summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/cell/spu/spu_tri.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/cell/spu/spu_tri.c')
-rw-r--r--src/gallium/drivers/cell/spu/spu_tri.c926
1 files changed, 926 insertions, 0 deletions
diff --git a/src/gallium/drivers/cell/spu/spu_tri.c b/src/gallium/drivers/cell/spu/spu_tri.c
new file mode 100644
index 00000000000..be9624cf7d9
--- /dev/null
+++ b/src/gallium/drivers/cell/spu/spu_tri.c
@@ -0,0 +1,926 @@
+/**************************************************************************
+ *
+ * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/**
+ * Triangle rendering within a tile.
+ */
+
+#include "pipe/p_compiler.h"
+#include "pipe/p_format.h"
+#include "pipe/p_util.h"
+#include "spu_blend.h"
+#include "spu_colorpack.h"
+#include "spu_main.h"
+#include "spu_texture.h"
+#include "spu_tile.h"
+#include "spu_tri.h"
+
+#include "spu_ztest.h"
+
+
+/** Masks are uint[4] vectors with each element being 0 or 0xffffffff */
+typedef vector unsigned int mask_t;
+
+typedef union
+{
+ vector float v;
+ float f[4];
+} float4;
+
+
+/**
+ * Simplified types taken from other parts of Gallium
+ */
+struct vertex_header {
+ vector float data[1];
+};
+
+
+
+/* XXX fix this */
+#undef CEILF
+#define CEILF(X) ((float) (int) ((X) + 0.99999))
+
+
+#define QUAD_TOP_LEFT 0
+#define QUAD_TOP_RIGHT 1
+#define QUAD_BOTTOM_LEFT 2
+#define QUAD_BOTTOM_RIGHT 3
+#define MASK_TOP_LEFT (1 << QUAD_TOP_LEFT)
+#define MASK_TOP_RIGHT (1 << QUAD_TOP_RIGHT)
+#define MASK_BOTTOM_LEFT (1 << QUAD_BOTTOM_LEFT)
+#define MASK_BOTTOM_RIGHT (1 << QUAD_BOTTOM_RIGHT)
+#define MASK_ALL 0xf
+
+
+#define DEBUG_VERTS 0
+
+/**
+ * Triangle edge info
+ */
+struct edge {
+ float dx; /**< X(v1) - X(v0), used only during setup */
+ float dy; /**< Y(v1) - Y(v0), used only during setup */
+ float dxdy; /**< dx/dy */
+ float sx, sy; /**< first sample point coord */
+ int lines; /**< number of lines on this edge */
+};
+
+
+struct interp_coef
+{
+ float4 a0;
+ float4 dadx;
+ float4 dady;
+};
+
+
+/**
+ * Triangle setup info (derived from draw_stage).
+ * Also used for line drawing (taking some liberties).
+ */
+struct setup_stage {
+
+ /* Vertices are just an array of floats making up each attribute in
+ * turn. Currently fixed at 4 floats, but should change in time.
+ * Codegen will help cope with this.
+ */
+ const struct vertex_header *vmax;
+ const struct vertex_header *vmid;
+ const struct vertex_header *vmin;
+ const struct vertex_header *vprovoke;
+
+ struct edge ebot;
+ struct edge etop;
+ struct edge emaj;
+
+ float oneoverarea;
+
+ uint tx, ty;
+
+ int cliprect_minx, cliprect_maxx, cliprect_miny, cliprect_maxy;
+
+#if 0
+ struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
+#else
+ struct interp_coef coef[PIPE_MAX_SHADER_INPUTS];
+#endif
+
+#if 0
+ struct quad_header quad;
+#endif
+
+ struct {
+ int left[2]; /**< [0] = row0, [1] = row1 */
+ int right[2];
+ int y;
+ unsigned y_flags;
+ unsigned mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
+ } span;
+};
+
+
+
+static struct setup_stage setup;
+
+
+
+
+#if 0
+/**
+ * Basically a cast wrapper.
+ */
+static INLINE struct setup_stage *setup_stage( struct draw_stage *stage )
+{
+ return (struct setup_stage *)stage;
+}
+#endif
+
+#if 0
+/**
+ * Clip setup.quad against the scissor/surface bounds.
+ */
+static INLINE void
+quad_clip(struct setup_stage *setup)
+{
+ const struct pipe_scissor_state *cliprect = &setup.softpipe->cliprect;
+ const int minx = (int) cliprect->minx;
+ const int maxx = (int) cliprect->maxx;
+ const int miny = (int) cliprect->miny;
+ const int maxy = (int) cliprect->maxy;
+
+ if (setup.quad.x0 >= maxx ||
+ setup.quad.y0 >= maxy ||
+ setup.quad.x0 + 1 < minx ||
+ setup.quad.y0 + 1 < miny) {
+ /* totally clipped */
+ setup.quad.mask = 0x0;
+ return;
+ }
+ if (setup.quad.x0 < minx)
+ setup.quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
+ if (setup.quad.y0 < miny)
+ setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
+ if (setup.quad.x0 == maxx - 1)
+ setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
+ if (setup.quad.y0 == maxy - 1)
+ setup.quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
+}
+#endif
+
+#if 0
+/**
+ * Emit a quad (pass to next stage) with clipping.
+ */
+static INLINE void
+clip_emit_quad(struct setup_stage *setup)
+{
+ quad_clip(setup);
+ if (setup.quad.mask) {
+ struct softpipe_context *sp = setup.softpipe;
+ sp->quad.first->run(sp->quad.first, &setup.quad);
+ }
+}
+#endif
+
+/**
+ * Evaluate attribute coefficients (plane equations) to compute
+ * attribute values for the four fragments in a quad.
+ * Eg: four colors will be compute.
+ */
+static INLINE void
+eval_coeff(uint slot, float x, float y, vector float result[4])
+{
+ switch (spu.vertex_info.interp_mode[slot]) {
+ case INTERP_CONSTANT:
+ result[QUAD_TOP_LEFT] =
+ result[QUAD_TOP_RIGHT] =
+ result[QUAD_BOTTOM_LEFT] =
+ result[QUAD_BOTTOM_RIGHT] = setup.coef[slot].a0.v;
+ break;
+
+ case INTERP_LINEAR:
+ /* fall-through, for now */
+ default:
+ {
+ register vector float dadx = setup.coef[slot].dadx.v;
+ register vector float dady = setup.coef[slot].dady.v;
+ register vector float topLeft
+ = spu_add(setup.coef[slot].a0.v,
+ spu_add(spu_mul(spu_splats(x), dadx),
+ spu_mul(spu_splats(y), dady)));
+
+ result[QUAD_TOP_LEFT] = topLeft;
+ result[QUAD_TOP_RIGHT] = spu_add(topLeft, dadx);
+ result[QUAD_BOTTOM_LEFT] = spu_add(topLeft, dady);
+ result[QUAD_BOTTOM_RIGHT] = spu_add(spu_add(topLeft, dadx), dady);
+ }
+ }
+}
+
+
+static INLINE vector float
+eval_z(float x, float y)
+{
+ const uint slot = 0;
+ const float dzdx = setup.coef[slot].dadx.f[2];
+ const float dzdy = setup.coef[slot].dady.f[2];
+ const float topLeft = setup.coef[slot].a0.f[2] + x * dzdx + y * dzdy;
+ const vector float topLeftv = spu_splats(topLeft);
+ const vector float derivs = (vector float) { 0.0, dzdx, dzdy, dzdx + dzdy };
+ return spu_add(topLeftv, derivs);
+}
+
+
+static INLINE mask_t
+do_depth_test(int x, int y, mask_t quadmask)
+{
+ float4 zvals;
+ mask_t mask;
+
+ zvals.v = eval_z((float) x, (float) y);
+
+ if (spu.fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
+ int ix = (x - setup.cliprect_minx) / 4;
+ int iy = (y - setup.cliprect_miny) / 2;
+ mask = spu_z16_test_less(zvals.v, &spu.ztile.us8[iy][ix], x>>1, quadmask);
+ }
+ else {
+ int ix = (x - setup.cliprect_minx) / 2;
+ int iy = (y - setup.cliprect_miny) / 2;
+ mask = spu_z32_test_less(zvals.v, &spu.ztile.ui4[iy][ix], quadmask);
+ }
+
+ if (spu_extract(spu_orx(mask), 0))
+ spu.cur_ztile_status = TILE_STATUS_DIRTY;
+
+ return mask;
+}
+
+
+/**
+ * Emit a quad (pass to next stage). No clipping is done.
+ * Note: about 1/5 to 1/7 of the time, mask is zero and this function
+ * should be skipped. But adding the test for that slows things down
+ * overall.
+ */
+static INLINE void
+emit_quad( int x, int y, mask_t mask )
+{
+#if 0
+ struct softpipe_context *sp = setup.softpipe;
+ setup.quad.x0 = x;
+ setup.quad.y0 = y;
+ setup.quad.mask = mask;
+ sp->quad.first->run(sp->quad.first, &setup.quad);
+#else
+
+ if (spu.depth_stencil.depth.enabled) {
+ mask = do_depth_test(x, y, mask);
+ }
+
+ /* If any bits in mask are set... */
+ if (spu_extract(spu_orx(mask), 0)) {
+ const int ix = x - setup.cliprect_minx;
+ const int iy = y - setup.cliprect_miny;
+ const vector unsigned char shuffle = spu.color_shuffle;
+ vector float colors[4];
+
+ spu.cur_ctile_status = TILE_STATUS_DIRTY;
+
+ if (spu.texture.start) {
+ /* texture mapping */
+ vector float texcoords[4];
+ eval_coeff(2, (float) x, (float) y, texcoords);
+
+ if (spu_extract(mask, 0))
+ colors[0] = spu.sample_texture(texcoords[0]);
+ if (spu_extract(mask, 1))
+ colors[1] = spu.sample_texture(texcoords[1]);
+ if (spu_extract(mask, 2))
+ colors[2] = spu.sample_texture(texcoords[2]);
+ if (spu_extract(mask, 3))
+ colors[3] = spu.sample_texture(texcoords[3]);
+ }
+ else {
+ /* simple shading */
+ eval_coeff(1, (float) x, (float) y, colors);
+ }
+
+#if 1
+ if (spu.blend.blend_enable)
+ blend_quad(ix % TILE_SIZE, iy % TILE_SIZE, colors);
+#endif
+
+ if (spu_extract(mask, 0))
+ spu.ctile.ui[iy][ix] = spu_pack_color_shuffle(colors[0], shuffle);
+ if (spu_extract(mask, 1))
+ spu.ctile.ui[iy][ix+1] = spu_pack_color_shuffle(colors[1], shuffle);
+ if (spu_extract(mask, 2))
+ spu.ctile.ui[iy+1][ix] = spu_pack_color_shuffle(colors[2], shuffle);
+ if (spu_extract(mask, 3))
+ spu.ctile.ui[iy+1][ix+1] = spu_pack_color_shuffle(colors[3], shuffle);
+
+#if 0
+ /* SIMD_Z with swizzled color buffer (someday) */
+ vector unsigned int uicolors = *((vector unsigned int *) &colors);
+ spu.ctile.ui4[iy/2][ix/2] = spu_sel(spu.ctile.ui4[iy/2][ix/2], uicolors, mask);
+#endif
+ }
+
+#endif
+}
+
+
+/**
+ * Given an X or Y coordinate, return the block/quad coordinate that it
+ * belongs to.
+ */
+static INLINE int block( int x )
+{
+ return x & ~1;
+}
+
+
+/**
+ * Compute mask which indicates which pixels in the 2x2 quad are actually inside
+ * the triangle's bounds.
+ * The mask is a uint4 vector and each element will be 0 or 0xffffffff.
+ */
+static INLINE mask_t calculate_mask( int x )
+{
+ /* This is a little tricky.
+ * Use & instead of && to avoid branches.
+ * Use negation to convert true/false to ~0/0 values.
+ */
+ mask_t mask;
+ mask = spu_insert(-((x >= setup.span.left[0]) & (x < setup.span.right[0])), mask, 0);
+ mask = spu_insert(-((x+1 >= setup.span.left[0]) & (x+1 < setup.span.right[0])), mask, 1);
+ mask = spu_insert(-((x >= setup.span.left[1]) & (x < setup.span.right[1])), mask, 2);
+ mask = spu_insert(-((x+1 >= setup.span.left[1]) & (x+1 < setup.span.right[1])), mask, 3);
+ return mask;
+}
+
+
+/**
+ * Render a horizontal span of quads
+ */
+static void flush_spans( void )
+{
+ int minleft, maxright;
+ int x;
+
+ switch (setup.span.y_flags) {
+ case 0x3:
+ /* both odd and even lines written (both quad rows) */
+ minleft = MIN2(setup.span.left[0], setup.span.left[1]);
+ maxright = MAX2(setup.span.right[0], setup.span.right[1]);
+ break;
+
+ case 0x1:
+ /* only even line written (quad top row) */
+ minleft = setup.span.left[0];
+ maxright = setup.span.right[0];
+ break;
+
+ case 0x2:
+ /* only odd line written (quad bottom row) */
+ minleft = setup.span.left[1];
+ maxright = setup.span.right[1];
+ break;
+
+ default:
+ return;
+ }
+
+
+ /* OK, we're very likely to need the tile data now.
+ * clear or finish waiting if needed.
+ */
+ if (spu.cur_ctile_status == TILE_STATUS_GETTING) {
+ /* wait for mfc_get() to complete */
+ //printf("SPU: %u: waiting for ctile\n", spu.init.id);
+ wait_on_mask(1 << TAG_READ_TILE_COLOR);
+ spu.cur_ctile_status = TILE_STATUS_CLEAN;
+ }
+ else if (spu.cur_ctile_status == TILE_STATUS_CLEAR) {
+ //printf("SPU %u: clearing C tile %u, %u\n", spu.init.id, setup.tx, setup.ty);
+ clear_c_tile(&spu.ctile);
+ spu.cur_ctile_status = TILE_STATUS_DIRTY;
+ }
+ ASSERT(spu.cur_ctile_status != TILE_STATUS_DEFINED);
+
+ if (spu.depth_stencil.depth.enabled) {
+ if (spu.cur_ztile_status == TILE_STATUS_GETTING) {
+ /* wait for mfc_get() to complete */
+ //printf("SPU: %u: waiting for ztile\n", spu.init.id);
+ wait_on_mask(1 << TAG_READ_TILE_Z);
+ spu.cur_ztile_status = TILE_STATUS_CLEAN;
+ }
+ else if (spu.cur_ztile_status == TILE_STATUS_CLEAR) {
+ //printf("SPU %u: clearing Z tile %u, %u\n", spu.init.id, setup.tx, setup.ty);
+ clear_z_tile(&spu.ztile);
+ spu.cur_ztile_status = TILE_STATUS_DIRTY;
+ }
+ ASSERT(spu.cur_ztile_status != TILE_STATUS_DEFINED);
+ }
+
+ /* XXX this loop could be moved into the above switch cases and
+ * calculate_mask() could be simplified a bit...
+ */
+ for (x = block(minleft); x <= block(maxright); x += 2) {
+#if 1
+ emit_quad( x, setup.span.y, calculate_mask( x ) );
+#endif
+ }
+
+ setup.span.y = 0;
+ setup.span.y_flags = 0;
+ setup.span.right[0] = 0;
+ setup.span.right[1] = 0;
+}
+
+#if DEBUG_VERTS
+static void print_vertex(const struct vertex_header *v)
+{
+ int i;
+ fprintf(stderr, "Vertex: (%p)\n", v);
+ for (i = 0; i < setup.quad.nr_attrs; i++) {
+ fprintf(stderr, " %d: %f %f %f %f\n", i,
+ v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
+ }
+}
+#endif
+
+
+static boolean setup_sort_vertices(const struct vertex_header *v0,
+ const struct vertex_header *v1,
+ const struct vertex_header *v2)
+{
+
+#if DEBUG_VERTS
+ fprintf(stderr, "Triangle:\n");
+ print_vertex(v0);
+ print_vertex(v1);
+ print_vertex(v2);
+#endif
+
+ setup.vprovoke = v2;
+
+ /* determine bottom to top order of vertices */
+ {
+ float y0 = spu_extract(v0->data[0], 1);
+ float y1 = spu_extract(v1->data[0], 1);
+ float y2 = spu_extract(v2->data[0], 1);
+ if (y0 <= y1) {
+ if (y1 <= y2) {
+ /* y0<=y1<=y2 */
+ setup.vmin = v0;
+ setup.vmid = v1;
+ setup.vmax = v2;
+ }
+ else if (y2 <= y0) {
+ /* y2<=y0<=y1 */
+ setup.vmin = v2;
+ setup.vmid = v0;
+ setup.vmax = v1;
+ }
+ else {
+ /* y0<=y2<=y1 */
+ setup.vmin = v0;
+ setup.vmid = v2;
+ setup.vmax = v1;
+ }
+ }
+ else {
+ if (y0 <= y2) {
+ /* y1<=y0<=y2 */
+ setup.vmin = v1;
+ setup.vmid = v0;
+ setup.vmax = v2;
+ }
+ else if (y2 <= y1) {
+ /* y2<=y1<=y0 */
+ setup.vmin = v2;
+ setup.vmid = v1;
+ setup.vmax = v0;
+ }
+ else {
+ /* y1<=y2<=y0 */
+ setup.vmin = v1;
+ setup.vmid = v2;
+ setup.vmax = v0;
+ }
+ }
+ }
+
+ /* Check if triangle is completely outside the tile bounds */
+ if (spu_extract(setup.vmin->data[0], 1) > setup.cliprect_maxy)
+ return FALSE;
+ if (spu_extract(setup.vmax->data[0], 1) < setup.cliprect_miny)
+ return FALSE;
+ if (spu_extract(setup.vmin->data[0], 0) < setup.cliprect_minx &&
+ spu_extract(setup.vmid->data[0], 0) < setup.cliprect_minx &&
+ spu_extract(setup.vmax->data[0], 0) < setup.cliprect_minx)
+ return FALSE;
+ if (spu_extract(setup.vmin->data[0], 0) > setup.cliprect_maxx &&
+ spu_extract(setup.vmid->data[0], 0) > setup.cliprect_maxx &&
+ spu_extract(setup.vmax->data[0], 0) > setup.cliprect_maxx)
+ return FALSE;
+
+ setup.ebot.dx = spu_extract(setup.vmid->data[0], 0) - spu_extract(setup.vmin->data[0], 0);
+ setup.ebot.dy = spu_extract(setup.vmid->data[0], 1) - spu_extract(setup.vmin->data[0], 1);
+ setup.emaj.dx = spu_extract(setup.vmax->data[0], 0) - spu_extract(setup.vmin->data[0], 0);
+ setup.emaj.dy = spu_extract(setup.vmax->data[0], 1) - spu_extract(setup.vmin->data[0], 1);
+ setup.etop.dx = spu_extract(setup.vmax->data[0], 0) - spu_extract(setup.vmid->data[0], 0);
+ setup.etop.dy = spu_extract(setup.vmax->data[0], 1) - spu_extract(setup.vmid->data[0], 1);
+
+ /*
+ * Compute triangle's area. Use 1/area to compute partial
+ * derivatives of attributes later.
+ *
+ * The area will be the same as prim->det, but the sign may be
+ * different depending on how the vertices get sorted above.
+ *
+ * To determine whether the primitive is front or back facing we
+ * use the prim->det value because its sign is correct.
+ */
+ {
+ const float area = (setup.emaj.dx * setup.ebot.dy -
+ setup.ebot.dx * setup.emaj.dy);
+
+ setup.oneoverarea = 1.0f / area;
+ /*
+ _mesa_printf("%s one-over-area %f area %f det %f\n",
+ __FUNCTION__, setup.oneoverarea, area, prim->det );
+ */
+ }
+
+#if 0
+ /* We need to know if this is a front or back-facing triangle for:
+ * - the GLSL gl_FrontFacing fragment attribute (bool)
+ * - two-sided stencil test
+ */
+ setup.quad.facing = (prim->det > 0.0) ^ (setup.softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
+#endif
+
+ return TRUE;
+}
+
+
+/**
+ * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
+ * The value value comes from vertex->data[slot].
+ * The result will be put into setup.coef[slot].a0.
+ * \param slot which attribute slot
+ */
+static INLINE void
+const_coeff(uint slot)
+{
+ setup.coef[slot].dadx.v = (vector float) {0.0, 0.0, 0.0, 0.0};
+ setup.coef[slot].dady.v = (vector float) {0.0, 0.0, 0.0, 0.0};
+ setup.coef[slot].a0.v = setup.vprovoke->data[slot];
+}
+
+
+/**
+ * Compute a0, dadx and dady for a linearly interpolated coefficient,
+ * for a triangle.
+ */
+static INLINE void
+tri_linear_coeff(uint slot, uint firstComp, uint lastComp)
+{
+ uint i;
+ const float *vmin_d = (float *) &setup.vmin->data[slot];
+ const float *vmid_d = (float *) &setup.vmid->data[slot];
+ const float *vmax_d = (float *) &setup.vmax->data[slot];
+ const float x = spu_extract(setup.vmin->data[0], 0) - 0.5f;
+ const float y = spu_extract(setup.vmin->data[0], 1) - 0.5f;
+
+ for (i = firstComp; i < lastComp; i++) {
+ float botda = vmid_d[i] - vmin_d[i];
+ float majda = vmax_d[i] - vmin_d[i];
+ float a = setup.ebot.dy * majda - botda * setup.emaj.dy;
+ float b = setup.emaj.dx * botda - majda * setup.ebot.dx;
+
+ ASSERT(slot < PIPE_MAX_SHADER_INPUTS);
+
+ setup.coef[slot].dadx.f[i] = a * setup.oneoverarea;
+ setup.coef[slot].dady.f[i] = b * setup.oneoverarea;
+
+ /* calculate a0 as the value which would be sampled for the
+ * fragment at (0,0), taking into account that we want to sample at
+ * pixel centers, in other words (0.5, 0.5).
+ *
+ * this is neat but unfortunately not a good way to do things for
+ * triangles with very large values of dadx or dady as it will
+ * result in the subtraction and re-addition from a0 of a very
+ * large number, which means we'll end up loosing a lot of the
+ * fractional bits and precision from a0. the way to fix this is
+ * to define a0 as the sample at a pixel center somewhere near vmin
+ * instead - i'll switch to this later.
+ */
+ setup.coef[slot].a0.f[i] = (vmin_d[i] -
+ (setup.coef[slot].dadx.f[i] * x +
+ setup.coef[slot].dady.f[i] * y));
+ }
+
+ /*
+ _mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
+ slot, "xyzw"[i],
+ setup.coef[slot].a0[i],
+ setup.coef[slot].dadx.f[i],
+ setup.coef[slot].dady.f[i]);
+ */
+}
+
+
+/**
+ * As above, but interp setup all four vector components.
+ */
+static INLINE void
+tri_linear_coeff4(uint slot)
+{
+ const vector float vmin_d = setup.vmin->data[slot];
+ const vector float vmid_d = setup.vmid->data[slot];
+ const vector float vmax_d = setup.vmax->data[slot];
+ const vector float xxxx = spu_splats(spu_extract(setup.vmin->data[0], 0) - 0.5f);
+ const vector float yyyy = spu_splats(spu_extract(setup.vmin->data[0], 1) - 0.5f);
+
+ vector float botda = vmid_d - vmin_d;
+ vector float majda = vmax_d - vmin_d;
+
+ vector float a = spu_sub(spu_mul(spu_splats(setup.ebot.dy), majda),
+ spu_mul(botda, spu_splats(setup.emaj.dy)));
+ vector float b = spu_sub(spu_mul(spu_splats(setup.emaj.dx), botda),
+ spu_mul(majda, spu_splats(setup.ebot.dx)));
+
+ setup.coef[slot].dadx.v = spu_mul(a, spu_splats(setup.oneoverarea));
+ setup.coef[slot].dady.v = spu_mul(b, spu_splats(setup.oneoverarea));
+
+ vector float tempx = spu_mul(setup.coef[slot].dadx.v, xxxx);
+ vector float tempy = spu_mul(setup.coef[slot].dady.v, yyyy);
+
+ setup.coef[slot].a0.v = spu_sub(vmin_d, spu_add(tempx, tempy));
+}
+
+
+
+#if 0
+/**
+ * Compute a0, dadx and dady for a perspective-corrected interpolant,
+ * for a triangle.
+ * We basically multiply the vertex value by 1/w before computing
+ * the plane coefficients (a0, dadx, dady).
+ * Later, when we compute the value at a particular fragment position we'll
+ * divide the interpolated value by the interpolated W at that fragment.
+ */
+static void tri_persp_coeff( unsigned slot,
+ unsigned i )
+{
+ /* premultiply by 1/w:
+ */
+ float mina = setup.vmin->data[slot][i] * setup.vmin->data[0][3];
+ float mida = setup.vmid->data[slot][i] * setup.vmid->data[0][3];
+ float maxa = setup.vmax->data[slot][i] * setup.vmax->data[0][3];
+
+ float botda = mida - mina;
+ float majda = maxa - mina;
+ float a = setup.ebot.dy * majda - botda * setup.emaj.dy;
+ float b = setup.emaj.dx * botda - majda * setup.ebot.dx;
+
+ /*
+ printf("tri persp %d,%d: %f %f %f\n", slot, i,
+ setup.vmin->data[slot][i],
+ setup.vmid->data[slot][i],
+ setup.vmax->data[slot][i]
+ );
+ */
+
+ assert(slot < PIPE_MAX_SHADER_INPUTS);
+ assert(i <= 3);
+
+ setup.coef[slot].dadx.f[i] = a * setup.oneoverarea;
+ setup.coef[slot].dady.f[i] = b * setup.oneoverarea;
+ setup.coef[slot].a0.f[i] = (mina -
+ (setup.coef[slot].dadx.f[i] * (setup.vmin->data[0][0] - 0.5f) +
+ setup.coef[slot].dady.f[i] * (setup.vmin->data[0][1] - 0.5f)));
+}
+#endif
+
+
+/**
+ * Compute the setup.coef[] array dadx, dady, a0 values.
+ * Must be called after setup.vmin,vmid,vmax,vprovoke are initialized.
+ */
+static void setup_tri_coefficients(void)
+{
+#if 1
+ uint i;
+
+ for (i = 0; i < spu.vertex_info.num_attribs; i++) {
+ switch (spu.vertex_info.interp_mode[i]) {
+ case INTERP_NONE:
+ break;
+ case INTERP_POS:
+ /*tri_linear_coeff(i, 2, 3);*/
+ /* XXX interp W if PERSPECTIVE... */
+ tri_linear_coeff4(i);
+ break;
+ case INTERP_CONSTANT:
+ const_coeff(i);
+ break;
+ case INTERP_LINEAR:
+ tri_linear_coeff4(i);
+ break;
+ case INTERP_PERSPECTIVE:
+ tri_linear_coeff4(i); /* temporary */
+ break;
+ default:
+ ASSERT(0);
+ }
+ }
+#else
+ ASSERT(spu.vertex_info.interp_mode[0] == INTERP_POS);
+ ASSERT(spu.vertex_info.interp_mode[1] == INTERP_LINEAR ||
+ spu.vertex_info.interp_mode[1] == INTERP_CONSTANT);
+ tri_linear_coeff(0, 2, 3); /* slot 0, z */
+ tri_linear_coeff(1, 0, 4); /* slot 1, color */
+#endif
+}
+
+
+static void setup_tri_edges(void)
+{
+ float vmin_x = spu_extract(setup.vmin->data[0], 0) + 0.5f;
+ float vmid_x = spu_extract(setup.vmid->data[0], 0) + 0.5f;
+
+ float vmin_y = spu_extract(setup.vmin->data[0], 1) - 0.5f;
+ float vmid_y = spu_extract(setup.vmid->data[0], 1) - 0.5f;
+ float vmax_y = spu_extract(setup.vmax->data[0], 1) - 0.5f;
+
+ setup.emaj.sy = CEILF(vmin_y);
+ setup.emaj.lines = (int) CEILF(vmax_y - setup.emaj.sy);
+ setup.emaj.dxdy = setup.emaj.dx / setup.emaj.dy;
+ setup.emaj.sx = vmin_x + (setup.emaj.sy - vmin_y) * setup.emaj.dxdy;
+
+ setup.etop.sy = CEILF(vmid_y);
+ setup.etop.lines = (int) CEILF(vmax_y - setup.etop.sy);
+ setup.etop.dxdy = setup.etop.dx / setup.etop.dy;
+ setup.etop.sx = vmid_x + (setup.etop.sy - vmid_y) * setup.etop.dxdy;
+
+ setup.ebot.sy = CEILF(vmin_y);
+ setup.ebot.lines = (int) CEILF(vmid_y - setup.ebot.sy);
+ setup.ebot.dxdy = setup.ebot.dx / setup.ebot.dy;
+ setup.ebot.sx = vmin_x + (setup.ebot.sy - vmin_y) * setup.ebot.dxdy;
+}
+
+
+/**
+ * Render the upper or lower half of a triangle.
+ * Scissoring/cliprect is applied here too.
+ */
+static void subtriangle( struct edge *eleft,
+ struct edge *eright,
+ unsigned lines )
+{
+ const int minx = setup.cliprect_minx;
+ const int maxx = setup.cliprect_maxx;
+ const int miny = setup.cliprect_miny;
+ const int maxy = setup.cliprect_maxy;
+ int y, start_y, finish_y;
+ int sy = (int)eleft->sy;
+
+ ASSERT((int)eleft->sy == (int) eright->sy);
+
+ /* clip top/bottom */
+ start_y = sy;
+ finish_y = sy + lines;
+
+ if (start_y < miny)
+ start_y = miny;
+
+ if (finish_y > maxy)
+ finish_y = maxy;
+
+ start_y -= sy;
+ finish_y -= sy;
+
+ /*
+ _mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
+ */
+
+ for (y = start_y; y < finish_y; y++) {
+
+ /* avoid accumulating adds as floats don't have the precision to
+ * accurately iterate large triangle edges that way. luckily we
+ * can just multiply these days.
+ *
+ * this is all drowned out by the attribute interpolation anyway.
+ */
+ int left = (int)(eleft->sx + y * eleft->dxdy);
+ int right = (int)(eright->sx + y * eright->dxdy);
+
+ /* clip left/right */
+ if (left < minx)
+ left = minx;
+ if (right > maxx)
+ right = maxx;
+
+ if (left < right) {
+ int _y = sy + y;
+ if (block(_y) != setup.span.y) {
+ flush_spans();
+ setup.span.y = block(_y);
+ }
+
+ setup.span.left[_y&1] = left;
+ setup.span.right[_y&1] = right;
+ setup.span.y_flags |= 1<<(_y&1);
+ }
+ }
+
+
+ /* save the values so that emaj can be restarted:
+ */
+ eleft->sx += lines * eleft->dxdy;
+ eright->sx += lines * eright->dxdy;
+ eleft->sy += lines;
+ eright->sy += lines;
+}
+
+
+/**
+ * Draw triangle into tile at (tx, ty) (tile coords)
+ * The tile data should have already been fetched.
+ */
+boolean
+tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty)
+{
+ setup.tx = tx;
+ setup.ty = ty;
+
+ /* set clipping bounds to tile bounds */
+ setup.cliprect_minx = tx * TILE_SIZE;
+ setup.cliprect_miny = ty * TILE_SIZE;
+ setup.cliprect_maxx = (tx + 1) * TILE_SIZE;
+ setup.cliprect_maxy = (ty + 1) * TILE_SIZE;
+
+ if (!setup_sort_vertices((struct vertex_header *) v0,
+ (struct vertex_header *) v1,
+ (struct vertex_header *) v2)) {
+ return FALSE; /* totally clipped */
+ }
+
+ setup_tri_coefficients();
+ setup_tri_edges();
+
+ setup.span.y = 0;
+ setup.span.y_flags = 0;
+ setup.span.right[0] = 0;
+ setup.span.right[1] = 0;
+ /* setup.span.z_mode = tri_z_mode( setup.ctx ); */
+
+ /* init_constant_attribs( setup ); */
+
+ if (setup.oneoverarea < 0.0) {
+ /* emaj on left:
+ */
+ subtriangle( &setup.emaj, &setup.ebot, setup.ebot.lines );
+ subtriangle( &setup.emaj, &setup.etop, setup.etop.lines );
+ }
+ else {
+ /* emaj on right:
+ */
+ subtriangle( &setup.ebot, &setup.emaj, setup.ebot.lines );
+ subtriangle( &setup.etop, &setup.emaj, setup.etop.lines );
+ }
+
+ flush_spans();
+
+ return TRUE;
+}