aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/auxiliary/tgsi/tgsi_ppc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/auxiliary/tgsi/tgsi_ppc.c')
-rw-r--r--src/gallium/auxiliary/tgsi/tgsi_ppc.c1329
1 files changed, 1329 insertions, 0 deletions
diff --git a/src/gallium/auxiliary/tgsi/tgsi_ppc.c b/src/gallium/auxiliary/tgsi/tgsi_ppc.c
new file mode 100644
index 00000000000..a92b1902e3d
--- /dev/null
+++ b/src/gallium/auxiliary/tgsi/tgsi_ppc.c
@@ -0,0 +1,1329 @@
+/**************************************************************************
+ *
+ * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/**
+ * TGSI to PowerPC code generation.
+ */
+
+#include "pipe/p_config.h"
+
+#if defined(PIPE_ARCH_PPC)
+
+#include "pipe/p_debug.h"
+#include "pipe/p_shader_tokens.h"
+#include "util/u_math.h"
+#include "util/u_memory.h"
+#include "util/u_sse.h"
+#include "tgsi/tgsi_parse.h"
+#include "tgsi/tgsi_util.h"
+#include "tgsi_dump.h"
+#include "tgsi_exec.h"
+#include "tgsi_ppc.h"
+#include "rtasm/rtasm_ppc.h"
+
+
+/**
+ * Since it's pretty much impossible to form PPC vector immediates, load
+ * them from memory here:
+ */
+const float ppc_builtin_constants[] ALIGN16_ATTRIB = {
+ 1.0f, -128.0f, 128.0, 0.0
+};
+
+
+#define FOR_EACH_CHANNEL( CHAN )\
+ for (CHAN = 0; CHAN < NUM_CHANNELS; CHAN++)
+
+#define IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
+ ((INST).FullDstRegisters[0].DstRegister.WriteMask & (1 << (CHAN)))
+
+#define IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )\
+ if (IS_DST0_CHANNEL_ENABLED( INST, CHAN ))
+
+#define FOR_EACH_DST0_ENABLED_CHANNEL( INST, CHAN )\
+ FOR_EACH_CHANNEL( CHAN )\
+ IF_IS_DST0_CHANNEL_ENABLED( INST, CHAN )
+
+#define CHAN_X 0
+#define CHAN_Y 1
+#define CHAN_Z 2
+#define CHAN_W 3
+
+
+/**
+ * How many TGSI temps should be implemented with real PPC vector registers
+ * rather than memory.
+ */
+#define MAX_PPC_TEMPS 4
+
+
+struct reg_chan_vec
+{
+ struct tgsi_full_src_register src;
+ uint chan;
+ uint vec;
+};
+
+
+/**
+ * Context/state used during code gen.
+ */
+struct gen_context
+{
+ struct ppc_function *f;
+ int inputs_reg; /**< GP register pointing to input params */
+ int outputs_reg; /**< GP register pointing to output params */
+ int temps_reg; /**< GP register pointing to temporary "registers" */
+ int immed_reg; /**< GP register pointing to immediates buffer */
+ int const_reg; /**< GP register pointing to constants buffer */
+ int builtins_reg; /**< GP register pointint to built-in constants */
+
+ int offset_reg; /**< used to reduce redundant li instructions */
+ int offset_value;
+
+ int one_vec; /**< vector register with {1.0, 1.0, 1.0, 1.0} */
+ int bit31_vec; /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
+
+ /**
+ * Map TGSI temps to PPC vector temps.
+ * We have 32 PPC vector regs. Use 16 of them for storing 4 TGSI temps.
+ * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
+ */
+ int temps_map[MAX_PPC_TEMPS][4];
+
+ /**
+ * Cache of src registers.
+ * This is used to avoid redundant load instructions.
+ */
+ struct {
+ struct tgsi_full_src_register src;
+ uint chan;
+ uint vec;
+ } regs[12]; /* 3 src regs, 4 channels */
+ uint num_regs;
+};
+
+
+/**
+ * Initialize code generation context.
+ */
+static void
+init_gen_context(struct gen_context *gen, struct ppc_function *func)
+{
+ uint i;
+
+ memset(gen, 0, sizeof(*gen));
+ gen->f = func;
+ gen->inputs_reg = ppc_reserve_register(func, 3); /* first function param */
+ gen->outputs_reg = ppc_reserve_register(func, 4); /* second function param */
+ gen->temps_reg = ppc_reserve_register(func, 5); /* ... */
+ gen->immed_reg = ppc_reserve_register(func, 6);
+ gen->const_reg = ppc_reserve_register(func, 7);
+ gen->builtins_reg = ppc_reserve_register(func, 8);
+ gen->one_vec = -1;
+ gen->bit31_vec = -1;
+ gen->offset_reg = -1;
+ gen->offset_value = -9999999;
+ for (i = 0; i < MAX_PPC_TEMPS; i++) {
+ gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
+ gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
+ gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
+ gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
+ }
+}
+
+
+/**
+ * All PPC vector load/store instructions form an effective address
+ * by adding the contents of two registers. For example:
+ * lvx v2,r8,r9 # v2 = memory[r8 + r9]
+ * stvx v2,r8,r9 # memory[r8 + r9] = v2;
+ * So our lvx/stvx instructions are typically preceded by an 'li' instruction
+ * to load r9 (above) with an immediate (an offset).
+ * This code emits that 'li' instruction, but only if the offset value is
+ * different than the previous 'li'.
+ * This optimization seems to save about 10% in the instruction count.
+ * Note that we need to unconditionally emit an 'li' inside basic blocks
+ * (such as inside loops).
+ */
+static int
+emit_li_offset(struct gen_context *gen, int offset)
+{
+ if (gen->offset_reg <= 0) {
+ /* allocate a GP register for storing load/store offset */
+ gen->offset_reg = ppc_allocate_register(gen->f);
+ }
+
+ /* emit new 'li' if offset is changing */
+ if (gen->offset_value < 0 || gen->offset_value != offset) {
+ gen->offset_value = offset;
+ ppc_li(gen->f, gen->offset_reg, offset);
+ }
+
+ return gen->offset_reg;
+}
+
+
+/**
+ * Forces subsequent emit_li_offset() calls to emit an 'li'.
+ * To be called at the top of basic blocks.
+ */
+static void
+reset_li_offset(struct gen_context *gen)
+{
+ gen->offset_value = -9999999;
+}
+
+
+
+/**
+ * Load the given vector register with {value, value, value, value}.
+ * The value must be in the ppu_builtin_constants[] array.
+ * We wouldn't need this if there was a simple way to load PPC vector
+ * registers with immediate values!
+ */
+static void
+load_constant_vec(struct gen_context *gen, int dst_vec, float value)
+{
+ uint pos;
+ for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
+ if (ppc_builtin_constants[pos] == value) {
+ int offset = pos * 4;
+ int offset_reg = emit_li_offset(gen, offset);
+
+ /* Load 4-byte word into vector register.
+ * The vector slot depends on the effective address we load from.
+ * We know that our builtins start at a 16-byte boundary so we
+ * know that 'swizzle' tells us which vector slot will have the
+ * loaded word. The other vector slots will be undefined.
+ */
+ ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
+ /* splat word[pos % 4] across the vector reg */
+ ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
+ return;
+ }
+ }
+ assert(0 && "Need to add new constant to ppc_builtin_constants array");
+}
+
+
+/**
+ * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
+ */
+static int
+gen_one_vec(struct gen_context *gen)
+{
+ if (gen->one_vec < 0) {
+ gen->one_vec = ppc_allocate_vec_register(gen->f);
+ load_constant_vec(gen, gen->one_vec, 1.0f);
+ }
+ return gen->one_vec;
+}
+
+/**
+ * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
+ */
+static int
+gen_get_bit31_vec(struct gen_context *gen)
+{
+ if (gen->bit31_vec < 0) {
+ gen->bit31_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vspltisw(gen->f, gen->bit31_vec, -1);
+ ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
+ }
+ return gen->bit31_vec;
+}
+
+
+/**
+ * Register fetch. Return PPC vector register with result.
+ */
+static int
+emit_fetch(struct gen_context *gen,
+ const struct tgsi_full_src_register *reg,
+ const unsigned chan_index)
+{
+ uint swizzle = tgsi_util_get_full_src_register_extswizzle(reg, chan_index);
+ int dst_vec = -1;
+
+ switch (swizzle) {
+ case TGSI_EXTSWIZZLE_X:
+ case TGSI_EXTSWIZZLE_Y:
+ case TGSI_EXTSWIZZLE_Z:
+ case TGSI_EXTSWIZZLE_W:
+ switch (reg->SrcRegister.File) {
+ case TGSI_FILE_INPUT:
+ {
+ int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
+ int offset_reg = emit_li_offset(gen, offset);
+ dst_vec = ppc_allocate_vec_register(gen->f);
+ ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
+ }
+ break;
+ case TGSI_FILE_TEMPORARY:
+ if (reg->SrcRegister.Index < MAX_PPC_TEMPS) {
+ /* use PPC vec register */
+ dst_vec = gen->temps_map[reg->SrcRegister.Index][swizzle];
+ }
+ else {
+ /* use memory-based temp register "file" */
+ int offset = (reg->SrcRegister.Index * 4 + swizzle) * 16;
+ int offset_reg = emit_li_offset(gen, offset);
+ dst_vec = ppc_allocate_vec_register(gen->f);
+ ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
+ }
+ break;
+ case TGSI_FILE_IMMEDIATE:
+ {
+ int offset = (reg->SrcRegister.Index * 4 + swizzle) * 4;
+ int offset_reg = emit_li_offset(gen, offset);
+ dst_vec = ppc_allocate_vec_register(gen->f);
+ /* Load 4-byte word into vector register.
+ * The vector slot depends on the effective address we load from.
+ * We know that our immediates start at a 16-byte boundary so we
+ * know that 'swizzle' tells us which vector slot will have the
+ * loaded word. The other vector slots will be undefined.
+ */
+ ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
+ /* splat word[swizzle] across the vector reg */
+ ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
+ }
+ break;
+ case TGSI_FILE_CONSTANT:
+ {
+ int offset = (reg->SrcRegister.Index * 4 + swizzle) * 4;
+ int offset_reg = emit_li_offset(gen, offset);
+ dst_vec = ppc_allocate_vec_register(gen->f);
+ /* Load 4-byte word into vector register.
+ * The vector slot depends on the effective address we load from.
+ * We know that our constants start at a 16-byte boundary so we
+ * know that 'swizzle' tells us which vector slot will have the
+ * loaded word. The other vector slots will be undefined.
+ */
+ ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
+ /* splat word[swizzle] across the vector reg */
+ ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
+ }
+ break;
+ default:
+ assert( 0 );
+ }
+ break;
+ case TGSI_EXTSWIZZLE_ZERO:
+ ppc_vzero(gen->f, dst_vec);
+ break;
+ case TGSI_EXTSWIZZLE_ONE:
+ {
+ int one_vec = gen_one_vec(gen);
+ dst_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vmove(gen->f, dst_vec, one_vec);
+ }
+ break;
+ default:
+ assert( 0 );
+ }
+
+ assert(dst_vec >= 0);
+
+ {
+ uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
+ if (sign_op != TGSI_UTIL_SIGN_KEEP) {
+ int bit31_vec = gen_get_bit31_vec(gen);
+
+ switch (sign_op) {
+ case TGSI_UTIL_SIGN_CLEAR:
+ /* vec = vec & ~bit31 */
+ ppc_vandc(gen->f, dst_vec, dst_vec, bit31_vec);
+ break;
+ case TGSI_UTIL_SIGN_SET:
+ /* vec = vec | bit31 */
+ ppc_vor(gen->f, dst_vec, dst_vec, bit31_vec);
+ break;
+ case TGSI_UTIL_SIGN_TOGGLE:
+ /* vec = vec ^ bit31 */
+ ppc_vxor(gen->f, dst_vec, dst_vec, bit31_vec);
+ break;
+ default:
+ assert(0);
+ }
+ }
+ }
+
+ return dst_vec;
+}
+
+
+
+/**
+ * Test if two TGSI src registers refer to the same memory location.
+ * We use this to avoid redundant register loads.
+ */
+static boolean
+equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
+ const struct tgsi_full_src_register *b, uint chan_b)
+{
+ int swz_a, swz_b;
+ int sign_a, sign_b;
+ if (a->SrcRegister.File != b->SrcRegister.File)
+ return FALSE;
+ if (a->SrcRegister.Index != b->SrcRegister.Index)
+ return FALSE;
+ swz_a = tgsi_util_get_full_src_register_extswizzle(a, chan_a);
+ swz_b = tgsi_util_get_full_src_register_extswizzle(b, chan_b);
+ if (swz_a != swz_b)
+ return FALSE;
+ sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
+ sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
+ if (sign_a != sign_b)
+ return FALSE;
+ return TRUE;
+}
+
+
+/**
+ * Given a TGSI src register and channel index, return the PPC vector
+ * register containing the value. We use a cache to prevent re-loading
+ * the same register multiple times.
+ * \return index of PPC vector register with the desired src operand
+ */
+static int
+get_src_vec(struct gen_context *gen,
+ struct tgsi_full_instruction *inst, int src_reg, uint chan)
+{
+ const const struct tgsi_full_src_register *src =
+ &inst->FullSrcRegisters[src_reg];
+ int vec;
+ uint i;
+
+ /* check the cache */
+ for (i = 0; i < gen->num_regs; i++) {
+ if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
+ /* cache hit */
+ assert(gen->regs[i].vec >= 0);
+ return gen->regs[i].vec;
+ }
+ }
+
+ /* cache miss: allocate new vec reg and emit fetch/load code */
+ vec = emit_fetch(gen, src, chan);
+ gen->regs[gen->num_regs].src = *src;
+ gen->regs[gen->num_regs].chan = chan;
+ gen->regs[gen->num_regs].vec = vec;
+ gen->num_regs++;
+
+ assert(gen->num_regs <= Elements(gen->regs));
+
+ assert(vec >= 0);
+
+ return vec;
+}
+
+
+/**
+ * Clear the src operand cache. To be called at the end of each emit function.
+ */
+static void
+release_src_vecs(struct gen_context *gen)
+{
+ uint i;
+ for (i = 0; i < gen->num_regs; i++) {
+ const const struct tgsi_full_src_register src = gen->regs[i].src;
+ if (!(src.SrcRegister.File == TGSI_FILE_TEMPORARY &&
+ src.SrcRegister.Index < MAX_PPC_TEMPS)) {
+ ppc_release_vec_register(gen->f, gen->regs[i].vec);
+ }
+ }
+ gen->num_regs = 0;
+}
+
+
+
+static int
+get_dst_vec(struct gen_context *gen,
+ const struct tgsi_full_instruction *inst,
+ unsigned chan_index)
+{
+ const struct tgsi_full_dst_register *reg = &inst->FullDstRegisters[0];
+
+ if (reg->DstRegister.File == TGSI_FILE_TEMPORARY &&
+ reg->DstRegister.Index < MAX_PPC_TEMPS) {
+ int vec = gen->temps_map[reg->DstRegister.Index][chan_index];
+ return vec;
+ }
+ else {
+ return ppc_allocate_vec_register(gen->f);
+ }
+}
+
+
+/**
+ * Register store. Store 'src_vec' at location indicated by 'reg'.
+ * \param free_vec Should the src_vec be released when done?
+ */
+static void
+emit_store(struct gen_context *gen,
+ int src_vec,
+ const struct tgsi_full_instruction *inst,
+ unsigned chan_index,
+ boolean free_vec)
+{
+ const struct tgsi_full_dst_register *reg = &inst->FullDstRegisters[0];
+
+ switch (reg->DstRegister.File) {
+ case TGSI_FILE_OUTPUT:
+ {
+ int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
+ int offset_reg = emit_li_offset(gen, offset);
+ ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
+ }
+ break;
+ case TGSI_FILE_TEMPORARY:
+ if (reg->DstRegister.Index < MAX_PPC_TEMPS) {
+ if (!free_vec) {
+ int dst_vec = gen->temps_map[reg->DstRegister.Index][chan_index];
+ if (dst_vec != src_vec)
+ ppc_vmove(gen->f, dst_vec, src_vec);
+ }
+ free_vec = FALSE;
+ }
+ else {
+ int offset = (reg->DstRegister.Index * 4 + chan_index) * 16;
+ int offset_reg = emit_li_offset(gen, offset);
+ ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
+ }
+ break;
+#if 0
+ case TGSI_FILE_ADDRESS:
+ emit_addrs(
+ func,
+ xmm,
+ reg->DstRegister.Index,
+ chan_index );
+ break;
+#endif
+ default:
+ assert( 0 );
+ }
+
+#if 0
+ switch( inst->Instruction.Saturate ) {
+ case TGSI_SAT_NONE:
+ break;
+
+ case TGSI_SAT_ZERO_ONE:
+ /* assert( 0 ); */
+ break;
+
+ case TGSI_SAT_MINUS_PLUS_ONE:
+ assert( 0 );
+ break;
+ }
+#endif
+
+ if (free_vec)
+ ppc_release_vec_register(gen->f, src_vec);
+}
+
+
+static void
+emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int v0, v1;
+ uint chan_index;
+
+ v0 = get_src_vec(gen, inst, 0, CHAN_X);
+ v1 = ppc_allocate_vec_register(gen->f);
+
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_RSQ:
+ /* v1 = 1.0 / sqrt(v0) */
+ ppc_vrsqrtefp(gen->f, v1, v0);
+ break;
+ case TGSI_OPCODE_RCP:
+ /* v1 = 1.0 / v0 */
+ ppc_vrefp(gen->f, v1, v0);
+ break;
+ default:
+ assert(0);
+ }
+
+ FOR_EACH_DST0_ENABLED_CHANNEL( *inst, chan_index ) {
+ emit_store(gen, v1, inst, chan_index, FALSE);
+ }
+
+ release_src_vecs(gen);
+ ppc_release_vec_register(gen->f, v1);
+}
+
+
+static void
+emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ uint chan_index;
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
+ int v0 = get_src_vec(gen, inst, 0, chan_index); /* v0 = srcreg[0] */
+ int v1 = get_dst_vec(gen, inst, chan_index);
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_ABS:
+ /* turn off the most significant bit of each vector float word */
+ {
+ int bit31_vec = gen_get_bit31_vec(gen);
+ ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
+ }
+ break;
+ case TGSI_OPCODE_FLOOR:
+ ppc_vrfim(gen->f, v1, v0); /* v1 = floor(v0) */
+ break;
+ case TGSI_OPCODE_FRAC:
+ ppc_vrfim(gen->f, v1, v0); /* tmp = floor(v0) */
+ ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
+ break;
+ case TGSI_OPCODE_EXPBASE2:
+ ppc_vexptefp(gen->f, v1, v0); /* v1 = 2^v0 */
+ break;
+ case TGSI_OPCODE_LOGBASE2:
+ /* XXX this may be broken! */
+ ppc_vlogefp(gen->f, v1, v0); /* v1 = log2(v0) */
+ break;
+ case TGSI_OPCODE_MOV:
+ case TGSI_OPCODE_SWZ:
+ if (v0 != v1)
+ ppc_vmove(gen->f, v1, v0);
+ break;
+ default:
+ assert(0);
+ }
+ emit_store(gen, v1, inst, chan_index, TRUE); /* store v0 */
+ }
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int zero_vec = -1;
+ uint chan;
+
+ if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
+ zero_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vzero(gen->f, zero_vec);
+ }
+
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
+ /* fetch src operands */
+ int v0 = get_src_vec(gen, inst, 0, chan);
+ int v1 = get_src_vec(gen, inst, 1, chan);
+ int v2 = get_dst_vec(gen, inst, chan);
+
+ /* emit binop */
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_ADD:
+ ppc_vaddfp(gen->f, v2, v0, v1);
+ break;
+ case TGSI_OPCODE_SUB:
+ ppc_vsubfp(gen->f, v2, v0, v1);
+ break;
+ case TGSI_OPCODE_MUL:
+ ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
+ break;
+ case TGSI_OPCODE_MIN:
+ ppc_vminfp(gen->f, v2, v0, v1);
+ break;
+ case TGSI_OPCODE_MAX:
+ ppc_vmaxfp(gen->f, v2, v0, v1);
+ break;
+ default:
+ assert(0);
+ }
+
+ /* store v2 */
+ emit_store(gen, v2, inst, chan, TRUE);
+ }
+
+ if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
+ ppc_release_vec_register(gen->f, zero_vec);
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ uint chan;
+
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
+ /* fetch src operands */
+ int v0 = get_src_vec(gen, inst, 0, chan);
+ int v1 = get_src_vec(gen, inst, 1, chan);
+ int v2 = get_src_vec(gen, inst, 2, chan);
+ int v3 = get_dst_vec(gen, inst, chan);
+
+ /* emit ALU */
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_MAD:
+ ppc_vmaddfp(gen->f, v3, v0, v1, v2); /* v3 = v0 * v1 + v2 */
+ break;
+ case TGSI_OPCODE_LRP:
+ ppc_vsubfp(gen->f, v3, v1, v2); /* v3 = v1 - v2 */
+ ppc_vmaddfp(gen->f, v3, v0, v3, v2); /* v3 = v0 * v3 + v2 */
+ break;
+ default:
+ assert(0);
+ }
+
+ /* store v3 */
+ emit_store(gen, v3, inst, chan, TRUE);
+ }
+
+ release_src_vecs(gen);
+}
+
+
+/**
+ * Vector comparisons, resulting in 1.0 or 0.0 values.
+ */
+static void
+emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ uint chan;
+ int one_vec = gen_one_vec(gen);
+
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
+ /* fetch src operands */
+ int v0 = get_src_vec(gen, inst, 0, chan);
+ int v1 = get_src_vec(gen, inst, 1, chan);
+ int v2 = get_dst_vec(gen, inst, chan);
+ boolean complement = FALSE;
+
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_SNE:
+ complement = TRUE;
+ /* fall-through */
+ case TGSI_OPCODE_SEQ:
+ ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
+ break;
+
+ case TGSI_OPCODE_SGE:
+ complement = TRUE;
+ /* fall-through */
+ case TGSI_OPCODE_SLT:
+ ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
+ break;
+
+ case TGSI_OPCODE_SLE:
+ complement = TRUE;
+ /* fall-through */
+ case TGSI_OPCODE_SGT:
+ ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
+ break;
+ default:
+ assert(0);
+ }
+
+ /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
+
+ if (complement)
+ ppc_vandc(gen->f, v2, one_vec, v2); /* v2 = one_vec & ~v2 */
+ else
+ ppc_vand(gen->f, v2, one_vec, v2); /* v2 = one_vec & v2 */
+
+ /* store v2 */
+ emit_store(gen, v2, inst, chan, TRUE);
+ }
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int v0, v1, v2;
+ uint chan_index;
+
+ v2 = ppc_allocate_vec_register(gen->f);
+
+ ppc_vxor(gen->f, v2, v2, v2); /* v2 = {0, 0, 0, 0} */
+
+ v0 = get_src_vec(gen, inst, 0, CHAN_X); /* v0 = src0.XXXX */
+ v1 = get_src_vec(gen, inst, 1, CHAN_X); /* v1 = src1.XXXX */
+ ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
+
+ v0 = get_src_vec(gen, inst, 0, CHAN_Y); /* v0 = src0.YYYY */
+ v1 = get_src_vec(gen, inst, 1, CHAN_Y); /* v1 = src1.YYYY */
+ ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
+
+ v0 = get_src_vec(gen, inst, 0, CHAN_Z); /* v0 = src0.ZZZZ */
+ v1 = get_src_vec(gen, inst, 1, CHAN_Z); /* v1 = src1.ZZZZ */
+ ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
+
+ if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
+ v0 = get_src_vec(gen, inst, 0, CHAN_W); /* v0 = src0.WWWW */
+ v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
+ ppc_vmaddfp(gen->f, v2, v0, v1, v2); /* v2 = v0 * v1 + v2 */
+ }
+ else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
+ v1 = get_src_vec(gen, inst, 1, CHAN_W); /* v1 = src1.WWWW */
+ ppc_vaddfp(gen->f, v2, v2, v1); /* v2 = v2 + v1 */
+ }
+
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan_index) {
+ emit_store(gen, v2, inst, chan_index, FALSE); /* store v2, free v2 later */
+ }
+
+ release_src_vecs(gen);
+
+ ppc_release_vec_register(gen->f, v2);
+}
+
+
+/** Approximation for vr = pow(va, vb) */
+static void
+ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
+{
+ /* pow(a,b) ~= exp2(log2(a) * b) */
+ int t_vec = ppc_allocate_vec_register(f);
+ int zero_vec = ppc_allocate_vec_register(f);
+
+ ppc_vzero(f, zero_vec);
+
+ ppc_vlogefp(f, t_vec, va); /* t = log2(va) */
+ ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec); /* t = t * vb */
+ ppc_vexptefp(f, vr, t_vec); /* vr = 2^t */
+
+ ppc_release_vec_register(f, t_vec);
+ ppc_release_vec_register(f, zero_vec);
+}
+
+
+static void
+emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int one_vec = gen_one_vec(gen);
+
+ /* Compute X */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
+ emit_store(gen, one_vec, inst, CHAN_X, FALSE);
+ }
+
+ /* Compute Y, Z */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
+ IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ int x_vec;
+ int zero_vec = ppc_allocate_vec_register(gen->f);
+
+ x_vec = get_src_vec(gen, inst, 0, CHAN_X); /* x_vec = src[0].x */
+
+ ppc_vzero(gen->f, zero_vec); /* zero = {0,0,0,0} */
+ ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
+
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
+ emit_store(gen, x_vec, inst, CHAN_Y, FALSE);
+ }
+
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ int y_vec, w_vec;
+ int z_vec = ppc_allocate_vec_register(gen->f);
+ int pow_vec = ppc_allocate_vec_register(gen->f);
+ int pos_vec = ppc_allocate_vec_register(gen->f);
+ int p128_vec = ppc_allocate_vec_register(gen->f);
+ int n128_vec = ppc_allocate_vec_register(gen->f);
+
+ y_vec = get_src_vec(gen, inst, 0, CHAN_Y); /* y_vec = src[0].y */
+ ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
+
+ w_vec = get_src_vec(gen, inst, 0, CHAN_W); /* w_vec = src[0].w */
+
+ /* clamp W to [-128, 128] */
+ load_constant_vec(gen, p128_vec, 128.0f);
+ load_constant_vec(gen, n128_vec, -128.0f);
+ ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
+ ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
+
+ /* if temp.x > 0
+ * z = pow(tmp.y, tmp.w)
+ * else
+ * z = 0.0
+ */
+ ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec); /* pow = pow(y, w) */
+ ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
+ ppc_vand(gen->f, z_vec, pow_vec, pos_vec); /* z = pow & pos */
+
+ emit_store(gen, z_vec, inst, CHAN_Z, FALSE);
+
+ ppc_release_vec_register(gen->f, z_vec);
+ ppc_release_vec_register(gen->f, pow_vec);
+ ppc_release_vec_register(gen->f, pos_vec);
+ ppc_release_vec_register(gen->f, p128_vec);
+ ppc_release_vec_register(gen->f, n128_vec);
+ }
+
+ ppc_release_vec_register(gen->f, zero_vec);
+ }
+
+ /* Compute W */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
+ emit_store(gen, one_vec, inst, CHAN_W, FALSE);
+ }
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ const int one_vec = gen_one_vec(gen);
+ int src_vec;
+
+ /* get src arg */
+ src_vec = get_src_vec(gen, inst, 0, CHAN_X);
+
+ /* Compute X = 2^floor(src) */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
+ int dst_vec = get_dst_vec(gen, inst, CHAN_X);
+ int tmp_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
+ ppc_vexptefp(gen->f, dst_vec, tmp_vec); /* dst = 2 ^ tmp */
+ emit_store(gen, dst_vec, inst, CHAN_X, TRUE);
+ ppc_release_vec_register(gen->f, tmp_vec);
+ }
+
+ /* Compute Y = src - floor(src) */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
+ int dst_vec = get_dst_vec(gen, inst, CHAN_Y);
+ int tmp_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vrfim(gen->f, tmp_vec, src_vec); /* tmp = floor(src); */
+ ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec); /* dst = src - tmp */
+ emit_store(gen, dst_vec, inst, CHAN_Y, TRUE);
+ ppc_release_vec_register(gen->f, tmp_vec);
+ }
+
+ /* Compute Z = RoughApprox2ToX(src) */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
+ ppc_vexptefp(gen->f, dst_vec, src_vec); /* dst = 2 ^ src */
+ emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
+ }
+
+ /* Compute W = 1.0 */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
+ emit_store(gen, one_vec, inst, CHAN_W, FALSE);
+ }
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ const int bit31_vec = gen_get_bit31_vec(gen);
+ const int one_vec = gen_one_vec(gen);
+ int src_vec, abs_vec;
+
+ /* get src arg */
+ src_vec = get_src_vec(gen, inst, 0, CHAN_X);
+
+ /* compute abs(src) */
+ abs_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec); /* abs = src & ~bit31 */
+
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) &&
+ IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
+
+ /* compute tmp = floor(log2(abs)) */
+ int tmp_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vlogefp(gen->f, tmp_vec, abs_vec); /* tmp = log2(abs) */
+ ppc_vrfim(gen->f, tmp_vec, tmp_vec); /* tmp = floor(tmp); */
+
+ /* Compute X = tmp */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X)) {
+ emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
+ }
+
+ /* Compute Y = abs / 2^tmp */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
+ const int zero_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vzero(gen->f, zero_vec);
+ ppc_vexptefp(gen->f, tmp_vec, tmp_vec); /* tmp = 2 ^ tmp */
+ ppc_vrefp(gen->f, tmp_vec, tmp_vec); /* tmp = 1 / tmp */
+ /* tmp = abs * tmp + zero */
+ ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
+ emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
+ ppc_release_vec_register(gen->f, zero_vec);
+ }
+
+ ppc_release_vec_register(gen->f, tmp_vec);
+ }
+
+ /* Compute Z = RoughApproxLog2(abs) */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ int dst_vec = get_dst_vec(gen, inst, CHAN_Z);
+ ppc_vlogefp(gen->f, dst_vec, abs_vec); /* dst = log2(abs) */
+ emit_store(gen, dst_vec, inst, CHAN_Z, TRUE);
+ }
+
+ /* Compute W = 1.0 */
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_W)) {
+ emit_store(gen, one_vec, inst, CHAN_W, FALSE);
+ }
+
+ ppc_release_vec_register(gen->f, abs_vec);
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int s0_vec = get_src_vec(gen, inst, 0, CHAN_X);
+ int s1_vec = get_src_vec(gen, inst, 1, CHAN_X);
+ int pow_vec = ppc_allocate_vec_register(gen->f);
+ int chan;
+
+ ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
+
+ FOR_EACH_DST0_ENABLED_CHANNEL(*inst, chan) {
+ emit_store(gen, pow_vec, inst, chan, FALSE);
+ }
+
+ ppc_release_vec_register(gen->f, pow_vec);
+
+ release_src_vecs(gen);
+}
+
+
+static void
+emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
+{
+ int x0_vec, y0_vec, z0_vec;
+ int x1_vec, y1_vec, z1_vec;
+ int zero_vec, tmp_vec;
+ int tmp2_vec;
+
+ zero_vec = ppc_allocate_vec_register(gen->f);
+ ppc_vzero(gen->f, zero_vec);
+
+ tmp_vec = ppc_allocate_vec_register(gen->f);
+ tmp2_vec = ppc_allocate_vec_register(gen->f);
+
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) ||
+ IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ x0_vec = get_src_vec(gen, inst, 0, CHAN_X);
+ x1_vec = get_src_vec(gen, inst, 1, CHAN_X);
+ }
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
+ IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z)) {
+ y0_vec = get_src_vec(gen, inst, 0, CHAN_Y);
+ y1_vec = get_src_vec(gen, inst, 1, CHAN_Y);
+ }
+ if (IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) ||
+ IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y)) {
+ z0_vec = get_src_vec(gen, inst, 0, CHAN_Z);
+ z1_vec = get_src_vec(gen, inst, 1, CHAN_Z);
+ }
+
+ IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_X) {
+ /* tmp = y0 * z1 */
+ ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
+ /* tmp = tmp - z0 * y1*/
+ ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
+ emit_store(gen, tmp_vec, inst, CHAN_X, FALSE);
+ }
+ IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Y) {
+ /* tmp = z0 * x1 */
+ ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
+ /* tmp = tmp - x0 * z1 */
+ ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
+ emit_store(gen, tmp_vec, inst, CHAN_Y, FALSE);
+ }
+ IF_IS_DST0_CHANNEL_ENABLED(*inst, CHAN_Z) {
+ /* tmp = x0 * y1 */
+ ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
+ /* tmp = tmp - y0 * x1 */
+ ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
+ emit_store(gen, tmp_vec, inst, CHAN_Z, FALSE);
+ }
+ /* W is undefined */
+
+ ppc_release_vec_register(gen->f, tmp_vec);
+ ppc_release_vec_register(gen->f, zero_vec);
+ release_src_vecs(gen);
+}
+
+static int
+emit_instruction(struct gen_context *gen,
+ struct tgsi_full_instruction *inst)
+{
+ switch (inst->Instruction.Opcode) {
+ case TGSI_OPCODE_MOV:
+ case TGSI_OPCODE_SWZ:
+ case TGSI_OPCODE_ABS:
+ case TGSI_OPCODE_FLOOR:
+ case TGSI_OPCODE_FRAC:
+ case TGSI_OPCODE_EXPBASE2:
+ case TGSI_OPCODE_LOGBASE2:
+ emit_unaryop(gen, inst);
+ break;
+ case TGSI_OPCODE_RSQ:
+ case TGSI_OPCODE_RCP:
+ emit_scalar_unaryop(gen, inst);
+ break;
+ case TGSI_OPCODE_ADD:
+ case TGSI_OPCODE_SUB:
+ case TGSI_OPCODE_MUL:
+ case TGSI_OPCODE_MIN:
+ case TGSI_OPCODE_MAX:
+ emit_binop(gen, inst);
+ break;
+ case TGSI_OPCODE_SEQ:
+ case TGSI_OPCODE_SNE:
+ case TGSI_OPCODE_SLT:
+ case TGSI_OPCODE_SGT:
+ case TGSI_OPCODE_SLE:
+ case TGSI_OPCODE_SGE:
+ emit_inequality(gen, inst);
+ break;
+ case TGSI_OPCODE_MAD:
+ case TGSI_OPCODE_LRP:
+ emit_triop(gen, inst);
+ break;
+ case TGSI_OPCODE_DP3:
+ case TGSI_OPCODE_DP4:
+ case TGSI_OPCODE_DPH:
+ emit_dotprod(gen, inst);
+ break;
+ case TGSI_OPCODE_LIT:
+ emit_lit(gen, inst);
+ break;
+ case TGSI_OPCODE_LOG:
+ emit_log(gen, inst);
+ break;
+ case TGSI_OPCODE_EXP:
+ emit_exp(gen, inst);
+ break;
+ case TGSI_OPCODE_POW:
+ emit_pow(gen, inst);
+ break;
+ case TGSI_OPCODE_XPD:
+ emit_xpd(gen, inst);
+ break;
+ case TGSI_OPCODE_END:
+ /* normal end */
+ return 1;
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+
+static void
+emit_declaration(
+ struct ppc_function *func,
+ struct tgsi_full_declaration *decl )
+{
+ if( decl->Declaration.File == TGSI_FILE_INPUT ) {
+#if 0
+ unsigned first, last, mask;
+ unsigned i, j;
+
+ first = decl->DeclarationRange.First;
+ last = decl->DeclarationRange.Last;
+ mask = decl->Declaration.UsageMask;
+
+ for( i = first; i <= last; i++ ) {
+ for( j = 0; j < NUM_CHANNELS; j++ ) {
+ if( mask & (1 << j) ) {
+ switch( decl->Declaration.Interpolate ) {
+ case TGSI_INTERPOLATE_CONSTANT:
+ emit_coef_a0( func, 0, i, j );
+ emit_inputs( func, 0, i, j );
+ break;
+
+ case TGSI_INTERPOLATE_LINEAR:
+ emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
+ emit_coef_dadx( func, 1, i, j );
+ emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
+ emit_coef_dady( func, 3, i, j );
+ emit_mul( func, 0, 1 ); /* x * dadx */
+ emit_coef_a0( func, 4, i, j );
+ emit_mul( func, 2, 3 ); /* y * dady */
+ emit_add( func, 0, 4 ); /* x * dadx + a0 */
+ emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
+ emit_inputs( func, 0, i, j );
+ break;
+
+ case TGSI_INTERPOLATE_PERSPECTIVE:
+ emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
+ emit_coef_dadx( func, 1, i, j );
+ emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
+ emit_coef_dady( func, 3, i, j );
+ emit_mul( func, 0, 1 ); /* x * dadx */
+ emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
+ emit_coef_a0( func, 5, i, j );
+ emit_rcp( func, 4, 4 ); /* 1.0 / w */
+ emit_mul( func, 2, 3 ); /* y * dady */
+ emit_add( func, 0, 5 ); /* x * dadx + a0 */
+ emit_add( func, 0, 2 ); /* x * dadx + y * dady + a0 */
+ emit_mul( func, 0, 4 ); /* (x * dadx + y * dady + a0) / w */
+ emit_inputs( func, 0, i, j );
+ break;
+
+ default:
+ assert( 0 );
+ break;
+ }
+ }
+ }
+ }
+#endif
+ }
+}
+
+
+
+static void
+emit_prologue(struct ppc_function *func)
+{
+ /* XXX set up stack frame */
+}
+
+
+static void
+emit_epilogue(struct ppc_function *func)
+{
+ ppc_return(func);
+ /* XXX restore prev stack frame */
+ debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
+}
+
+
+
+/**
+ * Translate a TGSI vertex/fragment shader to PPC code.
+ *
+ * \param tokens the TGSI input shader
+ * \param func the output PPC code/function
+ * \param immediates buffer to place immediates, later passed to PPC func
+ * \return TRUE for success, FALSE if translation failed
+ */
+boolean
+tgsi_emit_ppc(const struct tgsi_token *tokens,
+ struct ppc_function *func,
+ float (*immediates)[4],
+ boolean do_swizzles )
+{
+ static int use_ppc_asm = -1;
+ struct tgsi_parse_context parse;
+ /*boolean instruction_phase = FALSE;*/
+ unsigned ok = 1;
+ uint num_immediates = 0;
+ struct gen_context gen;
+
+ if (use_ppc_asm < 0) {
+ /* If GALLIUM_NOPPC is set, don't use PPC codegen */
+ use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
+ }
+ if (!use_ppc_asm)
+ return FALSE;
+
+ if (0) {
+ debug_printf("\n********* TGSI->PPC ********\n");
+ tgsi_dump(tokens, 0);
+ }
+
+ util_init_math();
+
+ init_gen_context(&gen, func);
+
+ emit_prologue(func);
+
+ tgsi_parse_init( &parse, tokens );
+
+ while (!tgsi_parse_end_of_tokens(&parse) && ok) {
+ tgsi_parse_token(&parse);
+
+ switch (parse.FullToken.Token.Type) {
+ case TGSI_TOKEN_TYPE_DECLARATION:
+ if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
+ emit_declaration(func, &parse.FullToken.FullDeclaration );
+ }
+ break;
+
+ case TGSI_TOKEN_TYPE_INSTRUCTION:
+ ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
+
+ if (!ok) {
+ debug_printf("failed to translate tgsi opcode %d to PPC (%s)\n",
+ parse.FullToken.FullInstruction.Instruction.Opcode,
+ parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
+ "vertex shader" : "fragment shader");
+ }
+ break;
+
+ case TGSI_TOKEN_TYPE_IMMEDIATE:
+ /* splat each immediate component into a float[4] vector for SoA */
+ {
+ const uint size = parse.FullToken.FullImmediate.Immediate.Size - 1;
+ uint i;
+ assert(size <= 4);
+ assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
+ for (i = 0; i < size; i++) {
+ immediates[num_immediates][i] =
+ parse.FullToken.FullImmediate.u.ImmediateFloat32[i].Float;
+ }
+ num_immediates++;
+ }
+ break;
+
+ default:
+ ok = 0;
+ assert( 0 );
+ }
+ }
+
+ emit_epilogue(func);
+
+ tgsi_parse_free( &parse );
+
+ if (ppc_num_instructions(func) == 0) {
+ /* ran out of memory for instructions */
+ ok = FALSE;
+ }
+
+ if (!ok)
+ debug_printf("TGSI->PPC translation failed\n");
+
+ return ok;
+}
+
+#endif /* PIPE_ARCH_PPC */