diff options
Diffstat (limited to 'src/gallium/drivers/llvmpipe/lp_setup.c')
-rw-r--r-- | src/gallium/drivers/llvmpipe/lp_setup.c | 1432 |
1 files changed, 38 insertions, 1394 deletions
diff --git a/src/gallium/drivers/llvmpipe/lp_setup.c b/src/gallium/drivers/llvmpipe/lp_setup.c index 60107214df5..8c67524506e 100644 --- a/src/gallium/drivers/llvmpipe/lp_setup.c +++ b/src/gallium/drivers/llvmpipe/lp_setup.c @@ -26,15 +26,15 @@ **************************************************************************/ /** - * \brief Primitive rasterization/rendering (points, lines, triangles) + * \brief Primitive rasterization/rendering (points, lines) * * \author Keith Whitwell <[email protected]> * \author Brian Paul */ #include "lp_context.h" -#include "lp_prim_setup.h" #include "lp_quad.h" +#include "lp_quad_pipe.h" #include "lp_setup.h" #include "lp_state.h" #include "draw/draw_context.h" @@ -44,1397 +44,49 @@ #include "pipe/p_thread.h" #include "util/u_math.h" #include "util/u_memory.h" -#include "lp_bld_debug.h" -#include "lp_tile_cache.h" -#include "lp_tile_soa.h" #define DEBUG_VERTS 0 -#define DEBUG_FRAGS 0 -/** - * Triangle edge info - */ -struct edge { - float dx; /**< X(v1) - X(v0), used only during setup */ - float dy; /**< Y(v1) - Y(v0), used only during setup */ - float dxdy; /**< dx/dy */ - float sx, sy; /**< first sample point coord */ - int lines; /**< number of lines on this edge */ -}; - - -#define MAX_QUADS 16 - - -/** - * Triangle setup info (derived from draw_stage). - * Also used for line drawing (taking some liberties). - */ -struct setup_context { - struct llvmpipe_context *llvmpipe; - - /* Vertices are just an array of floats making up each attribute in - * turn. Currently fixed at 4 floats, but should change in time. - * Codegen will help cope with this. - */ - const float (*vmax)[4]; - const float (*vmid)[4]; - const float (*vmin)[4]; - const float (*vprovoke)[4]; - - struct edge ebot; - struct edge etop; - struct edge emaj; - - float oneoverarea; - int facing; - - struct quad_header quad[MAX_QUADS]; - struct quad_header *quad_ptrs[MAX_QUADS]; - unsigned count; - - struct quad_interp_coef coef; - - struct { - int left[2]; /**< [0] = row0, [1] = row1 */ - int right[2]; - int y; - } span; - -#if DEBUG_FRAGS - uint numFragsEmitted; /**< per primitive */ - uint numFragsWritten; /**< per primitive */ -#endif - - unsigned winding; /* which winding to cull */ -}; - - - -/** - * Execute fragment shader for the four fragments in the quad. - */ -static void -shade_quads(struct llvmpipe_context *llvmpipe, - struct quad_header *quads[], - unsigned nr) -{ - struct lp_fragment_shader *fs = llvmpipe->fs; - struct quad_header *quad = quads[0]; - const unsigned x = quad->input.x0; - const unsigned y = quad->input.y0; - uint8_t *tile; - uint8_t *color; - void *depth; - uint32_t ALIGN16_ATTRIB mask[4][NUM_CHANNELS]; - unsigned chan_index; - unsigned q; - - assert(fs->current); - if(!fs->current) - return; - - /* Sanity checks */ - assert(nr * QUAD_SIZE == TILE_VECTOR_HEIGHT * TILE_VECTOR_WIDTH); - assert(x % TILE_VECTOR_WIDTH == 0); - assert(y % TILE_VECTOR_HEIGHT == 0); - for (q = 0; q < nr; ++q) { - assert(quads[q]->input.x0 == x + q*2); - assert(quads[q]->input.y0 == y); - } - - /* mask */ - for (q = 0; q < 4; ++q) - for (chan_index = 0; chan_index < NUM_CHANNELS; ++chan_index) - mask[q][chan_index] = quads[q]->inout.mask & (1 << chan_index) ? ~0 : 0; - - /* color buffer */ - if(llvmpipe->framebuffer.nr_cbufs >= 1 && - llvmpipe->framebuffer.cbufs[0]) { - tile = lp_get_cached_tile(llvmpipe->cbuf_cache[0], x, y); - color = &TILE_PIXEL(tile, x & (TILE_SIZE-1), y & (TILE_SIZE-1), 0); - } - else - color = NULL; - - /* depth buffer */ - if(llvmpipe->zsbuf_map) { - assert((x % 2) == 0); - assert((y % 2) == 0); - depth = llvmpipe->zsbuf_map + - y*llvmpipe->zsbuf_transfer->stride + - 2*x*llvmpipe->zsbuf_transfer->block.size; - } - else - depth = NULL; - - /* XXX: This will most likely fail on 32bit x86 without -mstackrealign */ - assert(lp_check_alignment(mask, 16)); - - assert(lp_check_alignment(depth, 16)); - assert(lp_check_alignment(color, 16)); - assert(lp_check_alignment(llvmpipe->jit_context.blend_color, 16)); - - /* run shader */ - fs->current->jit_function( &llvmpipe->jit_context, - x, y, - quad->coef->a0, - quad->coef->dadx, - quad->coef->dady, - &mask[0][0], - color, - depth); -} - - - - -/** - * Do triangle cull test using tri determinant (sign indicates orientation) - * \return true if triangle is to be culled. - */ -static INLINE boolean -cull_tri(const struct setup_context *setup, float det) -{ - if (det != 0) { - /* if (det < 0 then Z points toward camera and triangle is - * counter-clockwise winding. - */ - unsigned winding = (det < 0) ? PIPE_WINDING_CCW : PIPE_WINDING_CW; - - if ((winding & setup->winding) == 0) - return FALSE; - } - - /* Culled: - */ - return TRUE; -} - - - -/** - * Clip setup->quad against the scissor/surface bounds. - */ -static INLINE void -quad_clip( struct setup_context *setup, struct quad_header *quad ) -{ - const struct pipe_scissor_state *cliprect = &setup->llvmpipe->cliprect; - const int minx = (int) cliprect->minx; - const int maxx = (int) cliprect->maxx; - const int miny = (int) cliprect->miny; - const int maxy = (int) cliprect->maxy; - - if (quad->input.x0 >= maxx || - quad->input.y0 >= maxy || - quad->input.x0 + 1 < minx || - quad->input.y0 + 1 < miny) { - /* totally clipped */ - quad->inout.mask = 0x0; - return; - } - if (quad->input.x0 < minx) - quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT); - if (quad->input.y0 < miny) - quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT); - if (quad->input.x0 == maxx - 1) - quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT); - if (quad->input.y0 == maxy - 1) - quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT); -} - - - -/** - * Given an X or Y coordinate, return the block/quad coordinate that it - * belongs to. - */ -static INLINE int block( int x ) -{ - return x & ~(2-1); -} - -static INLINE int block_x( int x ) -{ - return x & ~(TILE_VECTOR_WIDTH - 1); -} - - -/** - * Emit a quad (pass to next stage) with clipping. - */ -static INLINE void -clip_emit_quad( struct setup_context *setup, struct quad_header *quad ) -{ - quad_clip( setup, quad ); - - if (quad->inout.mask) { - struct llvmpipe_context *lp = setup->llvmpipe; - -#if 1 - /* XXX: The blender expects 4 quads. This is far from efficient, but - * until we codegenerate single-quad variants of the fragment pipeline - * we need this hack. */ - const unsigned nr_quads = TILE_VECTOR_HEIGHT*TILE_VECTOR_WIDTH/QUAD_SIZE; - struct quad_header quads[nr_quads]; - struct quad_header *quad_ptrs[nr_quads]; - int x0 = block_x(quad->input.x0); - unsigned i; - - for(i = 0; i < nr_quads; ++i) { - int x = x0 + 2*i; - if(x == quad->input.x0) - memcpy(&quads[i], quad, sizeof quads[i]); - else { - memset(&quads[i], 0, sizeof quads[i]); - quads[i].input.x0 = x; - quads[i].input.y0 = quad->input.y0; - quads[i].coef = quad->coef; - } - quad_ptrs[i] = &quads[i]; - } - - shade_quads( lp, quad_ptrs, nr_quads ); -#else - shade_quads( lp, &quad, 1 ); -#endif - } -} - - -/** - * Render a horizontal span of quads - */ -static void flush_spans( struct setup_context *setup ) -{ - const int step = TILE_VECTOR_WIDTH; - const int xleft0 = setup->span.left[0]; - const int xleft1 = setup->span.left[1]; - const int xright0 = setup->span.right[0]; - const int xright1 = setup->span.right[1]; - - - int minleft = block_x(MIN2(xleft0, xleft1)); - int maxright = MAX2(xright0, xright1); - int x; - - for (x = minleft; x < maxright; x += step) { - unsigned skip_left0 = CLAMP(xleft0 - x, 0, step); - unsigned skip_left1 = CLAMP(xleft1 - x, 0, step); - unsigned skip_right0 = CLAMP(x + step - xright0, 0, step); - unsigned skip_right1 = CLAMP(x + step - xright1, 0, step); - unsigned lx = x; - const unsigned nr_quads = TILE_VECTOR_HEIGHT*TILE_VECTOR_WIDTH/QUAD_SIZE; - unsigned q = 0; - - unsigned skipmask_left0 = (1U << skip_left0) - 1U; - unsigned skipmask_left1 = (1U << skip_left1) - 1U; - - /* These calculations fail when step == 32 and skip_right == 0. - */ - unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0); - unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1); - - unsigned mask0 = ~skipmask_left0 & ~skipmask_right0; - unsigned mask1 = ~skipmask_left1 & ~skipmask_right1; - - if (mask0 | mask1) { - for(q = 0; q < nr_quads; ++q) { - unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2); - setup->quad[q].input.x0 = lx; - setup->quad[q].input.y0 = setup->span.y; - setup->quad[q].inout.mask = quadmask; - setup->quad_ptrs[q] = &setup->quad[q]; - mask0 >>= 2; - mask1 >>= 2; - lx += 2; - } - assert(!(mask0 | mask1)); - - shade_quads(setup->llvmpipe, setup->quad_ptrs, nr_quads ); - } - } - - - setup->span.y = 0; - setup->span.right[0] = 0; - setup->span.right[1] = 0; - setup->span.left[0] = 1000000; /* greater than right[0] */ - setup->span.left[1] = 1000000; /* greater than right[1] */ -} - - -#if DEBUG_VERTS -static void print_vertex(const struct setup_context *setup, - const float (*v)[4]) -{ - int i; - debug_printf(" Vertex: (%p)\n", v); - for (i = 0; i < setup->quad[0].nr_attrs; i++) { - debug_printf(" %d: %f %f %f %f\n", i, - v[i][0], v[i][1], v[i][2], v[i][3]); - if (util_is_inf_or_nan(v[i][0])) { - debug_printf(" NaN!\n"); - } - } -} -#endif - -/** - * Sort the vertices from top to bottom order, setting up the triangle - * edge fields (ebot, emaj, etop). - * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise - */ -static boolean setup_sort_vertices( struct setup_context *setup, - float det, - const float (*v0)[4], - const float (*v1)[4], - const float (*v2)[4] ) -{ - setup->vprovoke = v2; - - /* determine bottom to top order of vertices */ - { - float y0 = v0[0][1]; - float y1 = v1[0][1]; - float y2 = v2[0][1]; - if (y0 <= y1) { - if (y1 <= y2) { - /* y0<=y1<=y2 */ - setup->vmin = v0; - setup->vmid = v1; - setup->vmax = v2; - } - else if (y2 <= y0) { - /* y2<=y0<=y1 */ - setup->vmin = v2; - setup->vmid = v0; - setup->vmax = v1; - } - else { - /* y0<=y2<=y1 */ - setup->vmin = v0; - setup->vmid = v2; - setup->vmax = v1; - } - } - else { - if (y0 <= y2) { - /* y1<=y0<=y2 */ - setup->vmin = v1; - setup->vmid = v0; - setup->vmax = v2; - } - else if (y2 <= y1) { - /* y2<=y1<=y0 */ - setup->vmin = v2; - setup->vmid = v1; - setup->vmax = v0; - } - else { - /* y1<=y2<=y0 */ - setup->vmin = v1; - setup->vmid = v2; - setup->vmax = v0; - } - } - } - - setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0]; - setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1]; - setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0]; - setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1]; - setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0]; - setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1]; - - /* - * Compute triangle's area. Use 1/area to compute partial - * derivatives of attributes later. - * - * The area will be the same as prim->det, but the sign may be - * different depending on how the vertices get sorted above. - * - * To determine whether the primitive is front or back facing we - * use the prim->det value because its sign is correct. - */ - { - const float area = (setup->emaj.dx * setup->ebot.dy - - setup->ebot.dx * setup->emaj.dy); - - setup->oneoverarea = 1.0f / area; - - /* - debug_printf("%s one-over-area %f area %f det %f\n", - __FUNCTION__, setup->oneoverarea, area, det ); - */ - if (util_is_inf_or_nan(setup->oneoverarea)) - return FALSE; - } - - /* We need to know if this is a front or back-facing triangle for: - * - the GLSL gl_FrontFacing fragment attribute (bool) - * - two-sided stencil test - */ - setup->facing = - ((det > 0.0) ^ - (setup->llvmpipe->rasterizer->front_winding == PIPE_WINDING_CW)); - - return TRUE; -} - - -/** - * Compute a0, dadx and dady for a linearly interpolated coefficient, - * for a triangle. - */ -static void tri_pos_coeff( struct setup_context *setup, - uint vertSlot, unsigned i) -{ - float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i]; - float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i]; - float a = setup->ebot.dy * majda - botda * setup->emaj.dy; - float b = setup->emaj.dx * botda - majda * setup->ebot.dx; - float dadx = a * setup->oneoverarea; - float dady = b * setup->oneoverarea; - - assert(i <= 3); - - setup->coef.dadx[0][i] = dadx; - setup->coef.dady[0][i] = dady; - - /* calculate a0 as the value which would be sampled for the - * fragment at (0,0), taking into account that we want to sample at - * pixel centers, in other words (0.5, 0.5). - * - * this is neat but unfortunately not a good way to do things for - * triangles with very large values of dadx or dady as it will - * result in the subtraction and re-addition from a0 of a very - * large number, which means we'll end up loosing a lot of the - * fractional bits and precision from a0. the way to fix this is - * to define a0 as the sample at a pixel center somewhere near vmin - * instead - i'll switch to this later. - */ - setup->coef.a0[0][i] = (setup->vmin[vertSlot][i] - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); - - /* - debug_printf("attr[%d].%c: %f dx:%f dy:%f\n", - slot, "xyzw"[i], - setup->coef[slot].a0[i], - setup->coef[slot].dadx[i], - setup->coef[slot].dady[i]); - */ -} - - -/** - * Compute a0 for a constant-valued coefficient (GL_FLAT shading). - * The value value comes from vertex[slot][i]. - * The result will be put into setup->coef[slot].a0[i]. - * \param slot which attribute slot - * \param i which component of the slot (0..3) - */ -static void const_pos_coeff( struct setup_context *setup, - uint vertSlot, unsigned i) -{ - setup->coef.dadx[0][i] = 0; - setup->coef.dady[0][i] = 0; - - /* need provoking vertex info! - */ - setup->coef.a0[0][i] = setup->vprovoke[vertSlot][i]; -} - - -/** - * Compute a0 for a constant-valued coefficient (GL_FLAT shading). - * The value value comes from vertex[slot][i]. - * The result will be put into setup->coef[slot].a0[i]. - * \param slot which attribute slot - * \param i which component of the slot (0..3) - */ -static void const_coeff( struct setup_context *setup, - unsigned attrib, - uint vertSlot) -{ - unsigned i; - for (i = 0; i < NUM_CHANNELS; ++i) { - setup->coef.dadx[1 + attrib][i] = 0; - setup->coef.dady[1 + attrib][i] = 0; - - /* need provoking vertex info! - */ - setup->coef.a0[1 + attrib][i] = setup->vprovoke[vertSlot][i]; - } -} - - -/** - * Compute a0, dadx and dady for a linearly interpolated coefficient, - * for a triangle. - */ -static void tri_linear_coeff( struct setup_context *setup, - unsigned attrib, - uint vertSlot) -{ - unsigned i; - for (i = 0; i < NUM_CHANNELS; ++i) { - float botda = setup->vmid[vertSlot][i] - setup->vmin[vertSlot][i]; - float majda = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i]; - float a = setup->ebot.dy * majda - botda * setup->emaj.dy; - float b = setup->emaj.dx * botda - majda * setup->ebot.dx; - float dadx = a * setup->oneoverarea; - float dady = b * setup->oneoverarea; - - assert(i <= 3); - - setup->coef.dadx[1 + attrib][i] = dadx; - setup->coef.dady[1 + attrib][i] = dady; - - /* calculate a0 as the value which would be sampled for the - * fragment at (0,0), taking into account that we want to sample at - * pixel centers, in other words (0.5, 0.5). - * - * this is neat but unfortunately not a good way to do things for - * triangles with very large values of dadx or dady as it will - * result in the subtraction and re-addition from a0 of a very - * large number, which means we'll end up loosing a lot of the - * fractional bits and precision from a0. the way to fix this is - * to define a0 as the sample at a pixel center somewhere near vmin - * instead - i'll switch to this later. - */ - setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); - - /* - debug_printf("attr[%d].%c: %f dx:%f dy:%f\n", - slot, "xyzw"[i], - setup->coef[slot].a0[i], - setup->coef[slot].dadx[i], - setup->coef[slot].dady[i]); - */ - } -} - - -/** - * Compute a0, dadx and dady for a perspective-corrected interpolant, - * for a triangle. - * We basically multiply the vertex value by 1/w before computing - * the plane coefficients (a0, dadx, dady). - * Later, when we compute the value at a particular fragment position we'll - * divide the interpolated value by the interpolated W at that fragment. - */ -static void tri_persp_coeff( struct setup_context *setup, - unsigned attrib, - uint vertSlot) -{ - unsigned i; - for (i = 0; i < NUM_CHANNELS; ++i) { - /* premultiply by 1/w (v[0][3] is always W): - */ - float mina = setup->vmin[vertSlot][i] * setup->vmin[0][3]; - float mida = setup->vmid[vertSlot][i] * setup->vmid[0][3]; - float maxa = setup->vmax[vertSlot][i] * setup->vmax[0][3]; - float botda = mida - mina; - float majda = maxa - mina; - float a = setup->ebot.dy * majda - botda * setup->emaj.dy; - float b = setup->emaj.dx * botda - majda * setup->ebot.dx; - float dadx = a * setup->oneoverarea; - float dady = b * setup->oneoverarea; - - /* - debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i, - setup->vmin[vertSlot][i], - setup->vmid[vertSlot][i], - setup->vmax[vertSlot][i] - ); - */ - assert(i <= 3); - - setup->coef.dadx[1 + attrib][i] = dadx; - setup->coef.dady[1 + attrib][i] = dady; - setup->coef.a0[1 + attrib][i] = (mina - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); - } -} - - -/** - * Special coefficient setup for gl_FragCoord. - * X and Y are trivial, though Y has to be inverted for OpenGL. - * Z and W are copied from posCoef which should have already been computed. - * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask. - */ -static void -setup_fragcoord_coeff(struct setup_context *setup, uint slot) -{ - /*X*/ - setup->coef.a0[1 + slot][0] = 0; - setup->coef.dadx[1 + slot][0] = 1.0; - setup->coef.dady[1 + slot][0] = 0.0; - /*Y*/ - setup->coef.a0[1 + slot][1] = 0.0; - setup->coef.dadx[1 + slot][1] = 0.0; - setup->coef.dady[1 + slot][1] = 1.0; - /*Z*/ - setup->coef.a0[1 + slot][2] = setup->coef.a0[0][2]; - setup->coef.dadx[1 + slot][2] = setup->coef.dadx[0][2]; - setup->coef.dady[1 + slot][2] = setup->coef.dady[0][2]; - /*W*/ - setup->coef.a0[1 + slot][3] = setup->coef.a0[0][3]; - setup->coef.dadx[1 + slot][3] = setup->coef.dadx[0][3]; - setup->coef.dady[1 + slot][3] = setup->coef.dady[0][3]; -} - - - -/** - * Compute the setup->coef[] array dadx, dady, a0 values. - * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized. - */ -static void setup_tri_coefficients( struct setup_context *setup ) -{ - struct llvmpipe_context *llvmpipe = setup->llvmpipe; - const struct lp_fragment_shader *lpfs = llvmpipe->fs; - const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe); - uint fragSlot; - - /* z and w are done by linear interpolation: - */ - tri_pos_coeff(setup, 0, 2); - tri_pos_coeff(setup, 0, 3); - - /* setup interpolation for all the remaining attributes: - */ - for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) { - const uint vertSlot = vinfo->attrib[fragSlot].src_index; - - switch (vinfo->attrib[fragSlot].interp_mode) { - case INTERP_CONSTANT: - const_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_LINEAR: - tri_linear_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_PERSPECTIVE: - tri_persp_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_POS: - setup_fragcoord_coeff(setup, fragSlot); - break; - default: - assert(0); - } - - if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { - setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing; - setup->coef.dadx[1 + fragSlot][0] = 0.0; - setup->coef.dady[1 + fragSlot][0] = 0.0; - } - } -} - - - -static void setup_tri_edges( struct setup_context *setup ) -{ - float vmin_x = setup->vmin[0][0] + 0.5f; - float vmid_x = setup->vmid[0][0] + 0.5f; - - float vmin_y = setup->vmin[0][1] - 0.5f; - float vmid_y = setup->vmid[0][1] - 0.5f; - float vmax_y = setup->vmax[0][1] - 0.5f; - - setup->emaj.sy = ceilf(vmin_y); - setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy); - setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy; - setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy; - - setup->etop.sy = ceilf(vmid_y); - setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy); - setup->etop.dxdy = setup->etop.dx / setup->etop.dy; - setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy; - - setup->ebot.sy = ceilf(vmin_y); - setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy); - setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy; - setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy; -} - - -/** - * Render the upper or lower half of a triangle. - * Scissoring/cliprect is applied here too. - */ -static void subtriangle( struct setup_context *setup, - struct edge *eleft, - struct edge *eright, - unsigned lines ) -{ - const struct pipe_scissor_state *cliprect = &setup->llvmpipe->cliprect; - const int minx = (int) cliprect->minx; - const int maxx = (int) cliprect->maxx; - const int miny = (int) cliprect->miny; - const int maxy = (int) cliprect->maxy; - int y, start_y, finish_y; - int sy = (int)eleft->sy; - - assert((int)eleft->sy == (int) eright->sy); - - /* clip top/bottom */ - start_y = sy; - if (start_y < miny) - start_y = miny; - - finish_y = sy + lines; - if (finish_y > maxy) - finish_y = maxy; - - start_y -= sy; - finish_y -= sy; - - /* - debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y); - */ - - for (y = start_y; y < finish_y; y++) { - - /* avoid accumulating adds as floats don't have the precision to - * accurately iterate large triangle edges that way. luckily we - * can just multiply these days. - * - * this is all drowned out by the attribute interpolation anyway. - */ - int left = (int)(eleft->sx + y * eleft->dxdy); - int right = (int)(eright->sx + y * eright->dxdy); - - /* clip left/right */ - if (left < minx) - left = minx; - if (right > maxx) - right = maxx; - - if (left < right) { - int _y = sy + y; - if (block(_y) != setup->span.y) { - flush_spans(setup); - setup->span.y = block(_y); - } - - setup->span.left[_y&1] = left; - setup->span.right[_y&1] = right; - } - } - - - /* save the values so that emaj can be restarted: - */ - eleft->sx += lines * eleft->dxdy; - eright->sx += lines * eright->dxdy; - eleft->sy += lines; - eright->sy += lines; -} - - -/** - * Recalculate prim's determinant. This is needed as we don't have - * get this information through the vbuf_render interface & we must - * calculate it here. - */ -static float -calc_det( const float (*v0)[4], - const float (*v1)[4], - const float (*v2)[4] ) -{ - /* edge vectors e = v0 - v2, f = v1 - v2 */ - const float ex = v0[0][0] - v2[0][0]; - const float ey = v0[0][1] - v2[0][1]; - const float fx = v1[0][0] - v2[0][0]; - const float fy = v1[0][1] - v2[0][1]; - - /* det = cross(e,f).z */ - return ex * fy - ey * fx; -} - - -/** - * Do setup for triangle rasterization, then render the triangle. - */ -void llvmpipe_setup_tri( struct setup_context *setup, - const float (*v0)[4], - const float (*v1)[4], - const float (*v2)[4] ) -{ - float det; - -#if DEBUG_VERTS - debug_printf("Setup triangle:\n"); - print_vertex(setup, v0); - print_vertex(setup, v1); - print_vertex(setup, v2); -#endif - - if (setup->llvmpipe->no_rast) - return; - - det = calc_det(v0, v1, v2); - /* - debug_printf("%s\n", __FUNCTION__ ); - */ - -#if DEBUG_FRAGS - setup->numFragsEmitted = 0; - setup->numFragsWritten = 0; -#endif - - if (cull_tri( setup, det )) - return; - - if (!setup_sort_vertices( setup, det, v0, v1, v2 )) - return; - setup_tri_coefficients( setup ); - setup_tri_edges( setup ); - - assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_TRIANGLES); - - setup->span.y = 0; - setup->span.right[0] = 0; - setup->span.right[1] = 0; - /* setup->span.z_mode = tri_z_mode( setup->ctx ); */ - - /* init_constant_attribs( setup ); */ - - if (setup->oneoverarea < 0.0) { - /* emaj on left: - */ - subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines ); - subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines ); - } - else { - /* emaj on right: - */ - subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines ); - subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines ); - } - - flush_spans( setup ); - -#if DEBUG_FRAGS - printf("Tri: %u frags emitted, %u written\n", - setup->numFragsEmitted, - setup->numFragsWritten); -#endif -} - - - -/** - * Compute a0, dadx and dady for a linearly interpolated coefficient, - * for a line. - */ -static void -linear_pos_coeff(struct setup_context *setup, - uint vertSlot, uint i) -{ - const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i]; - const float dadx = da * setup->emaj.dx * setup->oneoverarea; - const float dady = da * setup->emaj.dy * setup->oneoverarea; - setup->coef.dadx[0][i] = dadx; - setup->coef.dady[0][i] = dady; - setup->coef.a0[0][i] = (setup->vmin[vertSlot][i] - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); -} - - -/** - * Compute a0, dadx and dady for a linearly interpolated coefficient, - * for a line. - */ -static void -line_linear_coeff(struct setup_context *setup, - unsigned attrib, - uint vertSlot) -{ - unsigned i; - for (i = 0; i < NUM_CHANNELS; ++i) { - const float da = setup->vmax[vertSlot][i] - setup->vmin[vertSlot][i]; - const float dadx = da * setup->emaj.dx * setup->oneoverarea; - const float dady = da * setup->emaj.dy * setup->oneoverarea; - setup->coef.dadx[1 + attrib][i] = dadx; - setup->coef.dady[1 + attrib][i] = dady; - setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); - } -} - - -/** - * Compute a0, dadx and dady for a perspective-corrected interpolant, - * for a line. - */ -static void -line_persp_coeff(struct setup_context *setup, - unsigned attrib, - uint vertSlot) -{ - unsigned i; - for (i = 0; i < NUM_CHANNELS; ++i) { - /* XXX double-check/verify this arithmetic */ - const float a0 = setup->vmin[vertSlot][i] * setup->vmin[0][3]; - const float a1 = setup->vmax[vertSlot][i] * setup->vmax[0][3]; - const float da = a1 - a0; - const float dadx = da * setup->emaj.dx * setup->oneoverarea; - const float dady = da * setup->emaj.dy * setup->oneoverarea; - setup->coef.dadx[1 + attrib][i] = dadx; - setup->coef.dady[1 + attrib][i] = dady; - setup->coef.a0[1 + attrib][i] = (setup->vmin[vertSlot][i] - - (dadx * (setup->vmin[0][0] - 0.5f) + - dady * (setup->vmin[0][1] - 0.5f))); - } -} - - -/** - * Compute the setup->coef[] array dadx, dady, a0 values. - * Must be called after setup->vmin,vmax are initialized. - */ -static INLINE boolean -setup_line_coefficients(struct setup_context *setup, - const float (*v0)[4], - const float (*v1)[4]) -{ - struct llvmpipe_context *llvmpipe = setup->llvmpipe; - const struct lp_fragment_shader *lpfs = llvmpipe->fs; - const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe); - uint fragSlot; - float area; - - /* use setup->vmin, vmax to point to vertices */ - if (llvmpipe->rasterizer->flatshade_first) - setup->vprovoke = v0; - else - setup->vprovoke = v1; - setup->vmin = v0; - setup->vmax = v1; - - setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0]; - setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1]; - - /* NOTE: this is not really area but something proportional to it */ - area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy; - if (area == 0.0f || util_is_inf_or_nan(area)) - return FALSE; - setup->oneoverarea = 1.0f / area; - - /* z and w are done by linear interpolation: - */ - linear_pos_coeff(setup, 0, 2); - linear_pos_coeff(setup, 0, 3); - - /* setup interpolation for all the remaining attributes: - */ - for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) { - const uint vertSlot = vinfo->attrib[fragSlot].src_index; - - switch (vinfo->attrib[fragSlot].interp_mode) { - case INTERP_CONSTANT: - const_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_LINEAR: - line_linear_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_PERSPECTIVE: - line_persp_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_POS: - setup_fragcoord_coeff(setup, fragSlot); - break; - default: - assert(0); - } - - if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { - setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing; - setup->coef.dadx[1 + fragSlot][0] = 0.0; - setup->coef.dady[1 + fragSlot][0] = 0.0; - } - } - return TRUE; -} - - -/** - * Plot a pixel in a line segment. +/* Stubs for lines & points for now: */ -static INLINE void -plot(struct setup_context *setup, int x, int y) +void +llvmpipe_setup_point(struct setup_context *setup, + const float (*v0)[4]) { - const int iy = y & 1; - const int ix = x & 1; - const int quadX = x - ix; - const int quadY = y - iy; - const int mask = (1 << ix) << (2 * iy); - - if (quadX != setup->quad[0].input.x0 || - quadY != setup->quad[0].input.y0) - { - /* flush prev quad, start new quad */ - - if (setup->quad[0].input.x0 != -1) - clip_emit_quad( setup, &setup->quad[0] ); - - setup->quad[0].input.x0 = quadX; - setup->quad[0].input.y0 = quadY; - setup->quad[0].inout.mask = 0x0; - } - - setup->quad[0].inout.mask |= mask; } - -/** - * Do setup for line rasterization, then render the line. - * Single-pixel width, no stipple, etc. We rely on the 'draw' module - * to handle stippling and wide lines. - */ void llvmpipe_setup_line(struct setup_context *setup, - const float (*v0)[4], - const float (*v1)[4]) -{ - int x0 = (int) v0[0][0]; - int x1 = (int) v1[0][0]; - int y0 = (int) v0[0][1]; - int y1 = (int) v1[0][1]; - int dx = x1 - x0; - int dy = y1 - y0; - int xstep, ystep; - -#if DEBUG_VERTS - debug_printf("Setup line:\n"); - print_vertex(setup, v0); - print_vertex(setup, v1); -#endif - - if (setup->llvmpipe->no_rast) - return; - - if (dx == 0 && dy == 0) - return; - - if (!setup_line_coefficients(setup, v0, v1)) - return; - - assert(v0[0][0] < 1.0e9); - assert(v0[0][1] < 1.0e9); - assert(v1[0][0] < 1.0e9); - assert(v1[0][1] < 1.0e9); - - if (dx < 0) { - dx = -dx; /* make positive */ - xstep = -1; - } - else { - xstep = 1; - } - - if (dy < 0) { - dy = -dy; /* make positive */ - ystep = -1; - } - else { - ystep = 1; - } - - assert(dx >= 0); - assert(dy >= 0); - assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_LINES); - - setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1; - setup->quad[0].inout.mask = 0x0; - - /* XXX temporary: set coverage to 1.0 so the line appears - * if AA mode happens to be enabled. - */ - setup->quad[0].input.coverage[0] = - setup->quad[0].input.coverage[1] = - setup->quad[0].input.coverage[2] = - setup->quad[0].input.coverage[3] = 1.0; - - if (dx > dy) { - /*** X-major line ***/ - int i; - const int errorInc = dy + dy; - int error = errorInc - dx; - const int errorDec = error - dx; - - for (i = 0; i < dx; i++) { - plot(setup, x0, y0); - - x0 += xstep; - if (error < 0) { - error += errorInc; - } - else { - error += errorDec; - y0 += ystep; - } - } - } - else { - /*** Y-major line ***/ - int i; - const int errorInc = dx + dx; - int error = errorInc - dy; - const int errorDec = error - dy; - - for (i = 0; i < dy; i++) { - plot(setup, x0, y0); - - y0 += ystep; - if (error < 0) { - error += errorInc; - } - else { - error += errorDec; - x0 += xstep; - } - } - } - - /* draw final quad */ - if (setup->quad[0].inout.mask) { - clip_emit_quad( setup, &setup->quad[0] ); - } -} - - -static void -point_persp_coeff(struct setup_context *setup, - const float (*vert)[4], - unsigned attrib, - uint vertSlot) + const float (*v0)[4], + const float (*v1)[4]) { - unsigned i; - for(i = 0; i < NUM_CHANNELS; ++i) { - setup->coef.dadx[1 + attrib][i] = 0.0F; - setup->coef.dady[1 + attrib][i] = 0.0F; - setup->coef.a0[1 + attrib][i] = vert[vertSlot][i] * vert[0][3]; - } } -/** - * Do setup for point rasterization, then render the point. - * Round or square points... - * XXX could optimize a lot for 1-pixel points. +/* Called after statechange, before emitting primitives. If binning + * is active, this function should store relevant state in the binning + * context. + * + * That includes: + * - current fragment shader function + * - bound constant buffer contents + * - bound textures + * - blend color + * - etc. + * + * Basically everything needed at some point in the future to + * rasterize triangles for the current state. + * + * Additionally this will set up the state needed for the rasterizer + * to process and bin incoming triangles. That would include such + * things as: + * - cull mode + * - ??? + * - etc. + * */ -void -llvmpipe_setup_point( struct setup_context *setup, - const float (*v0)[4] ) -{ - struct llvmpipe_context *llvmpipe = setup->llvmpipe; - const struct lp_fragment_shader *lpfs = llvmpipe->fs; - const int sizeAttr = setup->llvmpipe->psize_slot; - const float size - = sizeAttr > 0 ? v0[sizeAttr][0] - : setup->llvmpipe->rasterizer->point_size; - const float halfSize = 0.5F * size; - const boolean round = (boolean) setup->llvmpipe->rasterizer->point_smooth; - const float x = v0[0][0]; /* Note: data[0] is always position */ - const float y = v0[0][1]; - const struct vertex_info *vinfo = llvmpipe_get_vertex_info(llvmpipe); - uint fragSlot; - -#if DEBUG_VERTS - debug_printf("Setup point:\n"); - print_vertex(setup, v0); -#endif - - if (llvmpipe->no_rast) - return; - - assert(setup->llvmpipe->reduced_prim == PIPE_PRIM_POINTS); - - /* For points, all interpolants are constant-valued. - * However, for point sprites, we'll need to setup texcoords appropriately. - * XXX: which coefficients are the texcoords??? - * We may do point sprites as textured quads... - * - * KW: We don't know which coefficients are texcoords - ultimately - * the choice of what interpolation mode to use for each attribute - * should be determined by the fragment program, using - * per-attribute declaration statements that include interpolation - * mode as a parameter. So either the fragment program will have - * to be adjusted for pointsprite vs normal point behaviour, or - * otherwise a special interpolation mode will have to be defined - * which matches the required behaviour for point sprites. But - - * the latter is not a feature of normal hardware, and as such - * probably should be ruled out on that basis. - */ - setup->vprovoke = v0; - - /* setup Z, W */ - const_pos_coeff(setup, 0, 2); - const_pos_coeff(setup, 0, 3); - - for (fragSlot = 0; fragSlot < lpfs->info.num_inputs; fragSlot++) { - const uint vertSlot = vinfo->attrib[fragSlot].src_index; - - switch (vinfo->attrib[fragSlot].interp_mode) { - case INTERP_CONSTANT: - /* fall-through */ - case INTERP_LINEAR: - const_coeff(setup, fragSlot, vertSlot); - break; - case INTERP_PERSPECTIVE: - point_persp_coeff(setup, setup->vprovoke, fragSlot, vertSlot); - break; - case INTERP_POS: - setup_fragcoord_coeff(setup, fragSlot); - break; - default: - assert(0); - } - - if (lpfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { - setup->coef.a0[1 + fragSlot][0] = 1.0f - setup->facing; - setup->coef.dadx[1 + fragSlot][0] = 0.0; - setup->coef.dady[1 + fragSlot][0] = 0.0; - } - } - - - if (halfSize <= 0.5 && !round) { - /* special case for 1-pixel points */ - const int ix = ((int) x) & 1; - const int iy = ((int) y) & 1; - setup->quad[0].input.x0 = (int) x - ix; - setup->quad[0].input.y0 = (int) y - iy; - setup->quad[0].inout.mask = (1 << ix) << (2 * iy); - clip_emit_quad( setup, &setup->quad[0] ); - } - else { - if (round) { - /* rounded points */ - const int ixmin = block((int) (x - halfSize)); - const int ixmax = block((int) (x + halfSize)); - const int iymin = block((int) (y - halfSize)); - const int iymax = block((int) (y + halfSize)); - const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */ - const float rmax = halfSize + 0.7071F; - const float rmin2 = MAX2(0.0F, rmin * rmin); - const float rmax2 = rmax * rmax; - const float cscale = 1.0F / (rmax2 - rmin2); - int ix, iy; - - for (iy = iymin; iy <= iymax; iy += 2) { - for (ix = ixmin; ix <= ixmax; ix += 2) { - float dx, dy, dist2, cover; - - setup->quad[0].inout.mask = 0x0; - - dx = (ix + 0.5f) - x; - dy = (iy + 0.5f) - y; - dist2 = dx * dx + dy * dy; - if (dist2 <= rmax2) { - cover = 1.0F - (dist2 - rmin2) * cscale; - setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f); - setup->quad[0].inout.mask |= MASK_TOP_LEFT; - } - - dx = (ix + 1.5f) - x; - dy = (iy + 0.5f) - y; - dist2 = dx * dx + dy * dy; - if (dist2 <= rmax2) { - cover = 1.0F - (dist2 - rmin2) * cscale; - setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f); - setup->quad[0].inout.mask |= MASK_TOP_RIGHT; - } - - dx = (ix + 0.5f) - x; - dy = (iy + 1.5f) - y; - dist2 = dx * dx + dy * dy; - if (dist2 <= rmax2) { - cover = 1.0F - (dist2 - rmin2) * cscale; - setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f); - setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT; - } - - dx = (ix + 1.5f) - x; - dy = (iy + 1.5f) - y; - dist2 = dx * dx + dy * dy; - if (dist2 <= rmax2) { - cover = 1.0F - (dist2 - rmin2) * cscale; - setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f); - setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT; - } - - if (setup->quad[0].inout.mask) { - setup->quad[0].input.x0 = ix; - setup->quad[0].input.y0 = iy; - clip_emit_quad( setup, &setup->quad[0] ); - } - } - } - } - else { - /* square points */ - const int xmin = (int) (x + 0.75 - halfSize); - const int ymin = (int) (y + 0.25 - halfSize); - const int xmax = xmin + (int) size; - const int ymax = ymin + (int) size; - /* XXX could apply scissor to xmin,ymin,xmax,ymax now */ - const int ixmin = block(xmin); - const int ixmax = block(xmax - 1); - const int iymin = block(ymin); - const int iymax = block(ymax - 1); - int ix, iy; - - /* - debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax); - */ - for (iy = iymin; iy <= iymax; iy += 2) { - uint rowMask = 0xf; - if (iy < ymin) { - /* above the top edge */ - rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT); - } - if (iy + 1 >= ymax) { - /* below the bottom edge */ - rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT); - } - - for (ix = ixmin; ix <= ixmax; ix += 2) { - uint mask = rowMask; - - if (ix < xmin) { - /* fragment is past left edge of point, turn off left bits */ - mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT); - } - if (ix + 1 >= xmax) { - /* past the right edge */ - mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT); - } - - setup->quad[0].inout.mask = mask; - setup->quad[0].input.x0 = ix; - setup->quad[0].input.y0 = iy; - clip_emit_quad( setup, &setup->quad[0] ); - } - } - } - } -} - -void llvmpipe_setup_prepare( struct setup_context *setup ) +void setup_prepare( struct setup_context *setup ) { struct llvmpipe_context *lp = setup->llvmpipe; @@ -1442,6 +94,8 @@ void llvmpipe_setup_prepare( struct setup_context *setup ) llvmpipe_update_derived(lp); } + lp->quad.first->begin( lp->quad.first ); + if (lp->reduced_api_prim == PIPE_PRIM_TRIANGLES && lp->rasterizer->fill_cw == PIPE_POLYGON_MODE_FILL && lp->rasterizer->fill_ccw == PIPE_POLYGON_MODE_FILL) { @@ -1452,38 +106,28 @@ void llvmpipe_setup_prepare( struct setup_context *setup ) /* 'draw' will do culling */ setup->winding = PIPE_WINDING_NONE; } + + setup_prepare_tri( setup->llvmpipe ); } -void llvmpipe_setup_destroy_context( struct setup_context *setup ) +void setup_destroy_context( struct setup_context *setup ) { - align_free( setup ); + FREE( setup ); } /** * Create a new primitive setup/render stage. */ -struct setup_context *llvmpipe_setup_create_context( struct llvmpipe_context *llvmpipe ) +struct setup_context *setup_create_context( struct llvmpipe_context *llvmpipe ) { - struct setup_context *setup; + struct setup_context *setup = CALLOC_STRUCT(setup_context); unsigned i; - setup = align_malloc(sizeof(struct setup_context), 16); - if (!setup) - return NULL; - - memset(setup, 0, sizeof *setup); setup->llvmpipe = llvmpipe; - for (i = 0; i < MAX_QUADS; i++) { - setup->quad[i].coef = &setup->coef; - } - - setup->span.left[0] = 1000000; /* greater than right[0] */ - setup->span.left[1] = 1000000; /* greater than right[1] */ - return setup; } |