_p0; - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8); - y = _mm_mul_ps(y, x); - - y = _mm_mul_ps(y, z); - - - tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1); - y = _mm_add_ps(y, tmp); - - - tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); - y = _mm_sub_ps(y, tmp); - - tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2); - x = _mm_add_ps(x, y); - x = _mm_add_ps(x, tmp); - x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN - return x; -} - -_PS_CONST(exp_hi, 88.3762626647949f); -_PS_CONST(exp_lo, -88.3762626647949f); - -_PS_CONST(cephes_LOG2EF, 1.44269504088896341); -_PS_CONST(cephes_exp_C1, 0.693359375); -_PS_CONST(cephes_exp_C2, -2.12194440e-4); - -_PS_CONST(cephes_exp_p0, 1.9875691500E-4); -_PS_CONST(cephes_exp_p1, 1.3981999507E-3); -_PS_CONST(cephes_exp_p2, 8.3334519073E-3); -_PS_CONST(cephes_exp_p3, 4.1665795894E-2); -_PS_CONST(cephes_exp_p4, 1.6666665459E-1); -_PS_CONST(cephes_exp_p5, 5.0000001201E-1); - -v4sf exp_ps(v4sf x) { - v4sf tmp = _mm_setzero_ps(), fx; -#ifdef USE_SSE2 - v4si emm0; -#else - v2si mm0, mm1; -#endif - v4sf one = *(v4sf*)_ps_1; - v4sf mask, z, y, pow2n; - - x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi); - x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo); - - /* express exp(x) as exp(g + n*log(2)) */ - fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF); - fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5); - - /* how to perform a floorf with SSE: just below */ -#ifndef USE_SSE2 - /* step 1 : cast to int */ - tmp = _mm_movehl_ps(tmp, fx); - mm0 = _mm_cvttps_pi32(fx); - mm1 = _mm_cvttps_pi32(tmp); - /* step 2 : cast back to float */ - tmp = _mm_cvtpi32x2_ps(mm0, mm1); -#else - emm0 = _mm_cvttps_epi32(fx); - tmp = _mm_cvtepi32_ps(emm0); -#endif - /* if greater, substract 1 */ - mask = _mm_cmpgt_ps(tmp, fx); - mask = _mm_and_ps(mask, one); - fx = _mm_sub_ps(tmp, mask); - - tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1); - z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2); - x = _mm_sub_ps(x, tmp); - x = _mm_sub_ps(x, z); - - z = _mm_mul_ps(x,x); - - y = *(v4sf*)_ps_cephes_exp_p0; - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4); - y = _mm_mul_ps(y, x); - y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5); - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, x); - y = _mm_add_ps(y, one); - - /* build 2^n */ -#ifndef USE_SSE2 - z = _mm_movehl_ps(z, fx); - mm0 = _mm_cvttps_pi32(fx); - mm1 = _mm_cvttps_pi32(z); - mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f); - mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f); - mm0 = _mm_slli_pi32(mm0, 23); - mm1 = _mm_slli_pi32(mm1, 23); - - COPY_MM_TO_XMM(mm0, mm1, pow2n); - _mm_empty(); -#else - emm0 = _mm_cvttps_epi32(fx); - emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f); - emm0 = _mm_slli_epi32(emm0, 23); - pow2n = _mm_castsi128_ps(emm0); -#endif - y = _mm_mul_ps(y, pow2n); - return y; -} - -_PS_CONST(minus_cephes_DP1, -0.78515625); -_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4); -_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8); -_PS_CONST(sincof_p0, -1.9515295891E-4); -_PS_CONST(sincof_p1, 8.3321608736E-3); -_PS_CONST(sincof_p2, -1.6666654611E-1); -_PS_CONST(coscof_p0, 2.443315711809948E-005); -_PS_CONST(coscof_p1, -1.388731625493765E-003); -_PS_CONST(coscof_p2, 4.166664568298827E-002); -_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI - - -/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so - it runs also on old athlons XPs and the pentium III of your grand - mother. - - The code is the exact rewriting of the cephes sinf function. - Precision is excellent as long as x < 8192 (I did not bother to - take into account the special handling they have for greater values - -- it does not return garbage for arguments over 8192, though, but - the extra precision is missing). - - Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the - surprising but correct result. - - Performance is also surprisingly good, 1.33 times faster than the - macos vsinf SSE2 function, and 1.5 times faster than the - __vrs4_sinf of amd's ACML (which is only available in 64 bits). Not - too bad for an SSE1 function (with no special tuning) ! - However the latter libraries probably have a much better handling of NaN, - Inf, denormalized and other special arguments.. - - On my core 1 duo, the execution of this function takes approximately 95 cycles. - - From what I have observed on the experiments with Intel AMath lib, switching to an - SSE2 version would improve the perf by only 10%. - - Since it is based on SSE intrinsics, it has to be compiled at -O2 to - deliver full speed. -*/ -v4sf sin_ps(v4sf x) { // any x - v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y; - -#ifdef USE_SSE2 - v4si emm0, emm2; -#else - v2si mm0, mm1, mm2, mm3; -#endif - v4sf swap_sign_bit, poly_mask, z, tmp, y2; - - sign_bit = x; - /* take the absolute value */ - x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); - /* extract the sign bit (upper one) */ - sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask); - - /* scale by 4/Pi */ - y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); - - //printf("plop:"); print4(y); -#ifdef USE_SSE2 - /* store the integer part of y in mm0 */ - emm2 = _mm_cvttps_epi32(y); - /* j=(j+1) & (~1) (see the cephes sources) */ - emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); - y = _mm_cvtepi32_ps(emm2); - /* get the swap sign flag */ - emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4); - emm0 = _mm_slli_epi32(emm0, 29); - /* get the polynom selection mask - there is one polynom for 0 <= x <= Pi/4 - and another one for Pi/4<x<=Pi/2 - - Both branches will be computed. - */ - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2); - emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); - - swap_sign_bit = _mm_castsi128_ps(emm0); - poly_mask = _mm_castsi128_ps(emm2); - sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit); -#else - /* store the integer part of y in mm0:mm1 */ - xmm2 = _mm_movehl_ps(xmm2, y); - mm2 = _mm_cvttps_pi32(y); - mm3 = _mm_cvttps_pi32(xmm2); - /* j=(j+1) & (~1) (see the cephes sources) */ - mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1); - mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1); - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1); - y = _mm_cvtpi32x2_ps(mm2, mm3); - /* get the swap sign flag */ - mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4); - mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4); - mm0 = _mm_slli_pi32(mm0, 29); - mm1 = _mm_slli_pi32(mm1, 29); - /* get the polynom selection mask */ - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2); - mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64()); - mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64()); - - COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit); - COPY_MM_TO_XMM(mm2, mm3, poly_mask); - sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit); - _mm_empty(); /* good-bye mmx */ -#endif - - /* The magic pass: "Extended precision modular arithmetic" - x = ((x - y * DP1) - y * DP2) - y * DP3; */ - xmm1 = *(v4sf*)_ps_minus_cephes_DP1; - xmm2 = *(v4sf*)_ps_minus_cephes_DP2; - xmm3 = *(v4sf*)_ps_minus_cephes_DP3; - xmm1 = _mm_mul_ps(y, xmm1); - xmm2 = _mm_mul_ps(y, xmm2); - xmm3 = _mm_mul_ps(y, xmm3); - x = _mm_add_ps(x, xmm1); - x = _mm_add_ps(x, xmm2); - x = _mm_add_ps(x, xmm3); - - /* Evaluate the first polynom (0 <= x <= Pi/4) */ - y = *(v4sf*)_ps_coscof_p0; - z = _mm_mul_ps(x,x); - - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1); - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2); - y = _mm_mul_ps(y, z); - y = _mm_mul_ps(y, z); - tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); - y = _mm_sub_ps(y, tmp); - y = _mm_add_ps(y, *(v4sf*)_ps_1); - - /* Evaluate the second polynom (Pi/4 <= x <= 0) */ - - y2 = *(v4sf*)_ps_sincof_p0; - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_mul_ps(y2, x); - y2 = _mm_add_ps(y2, x); - - /* select the correct result from the two polynoms */ - xmm3 = poly_mask; - y2 = _mm_and_ps(xmm3, y2); //, xmm3); - y = _mm_andnot_ps(xmm3, y); - y = _mm_add_ps(y,y2); - /* update the sign */ - y = _mm_xor_ps(y, sign_bit); - - return y; -} - -/* almost the same as sin_ps */ -v4sf cos_ps(v4sf x) { // any x - v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y; -#ifdef USE_SSE2 - v4si emm0, emm2; -#else - v2si mm0, mm1, mm2, mm3; -#endif - v4sf sign_bit, poly_mask, z, tmp, y2; - - /* take the absolute value */ - x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); - - /* scale by 4/Pi */ - y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); - -#ifdef USE_SSE2 - /* store the integer part of y in mm0 */ - emm2 = _mm_cvttps_epi32(y); - /* j=(j+1) & (~1) (see the cephes sources) */ - emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); - y = _mm_cvtepi32_ps(emm2); - - emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2); - - /* get the swap sign flag */ - emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4); - emm0 = _mm_slli_epi32(emm0, 29); - /* get the polynom selection mask */ - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2); - emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); - - sign_bit = _mm_castsi128_ps(emm0); - poly_mask = _mm_castsi128_ps(emm2); -#else - /* store the integer part of y in mm0:mm1 */ - xmm2 = _mm_movehl_ps(xmm2, y); - mm2 = _mm_cvttps_pi32(y); - mm3 = _mm_cvttps_pi32(xmm2); - - /* j=(j+1) & (~1) (see the cephes sources) */ - mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1); - mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1); - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1); - - y = _mm_cvtpi32x2_ps(mm2, mm3); - - - mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2); - mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2); - - /* get the swap sign flag in mm0:mm1 and the - polynom selection mask in mm2:mm3 */ - - mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4); - mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4); - mm0 = _mm_slli_pi32(mm0, 29); - mm1 = _mm_slli_pi32(mm1, 29); - - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2); - - mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64()); - mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64()); - - COPY_MM_TO_XMM(mm0, mm1, sign_bit); - COPY_MM_TO_XMM(mm2, mm3, poly_mask); - _mm_empty(); /* good-bye mmx */ -#endif - /* The magic pass: "Extended precision modular arithmetic" - x = ((x - y * DP1) - y * DP2) - y * DP3; */ - xmm1 = *(v4sf*)_ps_minus_cephes_DP1; - xmm2 = *(v4sf*)_ps_minus_cephes_DP2; - xmm3 = *(v4sf*)_ps_minus_cephes_DP3; - xmm1 = _mm_mul_ps(y, xmm1); - xmm2 = _mm_mul_ps(y, xmm2); - xmm3 = _mm_mul_ps(y, xmm3); - x = _mm_add_ps(x, xmm1); - x = _mm_add_ps(x, xmm2); - x = _mm_add_ps(x, xmm3); - - /* Evaluate the first polynom (0 <= x <= Pi/4) */ - y = *(v4sf*)_ps_coscof_p0; - z = _mm_mul_ps(x,x); - - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1); - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2); - y = _mm_mul_ps(y, z); - y = _mm_mul_ps(y, z); - tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); - y = _mm_sub_ps(y, tmp); - y = _mm_add_ps(y, *(v4sf*)_ps_1); - - /* Evaluate the second polynom (Pi/4 <= x <= 0) */ - - y2 = *(v4sf*)_ps_sincof_p0; - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_mul_ps(y2, x); - y2 = _mm_add_ps(y2, x); - - /* select the correct result from the two polynoms */ - xmm3 = poly_mask; - y2 = _mm_and_ps(xmm3, y2); //, xmm3); - y = _mm_andnot_ps(xmm3, y); - y = _mm_add_ps(y,y2); - /* update the sign */ - y = _mm_xor_ps(y, sign_bit); - - return y; -} - -/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them.. - it is almost as fast, and gives you a free cosine with your sine */ -void sincos_ps(v4sf x, v4sf *s, v4sf *c) { - v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y; -#ifdef USE_SSE2 - v4si emm0, emm2, emm4; -#else - v2si mm0, mm1, mm2, mm3, mm4, mm5; -#endif - v4sf swap_sign_bit_sin, poly_mask, z, tmp, y2, ysin1, ysin2; - v4sf sign_bit_cos; - - sign_bit_sin = x; - /* take the absolute value */ - x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); - /* extract the sign bit (upper one) */ - sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask); - - /* scale by 4/Pi */ - y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); - -#ifdef USE_SSE2 - /* store the integer part of y in emm2 */ - emm2 = _mm_cvttps_epi32(y); - - /* j=(j+1) & (~1) (see the cephes sources) */ - emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); - y = _mm_cvtepi32_ps(emm2); - - emm4 = emm2; - - /* get the swap sign flag for the sine */ - emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4); - emm0 = _mm_slli_epi32(emm0, 29); - swap_sign_bit_sin = _mm_castsi128_ps(emm0); - - /* get the polynom selection mask for the sine*/ - emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2); - emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); - poly_mask = _mm_castsi128_ps(emm2); -#else - /* store the integer part of y in mm2:mm3 */ - xmm3 = _mm_movehl_ps(xmm3, y); - mm2 = _mm_cvttps_pi32(y); - mm3 = _mm_cvttps_pi32(xmm3); - - /* j=(j+1) & (~1) (see the cephes sources) */ - mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1); - mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1); - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1); - - y = _mm_cvtpi32x2_ps(mm2, mm3); - - mm4 = mm2; - mm5 = mm3; - - /* get the swap sign flag for the sine */ - mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4); - mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4); - mm0 = _mm_slli_pi32(mm0, 29); - mm1 = _mm_slli_pi32(mm1, 29); - - COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin); - - /* get the polynom selection mask for the sine */ - - mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2); - mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2); - mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64()); - mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64()); - - COPY_MM_TO_XMM(mm2, mm3, poly_mask); -#endif - - /* The magic pass: "Extended precision modular arithmetic" - x = ((x - y * DP1) - y * DP2) - y * DP3; */ - xmm1 = *(v4sf*)_ps_minus_cephes_DP1; - xmm2 = *(v4sf*)_ps_minus_cephes_DP2; - xmm3 = *(v4sf*)_ps_minus_cephes_DP3; - xmm1 = _mm_mul_ps(y, xmm1); - xmm2 = _mm_mul_ps(y, xmm2); - xmm3 = _mm_mul_ps(y, xmm3); - x = _mm_add_ps(x, xmm1); - x = _mm_add_ps(x, xmm2); - x = _mm_add_ps(x, xmm3); - -#ifdef USE_SSE2 - emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2); - emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4); - emm4 = _mm_slli_epi32(emm4, 29); - sign_bit_cos = _mm_castsi128_ps(emm4); -#else - /* get the sign flag for the cosine */ - mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2); - mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2); - mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4); - mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4); - mm4 = _mm_slli_pi32(mm4, 29); - mm5 = _mm_slli_pi32(mm5, 29); - COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos); - _mm_empty(); /* good-bye mmx */ -#endif - - sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin); - - - /* Evaluate the first polynom (0 <= x <= Pi/4) */ - z = _mm_mul_ps(x,x); - y = *(v4sf*)_ps_coscof_p0; - - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1); - y = _mm_mul_ps(y, z); - y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2); - y = _mm_mul_ps(y, z); - y = _mm_mul_ps(y, z); - tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); - y = _mm_sub_ps(y, tmp); - y = _mm_add_ps(y, *(v4sf*)_ps_1); - - /* Evaluate the second polynom (Pi/4 <= x <= 0) */ - - y2 = *(v4sf*)_ps_sincof_p0; - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2); - y2 = _mm_mul_ps(y2, z); - y2 = _mm_mul_ps(y2, x); - y2 = _mm_add_ps(y2, x); - - /* select the correct result from the two polynoms */ - xmm3 = poly_mask; - ysin2 = _mm_and_ps(xmm3, y2); - ysin1 = _mm_andnot_ps(xmm3, y); - y2 = _mm_sub_ps(y2,ysin2); - y = _mm_sub_ps(y, ysin1); - - xmm1 = _mm_add_ps(ysin1,ysin2); - xmm2 = _mm_add_ps(y,y2); - - /* update the sign */ - *s = _mm_xor_ps(xmm1, sign_bit_sin); - *c = _mm_xor_ps(xmm2, sign_bit_cos); -} - |