summaryrefslogtreecommitdiffstats
path: root/src/freedreno/ir3/ir3_compiler_nir.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/freedreno/ir3/ir3_compiler_nir.c')
-rw-r--r--src/freedreno/ir3/ir3_compiler_nir.c3818
1 files changed, 3818 insertions, 0 deletions
diff --git a/src/freedreno/ir3/ir3_compiler_nir.c b/src/freedreno/ir3/ir3_compiler_nir.c
new file mode 100644
index 00000000000..445a2b291e9
--- /dev/null
+++ b/src/freedreno/ir3/ir3_compiler_nir.c
@@ -0,0 +1,3818 @@
+/*
+ * Copyright (C) 2015 Rob Clark <[email protected]>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ * Authors:
+ * Rob Clark <[email protected]>
+ */
+
+#include <stdarg.h>
+
+#include "util/u_string.h"
+#include "util/u_memory.h"
+#include "util/u_math.h"
+
+#include "ir3_compiler.h"
+#include "ir3_shader.h"
+#include "ir3_nir.h"
+
+#include "instr-a3xx.h"
+#include "ir3.h"
+
+/* for conditionally setting boolean flag(s): */
+#define COND(bool, val) ((bool) ? (val) : 0)
+
+#define DBG(fmt, ...) \
+ do { debug_printf("%s:%d: "fmt "\n", \
+ __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
+
+struct ir3_context {
+ struct ir3_compiler *compiler;
+
+ struct nir_shader *s;
+
+ struct nir_instr *cur_instr; /* current instruction, just for debug */
+
+ struct ir3 *ir;
+ struct ir3_shader_variant *so;
+
+ struct ir3_block *block; /* the current block */
+ struct ir3_block *in_block; /* block created for shader inputs */
+
+ nir_function_impl *impl;
+
+ /* For fragment shaders, varyings are not actual shader inputs,
+ * instead the hw passes a varying-coord which is used with
+ * bary.f.
+ *
+ * But NIR doesn't know that, it still declares varyings as
+ * inputs. So we do all the input tracking normally and fix
+ * things up after compile_instructions()
+ *
+ * NOTE that frag_vcoord is the hardware position (possibly it
+ * is actually an index or tag or some such.. it is *not*
+ * values that can be directly used for gl_FragCoord..)
+ */
+ struct ir3_instruction *frag_vcoord;
+
+ /* for fragment shaders, for gl_FrontFacing and gl_FragCoord: */
+ struct ir3_instruction *frag_face, *frag_coord;
+
+ /* For vertex shaders, keep track of the system values sources */
+ struct ir3_instruction *vertex_id, *basevertex, *instance_id;
+
+ /* For fragment shaders: */
+ struct ir3_instruction *samp_id, *samp_mask_in;
+
+ /* Compute shader inputs: */
+ struct ir3_instruction *local_invocation_id, *work_group_id;
+
+ /* mapping from nir_register to defining instruction: */
+ struct hash_table *def_ht;
+
+ unsigned num_arrays;
+
+ /* a common pattern for indirect addressing is to request the
+ * same address register multiple times. To avoid generating
+ * duplicate instruction sequences (which our backend does not
+ * try to clean up, since that should be done as the NIR stage)
+ * we cache the address value generated for a given src value:
+ *
+ * Note that we have to cache these per alignment, since same
+ * src used for an array of vec1 cannot be also used for an
+ * array of vec4.
+ */
+ struct hash_table *addr_ht[4];
+
+ /* last dst array, for indirect we need to insert a var-store.
+ */
+ struct ir3_instruction **last_dst;
+ unsigned last_dst_n;
+
+ /* maps nir_block to ir3_block, mostly for the purposes of
+ * figuring out the blocks successors
+ */
+ struct hash_table *block_ht;
+
+ /* on a4xx, bitmask of samplers which need astc+srgb workaround: */
+ unsigned astc_srgb;
+
+ unsigned samples; /* bitmask of x,y sample shifts */
+
+ unsigned max_texture_index;
+
+ /* set if we encounter something we can't handle yet, so we
+ * can bail cleanly and fallback to TGSI compiler f/e
+ */
+ bool error;
+};
+
+/* gpu pointer size in units of 32bit registers/slots */
+static unsigned pointer_size(struct ir3_context *ctx)
+{
+ return (ctx->compiler->gpu_id >= 500) ? 2 : 1;
+}
+
+static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
+static struct ir3_block * get_block(struct ir3_context *ctx, const nir_block *nblock);
+
+
+static struct ir3_context *
+compile_init(struct ir3_compiler *compiler,
+ struct ir3_shader_variant *so)
+{
+ struct ir3_context *ctx = rzalloc(NULL, struct ir3_context);
+
+ if (compiler->gpu_id >= 400) {
+ if (so->type == MESA_SHADER_VERTEX) {
+ ctx->astc_srgb = so->key.vastc_srgb;
+ } else if (so->type == MESA_SHADER_FRAGMENT) {
+ ctx->astc_srgb = so->key.fastc_srgb;
+ }
+
+ } else {
+ if (so->type == MESA_SHADER_VERTEX) {
+ ctx->samples = so->key.vsamples;
+ } else if (so->type == MESA_SHADER_FRAGMENT) {
+ ctx->samples = so->key.fsamples;
+ }
+ }
+
+ ctx->compiler = compiler;
+ ctx->so = so;
+ ctx->def_ht = _mesa_hash_table_create(ctx,
+ _mesa_hash_pointer, _mesa_key_pointer_equal);
+ ctx->block_ht = _mesa_hash_table_create(ctx,
+ _mesa_hash_pointer, _mesa_key_pointer_equal);
+
+ /* TODO: maybe generate some sort of bitmask of what key
+ * lowers vs what shader has (ie. no need to lower
+ * texture clamp lowering if no texture sample instrs)..
+ * although should be done further up the stack to avoid
+ * creating duplicate variants..
+ */
+
+ if (ir3_key_lowers_nir(&so->key)) {
+ nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
+ ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
+ } else {
+ /* fast-path for shader key that lowers nothing in NIR: */
+ ctx->s = so->shader->nir;
+ }
+
+ /* this needs to be the last pass run, so do this here instead of
+ * in ir3_optimize_nir():
+ */
+ NIR_PASS_V(ctx->s, nir_lower_locals_to_regs);
+ NIR_PASS_V(ctx->s, nir_convert_from_ssa, true);
+
+ if (ir3_shader_debug & IR3_DBG_DISASM) {
+ printf("dump nir%dv%d: type=%d, k={cts=%u,hp=%u}",
+ so->shader->id, so->id, so->type,
+ so->key.color_two_side, so->key.half_precision);
+ nir_print_shader(ctx->s, stdout);
+ }
+
+ if (shader_debug_enabled(so->type)) {
+ fprintf(stderr, "NIR (final form) for %s shader:\n",
+ _mesa_shader_stage_to_string(so->type));
+ nir_print_shader(ctx->s, stderr);
+ }
+
+ ir3_nir_scan_driver_consts(ctx->s, &so->const_layout);
+
+ so->num_uniforms = ctx->s->num_uniforms;
+ so->num_ubos = ctx->s->info.num_ubos;
+
+ /* Layout of constant registers, each section aligned to vec4. Note
+ * that pointer size (ubo, etc) changes depending on generation.
+ *
+ * user consts
+ * UBO addresses
+ * SSBO sizes
+ * if (vertex shader) {
+ * driver params (IR3_DP_*)
+ * if (stream_output.num_outputs > 0)
+ * stream-out addresses
+ * }
+ * immediates
+ *
+ * Immediates go last mostly because they are inserted in the CP pass
+ * after the nir -> ir3 frontend.
+ */
+ unsigned constoff = align(ctx->s->num_uniforms, 4);
+ unsigned ptrsz = pointer_size(ctx);
+
+ memset(&so->constbase, ~0, sizeof(so->constbase));
+
+ if (so->num_ubos > 0) {
+ so->constbase.ubo = constoff;
+ constoff += align(ctx->s->info.num_ubos * ptrsz, 4) / 4;
+ }
+
+ if (so->const_layout.ssbo_size.count > 0) {
+ unsigned cnt = so->const_layout.ssbo_size.count;
+ so->constbase.ssbo_sizes = constoff;
+ constoff += align(cnt, 4) / 4;
+ }
+
+ if (so->const_layout.image_dims.count > 0) {
+ unsigned cnt = so->const_layout.image_dims.count;
+ so->constbase.image_dims = constoff;
+ constoff += align(cnt, 4) / 4;
+ }
+
+ unsigned num_driver_params = 0;
+ if (so->type == MESA_SHADER_VERTEX) {
+ num_driver_params = IR3_DP_VS_COUNT;
+ } else if (so->type == MESA_SHADER_COMPUTE) {
+ num_driver_params = IR3_DP_CS_COUNT;
+ }
+
+ so->constbase.driver_param = constoff;
+ constoff += align(num_driver_params, 4) / 4;
+
+ if ((so->type == MESA_SHADER_VERTEX) &&
+ (compiler->gpu_id < 500) &&
+ so->shader->stream_output.num_outputs > 0) {
+ so->constbase.tfbo = constoff;
+ constoff += align(IR3_MAX_SO_BUFFERS * ptrsz, 4) / 4;
+ }
+
+ so->constbase.immediate = constoff;
+
+ return ctx;
+}
+
+static void
+compile_error(struct ir3_context *ctx, const char *format, ...)
+{
+ struct hash_table *errors = NULL;
+ va_list ap;
+ va_start(ap, format);
+ if (ctx->cur_instr) {
+ errors = _mesa_hash_table_create(NULL,
+ _mesa_hash_pointer,
+ _mesa_key_pointer_equal);
+ char *msg = ralloc_vasprintf(errors, format, ap);
+ _mesa_hash_table_insert(errors, ctx->cur_instr, msg);
+ } else {
+ _debug_vprintf(format, ap);
+ }
+ va_end(ap);
+ nir_print_shader_annotated(ctx->s, stdout, errors);
+ ralloc_free(errors);
+ ctx->error = true;
+ debug_assert(0);
+}
+
+#define compile_assert(ctx, cond) do { \
+ if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
+ } while (0)
+
+static void
+compile_free(struct ir3_context *ctx)
+{
+ ralloc_free(ctx);
+}
+
+static void
+declare_array(struct ir3_context *ctx, nir_register *reg)
+{
+ struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
+ arr->id = ++ctx->num_arrays;
+ /* NOTE: sometimes we get non array regs, for example for arrays of
+ * length 1. See fs-const-array-of-struct-of-array.shader_test. So
+ * treat a non-array as if it was an array of length 1.
+ *
+ * It would be nice if there was a nir pass to convert arrays of
+ * length 1 to ssa.
+ */
+ arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
+ compile_assert(ctx, arr->length > 0);
+ arr->r = reg;
+ list_addtail(&arr->node, &ctx->ir->array_list);
+}
+
+static struct ir3_array *
+get_array(struct ir3_context *ctx, nir_register *reg)
+{
+ list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
+ if (arr->r == reg)
+ return arr;
+ }
+ compile_error(ctx, "bogus reg: %s\n", reg->name);
+ return NULL;
+}
+
+/* relative (indirect) if address!=NULL */
+static struct ir3_instruction *
+create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n,
+ struct ir3_instruction *address)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *mov;
+ struct ir3_register *src;
+
+ mov = ir3_instr_create(block, OPC_MOV);
+ mov->cat1.src_type = TYPE_U32;
+ mov->cat1.dst_type = TYPE_U32;
+ mov->barrier_class = IR3_BARRIER_ARRAY_R;
+ mov->barrier_conflict = IR3_BARRIER_ARRAY_W;
+ ir3_reg_create(mov, 0, 0);
+ src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
+ COND(address, IR3_REG_RELATIV));
+ src->instr = arr->last_write;
+ src->size = arr->length;
+ src->array.id = arr->id;
+ src->array.offset = n;
+
+ if (address)
+ ir3_instr_set_address(mov, address);
+
+ return mov;
+}
+
+/* relative (indirect) if address!=NULL */
+static void
+create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n,
+ struct ir3_instruction *src, struct ir3_instruction *address)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *mov;
+ struct ir3_register *dst;
+
+ /* if not relative store, don't create an extra mov, since that
+ * ends up being difficult for cp to remove.
+ */
+ if (!address) {
+ dst = src->regs[0];
+
+ src->barrier_class |= IR3_BARRIER_ARRAY_W;
+ src->barrier_conflict |= IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
+
+ dst->flags |= IR3_REG_ARRAY;
+ dst->instr = arr->last_write;
+ dst->size = arr->length;
+ dst->array.id = arr->id;
+ dst->array.offset = n;
+
+ arr->last_write = src;
+
+ array_insert(block, block->keeps, src);
+
+ return;
+ }
+
+ mov = ir3_instr_create(block, OPC_MOV);
+ mov->cat1.src_type = TYPE_U32;
+ mov->cat1.dst_type = TYPE_U32;
+ mov->barrier_class = IR3_BARRIER_ARRAY_W;
+ mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
+ dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
+ COND(address, IR3_REG_RELATIV));
+ dst->instr = arr->last_write;
+ dst->size = arr->length;
+ dst->array.id = arr->id;
+ dst->array.offset = n;
+ ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
+
+ if (address)
+ ir3_instr_set_address(mov, address);
+
+ arr->last_write = mov;
+
+ /* the array store may only matter to something in an earlier
+ * block (ie. loops), but since arrays are not in SSA, depth
+ * pass won't know this.. so keep all array stores:
+ */
+ array_insert(block, block->keeps, mov);
+}
+
+static inline type_t utype_for_size(unsigned bit_size)
+{
+ switch (bit_size) {
+ case 32: return TYPE_U32;
+ case 16: return TYPE_U16;
+ case 8: return TYPE_U8;
+ default: unreachable("bad bitsize"); return ~0;
+ }
+}
+
+static inline type_t utype_src(nir_src src)
+{ return utype_for_size(nir_src_bit_size(src)); }
+
+static inline type_t utype_dst(nir_dest dst)
+{ return utype_for_size(nir_dest_bit_size(dst)); }
+
+/* allocate a n element value array (to be populated by caller) and
+ * insert in def_ht
+ */
+static struct ir3_instruction **
+get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n)
+{
+ struct ir3_instruction **value =
+ ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
+ _mesa_hash_table_insert(ctx->def_ht, dst, value);
+ return value;
+}
+
+static struct ir3_instruction **
+get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n)
+{
+ struct ir3_instruction **value;
+
+ if (dst->is_ssa) {
+ value = get_dst_ssa(ctx, &dst->ssa, n);
+ } else {
+ value = ralloc_array(ctx, struct ir3_instruction *, n);
+ }
+
+ /* NOTE: in non-ssa case, we don't really need to store last_dst
+ * but this helps us catch cases where put_dst() call is forgotten
+ */
+ compile_assert(ctx, !ctx->last_dst);
+ ctx->last_dst = value;
+ ctx->last_dst_n = n;
+
+ return value;
+}
+
+static struct ir3_instruction * get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align);
+
+static struct ir3_instruction * const *
+get_src(struct ir3_context *ctx, nir_src *src)
+{
+ if (src->is_ssa) {
+ struct hash_entry *entry;
+ entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
+ compile_assert(ctx, entry);
+ return entry->data;
+ } else {
+ nir_register *reg = src->reg.reg;
+ struct ir3_array *arr = get_array(ctx, reg);
+ unsigned num_components = arr->r->num_components;
+ struct ir3_instruction *addr = NULL;
+ struct ir3_instruction **value =
+ ralloc_array(ctx, struct ir3_instruction *, num_components);
+
+ if (src->reg.indirect)
+ addr = get_addr(ctx, get_src(ctx, src->reg.indirect)[0],
+ reg->num_components);
+
+ for (unsigned i = 0; i < num_components; i++) {
+ unsigned n = src->reg.base_offset * reg->num_components + i;
+ compile_assert(ctx, n < arr->length);
+ value[i] = create_array_load(ctx, arr, n, addr);
+ }
+
+ return value;
+ }
+}
+
+static void
+put_dst(struct ir3_context *ctx, nir_dest *dst)
+{
+ unsigned bit_size = nir_dest_bit_size(*dst);
+
+ if (bit_size < 32) {
+ for (unsigned i = 0; i < ctx->last_dst_n; i++) {
+ struct ir3_instruction *dst = ctx->last_dst[i];
+ dst->regs[0]->flags |= IR3_REG_HALF;
+ if (ctx->last_dst[i]->opc == OPC_META_FO)
+ dst->regs[1]->instr->regs[0]->flags |= IR3_REG_HALF;
+ }
+ }
+
+ if (!dst->is_ssa) {
+ nir_register *reg = dst->reg.reg;
+ struct ir3_array *arr = get_array(ctx, reg);
+ unsigned num_components = ctx->last_dst_n;
+ struct ir3_instruction *addr = NULL;
+
+ if (dst->reg.indirect)
+ addr = get_addr(ctx, get_src(ctx, dst->reg.indirect)[0],
+ reg->num_components);
+
+ for (unsigned i = 0; i < num_components; i++) {
+ unsigned n = dst->reg.base_offset * reg->num_components + i;
+ compile_assert(ctx, n < arr->length);
+ if (!ctx->last_dst[i])
+ continue;
+ create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
+ }
+
+ ralloc_free(ctx->last_dst);
+ }
+ ctx->last_dst = NULL;
+ ctx->last_dst_n = 0;
+}
+
+static struct ir3_instruction *
+create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
+{
+ struct ir3_instruction *mov;
+ unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
+
+ mov = ir3_instr_create(block, OPC_MOV);
+ mov->cat1.src_type = type;
+ mov->cat1.dst_type = type;
+ ir3_reg_create(mov, 0, flags);
+ ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
+
+ return mov;
+}
+
+static struct ir3_instruction *
+create_immed(struct ir3_block *block, uint32_t val)
+{
+ return create_immed_typed(block, val, TYPE_U32);
+}
+
+static struct ir3_instruction *
+create_addr(struct ir3_block *block, struct ir3_instruction *src, int align)
+{
+ struct ir3_instruction *instr, *immed;
+
+ /* TODO in at least some cases, the backend could probably be
+ * made clever enough to propagate IR3_REG_HALF..
+ */
+ instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
+ instr->regs[0]->flags |= IR3_REG_HALF;
+
+ switch(align){
+ case 1:
+ /* src *= 1: */
+ break;
+ case 2:
+ /* src *= 2 => src <<= 1: */
+ immed = create_immed(block, 1);
+ immed->regs[0]->flags |= IR3_REG_HALF;
+
+ instr = ir3_SHL_B(block, instr, 0, immed, 0);
+ instr->regs[0]->flags |= IR3_REG_HALF;
+ instr->regs[1]->flags |= IR3_REG_HALF;
+ break;
+ case 3:
+ /* src *= 3: */
+ immed = create_immed(block, 3);
+ immed->regs[0]->flags |= IR3_REG_HALF;
+
+ instr = ir3_MULL_U(block, instr, 0, immed, 0);
+ instr->regs[0]->flags |= IR3_REG_HALF;
+ instr->regs[1]->flags |= IR3_REG_HALF;
+ break;
+ case 4:
+ /* src *= 4 => src <<= 2: */
+ immed = create_immed(block, 2);
+ immed->regs[0]->flags |= IR3_REG_HALF;
+
+ instr = ir3_SHL_B(block, instr, 0, immed, 0);
+ instr->regs[0]->flags |= IR3_REG_HALF;
+ instr->regs[1]->flags |= IR3_REG_HALF;
+ break;
+ default:
+ unreachable("bad align");
+ return NULL;
+ }
+
+ instr = ir3_MOV(block, instr, TYPE_S16);
+ instr->regs[0]->num = regid(REG_A0, 0);
+ instr->regs[0]->flags |= IR3_REG_HALF;
+ instr->regs[1]->flags |= IR3_REG_HALF;
+
+ return instr;
+}
+
+/* caches addr values to avoid generating multiple cov/shl/mova
+ * sequences for each use of a given NIR level src as address
+ */
+static struct ir3_instruction *
+get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align)
+{
+ struct ir3_instruction *addr;
+ unsigned idx = align - 1;
+
+ compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht));
+
+ if (!ctx->addr_ht[idx]) {
+ ctx->addr_ht[idx] = _mesa_hash_table_create(ctx,
+ _mesa_hash_pointer, _mesa_key_pointer_equal);
+ } else {
+ struct hash_entry *entry;
+ entry = _mesa_hash_table_search(ctx->addr_ht[idx], src);
+ if (entry)
+ return entry->data;
+ }
+
+ addr = create_addr(ctx->block, src, align);
+ _mesa_hash_table_insert(ctx->addr_ht[idx], src, addr);
+
+ return addr;
+}
+
+static struct ir3_instruction *
+get_predicate(struct ir3_context *ctx, struct ir3_instruction *src)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *cond;
+
+ /* NOTE: only cmps.*.* can write p0.x: */
+ cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
+ cond->cat2.condition = IR3_COND_NE;
+
+ /* condition always goes in predicate register: */
+ cond->regs[0]->num = regid(REG_P0, 0);
+
+ return cond;
+}
+
+static struct ir3_instruction *
+create_uniform(struct ir3_context *ctx, unsigned n)
+{
+ struct ir3_instruction *mov;
+
+ mov = ir3_instr_create(ctx->block, OPC_MOV);
+ /* TODO get types right? */
+ mov->cat1.src_type = TYPE_F32;
+ mov->cat1.dst_type = TYPE_F32;
+ ir3_reg_create(mov, 0, 0);
+ ir3_reg_create(mov, n, IR3_REG_CONST);
+
+ return mov;
+}
+
+static struct ir3_instruction *
+create_uniform_indirect(struct ir3_context *ctx, int n,
+ struct ir3_instruction *address)
+{
+ struct ir3_instruction *mov;
+
+ mov = ir3_instr_create(ctx->block, OPC_MOV);
+ mov->cat1.src_type = TYPE_U32;
+ mov->cat1.dst_type = TYPE_U32;
+ ir3_reg_create(mov, 0, 0);
+ ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
+
+ ir3_instr_set_address(mov, address);
+
+ return mov;
+}
+
+static struct ir3_instruction *
+create_collect(struct ir3_context *ctx, struct ir3_instruction *const *arr,
+ unsigned arrsz)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *collect;
+
+ if (arrsz == 0)
+ return NULL;
+
+ unsigned flags = arr[0]->regs[0]->flags & IR3_REG_HALF;
+
+ collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz);
+ ir3_reg_create(collect, 0, flags); /* dst */
+ for (unsigned i = 0; i < arrsz; i++) {
+ struct ir3_instruction *elem = arr[i];
+
+ /* Since arrays are pre-colored in RA, we can't assume that
+ * things will end up in the right place. (Ie. if a collect
+ * joins elements from two different arrays.) So insert an
+ * extra mov.
+ *
+ * We could possibly skip this if all the collected elements
+ * are contiguous elements in a single array.. not sure how
+ * likely that is to happen.
+ *
+ * Fixes a problem with glamor shaders, that in effect do
+ * something like:
+ *
+ * if (foo)
+ * texcoord = ..
+ * else
+ * texcoord = ..
+ * color = texture2D(tex, texcoord);
+ *
+ * In this case, texcoord will end up as nir registers (which
+ * translate to ir3 array's of length 1. And we can't assume
+ * the two (or more) arrays will get allocated in consecutive
+ * scalar registers.
+ *
+ */
+ if (elem->regs[0]->flags & IR3_REG_ARRAY) {
+ type_t type = (flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
+ elem = ir3_MOV(block, elem, type);
+ }
+
+ compile_assert(ctx, (elem->regs[0]->flags & IR3_REG_HALF) == flags);
+ ir3_reg_create(collect, 0, IR3_REG_SSA | flags)->instr = elem;
+ }
+
+ return collect;
+}
+
+static struct ir3_instruction *
+create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
+ struct ir3_instruction *address, struct ir3_instruction *collect)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *mov;
+ struct ir3_register *src;
+
+ mov = ir3_instr_create(block, OPC_MOV);
+ mov->cat1.src_type = TYPE_U32;
+ mov->cat1.dst_type = TYPE_U32;
+ ir3_reg_create(mov, 0, 0);
+ src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
+ src->instr = collect;
+ src->size = arrsz;
+ src->array.offset = n;
+
+ ir3_instr_set_address(mov, address);
+
+ return mov;
+}
+
+static struct ir3_instruction *
+create_input_compmask(struct ir3_context *ctx, unsigned n, unsigned compmask)
+{
+ struct ir3_instruction *in;
+
+ in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
+ in->inout.block = ctx->in_block;
+ ir3_reg_create(in, n, 0);
+
+ in->regs[0]->wrmask = compmask;
+
+ return in;
+}
+
+static struct ir3_instruction *
+create_input(struct ir3_context *ctx, unsigned n)
+{
+ return create_input_compmask(ctx, n, 0x1);
+}
+
+static struct ir3_instruction *
+create_frag_input(struct ir3_context *ctx, bool use_ldlv)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *instr;
+ /* actual inloc is assigned and fixed up later: */
+ struct ir3_instruction *inloc = create_immed(block, 0);
+
+ if (use_ldlv) {
+ instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
+ instr->cat6.type = TYPE_U32;
+ instr->cat6.iim_val = 1;
+ } else {
+ instr = ir3_BARY_F(block, inloc, 0, ctx->frag_vcoord, 0);
+ instr->regs[2]->wrmask = 0x3;
+ }
+
+ return instr;
+}
+
+static struct ir3_instruction *
+create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
+{
+ /* first four vec4 sysval's reserved for UBOs: */
+ /* NOTE: dp is in scalar, but there can be >4 dp components: */
+ unsigned n = ctx->so->constbase.driver_param;
+ unsigned r = regid(n + dp / 4, dp % 4);
+ return create_uniform(ctx, r);
+}
+
+/* helper for instructions that produce multiple consecutive scalar
+ * outputs which need to have a split/fanout meta instruction inserted
+ */
+static void
+split_dest(struct ir3_block *block, struct ir3_instruction **dst,
+ struct ir3_instruction *src, unsigned base, unsigned n)
+{
+ struct ir3_instruction *prev = NULL;
+
+ if ((n == 1) && (src->regs[0]->wrmask == 0x1)) {
+ dst[0] = src;
+ return;
+ }
+
+ for (int i = 0, j = 0; i < n; i++) {
+ struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO);
+ ir3_reg_create(split, 0, IR3_REG_SSA);
+ ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src;
+ split->fo.off = i + base;
+
+ if (prev) {
+ split->cp.left = prev;
+ split->cp.left_cnt++;
+ prev->cp.right = split;
+ prev->cp.right_cnt++;
+ }
+ prev = split;
+
+ if (src->regs[0]->wrmask & (1 << (i + base)))
+ dst[j++] = split;
+ }
+}
+
+/*
+ * Adreno uses uint rather than having dedicated bool type,
+ * which (potentially) requires some conversion, in particular
+ * when using output of an bool instr to int input, or visa
+ * versa.
+ *
+ * | Adreno | NIR |
+ * -------+---------+-------+-
+ * true | 1 | ~0 |
+ * false | 0 | 0 |
+ *
+ * To convert from an adreno bool (uint) to nir, use:
+ *
+ * absneg.s dst, (neg)src
+ *
+ * To convert back in the other direction:
+ *
+ * absneg.s dst, (abs)arc
+ *
+ * The CP step can clean up the absneg.s that cancel each other
+ * out, and with a slight bit of extra cleverness (to recognize
+ * the instructions which produce either a 0 or 1) can eliminate
+ * the absneg.s's completely when an instruction that wants
+ * 0/1 consumes the result. For example, when a nir 'bcsel'
+ * consumes the result of 'feq'. So we should be able to get by
+ * without a boolean resolve step, and without incuring any
+ * extra penalty in instruction count.
+ */
+
+/* NIR bool -> native (adreno): */
+static struct ir3_instruction *
+ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
+{
+ return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
+}
+
+/* native (adreno) -> NIR bool: */
+static struct ir3_instruction *
+ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
+{
+ return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
+}
+
+/*
+ * alu/sfu instructions:
+ */
+
+static struct ir3_instruction *
+create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
+ unsigned src_bitsize, nir_op op)
+{
+ type_t src_type, dst_type;
+
+ switch (op) {
+ case nir_op_f2f32:
+ case nir_op_f2f16_rtne:
+ case nir_op_f2f16_rtz:
+ case nir_op_f2f16:
+ case nir_op_f2i32:
+ case nir_op_f2i16:
+ case nir_op_f2i8:
+ case nir_op_f2u32:
+ case nir_op_f2u16:
+ case nir_op_f2u8:
+ switch (src_bitsize) {
+ case 32:
+ src_type = TYPE_F32;
+ break;
+ case 16:
+ src_type = TYPE_F16;
+ break;
+ default:
+ compile_error(ctx, "invalid src bit size: %u", src_bitsize);
+ }
+ break;
+
+ case nir_op_i2f32:
+ case nir_op_i2f16:
+ case nir_op_i2i32:
+ case nir_op_i2i16:
+ case nir_op_i2i8:
+ switch (src_bitsize) {
+ case 32:
+ src_type = TYPE_S32;
+ break;
+ case 16:
+ src_type = TYPE_S16;
+ break;
+ case 8:
+ src_type = TYPE_S8;
+ break;
+ default:
+ compile_error(ctx, "invalid src bit size: %u", src_bitsize);
+ }
+ break;
+
+ case nir_op_u2f32:
+ case nir_op_u2f16:
+ case nir_op_u2u32:
+ case nir_op_u2u16:
+ case nir_op_u2u8:
+ switch (src_bitsize) {
+ case 32:
+ src_type = TYPE_U32;
+ break;
+ case 16:
+ src_type = TYPE_U16;
+ break;
+ case 8:
+ src_type = TYPE_U8;
+ break;
+ default:
+ compile_error(ctx, "invalid src bit size: %u", src_bitsize);
+ }
+ break;
+
+ default:
+ compile_error(ctx, "invalid conversion op: %u", op);
+ }
+
+ switch (op) {
+ case nir_op_f2f32:
+ case nir_op_i2f32:
+ case nir_op_u2f32:
+ dst_type = TYPE_F32;
+ break;
+
+ case nir_op_f2f16_rtne:
+ case nir_op_f2f16_rtz:
+ case nir_op_f2f16:
+ /* TODO how to handle rounding mode? */
+ case nir_op_i2f16:
+ case nir_op_u2f16:
+ dst_type = TYPE_F16;
+ break;
+
+ case nir_op_f2i32:
+ case nir_op_i2i32:
+ dst_type = TYPE_S32;
+ break;
+
+ case nir_op_f2i16:
+ case nir_op_i2i16:
+ dst_type = TYPE_S16;
+ break;
+
+ case nir_op_f2i8:
+ case nir_op_i2i8:
+ dst_type = TYPE_S8;
+ break;
+
+ case nir_op_f2u32:
+ case nir_op_u2u32:
+ dst_type = TYPE_U32;
+ break;
+
+ case nir_op_f2u16:
+ case nir_op_u2u16:
+ dst_type = TYPE_U16;
+ break;
+
+ case nir_op_f2u8:
+ case nir_op_u2u8:
+ dst_type = TYPE_U8;
+ break;
+
+ default:
+ compile_error(ctx, "invalid conversion op: %u", op);
+ }
+
+ return ir3_COV(ctx->block, src, src_type, dst_type);
+}
+
+static void
+emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
+{
+ const nir_op_info *info = &nir_op_infos[alu->op];
+ struct ir3_instruction **dst, *src[info->num_inputs];
+ unsigned bs[info->num_inputs]; /* bit size */
+ struct ir3_block *b = ctx->block;
+ unsigned dst_sz, wrmask;
+
+ if (alu->dest.dest.is_ssa) {
+ dst_sz = alu->dest.dest.ssa.num_components;
+ wrmask = (1 << dst_sz) - 1;
+ } else {
+ dst_sz = alu->dest.dest.reg.reg->num_components;
+ wrmask = alu->dest.write_mask;
+ }
+
+ dst = get_dst(ctx, &alu->dest.dest, dst_sz);
+
+ /* Vectors are special in that they have non-scalarized writemasks,
+ * and just take the first swizzle channel for each argument in
+ * order into each writemask channel.
+ */
+ if ((alu->op == nir_op_vec2) ||
+ (alu->op == nir_op_vec3) ||
+ (alu->op == nir_op_vec4)) {
+
+ for (int i = 0; i < info->num_inputs; i++) {
+ nir_alu_src *asrc = &alu->src[i];
+
+ compile_assert(ctx, !asrc->abs);
+ compile_assert(ctx, !asrc->negate);
+
+ src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
+ if (!src[i])
+ src[i] = create_immed(ctx->block, 0);
+ dst[i] = ir3_MOV(b, src[i], TYPE_U32);
+ }
+
+ put_dst(ctx, &alu->dest.dest);
+ return;
+ }
+
+ /* We also get mov's with more than one component for mov's so
+ * handle those specially:
+ */
+ if ((alu->op == nir_op_imov) || (alu->op == nir_op_fmov)) {
+ type_t type = (alu->op == nir_op_imov) ? TYPE_U32 : TYPE_F32;
+ nir_alu_src *asrc = &alu->src[0];
+ struct ir3_instruction *const *src0 = get_src(ctx, &asrc->src);
+
+ for (unsigned i = 0; i < dst_sz; i++) {
+ if (wrmask & (1 << i)) {
+ dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], type);
+ } else {
+ dst[i] = NULL;
+ }
+ }
+
+ put_dst(ctx, &alu->dest.dest);
+ return;
+ }
+
+ /* General case: We can just grab the one used channel per src. */
+ for (int i = 0; i < info->num_inputs; i++) {
+ unsigned chan = ffs(alu->dest.write_mask) - 1;
+ nir_alu_src *asrc = &alu->src[i];
+
+ compile_assert(ctx, !asrc->abs);
+ compile_assert(ctx, !asrc->negate);
+
+ src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
+ bs[i] = nir_src_bit_size(asrc->src);
+
+ compile_assert(ctx, src[i]);
+ }
+
+ switch (alu->op) {
+ case nir_op_f2f32:
+ case nir_op_f2f16_rtne:
+ case nir_op_f2f16_rtz:
+ case nir_op_f2f16:
+ case nir_op_f2i32:
+ case nir_op_f2i16:
+ case nir_op_f2i8:
+ case nir_op_f2u32:
+ case nir_op_f2u16:
+ case nir_op_f2u8:
+ case nir_op_i2f32:
+ case nir_op_i2f16:
+ case nir_op_i2i32:
+ case nir_op_i2i16:
+ case nir_op_i2i8:
+ case nir_op_u2f32:
+ case nir_op_u2f16:
+ case nir_op_u2u32:
+ case nir_op_u2u16:
+ case nir_op_u2u8:
+ dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
+ break;
+ case nir_op_f2b:
+ dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
+ dst[0]->cat2.condition = IR3_COND_NE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_b2f:
+ dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
+ break;
+ case nir_op_b2i:
+ dst[0] = ir3_b2n(b, src[0]);
+ break;
+ case nir_op_i2b:
+ dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
+ dst[0]->cat2.condition = IR3_COND_NE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+
+ case nir_op_fneg:
+ dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
+ break;
+ case nir_op_fabs:
+ dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
+ break;
+ case nir_op_fmax:
+ dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_fmin:
+ dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_fsat:
+ /* if there is just a single use of the src, and it supports
+ * (sat) bit, we can just fold the (sat) flag back to the
+ * src instruction and create a mov. This is easier for cp
+ * to eliminate.
+ *
+ * TODO probably opc_cat==4 is ok too
+ */
+ if (alu->src[0].src.is_ssa &&
+ (list_length(&alu->src[0].src.ssa->uses) == 1) &&
+ ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
+ src[0]->flags |= IR3_INSTR_SAT;
+ dst[0] = ir3_MOV(b, src[0], TYPE_U32);
+ } else {
+ /* otherwise generate a max.f that saturates.. blob does
+ * similar (generating a cat2 mov using max.f)
+ */
+ dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
+ dst[0]->flags |= IR3_INSTR_SAT;
+ }
+ break;
+ case nir_op_fmul:
+ dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_fadd:
+ dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_fsub:
+ dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
+ break;
+ case nir_op_ffma:
+ dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
+ break;
+ case nir_op_fddx:
+ dst[0] = ir3_DSX(b, src[0], 0);
+ dst[0]->cat5.type = TYPE_F32;
+ break;
+ case nir_op_fddy:
+ dst[0] = ir3_DSY(b, src[0], 0);
+ dst[0]->cat5.type = TYPE_F32;
+ break;
+ break;
+ case nir_op_flt:
+ dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_LT;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_fge:
+ dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_GE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_feq:
+ dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_EQ;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_fne:
+ dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_NE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_fceil:
+ dst[0] = ir3_CEIL_F(b, src[0], 0);
+ break;
+ case nir_op_ffloor:
+ dst[0] = ir3_FLOOR_F(b, src[0], 0);
+ break;
+ case nir_op_ftrunc:
+ dst[0] = ir3_TRUNC_F(b, src[0], 0);
+ break;
+ case nir_op_fround_even:
+ dst[0] = ir3_RNDNE_F(b, src[0], 0);
+ break;
+ case nir_op_fsign:
+ dst[0] = ir3_SIGN_F(b, src[0], 0);
+ break;
+
+ case nir_op_fsin:
+ dst[0] = ir3_SIN(b, src[0], 0);
+ break;
+ case nir_op_fcos:
+ dst[0] = ir3_COS(b, src[0], 0);
+ break;
+ case nir_op_frsq:
+ dst[0] = ir3_RSQ(b, src[0], 0);
+ break;
+ case nir_op_frcp:
+ dst[0] = ir3_RCP(b, src[0], 0);
+ break;
+ case nir_op_flog2:
+ dst[0] = ir3_LOG2(b, src[0], 0);
+ break;
+ case nir_op_fexp2:
+ dst[0] = ir3_EXP2(b, src[0], 0);
+ break;
+ case nir_op_fsqrt:
+ dst[0] = ir3_SQRT(b, src[0], 0);
+ break;
+
+ case nir_op_iabs:
+ dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
+ break;
+ case nir_op_iadd:
+ dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_iand:
+ dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_imax:
+ dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_umax:
+ dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_imin:
+ dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_umin:
+ dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_imul:
+ /*
+ * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
+ * mull.u tmp0, a, b ; mul low, i.e. al * bl
+ * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
+ * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
+ */
+ dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
+ ir3_MADSH_M16(b, src[0], 0, src[1], 0,
+ ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
+ break;
+ case nir_op_ineg:
+ dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
+ break;
+ case nir_op_inot:
+ dst[0] = ir3_NOT_B(b, src[0], 0);
+ break;
+ case nir_op_ior:
+ dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_ishl:
+ dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_ishr:
+ dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_isign: {
+ /* maybe this would be sane to lower in nir.. */
+ struct ir3_instruction *neg, *pos;
+
+ neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
+ neg->cat2.condition = IR3_COND_LT;
+
+ pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
+ pos->cat2.condition = IR3_COND_GT;
+
+ dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
+
+ break;
+ }
+ case nir_op_isub:
+ dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_ixor:
+ dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_ushr:
+ dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
+ break;
+ case nir_op_ilt:
+ dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_LT;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_ige:
+ dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_GE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_ieq:
+ dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_EQ;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_ine:
+ dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_NE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_ult:
+ dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_LT;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+ case nir_op_uge:
+ dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
+ dst[0]->cat2.condition = IR3_COND_GE;
+ dst[0] = ir3_n2b(b, dst[0]);
+ break;
+
+ case nir_op_bcsel: {
+ struct ir3_instruction *cond = ir3_b2n(b, src[0]);
+ compile_assert(ctx, bs[1] == bs[2]);
+ /* the boolean condition is 32b even if src[1] and src[2] are
+ * half-precision, but sel.b16 wants all three src's to be the
+ * same type.
+ */
+ if (bs[1] < 32)
+ cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
+ dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
+ break;
+ }
+ case nir_op_bit_count:
+ dst[0] = ir3_CBITS_B(b, src[0], 0);
+ break;
+ case nir_op_ifind_msb: {
+ struct ir3_instruction *cmp;
+ dst[0] = ir3_CLZ_S(b, src[0], 0);
+ cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
+ cmp->cat2.condition = IR3_COND_GE;
+ dst[0] = ir3_SEL_B32(b,
+ ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
+ cmp, 0, dst[0], 0);
+ break;
+ }
+ case nir_op_ufind_msb:
+ dst[0] = ir3_CLZ_B(b, src[0], 0);
+ dst[0] = ir3_SEL_B32(b,
+ ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
+ src[0], 0, dst[0], 0);
+ break;
+ case nir_op_find_lsb:
+ dst[0] = ir3_BFREV_B(b, src[0], 0);
+ dst[0] = ir3_CLZ_B(b, dst[0], 0);
+ break;
+ case nir_op_bitfield_reverse:
+ dst[0] = ir3_BFREV_B(b, src[0], 0);
+ break;
+
+ default:
+ compile_error(ctx, "Unhandled ALU op: %s\n",
+ nir_op_infos[alu->op].name);
+ break;
+ }
+
+ put_dst(ctx, &alu->dest.dest);
+}
+
+/* handles direct/indirect UBO reads: */
+static void
+emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
+ nir_const_value *const_offset;
+ /* UBO addresses are the first driver params: */
+ unsigned ubo = regid(ctx->so->constbase.ubo, 0);
+ const unsigned ptrsz = pointer_size(ctx);
+
+ int off = 0;
+
+ /* First src is ubo index, which could either be an immed or not: */
+ src0 = get_src(ctx, &intr->src[0])[0];
+ if (is_same_type_mov(src0) &&
+ (src0->regs[1]->flags & IR3_REG_IMMED)) {
+ base_lo = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz));
+ base_hi = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
+ } else {
+ base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0, 4));
+ base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0, 4));
+ }
+
+ /* note: on 32bit gpu's base_hi is ignored and DCE'd */
+ addr = base_lo;
+
+ const_offset = nir_src_as_const_value(intr->src[1]);
+ if (const_offset) {
+ off += const_offset->u32[0];
+ } else {
+ /* For load_ubo_indirect, second src is indirect offset: */
+ src1 = get_src(ctx, &intr->src[1])[0];
+
+ /* and add offset to addr: */
+ addr = ir3_ADD_S(b, addr, 0, src1, 0);
+ }
+
+ /* if offset is to large to encode in the ldg, split it out: */
+ if ((off + (intr->num_components * 4)) > 1024) {
+ /* split out the minimal amount to improve the odds that
+ * cp can fit the immediate in the add.s instruction:
+ */
+ unsigned off2 = off + (intr->num_components * 4) - 1024;
+ addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
+ off -= off2;
+ }
+
+ if (ptrsz == 2) {
+ struct ir3_instruction *carry;
+
+ /* handle 32b rollover, ie:
+ * if (addr < base_lo)
+ * base_hi++
+ */
+ carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
+ carry->cat2.condition = IR3_COND_LT;
+ base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
+
+ addr = create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
+ }
+
+ for (int i = 0; i < intr->num_components; i++) {
+ struct ir3_instruction *load =
+ ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
+ load->cat6.type = TYPE_U32;
+ load->cat6.src_offset = off + i * 4; /* byte offset */
+ dst[i] = load;
+ }
+}
+
+/* src[] = { buffer_index, offset }. No const_index */
+static void
+emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *ldgb, *src0, *src1, *offset;
+ nir_const_value *const_offset;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ const_offset = nir_src_as_const_value(intr->src[0]);
+ compile_assert(ctx, const_offset);
+
+ offset = get_src(ctx, &intr->src[1])[0];
+
+ /* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
+ src0 = create_collect(ctx, (struct ir3_instruction*[]){
+ offset,
+ create_immed(b, 0),
+ }, 2);
+ src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
+
+ ldgb = ir3_LDGB(b, create_immed(b, const_offset->u32[0]), 0,
+ src0, 0, src1, 0);
+ ldgb->regs[0]->wrmask = MASK(intr->num_components);
+ ldgb->cat6.iim_val = intr->num_components;
+ ldgb->cat6.d = 4;
+ ldgb->cat6.type = TYPE_U32;
+ ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
+ ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
+
+ split_dest(b, dst, ldgb, 0, intr->num_components);
+}
+
+/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
+static void
+emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *stgb, *src0, *src1, *src2, *offset;
+ nir_const_value *const_offset;
+ /* TODO handle wrmask properly, see _store_shared().. but I think
+ * it is more a PITA than that, since blob ends up loading the
+ * masked components and writing them back out.
+ */
+ unsigned wrmask = intr->const_index[0];
+ unsigned ncomp = ffs(~wrmask) - 1;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ const_offset = nir_src_as_const_value(intr->src[1]);
+ compile_assert(ctx, const_offset);
+
+ offset = get_src(ctx, &intr->src[2])[0];
+
+ /* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
+ * nir already *= 4:
+ */
+ src0 = create_collect(ctx, get_src(ctx, &intr->src[0]), ncomp);
+ src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
+ src2 = create_collect(ctx, (struct ir3_instruction*[]){
+ offset,
+ create_immed(b, 0),
+ }, 2);
+
+ stgb = ir3_STGB(b, create_immed(b, const_offset->u32[0]), 0,
+ src0, 0, src1, 0, src2, 0);
+ stgb->cat6.iim_val = ncomp;
+ stgb->cat6.d = 4;
+ stgb->cat6.type = TYPE_U32;
+ stgb->barrier_class = IR3_BARRIER_BUFFER_W;
+ stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+
+ array_insert(b, b->keeps, stgb);
+}
+
+/* src[] = { block_index } */
+static void
+emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ /* SSBO size stored as a const starting at ssbo_sizes: */
+ unsigned blk_idx = nir_src_as_const_value(intr->src[0])->u32[0];
+ unsigned idx = regid(ctx->so->constbase.ssbo_sizes, 0) +
+ ctx->so->const_layout.ssbo_size.off[blk_idx];
+
+ debug_assert(ctx->so->const_layout.ssbo_size.mask & (1 << blk_idx));
+
+ dst[0] = create_uniform(ctx, idx);
+}
+
+/*
+ * SSBO atomic intrinsics
+ *
+ * All of the SSBO atomic memory operations read a value from memory,
+ * compute a new value using one of the operations below, write the new
+ * value to memory, and return the original value read.
+ *
+ * All operations take 3 sources except CompSwap that takes 4. These
+ * sources represent:
+ *
+ * 0: The SSBO buffer index.
+ * 1: The offset into the SSBO buffer of the variable that the atomic
+ * operation will operate on.
+ * 2: The data parameter to the atomic function (i.e. the value to add
+ * in ssbo_atomic_add, etc).
+ * 3: For CompSwap only: the second data parameter.
+ */
+static struct ir3_instruction *
+emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *atomic, *ssbo, *src0, *src1, *src2, *offset;
+ nir_const_value *const_offset;
+ type_t type = TYPE_U32;
+
+ /* can this be non-const buffer_index? how do we handle that? */
+ const_offset = nir_src_as_const_value(intr->src[0]);
+ compile_assert(ctx, const_offset);
+ ssbo = create_immed(b, const_offset->u32[0]);
+
+ offset = get_src(ctx, &intr->src[1])[0];
+
+ /* src0 is data (or uvec2(data, compare))
+ * src1 is offset
+ * src2 is uvec2(offset*4, 0) (appears to be 64b byte offset)
+ *
+ * Note that nir already multiplies the offset by four
+ */
+ src0 = get_src(ctx, &intr->src[2])[0];
+ src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
+ src2 = create_collect(ctx, (struct ir3_instruction*[]){
+ offset,
+ create_immed(b, 0),
+ }, 2);
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_ssbo_atomic_add:
+ atomic = ir3_ATOMIC_ADD_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_imin:
+ atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_ssbo_atomic_umin:
+ atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_imax:
+ atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_ssbo_atomic_umax:
+ atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_and:
+ atomic = ir3_ATOMIC_AND_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_or:
+ atomic = ir3_ATOMIC_OR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_xor:
+ atomic = ir3_ATOMIC_XOR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_exchange:
+ atomic = ir3_ATOMIC_XCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ /* for cmpxchg, src0 is [ui]vec2(data, compare): */
+ src0 = create_collect(ctx, (struct ir3_instruction*[]){
+ get_src(ctx, &intr->src[3])[0],
+ src0,
+ }, 2);
+ atomic = ir3_ATOMIC_CMPXCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ atomic->cat6.iim_val = 1;
+ atomic->cat6.d = 4;
+ atomic->cat6.type = type;
+ atomic->barrier_class = IR3_BARRIER_BUFFER_W;
+ atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+
+ /* even if nothing consume the result, we can't DCE the instruction: */
+ array_insert(b, b->keeps, atomic);
+
+ return atomic;
+}
+
+/* src[] = { offset }. const_index[] = { base } */
+static void
+emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *ldl, *offset;
+ unsigned base;
+
+ offset = get_src(ctx, &intr->src[0])[0];
+ base = nir_intrinsic_base(intr);
+
+ ldl = ir3_LDL(b, offset, 0, create_immed(b, intr->num_components), 0);
+ ldl->cat6.src_offset = base;
+ ldl->cat6.type = utype_dst(intr->dest);
+ ldl->regs[0]->wrmask = MASK(intr->num_components);
+
+ ldl->barrier_class = IR3_BARRIER_SHARED_R;
+ ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
+
+ split_dest(b, dst, ldl, 0, intr->num_components);
+}
+
+/* src[] = { value, offset }. const_index[] = { base, write_mask } */
+static void
+emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *stl, *offset;
+ struct ir3_instruction * const *value;
+ unsigned base, wrmask;
+
+ value = get_src(ctx, &intr->src[0]);
+ offset = get_src(ctx, &intr->src[1])[0];
+
+ base = nir_intrinsic_base(intr);
+ wrmask = nir_intrinsic_write_mask(intr);
+
+ /* Combine groups of consecutive enabled channels in one write
+ * message. We use ffs to find the first enabled channel and then ffs on
+ * the bit-inverse, down-shifted writemask to determine the length of
+ * the block of enabled bits.
+ *
+ * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
+ */
+ while (wrmask) {
+ unsigned first_component = ffs(wrmask) - 1;
+ unsigned length = ffs(~(wrmask >> first_component)) - 1;
+
+ stl = ir3_STL(b, offset, 0,
+ create_collect(ctx, &value[first_component], length), 0,
+ create_immed(b, length), 0);
+ stl->cat6.dst_offset = first_component + base;
+ stl->cat6.type = utype_src(intr->src[0]);
+ stl->barrier_class = IR3_BARRIER_SHARED_W;
+ stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
+
+ array_insert(b, b->keeps, stl);
+
+ /* Clear the bits in the writemask that we just wrote, then try
+ * again to see if more channels are left.
+ */
+ wrmask &= (15 << (first_component + length));
+ }
+}
+
+/*
+ * CS shared variable atomic intrinsics
+ *
+ * All of the shared variable atomic memory operations read a value from
+ * memory, compute a new value using one of the operations below, write the
+ * new value to memory, and return the original value read.
+ *
+ * All operations take 2 sources except CompSwap that takes 3. These
+ * sources represent:
+ *
+ * 0: The offset into the shared variable storage region that the atomic
+ * operation will operate on.
+ * 1: The data parameter to the atomic function (i.e. the value to add
+ * in shared_atomic_add, etc).
+ * 2: For CompSwap only: the second data parameter.
+ */
+static struct ir3_instruction *
+emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *atomic, *src0, *src1;
+ type_t type = TYPE_U32;
+
+ src0 = get_src(ctx, &intr->src[0])[0]; /* offset */
+ src1 = get_src(ctx, &intr->src[1])[0]; /* value */
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_shared_atomic_add:
+ atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_imin:
+ atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_shared_atomic_umin:
+ atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_imax:
+ atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
+ type = TYPE_S32;
+ break;
+ case nir_intrinsic_shared_atomic_umax:
+ atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_and:
+ atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_or:
+ atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_xor:
+ atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_exchange:
+ atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
+ break;
+ case nir_intrinsic_shared_atomic_comp_swap:
+ /* for cmpxchg, src1 is [ui]vec2(data, compare): */
+ src1 = create_collect(ctx, (struct ir3_instruction*[]){
+ get_src(ctx, &intr->src[2])[0],
+ src1,
+ }, 2);
+ atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ atomic->cat6.iim_val = 1;
+ atomic->cat6.d = 1;
+ atomic->cat6.type = type;
+ atomic->barrier_class = IR3_BARRIER_SHARED_W;
+ atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
+
+ /* even if nothing consume the result, we can't DCE the instruction: */
+ array_insert(b, b->keeps, atomic);
+
+ return atomic;
+}
+
+/* Images get mapped into SSBO/image state (for store/atomic) and texture
+ * state block (for load). To simplify things, invert the image id and
+ * map it from end of state block, ie. image 0 becomes num-1, image 1
+ * becomes num-2, etc. This potentially avoids needing to re-emit texture
+ * state when switching shaders.
+ *
+ * TODO is max # of samplers and SSBOs the same. This shouldn't be hard-
+ * coded. Also, since all the gl shader stages (ie. everything but CS)
+ * share the same SSBO/image state block, this might require some more
+ * logic if we supported images in anything other than FS..
+ */
+static unsigned
+get_image_slot(struct ir3_context *ctx, nir_deref_instr *deref)
+{
+ unsigned int loc = 0;
+ unsigned inner_size = 1;
+
+ while (deref->deref_type != nir_deref_type_var) {
+ assert(deref->deref_type == nir_deref_type_array);
+ nir_const_value *const_index = nir_src_as_const_value(deref->arr.index);
+ assert(const_index);
+
+ /* Go to the next instruction */
+ deref = nir_deref_instr_parent(deref);
+
+ assert(glsl_type_is_array(deref->type));
+ const unsigned array_len = glsl_get_length(deref->type);
+ loc += MIN2(const_index->u32[0], array_len - 1) * inner_size;
+
+ /* Update the inner size */
+ inner_size *= array_len;
+ }
+
+ loc += deref->var->data.driver_location;
+
+ /* TODO figure out real limit per generation, and don't hardcode: */
+ const unsigned max_samplers = 16;
+ return max_samplers - loc - 1;
+}
+
+/* see tex_info() for equiv logic for texture instructions.. it would be
+ * nice if this could be better unified..
+ */
+static unsigned
+get_image_coords(const nir_variable *var, unsigned *flagsp)
+{
+ const struct glsl_type *type = glsl_without_array(var->type);
+ unsigned coords, flags = 0;
+
+ switch (glsl_get_sampler_dim(type)) {
+ case GLSL_SAMPLER_DIM_1D:
+ case GLSL_SAMPLER_DIM_BUF:
+ coords = 1;
+ break;
+ case GLSL_SAMPLER_DIM_2D:
+ case GLSL_SAMPLER_DIM_RECT:
+ case GLSL_SAMPLER_DIM_EXTERNAL:
+ case GLSL_SAMPLER_DIM_MS:
+ coords = 2;
+ break;
+ case GLSL_SAMPLER_DIM_3D:
+ case GLSL_SAMPLER_DIM_CUBE:
+ flags |= IR3_INSTR_3D;
+ coords = 3;
+ break;
+ default:
+ unreachable("bad sampler dim");
+ return 0;
+ }
+
+ if (glsl_sampler_type_is_array(type)) {
+ /* note: unlike tex_info(), adjust # of coords to include array idx: */
+ coords++;
+ flags |= IR3_INSTR_A;
+ }
+
+ if (flagsp)
+ *flagsp = flags;
+
+ return coords;
+}
+
+static type_t
+get_image_type(const nir_variable *var)
+{
+ switch (glsl_get_sampler_result_type(glsl_without_array(var->type))) {
+ case GLSL_TYPE_UINT:
+ return TYPE_U32;
+ case GLSL_TYPE_INT:
+ return TYPE_S32;
+ case GLSL_TYPE_FLOAT:
+ return TYPE_F32;
+ default:
+ unreachable("bad sampler type.");
+ return 0;
+ }
+}
+
+static struct ir3_instruction *
+get_image_offset(struct ir3_context *ctx, const nir_variable *var,
+ struct ir3_instruction * const *coords, bool byteoff)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *offset;
+ unsigned ncoords = get_image_coords(var, NULL);
+
+ /* to calculate the byte offset (yes, uggg) we need (up to) three
+ * const values to know the bytes per pixel, and y and z stride:
+ */
+ unsigned cb = regid(ctx->so->constbase.image_dims, 0) +
+ ctx->so->const_layout.image_dims.off[var->data.driver_location];
+
+ debug_assert(ctx->so->const_layout.image_dims.mask &
+ (1 << var->data.driver_location));
+
+ /* offset = coords.x * bytes_per_pixel: */
+ offset = ir3_MUL_S(b, coords[0], 0, create_uniform(ctx, cb + 0), 0);
+ if (ncoords > 1) {
+ /* offset += coords.y * y_pitch: */
+ offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 1), 0,
+ coords[1], 0, offset, 0);
+ }
+ if (ncoords > 2) {
+ /* offset += coords.z * z_pitch: */
+ offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 2), 0,
+ coords[2], 0, offset, 0);
+ }
+
+ if (!byteoff) {
+ /* Some cases, like atomics, seem to use dword offset instead
+ * of byte offsets.. blob just puts an extra shr.b in there
+ * in those cases:
+ */
+ offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
+ }
+
+ return create_collect(ctx, (struct ir3_instruction*[]){
+ offset,
+ create_immed(b, 0),
+ }, 2);
+}
+
+/* src[] = { deref, coord, sample_index }. const_index[] = {} */
+static void
+emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ struct ir3_instruction *sam;
+ struct ir3_instruction * const *src0 = get_src(ctx, &intr->src[1]);
+ struct ir3_instruction *coords[4];
+ unsigned flags, ncoords = get_image_coords(var, &flags);
+ unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
+ type_t type = get_image_type(var);
+
+ /* hmm, this seems a bit odd, but it is what blob does and (at least
+ * a5xx) just faults on bogus addresses otherwise:
+ */
+ if (flags & IR3_INSTR_3D) {
+ flags &= ~IR3_INSTR_3D;
+ flags |= IR3_INSTR_A;
+ }
+
+ for (unsigned i = 0; i < ncoords; i++)
+ coords[i] = src0[i];
+
+ if (ncoords == 1)
+ coords[ncoords++] = create_immed(b, 0);
+
+ sam = ir3_SAM(b, OPC_ISAM, type, 0b1111, flags,
+ tex_idx, tex_idx, create_collect(ctx, coords, ncoords), NULL);
+
+ sam->barrier_class = IR3_BARRIER_IMAGE_R;
+ sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
+
+ split_dest(b, dst, sam, 0, 4);
+}
+
+/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
+static void
+emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ struct ir3_instruction *stib, *offset;
+ struct ir3_instruction * const *value = get_src(ctx, &intr->src[3]);
+ struct ir3_instruction * const *coords = get_src(ctx, &intr->src[1]);
+ unsigned ncoords = get_image_coords(var, NULL);
+ unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
+
+ /* src0 is value
+ * src1 is coords
+ * src2 is 64b byte offset
+ */
+
+ offset = get_image_offset(ctx, var, coords, true);
+
+ /* NOTE: stib seems to take byte offset, but stgb.typed can be used
+ * too and takes a dword offset.. not quite sure yet why blob uses
+ * one over the other in various cases.
+ */
+
+ stib = ir3_STIB(b, create_immed(b, tex_idx), 0,
+ create_collect(ctx, value, 4), 0,
+ create_collect(ctx, coords, ncoords), 0,
+ offset, 0);
+ stib->cat6.iim_val = 4;
+ stib->cat6.d = ncoords;
+ stib->cat6.type = get_image_type(var);
+ stib->cat6.typed = true;
+ stib->barrier_class = IR3_BARRIER_IMAGE_W;
+ stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
+
+ array_insert(b, b->keeps, stib);
+}
+
+static void
+emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
+ struct ir3_instruction *sam, *lod;
+ unsigned flags, ncoords = get_image_coords(var, &flags);
+
+ lod = create_immed(b, 0);
+ sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, 0b1111, flags,
+ tex_idx, tex_idx, lod, NULL);
+
+ /* Array size actually ends up in .w rather than .z. This doesn't
+ * matter for miplevel 0, but for higher mips the value in z is
+ * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
+ * returned, which means that we have to add 1 to it for arrays for
+ * a3xx.
+ *
+ * Note use a temporary dst and then copy, since the size of the dst
+ * array that is passed in is based on nir's understanding of the
+ * result size, not the hardware's
+ */
+ struct ir3_instruction *tmp[4];
+
+ split_dest(b, tmp, sam, 0, 4);
+
+ /* get_size instruction returns size in bytes instead of texels
+ * for imageBuffer, so we need to divide it by the pixel size
+ * of the image format.
+ *
+ * TODO: This is at least true on a5xx. Check other gens.
+ */
+ enum glsl_sampler_dim dim =
+ glsl_get_sampler_dim(glsl_without_array(var->type));
+ if (dim == GLSL_SAMPLER_DIM_BUF) {
+ /* Since all the possible values the divisor can take are
+ * power-of-two (4, 8, or 16), the division is implemented
+ * as a shift-right.
+ * During shader setup, the log2 of the image format's
+ * bytes-per-pixel should have been emitted in 2nd slot of
+ * image_dims. See ir3_shader::emit_image_dims().
+ */
+ unsigned cb = regid(ctx->so->constbase.image_dims, 0) +
+ ctx->so->const_layout.image_dims.off[var->data.driver_location];
+ struct ir3_instruction *aux = create_uniform(ctx, cb + 1);
+
+ tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
+ }
+
+ for (unsigned i = 0; i < ncoords; i++)
+ dst[i] = tmp[i];
+
+ if (flags & IR3_INSTR_A) {
+ if (ctx->compiler->levels_add_one) {
+ dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
+ } else {
+ dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
+ }
+ }
+}
+
+/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
+static struct ir3_instruction *
+emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ const nir_variable *var = nir_intrinsic_get_var(intr, 0);
+ struct ir3_instruction *atomic, *image, *src0, *src1, *src2;
+ struct ir3_instruction * const *coords = get_src(ctx, &intr->src[1]);
+ unsigned ncoords = get_image_coords(var, NULL);
+
+ image = create_immed(b, get_image_slot(ctx, nir_src_as_deref(intr->src[0])));
+
+ /* src0 is value (or uvec2(value, compare))
+ * src1 is coords
+ * src2 is 64b byte offset
+ */
+ src0 = get_src(ctx, &intr->src[3])[0];
+ src1 = create_collect(ctx, coords, ncoords);
+ src2 = get_image_offset(ctx, var, coords, false);
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_image_deref_atomic_add:
+ atomic = ir3_ATOMIC_ADD_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_min:
+ atomic = ir3_ATOMIC_MIN_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_max:
+ atomic = ir3_ATOMIC_MAX_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_and:
+ atomic = ir3_ATOMIC_AND_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_or:
+ atomic = ir3_ATOMIC_OR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_xor:
+ atomic = ir3_ATOMIC_XOR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_exchange:
+ atomic = ir3_ATOMIC_XCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ case nir_intrinsic_image_deref_atomic_comp_swap:
+ /* for cmpxchg, src0 is [ui]vec2(data, compare): */
+ src0 = create_collect(ctx, (struct ir3_instruction*[]){
+ get_src(ctx, &intr->src[4])[0],
+ src0,
+ }, 2);
+ atomic = ir3_ATOMIC_CMPXCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ atomic->cat6.iim_val = 1;
+ atomic->cat6.d = ncoords;
+ atomic->cat6.type = get_image_type(var);
+ atomic->cat6.typed = true;
+ atomic->barrier_class = IR3_BARRIER_IMAGE_W;
+ atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
+
+ /* even if nothing consume the result, we can't DCE the instruction: */
+ array_insert(b, b->keeps, atomic);
+
+ return atomic;
+}
+
+static void
+emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *barrier;
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_barrier:
+ barrier = ir3_BAR(b);
+ barrier->cat7.g = true;
+ barrier->cat7.l = true;
+ barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
+ barrier->barrier_class = IR3_BARRIER_EVERYTHING;
+ break;
+ case nir_intrinsic_memory_barrier:
+ barrier = ir3_FENCE(b);
+ barrier->cat7.g = true;
+ barrier->cat7.r = true;
+ barrier->cat7.w = true;
+ barrier->barrier_class = IR3_BARRIER_IMAGE_W |
+ IR3_BARRIER_BUFFER_W;
+ barrier->barrier_conflict =
+ IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
+ IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+ break;
+ case nir_intrinsic_memory_barrier_atomic_counter:
+ case nir_intrinsic_memory_barrier_buffer:
+ barrier = ir3_FENCE(b);
+ barrier->cat7.g = true;
+ barrier->cat7.r = true;
+ barrier->cat7.w = true;
+ barrier->barrier_class = IR3_BARRIER_BUFFER_W;
+ barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
+ IR3_BARRIER_BUFFER_W;
+ break;
+ case nir_intrinsic_memory_barrier_image:
+ // TODO double check if this should have .g set
+ barrier = ir3_FENCE(b);
+ barrier->cat7.g = true;
+ barrier->cat7.r = true;
+ barrier->cat7.w = true;
+ barrier->barrier_class = IR3_BARRIER_IMAGE_W;
+ barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
+ IR3_BARRIER_IMAGE_W;
+ break;
+ case nir_intrinsic_memory_barrier_shared:
+ barrier = ir3_FENCE(b);
+ barrier->cat7.g = true;
+ barrier->cat7.l = true;
+ barrier->cat7.r = true;
+ barrier->cat7.w = true;
+ barrier->barrier_class = IR3_BARRIER_SHARED_W;
+ barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
+ IR3_BARRIER_SHARED_W;
+ break;
+ case nir_intrinsic_group_memory_barrier:
+ barrier = ir3_FENCE(b);
+ barrier->cat7.g = true;
+ barrier->cat7.l = true;
+ barrier->cat7.r = true;
+ barrier->cat7.w = true;
+ barrier->barrier_class = IR3_BARRIER_SHARED_W |
+ IR3_BARRIER_IMAGE_W |
+ IR3_BARRIER_BUFFER_W;
+ barrier->barrier_conflict =
+ IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
+ IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
+ IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
+ break;
+ default:
+ unreachable("boo");
+ }
+
+ /* make sure barrier doesn't get DCE'd */
+ array_insert(b, b->keeps, barrier);
+}
+
+static void add_sysval_input_compmask(struct ir3_context *ctx,
+ gl_system_value slot, unsigned compmask,
+ struct ir3_instruction *instr)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ unsigned r = regid(so->inputs_count, 0);
+ unsigned n = so->inputs_count++;
+
+ so->inputs[n].sysval = true;
+ so->inputs[n].slot = slot;
+ so->inputs[n].compmask = compmask;
+ so->inputs[n].regid = r;
+ so->inputs[n].interpolate = INTERP_MODE_FLAT;
+ so->total_in++;
+
+ ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
+ ctx->ir->inputs[r] = instr;
+}
+
+static void add_sysval_input(struct ir3_context *ctx, gl_system_value slot,
+ struct ir3_instruction *instr)
+{
+ add_sysval_input_compmask(ctx, slot, 0x1, instr);
+}
+
+static void
+emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
+ struct ir3_instruction **dst;
+ struct ir3_instruction * const *src;
+ struct ir3_block *b = ctx->block;
+ nir_const_value *const_offset;
+ int idx, comp;
+
+ if (info->has_dest) {
+ unsigned n = nir_intrinsic_dest_components(intr);
+ dst = get_dst(ctx, &intr->dest, n);
+ } else {
+ dst = NULL;
+ }
+
+ switch (intr->intrinsic) {
+ case nir_intrinsic_load_uniform:
+ idx = nir_intrinsic_base(intr);
+ const_offset = nir_src_as_const_value(intr->src[0]);
+ if (const_offset) {
+ idx += const_offset->u32[0];
+ for (int i = 0; i < intr->num_components; i++) {
+ unsigned n = idx * 4 + i;
+ dst[i] = create_uniform(ctx, n);
+ }
+ } else {
+ src = get_src(ctx, &intr->src[0]);
+ for (int i = 0; i < intr->num_components; i++) {
+ int n = idx * 4 + i;
+ dst[i] = create_uniform_indirect(ctx, n,
+ get_addr(ctx, src[0], 4));
+ }
+ /* NOTE: if relative addressing is used, we set
+ * constlen in the compiler (to worst-case value)
+ * since we don't know in the assembler what the max
+ * addr reg value can be:
+ */
+ ctx->so->constlen = ctx->s->num_uniforms;
+ }
+ break;
+ case nir_intrinsic_load_ubo:
+ emit_intrinsic_load_ubo(ctx, intr, dst);
+ break;
+ case nir_intrinsic_load_input:
+ idx = nir_intrinsic_base(intr);
+ comp = nir_intrinsic_component(intr);
+ const_offset = nir_src_as_const_value(intr->src[0]);
+ if (const_offset) {
+ idx += const_offset->u32[0];
+ for (int i = 0; i < intr->num_components; i++) {
+ unsigned n = idx * 4 + i + comp;
+ dst[i] = ctx->ir->inputs[n];
+ }
+ } else {
+ src = get_src(ctx, &intr->src[0]);
+ struct ir3_instruction *collect =
+ create_collect(ctx, ctx->ir->inputs, ctx->ir->ninputs);
+ struct ir3_instruction *addr = get_addr(ctx, src[0], 4);
+ for (int i = 0; i < intr->num_components; i++) {
+ unsigned n = idx * 4 + i + comp;
+ dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
+ n, addr, collect);
+ }
+ }
+ break;
+ case nir_intrinsic_load_ssbo:
+ emit_intrinsic_load_ssbo(ctx, intr, dst);
+ break;
+ case nir_intrinsic_store_ssbo:
+ emit_intrinsic_store_ssbo(ctx, intr);
+ break;
+ case nir_intrinsic_get_buffer_size:
+ emit_intrinsic_ssbo_size(ctx, intr, dst);
+ break;
+ case nir_intrinsic_ssbo_atomic_add:
+ case nir_intrinsic_ssbo_atomic_imin:
+ case nir_intrinsic_ssbo_atomic_umin:
+ case nir_intrinsic_ssbo_atomic_imax:
+ case nir_intrinsic_ssbo_atomic_umax:
+ case nir_intrinsic_ssbo_atomic_and:
+ case nir_intrinsic_ssbo_atomic_or:
+ case nir_intrinsic_ssbo_atomic_xor:
+ case nir_intrinsic_ssbo_atomic_exchange:
+ case nir_intrinsic_ssbo_atomic_comp_swap:
+ dst[0] = emit_intrinsic_atomic_ssbo(ctx, intr);
+ break;
+ case nir_intrinsic_load_shared:
+ emit_intrinsic_load_shared(ctx, intr, dst);
+ break;
+ case nir_intrinsic_store_shared:
+ emit_intrinsic_store_shared(ctx, intr);
+ break;
+ case nir_intrinsic_shared_atomic_add:
+ case nir_intrinsic_shared_atomic_imin:
+ case nir_intrinsic_shared_atomic_umin:
+ case nir_intrinsic_shared_atomic_imax:
+ case nir_intrinsic_shared_atomic_umax:
+ case nir_intrinsic_shared_atomic_and:
+ case nir_intrinsic_shared_atomic_or:
+ case nir_intrinsic_shared_atomic_xor:
+ case nir_intrinsic_shared_atomic_exchange:
+ case nir_intrinsic_shared_atomic_comp_swap:
+ dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
+ break;
+ case nir_intrinsic_image_deref_load:
+ emit_intrinsic_load_image(ctx, intr, dst);
+ break;
+ case nir_intrinsic_image_deref_store:
+ emit_intrinsic_store_image(ctx, intr);
+ break;
+ case nir_intrinsic_image_deref_size:
+ emit_intrinsic_image_size(ctx, intr, dst);
+ break;
+ case nir_intrinsic_image_deref_atomic_add:
+ case nir_intrinsic_image_deref_atomic_min:
+ case nir_intrinsic_image_deref_atomic_max:
+ case nir_intrinsic_image_deref_atomic_and:
+ case nir_intrinsic_image_deref_atomic_or:
+ case nir_intrinsic_image_deref_atomic_xor:
+ case nir_intrinsic_image_deref_atomic_exchange:
+ case nir_intrinsic_image_deref_atomic_comp_swap:
+ dst[0] = emit_intrinsic_atomic_image(ctx, intr);
+ break;
+ case nir_intrinsic_barrier:
+ case nir_intrinsic_memory_barrier:
+ case nir_intrinsic_group_memory_barrier:
+ case nir_intrinsic_memory_barrier_atomic_counter:
+ case nir_intrinsic_memory_barrier_buffer:
+ case nir_intrinsic_memory_barrier_image:
+ case nir_intrinsic_memory_barrier_shared:
+ emit_intrinsic_barrier(ctx, intr);
+ /* note that blk ptr no longer valid, make that obvious: */
+ b = NULL;
+ break;
+ case nir_intrinsic_store_output:
+ idx = nir_intrinsic_base(intr);
+ comp = nir_intrinsic_component(intr);
+ const_offset = nir_src_as_const_value(intr->src[1]);
+ compile_assert(ctx, const_offset != NULL);
+ idx += const_offset->u32[0];
+
+ src = get_src(ctx, &intr->src[0]);
+ for (int i = 0; i < intr->num_components; i++) {
+ unsigned n = idx * 4 + i + comp;
+ ctx->ir->outputs[n] = src[i];
+ }
+ break;
+ case nir_intrinsic_load_base_vertex:
+ case nir_intrinsic_load_first_vertex:
+ if (!ctx->basevertex) {
+ ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
+ add_sysval_input(ctx, SYSTEM_VALUE_FIRST_VERTEX, ctx->basevertex);
+ }
+ dst[0] = ctx->basevertex;
+ break;
+ case nir_intrinsic_load_vertex_id_zero_base:
+ case nir_intrinsic_load_vertex_id:
+ if (!ctx->vertex_id) {
+ gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
+ SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
+ ctx->vertex_id = create_input(ctx, 0);
+ add_sysval_input(ctx, sv, ctx->vertex_id);
+ }
+ dst[0] = ctx->vertex_id;
+ break;
+ case nir_intrinsic_load_instance_id:
+ if (!ctx->instance_id) {
+ ctx->instance_id = create_input(ctx, 0);
+ add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
+ ctx->instance_id);
+ }
+ dst[0] = ctx->instance_id;
+ break;
+ case nir_intrinsic_load_sample_id:
+ case nir_intrinsic_load_sample_id_no_per_sample:
+ if (!ctx->samp_id) {
+ ctx->samp_id = create_input(ctx, 0);
+ ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
+ add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID,
+ ctx->samp_id);
+ }
+ dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
+ break;
+ case nir_intrinsic_load_sample_mask_in:
+ if (!ctx->samp_mask_in) {
+ ctx->samp_mask_in = create_input(ctx, 0);
+ add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN,
+ ctx->samp_mask_in);
+ }
+ dst[0] = ctx->samp_mask_in;
+ break;
+ case nir_intrinsic_load_user_clip_plane:
+ idx = nir_intrinsic_ucp_id(intr);
+ for (int i = 0; i < intr->num_components; i++) {
+ unsigned n = idx * 4 + i;
+ dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
+ }
+ break;
+ case nir_intrinsic_load_front_face:
+ if (!ctx->frag_face) {
+ ctx->so->frag_face = true;
+ ctx->frag_face = create_input(ctx, 0);
+ add_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, ctx->frag_face);
+ ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
+ }
+ /* for fragface, we get -1 for back and 0 for front. However this is
+ * the inverse of what nir expects (where ~0 is true).
+ */
+ dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
+ dst[0] = ir3_NOT_B(b, dst[0], 0);
+ break;
+ case nir_intrinsic_load_local_invocation_id:
+ if (!ctx->local_invocation_id) {
+ ctx->local_invocation_id = create_input_compmask(ctx, 0, 0x7);
+ add_sysval_input_compmask(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID,
+ 0x7, ctx->local_invocation_id);
+ }
+ split_dest(b, dst, ctx->local_invocation_id, 0, 3);
+ break;
+ case nir_intrinsic_load_work_group_id:
+ if (!ctx->work_group_id) {
+ ctx->work_group_id = create_input_compmask(ctx, 0, 0x7);
+ add_sysval_input_compmask(ctx, SYSTEM_VALUE_WORK_GROUP_ID,
+ 0x7, ctx->work_group_id);
+ ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
+ }
+ split_dest(b, dst, ctx->work_group_id, 0, 3);
+ break;
+ case nir_intrinsic_load_num_work_groups:
+ for (int i = 0; i < intr->num_components; i++) {
+ dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
+ }
+ break;
+ case nir_intrinsic_load_local_group_size:
+ for (int i = 0; i < intr->num_components; i++) {
+ dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
+ }
+ break;
+ case nir_intrinsic_discard_if:
+ case nir_intrinsic_discard: {
+ struct ir3_instruction *cond, *kill;
+
+ if (intr->intrinsic == nir_intrinsic_discard_if) {
+ /* conditional discard: */
+ src = get_src(ctx, &intr->src[0]);
+ cond = ir3_b2n(b, src[0]);
+ } else {
+ /* unconditional discard: */
+ cond = create_immed(b, 1);
+ }
+
+ /* NOTE: only cmps.*.* can write p0.x: */
+ cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
+ cond->cat2.condition = IR3_COND_NE;
+
+ /* condition always goes in predicate register: */
+ cond->regs[0]->num = regid(REG_P0, 0);
+
+ kill = ir3_KILL(b, cond, 0);
+ array_insert(ctx->ir, ctx->ir->predicates, kill);
+
+ array_insert(b, b->keeps, kill);
+ ctx->so->has_kill = true;
+
+ break;
+ }
+ default:
+ compile_error(ctx, "Unhandled intrinsic type: %s\n",
+ nir_intrinsic_infos[intr->intrinsic].name);
+ break;
+ }
+
+ if (info->has_dest)
+ put_dst(ctx, &intr->dest);
+}
+
+static void
+emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
+{
+ struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
+ instr->def.num_components);
+ type_t type = (instr->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
+
+ for (int i = 0; i < instr->def.num_components; i++)
+ dst[i] = create_immed_typed(ctx->block, instr->value.u32[i], type);
+}
+
+static void
+emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
+{
+ struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
+ undef->def.num_components);
+ type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
+
+ /* backend doesn't want undefined instructions, so just plug
+ * in 0.0..
+ */
+ for (int i = 0; i < undef->def.num_components; i++)
+ dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
+}
+
+/*
+ * texture fetch/sample instructions:
+ */
+
+static void
+tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
+{
+ unsigned coords, flags = 0;
+
+ /* note: would use tex->coord_components.. except txs.. also,
+ * since array index goes after shadow ref, we don't want to
+ * count it:
+ */
+ switch (tex->sampler_dim) {
+ case GLSL_SAMPLER_DIM_1D:
+ case GLSL_SAMPLER_DIM_BUF:
+ coords = 1;
+ break;
+ case GLSL_SAMPLER_DIM_2D:
+ case GLSL_SAMPLER_DIM_RECT:
+ case GLSL_SAMPLER_DIM_EXTERNAL:
+ case GLSL_SAMPLER_DIM_MS:
+ coords = 2;
+ break;
+ case GLSL_SAMPLER_DIM_3D:
+ case GLSL_SAMPLER_DIM_CUBE:
+ coords = 3;
+ flags |= IR3_INSTR_3D;
+ break;
+ default:
+ unreachable("bad sampler_dim");
+ }
+
+ if (tex->is_shadow && tex->op != nir_texop_lod)
+ flags |= IR3_INSTR_S;
+
+ if (tex->is_array && tex->op != nir_texop_lod)
+ flags |= IR3_INSTR_A;
+
+ *flagsp = flags;
+ *coordsp = coords;
+}
+
+static void
+emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
+ struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
+ struct ir3_instruction *lod, *compare, *proj, *sample_index;
+ bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
+ unsigned i, coords, flags;
+ unsigned nsrc0 = 0, nsrc1 = 0;
+ type_t type;
+ opc_t opc = 0;
+
+ coord = off = ddx = ddy = NULL;
+ lod = proj = compare = sample_index = NULL;
+
+ /* TODO: might just be one component for gathers? */
+ dst = get_dst(ctx, &tex->dest, 4);
+
+ for (unsigned i = 0; i < tex->num_srcs; i++) {
+ switch (tex->src[i].src_type) {
+ case nir_tex_src_coord:
+ coord = get_src(ctx, &tex->src[i].src);
+ break;
+ case nir_tex_src_bias:
+ lod = get_src(ctx, &tex->src[i].src)[0];
+ has_bias = true;
+ break;
+ case nir_tex_src_lod:
+ lod = get_src(ctx, &tex->src[i].src)[0];
+ has_lod = true;
+ break;
+ case nir_tex_src_comparator: /* shadow comparator */
+ compare = get_src(ctx, &tex->src[i].src)[0];
+ break;
+ case nir_tex_src_projector:
+ proj = get_src(ctx, &tex->src[i].src)[0];
+ has_proj = true;
+ break;
+ case nir_tex_src_offset:
+ off = get_src(ctx, &tex->src[i].src);
+ has_off = true;
+ break;
+ case nir_tex_src_ddx:
+ ddx = get_src(ctx, &tex->src[i].src);
+ break;
+ case nir_tex_src_ddy:
+ ddy = get_src(ctx, &tex->src[i].src);
+ break;
+ case nir_tex_src_ms_index:
+ sample_index = get_src(ctx, &tex->src[i].src)[0];
+ break;
+ default:
+ compile_error(ctx, "Unhandled NIR tex src type: %d\n",
+ tex->src[i].src_type);
+ return;
+ }
+ }
+
+ switch (tex->op) {
+ case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
+ case nir_texop_txb: opc = OPC_SAMB; break;
+ case nir_texop_txl: opc = OPC_SAML; break;
+ case nir_texop_txd: opc = OPC_SAMGQ; break;
+ case nir_texop_txf: opc = OPC_ISAML; break;
+ case nir_texop_lod: opc = OPC_GETLOD; break;
+ case nir_texop_tg4:
+ /* NOTE: a4xx might need to emulate gather w/ txf (this is
+ * what blob does, seems gather is broken?), and a3xx did
+ * not support it (but probably could also emulate).
+ */
+ switch (tex->component) {
+ case 0: opc = OPC_GATHER4R; break;
+ case 1: opc = OPC_GATHER4G; break;
+ case 2: opc = OPC_GATHER4B; break;
+ case 3: opc = OPC_GATHER4A; break;
+ }
+ break;
+ case nir_texop_txf_ms: opc = OPC_ISAMM; break;
+ case nir_texop_txs:
+ case nir_texop_query_levels:
+ case nir_texop_texture_samples:
+ case nir_texop_samples_identical:
+ case nir_texop_txf_ms_mcs:
+ compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
+ return;
+ }
+
+ tex_info(tex, &flags, &coords);
+
+ /*
+ * lay out the first argument in the proper order:
+ * - actual coordinates first
+ * - shadow reference
+ * - array index
+ * - projection w
+ * - starting at offset 4, dpdx.xy, dpdy.xy
+ *
+ * bias/lod go into the second arg
+ */
+
+ /* insert tex coords: */
+ for (i = 0; i < coords; i++)
+ src0[i] = coord[i];
+
+ nsrc0 = i;
+
+ /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
+ * with scaled x coord according to requested sample:
+ */
+ if (tex->op == nir_texop_txf_ms) {
+ if (ctx->compiler->txf_ms_with_isaml) {
+ /* the samples are laid out in x dimension as
+ * 0 1 2 3
+ * x_ms = (x << ms) + sample_index;
+ */
+ struct ir3_instruction *ms;
+ ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
+
+ src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
+ src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
+
+ opc = OPC_ISAML;
+ } else {
+ src0[nsrc0++] = sample_index;
+ }
+ }
+
+ /* scale up integer coords for TXF based on the LOD */
+ if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
+ assert(has_lod);
+ for (i = 0; i < coords; i++)
+ src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
+ }
+
+ if (coords == 1) {
+ /* hw doesn't do 1d, so we treat it as 2d with
+ * height of 1, and patch up the y coord.
+ * TODO: y coord should be (int)0 in some cases..
+ */
+ src0[nsrc0++] = create_immed(b, fui(0.5));
+ }
+
+ if (tex->is_shadow && tex->op != nir_texop_lod)
+ src0[nsrc0++] = compare;
+
+ if (tex->is_array && tex->op != nir_texop_lod) {
+ struct ir3_instruction *idx = coord[coords];
+
+ /* the array coord for cube arrays needs 0.5 added to it */
+ if (ctx->compiler->array_index_add_half && (opc != OPC_ISAML))
+ idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
+
+ src0[nsrc0++] = idx;
+ }
+
+ if (has_proj) {
+ src0[nsrc0++] = proj;
+ flags |= IR3_INSTR_P;
+ }
+
+ /* pad to 4, then ddx/ddy: */
+ if (tex->op == nir_texop_txd) {
+ while (nsrc0 < 4)
+ src0[nsrc0++] = create_immed(b, fui(0.0));
+ for (i = 0; i < coords; i++)
+ src0[nsrc0++] = ddx[i];
+ if (coords < 2)
+ src0[nsrc0++] = create_immed(b, fui(0.0));
+ for (i = 0; i < coords; i++)
+ src0[nsrc0++] = ddy[i];
+ if (coords < 2)
+ src0[nsrc0++] = create_immed(b, fui(0.0));
+ }
+
+ /*
+ * second argument (if applicable):
+ * - offsets
+ * - lod
+ * - bias
+ */
+ if (has_off | has_lod | has_bias) {
+ if (has_off) {
+ unsigned off_coords = coords;
+ if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
+ off_coords--;
+ for (i = 0; i < off_coords; i++)
+ src1[nsrc1++] = off[i];
+ if (off_coords < 2)
+ src1[nsrc1++] = create_immed(b, fui(0.0));
+ flags |= IR3_INSTR_O;
+ }
+
+ if (has_lod | has_bias)
+ src1[nsrc1++] = lod;
+ }
+
+ switch (tex->dest_type) {
+ case nir_type_invalid:
+ case nir_type_float:
+ type = TYPE_F32;
+ break;
+ case nir_type_int:
+ type = TYPE_S32;
+ break;
+ case nir_type_uint:
+ case nir_type_bool:
+ type = TYPE_U32;
+ break;
+ default:
+ unreachable("bad dest_type");
+ }
+
+ if (opc == OPC_GETLOD)
+ type = TYPE_U32;
+
+ unsigned tex_idx = tex->texture_index;
+
+ ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx);
+
+ struct ir3_instruction *col0 = create_collect(ctx, src0, nsrc0);
+ struct ir3_instruction *col1 = create_collect(ctx, src1, nsrc1);
+
+ sam = ir3_SAM(b, opc, type, 0b1111, flags,
+ tex_idx, tex_idx, col0, col1);
+
+ if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) {
+ /* only need first 3 components: */
+ sam->regs[0]->wrmask = 0x7;
+ split_dest(b, dst, sam, 0, 3);
+
+ /* we need to sample the alpha separately with a non-ASTC
+ * texture state:
+ */
+ sam = ir3_SAM(b, opc, type, 0b1000, flags,
+ tex_idx, tex_idx, col0, col1);
+
+ array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
+
+ /* fixup .w component: */
+ split_dest(b, &dst[3], sam, 3, 1);
+ } else {
+ /* normal (non-workaround) case: */
+ split_dest(b, dst, sam, 0, 4);
+ }
+
+ /* GETLOD returns results in 4.8 fixed point */
+ if (opc == OPC_GETLOD) {
+ struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
+
+ compile_assert(ctx, tex->dest_type == nir_type_float);
+ for (i = 0; i < 2; i++) {
+ dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
+ factor, 0);
+ }
+ }
+
+ put_dst(ctx, &tex->dest);
+}
+
+static void
+emit_tex_query_levels(struct ir3_context *ctx, nir_tex_instr *tex)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction **dst, *sam;
+
+ dst = get_dst(ctx, &tex->dest, 1);
+
+ sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, 0b0100, 0,
+ tex->texture_index, tex->texture_index, NULL, NULL);
+
+ /* even though there is only one component, since it ends
+ * up in .z rather than .x, we need a split_dest()
+ */
+ split_dest(b, dst, sam, 0, 3);
+
+ /* The # of levels comes from getinfo.z. We need to add 1 to it, since
+ * the value in TEX_CONST_0 is zero-based.
+ */
+ if (ctx->compiler->levels_add_one)
+ dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
+
+ put_dst(ctx, &tex->dest);
+}
+
+static void
+emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction **dst, *sam;
+ struct ir3_instruction *lod;
+ unsigned flags, coords;
+
+ tex_info(tex, &flags, &coords);
+
+ /* Actually we want the number of dimensions, not coordinates. This
+ * distinction only matters for cubes.
+ */
+ if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
+ coords = 2;
+
+ dst = get_dst(ctx, &tex->dest, 4);
+
+ compile_assert(ctx, tex->num_srcs == 1);
+ compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
+
+ lod = get_src(ctx, &tex->src[0].src)[0];
+
+ sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, 0b1111, flags,
+ tex->texture_index, tex->texture_index, lod, NULL);
+
+ split_dest(b, dst, sam, 0, 4);
+
+ /* Array size actually ends up in .w rather than .z. This doesn't
+ * matter for miplevel 0, but for higher mips the value in z is
+ * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
+ * returned, which means that we have to add 1 to it for arrays.
+ */
+ if (tex->is_array) {
+ if (ctx->compiler->levels_add_one) {
+ dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
+ } else {
+ dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
+ }
+ }
+
+ put_dst(ctx, &tex->dest);
+}
+
+static void
+emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
+{
+ switch (jump->type) {
+ case nir_jump_break:
+ case nir_jump_continue:
+ case nir_jump_return:
+ /* I *think* we can simply just ignore this, and use the
+ * successor block link to figure out where we need to
+ * jump to for break/continue
+ */
+ break;
+ default:
+ compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
+ break;
+ }
+}
+
+static void
+emit_instr(struct ir3_context *ctx, nir_instr *instr)
+{
+ switch (instr->type) {
+ case nir_instr_type_alu:
+ emit_alu(ctx, nir_instr_as_alu(instr));
+ break;
+ case nir_instr_type_deref:
+ /* ignored, handled as part of the intrinsic they are src to */
+ break;
+ case nir_instr_type_intrinsic:
+ emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
+ break;
+ case nir_instr_type_load_const:
+ emit_load_const(ctx, nir_instr_as_load_const(instr));
+ break;
+ case nir_instr_type_ssa_undef:
+ emit_undef(ctx, nir_instr_as_ssa_undef(instr));
+ break;
+ case nir_instr_type_tex: {
+ nir_tex_instr *tex = nir_instr_as_tex(instr);
+ /* couple tex instructions get special-cased:
+ */
+ switch (tex->op) {
+ case nir_texop_txs:
+ emit_tex_txs(ctx, tex);
+ break;
+ case nir_texop_query_levels:
+ emit_tex_query_levels(ctx, tex);
+ break;
+ default:
+ emit_tex(ctx, tex);
+ break;
+ }
+ break;
+ }
+ case nir_instr_type_jump:
+ emit_jump(ctx, nir_instr_as_jump(instr));
+ break;
+ case nir_instr_type_phi:
+ /* we have converted phi webs to regs in NIR by now */
+ compile_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
+ break;
+ case nir_instr_type_call:
+ case nir_instr_type_parallel_copy:
+ compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
+ break;
+ }
+}
+
+static struct ir3_block *
+get_block(struct ir3_context *ctx, const nir_block *nblock)
+{
+ struct ir3_block *block;
+ struct hash_entry *hentry;
+ unsigned i;
+
+ hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
+ if (hentry)
+ return hentry->data;
+
+ block = ir3_block_create(ctx->ir);
+ block->nblock = nblock;
+ _mesa_hash_table_insert(ctx->block_ht, nblock, block);
+
+ block->predecessors_count = nblock->predecessors->entries;
+ block->predecessors = ralloc_array_size(block,
+ sizeof(block->predecessors[0]), block->predecessors_count);
+ i = 0;
+ set_foreach(nblock->predecessors, sentry) {
+ block->predecessors[i++] = get_block(ctx, sentry->key);
+ }
+
+ return block;
+}
+
+static void
+emit_block(struct ir3_context *ctx, nir_block *nblock)
+{
+ struct ir3_block *block = get_block(ctx, nblock);
+
+ for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
+ if (nblock->successors[i]) {
+ block->successors[i] =
+ get_block(ctx, nblock->successors[i]);
+ }
+ }
+
+ ctx->block = block;
+ list_addtail(&block->node, &ctx->ir->block_list);
+
+ /* re-emit addr register in each block if needed: */
+ for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
+ _mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
+ ctx->addr_ht[i] = NULL;
+ }
+
+ nir_foreach_instr(instr, nblock) {
+ ctx->cur_instr = instr;
+ emit_instr(ctx, instr);
+ ctx->cur_instr = NULL;
+ if (ctx->error)
+ return;
+ }
+}
+
+static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
+
+static void
+emit_if(struct ir3_context *ctx, nir_if *nif)
+{
+ struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
+
+ ctx->block->condition =
+ get_predicate(ctx, ir3_b2n(condition->block, condition));
+
+ emit_cf_list(ctx, &nif->then_list);
+ emit_cf_list(ctx, &nif->else_list);
+}
+
+static void
+emit_loop(struct ir3_context *ctx, nir_loop *nloop)
+{
+ emit_cf_list(ctx, &nloop->body);
+}
+
+static void
+emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
+{
+ foreach_list_typed(nir_cf_node, node, node, list) {
+ switch (node->type) {
+ case nir_cf_node_block:
+ emit_block(ctx, nir_cf_node_as_block(node));
+ break;
+ case nir_cf_node_if:
+ emit_if(ctx, nir_cf_node_as_if(node));
+ break;
+ case nir_cf_node_loop:
+ emit_loop(ctx, nir_cf_node_as_loop(node));
+ break;
+ case nir_cf_node_function:
+ compile_error(ctx, "TODO\n");
+ break;
+ }
+ }
+}
+
+/* emit stream-out code. At this point, the current block is the original
+ * (nir) end block, and nir ensures that all flow control paths terminate
+ * into the end block. We re-purpose the original end block to generate
+ * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
+ * block holding stream-out write instructions, followed by the new end
+ * block:
+ *
+ * blockOrigEnd {
+ * p0.x = (vtxcnt < maxvtxcnt)
+ * // succs: blockStreamOut, blockNewEnd
+ * }
+ * blockStreamOut {
+ * ... stream-out instructions ...
+ * // succs: blockNewEnd
+ * }
+ * blockNewEnd {
+ * }
+ */
+static void
+emit_stream_out(struct ir3_context *ctx)
+{
+ struct ir3_shader_variant *v = ctx->so;
+ struct ir3 *ir = ctx->ir;
+ struct ir3_stream_output_info *strmout =
+ &ctx->so->shader->stream_output;
+ struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
+ struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
+ struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
+
+ /* create vtxcnt input in input block at top of shader,
+ * so that it is seen as live over the entire duration
+ * of the shader:
+ */
+ vtxcnt = create_input(ctx, 0);
+ add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
+
+ maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
+
+ /* at this point, we are at the original 'end' block,
+ * re-purpose this block to stream-out condition, then
+ * append stream-out block and new-end block
+ */
+ orig_end_block = ctx->block;
+
+// TODO these blocks need to update predecessors..
+// maybe w/ store_global intrinsic, we could do this
+// stuff in nir->nir pass
+
+ stream_out_block = ir3_block_create(ir);
+ list_addtail(&stream_out_block->node, &ir->block_list);
+
+ new_end_block = ir3_block_create(ir);
+ list_addtail(&new_end_block->node, &ir->block_list);
+
+ orig_end_block->successors[0] = stream_out_block;
+ orig_end_block->successors[1] = new_end_block;
+ stream_out_block->successors[0] = new_end_block;
+
+ /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
+ cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
+ cond->regs[0]->num = regid(REG_P0, 0);
+ cond->cat2.condition = IR3_COND_LT;
+
+ /* condition goes on previous block to the conditional,
+ * since it is used to pick which of the two successor
+ * paths to take:
+ */
+ orig_end_block->condition = cond;
+
+ /* switch to stream_out_block to generate the stream-out
+ * instructions:
+ */
+ ctx->block = stream_out_block;
+
+ /* Calculate base addresses based on vtxcnt. Instructions
+ * generated for bases not used in following loop will be
+ * stripped out in the backend.
+ */
+ for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
+ unsigned stride = strmout->stride[i];
+ struct ir3_instruction *base, *off;
+
+ base = create_uniform(ctx, regid(v->constbase.tfbo, i));
+
+ /* 24-bit should be enough: */
+ off = ir3_MUL_U(ctx->block, vtxcnt, 0,
+ create_immed(ctx->block, stride * 4), 0);
+
+ bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
+ }
+
+ /* Generate the per-output store instructions: */
+ for (unsigned i = 0; i < strmout->num_outputs; i++) {
+ for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
+ unsigned c = j + strmout->output[i].start_component;
+ struct ir3_instruction *base, *out, *stg;
+
+ base = bases[strmout->output[i].output_buffer];
+ out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
+
+ stg = ir3_STG(ctx->block, base, 0, out, 0,
+ create_immed(ctx->block, 1), 0);
+ stg->cat6.type = TYPE_U32;
+ stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
+
+ array_insert(ctx->block, ctx->block->keeps, stg);
+ }
+ }
+
+ /* and finally switch to the new_end_block: */
+ ctx->block = new_end_block;
+}
+
+static void
+emit_function(struct ir3_context *ctx, nir_function_impl *impl)
+{
+ nir_metadata_require(impl, nir_metadata_block_index);
+
+ emit_cf_list(ctx, &impl->body);
+ emit_block(ctx, impl->end_block);
+
+ /* at this point, we should have a single empty block,
+ * into which we emit the 'end' instruction.
+ */
+ compile_assert(ctx, list_empty(&ctx->block->instr_list));
+
+ /* If stream-out (aka transform-feedback) enabled, emit the
+ * stream-out instructions, followed by a new empty block (into
+ * which the 'end' instruction lands).
+ *
+ * NOTE: it is done in this order, rather than inserting before
+ * we emit end_block, because NIR guarantees that all blocks
+ * flow into end_block, and that end_block has no successors.
+ * So by re-purposing end_block as the first block of stream-
+ * out, we guarantee that all exit paths flow into the stream-
+ * out instructions.
+ */
+ if ((ctx->compiler->gpu_id < 500) &&
+ (ctx->so->shader->stream_output.num_outputs > 0) &&
+ !ctx->so->binning_pass) {
+ debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
+ emit_stream_out(ctx);
+ }
+
+ ir3_END(ctx->block);
+}
+
+static struct ir3_instruction *
+create_frag_coord(struct ir3_context *ctx, unsigned comp)
+{
+ struct ir3_block *block = ctx->block;
+ struct ir3_instruction *instr;
+
+ if (!ctx->frag_coord) {
+ ctx->frag_coord = create_input_compmask(ctx, 0, 0xf);
+ /* defer add_sysval_input() until after all inputs created */
+ }
+
+ split_dest(block, &instr, ctx->frag_coord, comp, 1);
+
+ switch (comp) {
+ case 0: /* .x */
+ case 1: /* .y */
+ /* for frag_coord, we get unsigned values.. we need
+ * to subtract (integer) 8 and divide by 16 (right-
+ * shift by 4) then convert to float:
+ *
+ * sub.s tmp, src, 8
+ * shr.b tmp, tmp, 4
+ * mov.u32f32 dst, tmp
+ *
+ */
+ instr = ir3_SUB_S(block, instr, 0,
+ create_immed(block, 8), 0);
+ instr = ir3_SHR_B(block, instr, 0,
+ create_immed(block, 4), 0);
+ instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
+
+ return instr;
+ case 2: /* .z */
+ case 3: /* .w */
+ default:
+ /* seems that we can use these as-is: */
+ return instr;
+ }
+}
+
+static void
+setup_input(struct ir3_context *ctx, nir_variable *in)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ unsigned ncomp = glsl_get_components(in->type);
+ unsigned n = in->data.driver_location;
+ unsigned slot = in->data.location;
+
+ /* let's pretend things other than vec4 don't exist: */
+ ncomp = MAX2(ncomp, 4);
+
+ /* skip unread inputs, we could end up with (for example), unsplit
+ * matrix/etc inputs in the case they are not read, so just silently
+ * skip these.
+ */
+ if (ncomp > 4)
+ return;
+
+ compile_assert(ctx, ncomp == 4);
+
+ so->inputs[n].slot = slot;
+ so->inputs[n].compmask = (1 << ncomp) - 1;
+ so->inputs_count = MAX2(so->inputs_count, n + 1);
+ so->inputs[n].interpolate = in->data.interpolation;
+
+ if (ctx->so->type == MESA_SHADER_FRAGMENT) {
+ for (int i = 0; i < ncomp; i++) {
+ struct ir3_instruction *instr = NULL;
+ unsigned idx = (n * 4) + i;
+
+ if (slot == VARYING_SLOT_POS) {
+ so->inputs[n].bary = false;
+ so->frag_coord = true;
+ instr = create_frag_coord(ctx, i);
+ } else if (slot == VARYING_SLOT_PNTC) {
+ /* see for example st_nir_fixup_varying_slots().. this is
+ * maybe a bit mesa/st specific. But we need things to line
+ * up for this in fdN_program:
+ * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
+ * if (emit->sprite_coord_enable & texmask) {
+ * ...
+ * }
+ */
+ so->inputs[n].slot = VARYING_SLOT_VAR8;
+ so->inputs[n].bary = true;
+ instr = create_frag_input(ctx, false);
+ } else {
+ bool use_ldlv = false;
+
+ /* detect the special case for front/back colors where
+ * we need to do flat vs smooth shading depending on
+ * rast state:
+ */
+ if (in->data.interpolation == INTERP_MODE_NONE) {
+ switch (slot) {
+ case VARYING_SLOT_COL0:
+ case VARYING_SLOT_COL1:
+ case VARYING_SLOT_BFC0:
+ case VARYING_SLOT_BFC1:
+ so->inputs[n].rasterflat = true;
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (ctx->compiler->flat_bypass) {
+ if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
+ (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
+ use_ldlv = true;
+ }
+
+ so->inputs[n].bary = true;
+
+ instr = create_frag_input(ctx, use_ldlv);
+ }
+
+ compile_assert(ctx, idx < ctx->ir->ninputs);
+
+ ctx->ir->inputs[idx] = instr;
+ }
+ } else if (ctx->so->type == MESA_SHADER_VERTEX) {
+ for (int i = 0; i < ncomp; i++) {
+ unsigned idx = (n * 4) + i;
+ compile_assert(ctx, idx < ctx->ir->ninputs);
+ ctx->ir->inputs[idx] = create_input(ctx, idx);
+ }
+ } else {
+ compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
+ }
+
+ if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
+ so->total_in += ncomp;
+ }
+}
+
+static void
+setup_output(struct ir3_context *ctx, nir_variable *out)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ unsigned ncomp = glsl_get_components(out->type);
+ unsigned n = out->data.driver_location;
+ unsigned slot = out->data.location;
+ unsigned comp = 0;
+
+ /* let's pretend things other than vec4 don't exist: */
+ ncomp = MAX2(ncomp, 4);
+ compile_assert(ctx, ncomp == 4);
+
+ if (ctx->so->type == MESA_SHADER_FRAGMENT) {
+ switch (slot) {
+ case FRAG_RESULT_DEPTH:
+ comp = 2; /* tgsi will write to .z component */
+ so->writes_pos = true;
+ break;
+ case FRAG_RESULT_COLOR:
+ so->color0_mrt = 1;
+ break;
+ default:
+ if (slot >= FRAG_RESULT_DATA0)
+ break;
+ compile_error(ctx, "unknown FS output name: %s\n",
+ gl_frag_result_name(slot));
+ }
+ } else if (ctx->so->type == MESA_SHADER_VERTEX) {
+ switch (slot) {
+ case VARYING_SLOT_POS:
+ so->writes_pos = true;
+ break;
+ case VARYING_SLOT_PSIZ:
+ so->writes_psize = true;
+ break;
+ case VARYING_SLOT_COL0:
+ case VARYING_SLOT_COL1:
+ case VARYING_SLOT_BFC0:
+ case VARYING_SLOT_BFC1:
+ case VARYING_SLOT_FOGC:
+ case VARYING_SLOT_CLIP_DIST0:
+ case VARYING_SLOT_CLIP_DIST1:
+ case VARYING_SLOT_CLIP_VERTEX:
+ break;
+ default:
+ if (slot >= VARYING_SLOT_VAR0)
+ break;
+ if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
+ break;
+ compile_error(ctx, "unknown VS output name: %s\n",
+ gl_varying_slot_name(slot));
+ }
+ } else {
+ compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
+ }
+
+ compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
+
+ so->outputs[n].slot = slot;
+ so->outputs[n].regid = regid(n, comp);
+ so->outputs_count = MAX2(so->outputs_count, n + 1);
+
+ for (int i = 0; i < ncomp; i++) {
+ unsigned idx = (n * 4) + i;
+ compile_assert(ctx, idx < ctx->ir->noutputs);
+ ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
+ }
+}
+
+static int
+max_drvloc(struct exec_list *vars)
+{
+ int drvloc = -1;
+ nir_foreach_variable(var, vars) {
+ drvloc = MAX2(drvloc, (int)var->data.driver_location);
+ }
+ return drvloc;
+}
+
+static const unsigned max_sysvals[] = {
+ [MESA_SHADER_FRAGMENT] = 24, // TODO
+ [MESA_SHADER_VERTEX] = 16,
+ [MESA_SHADER_COMPUTE] = 16, // TODO how many do we actually need?
+};
+
+static void
+emit_instructions(struct ir3_context *ctx)
+{
+ unsigned ninputs, noutputs;
+ nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
+
+ ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
+ noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
+
+ /* we need to leave room for sysvals:
+ */
+ ninputs += max_sysvals[ctx->so->type];
+
+ ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
+
+ /* Create inputs in first block: */
+ ctx->block = get_block(ctx, nir_start_block(fxn));
+ ctx->in_block = ctx->block;
+ list_addtail(&ctx->block->node, &ctx->ir->block_list);
+
+ ninputs -= max_sysvals[ctx->so->type];
+
+ /* for fragment shader, the vcoord input register is used as the
+ * base for bary.f varying fetch instrs:
+ */
+ struct ir3_instruction *vcoord = NULL;
+ if (ctx->so->type == MESA_SHADER_FRAGMENT) {
+ struct ir3_instruction *xy[2];
+
+ vcoord = create_input_compmask(ctx, 0, 0x3);
+ split_dest(ctx->block, xy, vcoord, 0, 2);
+
+ ctx->frag_vcoord = create_collect(ctx, xy, 2);
+ }
+
+ /* Setup inputs: */
+ nir_foreach_variable(var, &ctx->s->inputs) {
+ setup_input(ctx, var);
+ }
+
+ /* Defer add_sysval_input() stuff until after setup_inputs(),
+ * because sysvals need to be appended after varyings:
+ */
+ if (vcoord) {
+ add_sysval_input_compmask(ctx, SYSTEM_VALUE_VARYING_COORD,
+ 0x3, vcoord);
+ }
+
+ if (ctx->frag_coord) {
+ add_sysval_input_compmask(ctx, SYSTEM_VALUE_FRAG_COORD,
+ 0xf, ctx->frag_coord);
+ }
+
+ /* Setup outputs: */
+ nir_foreach_variable(var, &ctx->s->outputs) {
+ setup_output(ctx, var);
+ }
+
+ /* Setup registers (which should only be arrays): */
+ nir_foreach_register(reg, &ctx->s->registers) {
+ declare_array(ctx, reg);
+ }
+
+ /* NOTE: need to do something more clever when we support >1 fxn */
+ nir_foreach_register(reg, &fxn->registers) {
+ declare_array(ctx, reg);
+ }
+ /* And emit the body: */
+ ctx->impl = fxn;
+ emit_function(ctx, fxn);
+}
+
+/* from NIR perspective, we actually have varying inputs. But the varying
+ * inputs, from an IR standpoint, are just bary.f/ldlv instructions. The
+ * only actual inputs are the sysvals.
+ */
+static void
+fixup_frag_inputs(struct ir3_context *ctx)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ struct ir3 *ir = ctx->ir;
+ unsigned i = 0;
+
+ /* sysvals should appear at the end of the inputs, drop everything else: */
+ while ((i < so->inputs_count) && !so->inputs[i].sysval)
+ i++;
+
+ /* at IR level, inputs are always blocks of 4 scalars: */
+ i *= 4;
+
+ ir->inputs = &ir->inputs[i];
+ ir->ninputs -= i;
+}
+
+/* Fixup tex sampler state for astc/srgb workaround instructions. We
+ * need to assign the tex state indexes for these after we know the
+ * max tex index.
+ */
+static void
+fixup_astc_srgb(struct ir3_context *ctx)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ /* indexed by original tex idx, value is newly assigned alpha sampler
+ * state tex idx. Zero is invalid since there is at least one sampler
+ * if we get here.
+ */
+ unsigned alt_tex_state[16] = {0};
+ unsigned tex_idx = ctx->max_texture_index + 1;
+ unsigned idx = 0;
+
+ so->astc_srgb.base = tex_idx;
+
+ for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
+ struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
+
+ compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
+
+ if (alt_tex_state[sam->cat5.tex] == 0) {
+ /* assign new alternate/alpha tex state slot: */
+ alt_tex_state[sam->cat5.tex] = tex_idx++;
+ so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
+ so->astc_srgb.count++;
+ }
+
+ sam->cat5.tex = alt_tex_state[sam->cat5.tex];
+ }
+}
+
+static void
+fixup_binning_pass(struct ir3_context *ctx)
+{
+ struct ir3_shader_variant *so = ctx->so;
+ struct ir3 *ir = ctx->ir;
+ unsigned i, j;
+
+ for (i = 0, j = 0; i < so->outputs_count; i++) {
+ unsigned slot = so->outputs[i].slot;
+
+ /* throw away everything but first position/psize */
+ if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
+ if (i != j) {
+ so->outputs[j] = so->outputs[i];
+ ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
+ ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
+ ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
+ ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
+ }
+ j++;
+ }
+ }
+ so->outputs_count = j;
+ ir->noutputs = j * 4;
+}
+
+int
+ir3_compile_shader_nir(struct ir3_compiler *compiler,
+ struct ir3_shader_variant *so)
+{
+ struct ir3_context *ctx;
+ struct ir3 *ir;
+ struct ir3_instruction **inputs;
+ unsigned i, actual_in, inloc;
+ int ret = 0, max_bary;
+
+ assert(!so->ir);
+
+ ctx = compile_init(compiler, so);
+ if (!ctx) {
+ DBG("INIT failed!");
+ ret = -1;
+ goto out;
+ }
+
+ emit_instructions(ctx);
+
+ if (ctx->error) {
+ DBG("EMIT failed!");
+ ret = -1;
+ goto out;
+ }
+
+ ir = so->ir = ctx->ir;
+
+ /* keep track of the inputs from TGSI perspective.. */
+ inputs = ir->inputs;
+
+ /* but fixup actual inputs for frag shader: */
+ if (so->type == MESA_SHADER_FRAGMENT)
+ fixup_frag_inputs(ctx);
+
+ /* at this point, for binning pass, throw away unneeded outputs: */
+ if (so->binning_pass && (ctx->compiler->gpu_id < 600))
+ fixup_binning_pass(ctx);
+
+ /* if we want half-precision outputs, mark the output registers
+ * as half:
+ */
+ if (so->key.half_precision) {
+ for (i = 0; i < ir->noutputs; i++) {
+ struct ir3_instruction *out = ir->outputs[i];
+
+ if (!out)
+ continue;
+
+ /* if frag shader writes z, that needs to be full precision: */
+ if (so->outputs[i/4].slot == FRAG_RESULT_DEPTH)
+ continue;
+
+ out->regs[0]->flags |= IR3_REG_HALF;
+ /* output could be a fanout (ie. texture fetch output)
+ * in which case we need to propagate the half-reg flag
+ * up to the definer so that RA sees it:
+ */
+ if (out->opc == OPC_META_FO) {
+ out = out->regs[1]->instr;
+ out->regs[0]->flags |= IR3_REG_HALF;
+ }
+
+ if (out->opc == OPC_MOV) {
+ out->cat1.dst_type = half_type(out->cat1.dst_type);
+ }
+ }
+ }
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("BEFORE CP:\n");
+ ir3_print(ir);
+ }
+
+ ir3_cp(ir, so);
+
+ /* at this point, for binning pass, throw away unneeded outputs:
+ * Note that for a6xx and later, we do this after ir3_cp to ensure
+ * that the uniform/constant layout for BS and VS matches, so that
+ * we can re-use same VS_CONST state group.
+ */
+ if (so->binning_pass && (ctx->compiler->gpu_id >= 600))
+ fixup_binning_pass(ctx);
+
+ /* Insert mov if there's same instruction for each output.
+ * eg. dEQP-GLES31.functional.shaders.opaque_type_indexing.sampler.const_expression.vertex.sampler2dshadow
+ */
+ for (int i = ir->noutputs - 1; i >= 0; i--) {
+ if (!ir->outputs[i])
+ continue;
+ for (unsigned j = 0; j < i; j++) {
+ if (ir->outputs[i] == ir->outputs[j]) {
+ ir->outputs[i] =
+ ir3_MOV(ir->outputs[i]->block, ir->outputs[i], TYPE_F32);
+ }
+ }
+ }
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("BEFORE GROUPING:\n");
+ ir3_print(ir);
+ }
+
+ ir3_sched_add_deps(ir);
+
+ /* Group left/right neighbors, inserting mov's where needed to
+ * solve conflicts:
+ */
+ ir3_group(ir);
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("AFTER GROUPING:\n");
+ ir3_print(ir);
+ }
+
+ ir3_depth(ir);
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("AFTER DEPTH:\n");
+ ir3_print(ir);
+ }
+
+ ret = ir3_sched(ir);
+ if (ret) {
+ DBG("SCHED failed!");
+ goto out;
+ }
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("AFTER SCHED:\n");
+ ir3_print(ir);
+ }
+
+ ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
+ if (ret) {
+ DBG("RA failed!");
+ goto out;
+ }
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("AFTER RA:\n");
+ ir3_print(ir);
+ }
+
+ /* fixup input/outputs: */
+ for (i = 0; i < so->outputs_count; i++) {
+ so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
+ }
+
+ /* Note that some or all channels of an input may be unused: */
+ actual_in = 0;
+ inloc = 0;
+ for (i = 0; i < so->inputs_count; i++) {
+ unsigned j, reg = regid(63,0), compmask = 0, maxcomp = 0;
+ so->inputs[i].ncomp = 0;
+ so->inputs[i].inloc = inloc;
+ for (j = 0; j < 4; j++) {
+ struct ir3_instruction *in = inputs[(i*4) + j];
+ if (in && !(in->flags & IR3_INSTR_UNUSED)) {
+ compmask |= (1 << j);
+ reg = in->regs[0]->num - j;
+ actual_in++;
+ so->inputs[i].ncomp++;
+ if ((so->type == MESA_SHADER_FRAGMENT) && so->inputs[i].bary) {
+ /* assign inloc: */
+ assert(in->regs[1]->flags & IR3_REG_IMMED);
+ in->regs[1]->iim_val = inloc + j;
+ maxcomp = j + 1;
+ }
+ }
+ }
+ if ((so->type == MESA_SHADER_FRAGMENT) && compmask && so->inputs[i].bary) {
+ so->varying_in++;
+ so->inputs[i].compmask = (1 << maxcomp) - 1;
+ inloc += maxcomp;
+ } else if (!so->inputs[i].sysval) {
+ so->inputs[i].compmask = compmask;
+ }
+ so->inputs[i].regid = reg;
+ }
+
+ if (ctx->astc_srgb)
+ fixup_astc_srgb(ctx);
+
+ /* We need to do legalize after (for frag shader's) the "bary.f"
+ * offsets (inloc) have been assigned.
+ */
+ ir3_legalize(ir, &so->num_samp, &so->has_ssbo, &max_bary);
+
+ if (ir3_shader_debug & IR3_DBG_OPTMSGS) {
+ printf("AFTER LEGALIZE:\n");
+ ir3_print(ir);
+ }
+
+ /* Note that actual_in counts inputs that are not bary.f'd for FS: */
+ if (so->type == MESA_SHADER_VERTEX)
+ so->total_in = actual_in;
+ else
+ so->total_in = max_bary + 1;
+
+out:
+ if (ret) {
+ if (so->ir)
+ ir3_destroy(so->ir);
+ so->ir = NULL;
+ }
+ compile_free(ctx);
+
+ return ret;
+}