summaryrefslogtreecommitdiffstats
path: root/src/compiler/glsl/linker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/compiler/glsl/linker.cpp')
-rw-r--r--src/compiler/glsl/linker.cpp4676
1 files changed, 4676 insertions, 0 deletions
diff --git a/src/compiler/glsl/linker.cpp b/src/compiler/glsl/linker.cpp
new file mode 100644
index 00000000000..6657777d74c
--- /dev/null
+++ b/src/compiler/glsl/linker.cpp
@@ -0,0 +1,4676 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file linker.cpp
+ * GLSL linker implementation
+ *
+ * Given a set of shaders that are to be linked to generate a final program,
+ * there are three distinct stages.
+ *
+ * In the first stage shaders are partitioned into groups based on the shader
+ * type. All shaders of a particular type (e.g., vertex shaders) are linked
+ * together.
+ *
+ * - Undefined references in each shader are resolve to definitions in
+ * another shader.
+ * - Types and qualifiers of uniforms, outputs, and global variables defined
+ * in multiple shaders with the same name are verified to be the same.
+ * - Initializers for uniforms and global variables defined
+ * in multiple shaders with the same name are verified to be the same.
+ *
+ * The result, in the terminology of the GLSL spec, is a set of shader
+ * executables for each processing unit.
+ *
+ * After the first stage is complete, a series of semantic checks are performed
+ * on each of the shader executables.
+ *
+ * - Each shader executable must define a \c main function.
+ * - Each vertex shader executable must write to \c gl_Position.
+ * - Each fragment shader executable must write to either \c gl_FragData or
+ * \c gl_FragColor.
+ *
+ * In the final stage individual shader executables are linked to create a
+ * complete exectuable.
+ *
+ * - Types of uniforms defined in multiple shader stages with the same name
+ * are verified to be the same.
+ * - Initializers for uniforms defined in multiple shader stages with the
+ * same name are verified to be the same.
+ * - Types and qualifiers of outputs defined in one stage are verified to
+ * be the same as the types and qualifiers of inputs defined with the same
+ * name in a later stage.
+ *
+ * \author Ian Romanick <[email protected]>
+ */
+
+#include <ctype.h>
+#include "util/strndup.h"
+#include "main/core.h"
+#include "glsl_symbol_table.h"
+#include "glsl_parser_extras.h"
+#include "ir.h"
+#include "program.h"
+#include "program/hash_table.h"
+#include "linker.h"
+#include "link_varyings.h"
+#include "ir_optimization.h"
+#include "ir_rvalue_visitor.h"
+#include "ir_uniform.h"
+
+#include "main/shaderobj.h"
+#include "main/enums.h"
+
+
+void linker_error(gl_shader_program *, const char *, ...);
+
+namespace {
+
+/**
+ * Visitor that determines whether or not a variable is ever written.
+ */
+class find_assignment_visitor : public ir_hierarchical_visitor {
+public:
+ find_assignment_visitor(const char *name)
+ : name(name), found(false)
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit_enter(ir_assignment *ir)
+ {
+ ir_variable *const var = ir->lhs->variable_referenced();
+
+ if (strcmp(name, var->name) == 0) {
+ found = true;
+ return visit_stop;
+ }
+
+ return visit_continue_with_parent;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_call *ir)
+ {
+ foreach_two_lists(formal_node, &ir->callee->parameters,
+ actual_node, &ir->actual_parameters) {
+ ir_rvalue *param_rval = (ir_rvalue *) actual_node;
+ ir_variable *sig_param = (ir_variable *) formal_node;
+
+ if (sig_param->data.mode == ir_var_function_out ||
+ sig_param->data.mode == ir_var_function_inout) {
+ ir_variable *var = param_rval->variable_referenced();
+ if (var && strcmp(name, var->name) == 0) {
+ found = true;
+ return visit_stop;
+ }
+ }
+ }
+
+ if (ir->return_deref != NULL) {
+ ir_variable *const var = ir->return_deref->variable_referenced();
+
+ if (strcmp(name, var->name) == 0) {
+ found = true;
+ return visit_stop;
+ }
+ }
+
+ return visit_continue_with_parent;
+ }
+
+ bool variable_found()
+ {
+ return found;
+ }
+
+private:
+ const char *name; /**< Find writes to a variable with this name. */
+ bool found; /**< Was a write to the variable found? */
+};
+
+
+/**
+ * Visitor that determines whether or not a variable is ever read.
+ */
+class find_deref_visitor : public ir_hierarchical_visitor {
+public:
+ find_deref_visitor(const char *name)
+ : name(name), found(false)
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (strcmp(this->name, ir->var->name) == 0) {
+ this->found = true;
+ return visit_stop;
+ }
+
+ return visit_continue;
+ }
+
+ bool variable_found() const
+ {
+ return this->found;
+ }
+
+private:
+ const char *name; /**< Find writes to a variable with this name. */
+ bool found; /**< Was a write to the variable found? */
+};
+
+
+class geom_array_resize_visitor : public ir_hierarchical_visitor {
+public:
+ unsigned num_vertices;
+ gl_shader_program *prog;
+
+ geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
+ {
+ this->num_vertices = num_vertices;
+ this->prog = prog;
+ }
+
+ virtual ~geom_array_resize_visitor()
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit(ir_variable *var)
+ {
+ if (!var->type->is_array() || var->data.mode != ir_var_shader_in)
+ return visit_continue;
+
+ unsigned size = var->type->length;
+
+ /* Generate a link error if the shader has declared this array with an
+ * incorrect size.
+ */
+ if (size && size != this->num_vertices) {
+ linker_error(this->prog, "size of array %s declared as %u, "
+ "but number of input vertices is %u\n",
+ var->name, size, this->num_vertices);
+ return visit_continue;
+ }
+
+ /* Generate a link error if the shader attempts to access an input
+ * array using an index too large for its actual size assigned at link
+ * time.
+ */
+ if (var->data.max_array_access >= this->num_vertices) {
+ linker_error(this->prog, "geometry shader accesses element %i of "
+ "%s, but only %i input vertices\n",
+ var->data.max_array_access, var->name, this->num_vertices);
+ return visit_continue;
+ }
+
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ this->num_vertices);
+ var->data.max_array_access = this->num_vertices - 1;
+
+ return visit_continue;
+ }
+
+ /* Dereferences of input variables need to be updated so that their type
+ * matches the newly assigned type of the variable they are accessing. */
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ ir->type = ir->var->type;
+ return visit_continue;
+ }
+
+ /* Dereferences of 2D input arrays need to be updated so that their type
+ * matches the newly assigned type of the array they are accessing. */
+ virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
+ {
+ const glsl_type *const vt = ir->array->type;
+ if (vt->is_array())
+ ir->type = vt->fields.array;
+ return visit_continue;
+ }
+};
+
+class tess_eval_array_resize_visitor : public ir_hierarchical_visitor {
+public:
+ unsigned num_vertices;
+ gl_shader_program *prog;
+
+ tess_eval_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog)
+ {
+ this->num_vertices = num_vertices;
+ this->prog = prog;
+ }
+
+ virtual ~tess_eval_array_resize_visitor()
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit(ir_variable *var)
+ {
+ if (!var->type->is_array() || var->data.mode != ir_var_shader_in || var->data.patch)
+ return visit_continue;
+
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ this->num_vertices);
+ var->data.max_array_access = this->num_vertices - 1;
+
+ return visit_continue;
+ }
+
+ /* Dereferences of input variables need to be updated so that their type
+ * matches the newly assigned type of the variable they are accessing. */
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ ir->type = ir->var->type;
+ return visit_continue;
+ }
+
+ /* Dereferences of 2D input arrays need to be updated so that their type
+ * matches the newly assigned type of the array they are accessing. */
+ virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
+ {
+ const glsl_type *const vt = ir->array->type;
+ if (vt->is_array())
+ ir->type = vt->fields.array;
+ return visit_continue;
+ }
+};
+
+class barrier_use_visitor : public ir_hierarchical_visitor {
+public:
+ barrier_use_visitor(gl_shader_program *prog)
+ : prog(prog), in_main(false), after_return(false), control_flow(0)
+ {
+ }
+
+ virtual ~barrier_use_visitor()
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit_enter(ir_function *ir)
+ {
+ if (strcmp(ir->name, "main") == 0)
+ in_main = true;
+
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_leave(ir_function *)
+ {
+ in_main = false;
+ after_return = false;
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_leave(ir_return *)
+ {
+ after_return = true;
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_if *)
+ {
+ ++control_flow;
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_leave(ir_if *)
+ {
+ --control_flow;
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_loop *)
+ {
+ ++control_flow;
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_leave(ir_loop *)
+ {
+ --control_flow;
+ return visit_continue;
+ }
+
+ /* FINISHME: `switch` is not expressed at the IR level -- it's already
+ * been lowered to a mess of `if`s. We'll correctly disallow any use of
+ * barrier() in a conditional path within the switch, but not in a path
+ * which is always hit.
+ */
+
+ virtual ir_visitor_status visit_enter(ir_call *ir)
+ {
+ if (ir->use_builtin && strcmp(ir->callee_name(), "barrier") == 0) {
+ /* Use of barrier(); determine if it is legal: */
+ if (!in_main) {
+ linker_error(prog, "Builtin barrier() may only be used in main");
+ return visit_stop;
+ }
+
+ if (after_return) {
+ linker_error(prog, "Builtin barrier() may not be used after return");
+ return visit_stop;
+ }
+
+ if (control_flow != 0) {
+ linker_error(prog, "Builtin barrier() may not be used inside control flow");
+ return visit_stop;
+ }
+ }
+ return visit_continue;
+ }
+
+private:
+ gl_shader_program *prog;
+ bool in_main, after_return;
+ int control_flow;
+};
+
+/**
+ * Visitor that determines the highest stream id to which a (geometry) shader
+ * emits vertices. It also checks whether End{Stream}Primitive is ever called.
+ */
+class find_emit_vertex_visitor : public ir_hierarchical_visitor {
+public:
+ find_emit_vertex_visitor(int max_allowed)
+ : max_stream_allowed(max_allowed),
+ invalid_stream_id(0),
+ invalid_stream_id_from_emit_vertex(false),
+ end_primitive_found(false),
+ uses_non_zero_stream(false)
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
+ {
+ int stream_id = ir->stream_id();
+
+ if (stream_id < 0) {
+ invalid_stream_id = stream_id;
+ invalid_stream_id_from_emit_vertex = true;
+ return visit_stop;
+ }
+
+ if (stream_id > max_stream_allowed) {
+ invalid_stream_id = stream_id;
+ invalid_stream_id_from_emit_vertex = true;
+ return visit_stop;
+ }
+
+ if (stream_id != 0)
+ uses_non_zero_stream = true;
+
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
+ {
+ end_primitive_found = true;
+
+ int stream_id = ir->stream_id();
+
+ if (stream_id < 0) {
+ invalid_stream_id = stream_id;
+ invalid_stream_id_from_emit_vertex = false;
+ return visit_stop;
+ }
+
+ if (stream_id > max_stream_allowed) {
+ invalid_stream_id = stream_id;
+ invalid_stream_id_from_emit_vertex = false;
+ return visit_stop;
+ }
+
+ if (stream_id != 0)
+ uses_non_zero_stream = true;
+
+ return visit_continue;
+ }
+
+ bool error()
+ {
+ return invalid_stream_id != 0;
+ }
+
+ const char *error_func()
+ {
+ return invalid_stream_id_from_emit_vertex ?
+ "EmitStreamVertex" : "EndStreamPrimitive";
+ }
+
+ int error_stream()
+ {
+ return invalid_stream_id;
+ }
+
+ bool uses_streams()
+ {
+ return uses_non_zero_stream;
+ }
+
+ bool uses_end_primitive()
+ {
+ return end_primitive_found;
+ }
+
+private:
+ int max_stream_allowed;
+ int invalid_stream_id;
+ bool invalid_stream_id_from_emit_vertex;
+ bool end_primitive_found;
+ bool uses_non_zero_stream;
+};
+
+/* Class that finds array derefs and check if indexes are dynamic. */
+class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
+{
+public:
+ dynamic_sampler_array_indexing_visitor() :
+ dynamic_sampler_array_indexing(false)
+ {
+ }
+
+ ir_visitor_status visit_enter(ir_dereference_array *ir)
+ {
+ if (!ir->variable_referenced())
+ return visit_continue;
+
+ if (!ir->variable_referenced()->type->contains_sampler())
+ return visit_continue;
+
+ if (!ir->array_index->constant_expression_value()) {
+ dynamic_sampler_array_indexing = true;
+ return visit_stop;
+ }
+ return visit_continue;
+ }
+
+ bool uses_dynamic_sampler_array_indexing()
+ {
+ return dynamic_sampler_array_indexing;
+ }
+
+private:
+ bool dynamic_sampler_array_indexing;
+};
+
+} /* anonymous namespace */
+
+void
+linker_error(gl_shader_program *prog, const char *fmt, ...)
+{
+ va_list ap;
+
+ ralloc_strcat(&prog->InfoLog, "error: ");
+ va_start(ap, fmt);
+ ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
+ va_end(ap);
+
+ prog->LinkStatus = false;
+}
+
+
+void
+linker_warning(gl_shader_program *prog, const char *fmt, ...)
+{
+ va_list ap;
+
+ ralloc_strcat(&prog->InfoLog, "warning: ");
+ va_start(ap, fmt);
+ ralloc_vasprintf_append(&prog->InfoLog, fmt, ap);
+ va_end(ap);
+
+}
+
+
+/**
+ * Given a string identifying a program resource, break it into a base name
+ * and an optional array index in square brackets.
+ *
+ * If an array index is present, \c out_base_name_end is set to point to the
+ * "[" that precedes the array index, and the array index itself is returned
+ * as a long.
+ *
+ * If no array index is present (or if the array index is negative or
+ * mal-formed), \c out_base_name_end, is set to point to the null terminator
+ * at the end of the input string, and -1 is returned.
+ *
+ * Only the final array index is parsed; if the string contains other array
+ * indices (or structure field accesses), they are left in the base name.
+ *
+ * No attempt is made to check that the base name is properly formed;
+ * typically the caller will look up the base name in a hash table, so
+ * ill-formed base names simply turn into hash table lookup failures.
+ */
+long
+parse_program_resource_name(const GLchar *name,
+ const GLchar **out_base_name_end)
+{
+ /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
+ *
+ * "When an integer array element or block instance number is part of
+ * the name string, it will be specified in decimal form without a "+"
+ * or "-" sign or any extra leading zeroes. Additionally, the name
+ * string will not include white space anywhere in the string."
+ */
+
+ const size_t len = strlen(name);
+ *out_base_name_end = name + len;
+
+ if (len == 0 || name[len-1] != ']')
+ return -1;
+
+ /* Walk backwards over the string looking for a non-digit character. This
+ * had better be the opening bracket for an array index.
+ *
+ * Initially, i specifies the location of the ']'. Since the string may
+ * contain only the ']' charcater, walk backwards very carefully.
+ */
+ unsigned i;
+ for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
+ /* empty */ ;
+
+ if ((i == 0) || name[i-1] != '[')
+ return -1;
+
+ long array_index = strtol(&name[i], NULL, 10);
+ if (array_index < 0)
+ return -1;
+
+ /* Check for leading zero */
+ if (name[i] == '0' && name[i+1] != ']')
+ return -1;
+
+ *out_base_name_end = name + (i - 1);
+ return array_index;
+}
+
+
+void
+link_invalidate_variable_locations(exec_list *ir)
+{
+ foreach_in_list(ir_instruction, node, ir) {
+ ir_variable *const var = node->as_variable();
+
+ if (var == NULL)
+ continue;
+
+ /* Only assign locations for variables that lack an explicit location.
+ * Explicit locations are set for all built-in variables, generic vertex
+ * shader inputs (via layout(location=...)), and generic fragment shader
+ * outputs (also via layout(location=...)).
+ */
+ if (!var->data.explicit_location) {
+ var->data.location = -1;
+ var->data.location_frac = 0;
+ }
+
+ /* ir_variable::is_unmatched_generic_inout is used by the linker while
+ * connecting outputs from one stage to inputs of the next stage.
+ */
+ if (var->data.explicit_location &&
+ var->data.location < VARYING_SLOT_VAR0) {
+ var->data.is_unmatched_generic_inout = 0;
+ } else {
+ var->data.is_unmatched_generic_inout = 1;
+ }
+ }
+}
+
+
+/**
+ * Set clip_distance_array_size based on the given shader.
+ *
+ * Also check for errors based on incorrect usage of gl_ClipVertex and
+ * gl_ClipDistance.
+ *
+ * Return false if an error was reported.
+ */
+static void
+analyze_clip_usage(struct gl_shader_program *prog,
+ struct gl_shader *shader,
+ GLuint *clip_distance_array_size)
+{
+ *clip_distance_array_size = 0;
+
+ if (!prog->IsES && prog->Version >= 130) {
+ /* From section 7.1 (Vertex Shader Special Variables) of the
+ * GLSL 1.30 spec:
+ *
+ * "It is an error for a shader to statically write both
+ * gl_ClipVertex and gl_ClipDistance."
+ *
+ * This does not apply to GLSL ES shaders, since GLSL ES defines neither
+ * gl_ClipVertex nor gl_ClipDistance.
+ */
+ find_assignment_visitor clip_vertex("gl_ClipVertex");
+ find_assignment_visitor clip_distance("gl_ClipDistance");
+
+ clip_vertex.run(shader->ir);
+ clip_distance.run(shader->ir);
+ if (clip_vertex.variable_found() && clip_distance.variable_found()) {
+ linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
+ "and `gl_ClipDistance'\n",
+ _mesa_shader_stage_to_string(shader->Stage));
+ return;
+ }
+
+ if (clip_distance.variable_found()) {
+ ir_variable *clip_distance_var =
+ shader->symbols->get_variable("gl_ClipDistance");
+
+ assert(clip_distance_var);
+ *clip_distance_array_size = clip_distance_var->type->length;
+ }
+ }
+}
+
+
+/**
+ * Verify that a vertex shader executable meets all semantic requirements.
+ *
+ * Also sets prog->Vert.ClipDistanceArraySize as a side effect.
+ *
+ * \param shader Vertex shader executable to be verified
+ */
+void
+validate_vertex_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return;
+
+ /* From the GLSL 1.10 spec, page 48:
+ *
+ * "The variable gl_Position is available only in the vertex
+ * language and is intended for writing the homogeneous vertex
+ * position. All executions of a well-formed vertex shader
+ * executable must write a value into this variable. [...] The
+ * variable gl_Position is available only in the vertex
+ * language and is intended for writing the homogeneous vertex
+ * position. All executions of a well-formed vertex shader
+ * executable must write a value into this variable."
+ *
+ * while in GLSL 1.40 this text is changed to:
+ *
+ * "The variable gl_Position is available only in the vertex
+ * language and is intended for writing the homogeneous vertex
+ * position. It can be written at any time during shader
+ * execution. It may also be read back by a vertex shader
+ * after being written. This value will be used by primitive
+ * assembly, clipping, culling, and other fixed functionality
+ * operations, if present, that operate on primitives after
+ * vertex processing has occurred. Its value is undefined if
+ * the vertex shader executable does not write gl_Position."
+ *
+ * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
+ * gl_Position is not an error.
+ */
+ if (prog->Version < (prog->IsES ? 300 : 140)) {
+ find_assignment_visitor find("gl_Position");
+ find.run(shader->ir);
+ if (!find.variable_found()) {
+ if (prog->IsES) {
+ linker_warning(prog,
+ "vertex shader does not write to `gl_Position'."
+ "It's value is undefined. \n");
+ } else {
+ linker_error(prog,
+ "vertex shader does not write to `gl_Position'. \n");
+ }
+ return;
+ }
+ }
+
+ analyze_clip_usage(prog, shader, &prog->Vert.ClipDistanceArraySize);
+}
+
+void
+validate_tess_eval_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return;
+
+ analyze_clip_usage(prog, shader, &prog->TessEval.ClipDistanceArraySize);
+}
+
+
+/**
+ * Verify that a fragment shader executable meets all semantic requirements
+ *
+ * \param shader Fragment shader executable to be verified
+ */
+void
+validate_fragment_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return;
+
+ find_assignment_visitor frag_color("gl_FragColor");
+ find_assignment_visitor frag_data("gl_FragData");
+
+ frag_color.run(shader->ir);
+ frag_data.run(shader->ir);
+
+ if (frag_color.variable_found() && frag_data.variable_found()) {
+ linker_error(prog, "fragment shader writes to both "
+ "`gl_FragColor' and `gl_FragData'\n");
+ }
+}
+
+/**
+ * Verify that a geometry shader executable meets all semantic requirements
+ *
+ * Also sets prog->Geom.VerticesIn, and prog->Geom.ClipDistanceArraySize as
+ * a side effect.
+ *
+ * \param shader Geometry shader executable to be verified
+ */
+void
+validate_geometry_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return;
+
+ unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
+ prog->Geom.VerticesIn = num_vertices;
+
+ analyze_clip_usage(prog, shader, &prog->Geom.ClipDistanceArraySize);
+}
+
+/**
+ * Check if geometry shaders emit to non-zero streams and do corresponding
+ * validations.
+ */
+static void
+validate_geometry_shader_emissions(struct gl_context *ctx,
+ struct gl_shader_program *prog)
+{
+ if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
+ find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
+ emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir);
+ if (emit_vertex.error()) {
+ linker_error(prog, "Invalid call %s(%d). Accepted values for the "
+ "stream parameter are in the range [0, %d].\n",
+ emit_vertex.error_func(),
+ emit_vertex.error_stream(),
+ ctx->Const.MaxVertexStreams - 1);
+ }
+ prog->Geom.UsesStreams = emit_vertex.uses_streams();
+ prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
+
+ /* From the ARB_gpu_shader5 spec:
+ *
+ * "Multiple vertex streams are supported only if the output primitive
+ * type is declared to be "points". A program will fail to link if it
+ * contains a geometry shader calling EmitStreamVertex() or
+ * EndStreamPrimitive() if its output primitive type is not "points".
+ *
+ * However, in the same spec:
+ *
+ * "The function EmitVertex() is equivalent to calling EmitStreamVertex()
+ * with <stream> set to zero."
+ *
+ * And:
+ *
+ * "The function EndPrimitive() is equivalent to calling
+ * EndStreamPrimitive() with <stream> set to zero."
+ *
+ * Since we can call EmitVertex() and EndPrimitive() when we output
+ * primitives other than points, calling EmitStreamVertex(0) or
+ * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
+ * does. Currently we only set prog->Geom.UsesStreams to TRUE when
+ * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
+ * stream.
+ */
+ if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) {
+ linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
+ "with n>0 requires point output\n");
+ }
+ }
+}
+
+bool
+validate_intrastage_arrays(struct gl_shader_program *prog,
+ ir_variable *const var,
+ ir_variable *const existing)
+{
+ /* Consider the types to be "the same" if both types are arrays
+ * of the same type and one of the arrays is implicitly sized.
+ * In addition, set the type of the linked variable to the
+ * explicitly sized array.
+ */
+ if (var->type->is_array() && existing->type->is_array()) {
+ if ((var->type->fields.array == existing->type->fields.array) &&
+ ((var->type->length == 0)|| (existing->type->length == 0))) {
+ if (var->type->length != 0) {
+ if (var->type->length <= existing->data.max_array_access) {
+ linker_error(prog, "%s `%s' declared as type "
+ "`%s' but outermost dimension has an index"
+ " of `%i'\n",
+ mode_string(var),
+ var->name, var->type->name,
+ existing->data.max_array_access);
+ }
+ existing->type = var->type;
+ return true;
+ } else if (existing->type->length != 0) {
+ if(existing->type->length <= var->data.max_array_access &&
+ !existing->data.from_ssbo_unsized_array) {
+ linker_error(prog, "%s `%s' declared as type "
+ "`%s' but outermost dimension has an index"
+ " of `%i'\n",
+ mode_string(var),
+ var->name, existing->type->name,
+ var->data.max_array_access);
+ }
+ return true;
+ }
+ } else {
+ /* The arrays of structs could have different glsl_type pointers but
+ * they are actually the same type. Use record_compare() to check that.
+ */
+ if (existing->type->fields.array->is_record() &&
+ var->type->fields.array->is_record() &&
+ existing->type->fields.array->record_compare(var->type->fields.array))
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/**
+ * Perform validation of global variables used across multiple shaders
+ */
+void
+cross_validate_globals(struct gl_shader_program *prog,
+ struct gl_shader **shader_list,
+ unsigned num_shaders,
+ bool uniforms_only)
+{
+ /* Examine all of the uniforms in all of the shaders and cross validate
+ * them.
+ */
+ glsl_symbol_table variables;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (shader_list[i] == NULL)
+ continue;
+
+ foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
+ ir_variable *const var = node->as_variable();
+
+ if (var == NULL)
+ continue;
+
+ if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
+ continue;
+
+ /* don't cross validate subroutine uniforms */
+ if (var->type->contains_subroutine())
+ continue;
+
+ /* Don't cross validate temporaries that are at global scope. These
+ * will eventually get pulled into the shaders 'main'.
+ */
+ if (var->data.mode == ir_var_temporary)
+ continue;
+
+ /* If a global with this name has already been seen, verify that the
+ * new instance has the same type. In addition, if the globals have
+ * initializers, the values of the initializers must be the same.
+ */
+ ir_variable *const existing = variables.get_variable(var->name);
+ if (existing != NULL) {
+ /* Check if types match. Interface blocks have some special
+ * rules so we handle those elsewhere.
+ */
+ if (var->type != existing->type &&
+ !var->is_interface_instance()) {
+ if (!validate_intrastage_arrays(prog, var, existing)) {
+ if (var->type->is_record() && existing->type->is_record()
+ && existing->type->record_compare(var->type)) {
+ existing->type = var->type;
+ } else {
+ /* If it is an unsized array in a Shader Storage Block,
+ * two different shaders can access to different elements.
+ * Because of that, they might be converted to different
+ * sized arrays, then check that they are compatible but
+ * ignore the array size.
+ */
+ if (!(var->data.mode == ir_var_shader_storage &&
+ var->data.from_ssbo_unsized_array &&
+ existing->data.mode == ir_var_shader_storage &&
+ existing->data.from_ssbo_unsized_array &&
+ var->type->gl_type == existing->type->gl_type)) {
+ linker_error(prog, "%s `%s' declared as type "
+ "`%s' and type `%s'\n",
+ mode_string(var),
+ var->name, var->type->name,
+ existing->type->name);
+ return;
+ }
+ }
+ }
+ }
+
+ if (var->data.explicit_location) {
+ if (existing->data.explicit_location
+ && (var->data.location != existing->data.location)) {
+ linker_error(prog, "explicit locations for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return;
+ }
+
+ existing->data.location = var->data.location;
+ existing->data.explicit_location = true;
+ } else {
+ /* Check if uniform with implicit location was marked explicit
+ * by earlier shader stage. If so, mark it explicit in this stage
+ * too to make sure later processing does not treat it as
+ * implicit one.
+ */
+ if (existing->data.explicit_location) {
+ var->data.location = existing->data.location;
+ var->data.explicit_location = true;
+ }
+ }
+
+ /* From the GLSL 4.20 specification:
+ * "A link error will result if two compilation units in a program
+ * specify different integer-constant bindings for the same
+ * opaque-uniform name. However, it is not an error to specify a
+ * binding on some but not all declarations for the same name"
+ */
+ if (var->data.explicit_binding) {
+ if (existing->data.explicit_binding &&
+ var->data.binding != existing->data.binding) {
+ linker_error(prog, "explicit bindings for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return;
+ }
+
+ existing->data.binding = var->data.binding;
+ existing->data.explicit_binding = true;
+ }
+
+ if (var->type->contains_atomic() &&
+ var->data.offset != existing->data.offset) {
+ linker_error(prog, "offset specifications for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return;
+ }
+
+ /* Validate layout qualifiers for gl_FragDepth.
+ *
+ * From the AMD/ARB_conservative_depth specs:
+ *
+ * "If gl_FragDepth is redeclared in any fragment shader in a
+ * program, it must be redeclared in all fragment shaders in
+ * that program that have static assignments to
+ * gl_FragDepth. All redeclarations of gl_FragDepth in all
+ * fragment shaders in a single program must have the same set
+ * of qualifiers."
+ */
+ if (strcmp(var->name, "gl_FragDepth") == 0) {
+ bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
+ bool layout_differs =
+ var->data.depth_layout != existing->data.depth_layout;
+
+ if (layout_declared && layout_differs) {
+ linker_error(prog,
+ "All redeclarations of gl_FragDepth in all "
+ "fragment shaders in a single program must have "
+ "the same set of qualifiers.\n");
+ }
+
+ if (var->data.used && layout_differs) {
+ linker_error(prog,
+ "If gl_FragDepth is redeclared with a layout "
+ "qualifier in any fragment shader, it must be "
+ "redeclared with the same layout qualifier in "
+ "all fragment shaders that have assignments to "
+ "gl_FragDepth\n");
+ }
+ }
+
+ /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
+ *
+ * "If a shared global has multiple initializers, the
+ * initializers must all be constant expressions, and they
+ * must all have the same value. Otherwise, a link error will
+ * result. (A shared global having only one initializer does
+ * not require that initializer to be a constant expression.)"
+ *
+ * Previous to 4.20 the GLSL spec simply said that initializers
+ * must have the same value. In this case of non-constant
+ * initializers, this was impossible to determine. As a result,
+ * no vendor actually implemented that behavior. The 4.20
+ * behavior matches the implemented behavior of at least one other
+ * vendor, so we'll implement that for all GLSL versions.
+ */
+ if (var->constant_initializer != NULL) {
+ if (existing->constant_initializer != NULL) {
+ if (!var->constant_initializer->has_value(existing->constant_initializer)) {
+ linker_error(prog, "initializers for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return;
+ }
+ } else {
+ /* If the first-seen instance of a particular uniform did not
+ * have an initializer but a later instance does, copy the
+ * initializer to the version stored in the symbol table.
+ */
+ /* FINISHME: This is wrong. The constant_value field should
+ * FINISHME: not be modified! Imagine a case where a shader
+ * FINISHME: without an initializer is linked in two different
+ * FINISHME: programs with shaders that have differing
+ * FINISHME: initializers. Linking with the first will
+ * FINISHME: modify the shader, and linking with the second
+ * FINISHME: will fail.
+ */
+ existing->constant_initializer =
+ var->constant_initializer->clone(ralloc_parent(existing),
+ NULL);
+ }
+ }
+
+ if (var->data.has_initializer) {
+ if (existing->data.has_initializer
+ && (var->constant_initializer == NULL
+ || existing->constant_initializer == NULL)) {
+ linker_error(prog,
+ "shared global variable `%s' has multiple "
+ "non-constant initializers.\n",
+ var->name);
+ return;
+ }
+
+ /* Some instance had an initializer, so keep track of that. In
+ * this location, all sorts of initializers (constant or
+ * otherwise) will propagate the existence to the variable
+ * stored in the symbol table.
+ */
+ existing->data.has_initializer = true;
+ }
+
+ if (existing->data.invariant != var->data.invariant) {
+ linker_error(prog, "declarations for %s `%s' have "
+ "mismatching invariant qualifiers\n",
+ mode_string(var), var->name);
+ return;
+ }
+ if (existing->data.centroid != var->data.centroid) {
+ linker_error(prog, "declarations for %s `%s' have "
+ "mismatching centroid qualifiers\n",
+ mode_string(var), var->name);
+ return;
+ }
+ if (existing->data.sample != var->data.sample) {
+ linker_error(prog, "declarations for %s `%s` have "
+ "mismatching sample qualifiers\n",
+ mode_string(var), var->name);
+ return;
+ }
+ if (existing->data.image_format != var->data.image_format) {
+ linker_error(prog, "declarations for %s `%s` have "
+ "mismatching image format qualifiers\n",
+ mode_string(var), var->name);
+ return;
+ }
+ } else
+ variables.add_variable(var);
+ }
+ }
+}
+
+
+/**
+ * Perform validation of uniforms used across multiple shader stages
+ */
+void
+cross_validate_uniforms(struct gl_shader_program *prog)
+{
+ cross_validate_globals(prog, prog->_LinkedShaders,
+ MESA_SHADER_STAGES, true);
+}
+
+/**
+ * Accumulates the array of prog->BufferInterfaceBlocks and checks that all
+ * definitons of blocks agree on their contents.
+ */
+static bool
+interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog)
+{
+ unsigned max_num_uniform_blocks = 0;
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i])
+ max_num_uniform_blocks += prog->_LinkedShaders[i]->NumBufferInterfaceBlocks;
+ }
+
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+
+ prog->InterfaceBlockStageIndex[i] = ralloc_array(prog, int,
+ max_num_uniform_blocks);
+ for (unsigned int j = 0; j < max_num_uniform_blocks; j++)
+ prog->InterfaceBlockStageIndex[i][j] = -1;
+
+ if (sh == NULL)
+ continue;
+
+ for (unsigned int j = 0; j < sh->NumBufferInterfaceBlocks; j++) {
+ int index = link_cross_validate_uniform_block(prog,
+ &prog->BufferInterfaceBlocks,
+ &prog->NumBufferInterfaceBlocks,
+ &sh->BufferInterfaceBlocks[j]);
+
+ if (index == -1) {
+ linker_error(prog, "uniform block `%s' has mismatching definitions\n",
+ sh->BufferInterfaceBlocks[j].Name);
+ return false;
+ }
+
+ prog->InterfaceBlockStageIndex[i][index] = j;
+ }
+ }
+
+ return true;
+}
+
+
+/**
+ * Populates a shaders symbol table with all global declarations
+ */
+static void
+populate_symbol_table(gl_shader *sh)
+{
+ sh->symbols = new(sh) glsl_symbol_table;
+
+ foreach_in_list(ir_instruction, inst, sh->ir) {
+ ir_variable *var;
+ ir_function *func;
+
+ if ((func = inst->as_function()) != NULL) {
+ sh->symbols->add_function(func);
+ } else if ((var = inst->as_variable()) != NULL) {
+ if (var->data.mode != ir_var_temporary)
+ sh->symbols->add_variable(var);
+ }
+ }
+}
+
+
+/**
+ * Remap variables referenced in an instruction tree
+ *
+ * This is used when instruction trees are cloned from one shader and placed in
+ * another. These trees will contain references to \c ir_variable nodes that
+ * do not exist in the target shader. This function finds these \c ir_variable
+ * references and replaces the references with matching variables in the target
+ * shader.
+ *
+ * If there is no matching variable in the target shader, a clone of the
+ * \c ir_variable is made and added to the target shader. The new variable is
+ * added to \b both the instruction stream and the symbol table.
+ *
+ * \param inst IR tree that is to be processed.
+ * \param symbols Symbol table containing global scope symbols in the
+ * linked shader.
+ * \param instructions Instruction stream where new variable declarations
+ * should be added.
+ */
+void
+remap_variables(ir_instruction *inst, struct gl_shader *target,
+ hash_table *temps)
+{
+ class remap_visitor : public ir_hierarchical_visitor {
+ public:
+ remap_visitor(struct gl_shader *target,
+ hash_table *temps)
+ {
+ this->target = target;
+ this->symbols = target->symbols;
+ this->instructions = target->ir;
+ this->temps = temps;
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (ir->var->data.mode == ir_var_temporary) {
+ ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
+
+ assert(var != NULL);
+ ir->var = var;
+ return visit_continue;
+ }
+
+ ir_variable *const existing =
+ this->symbols->get_variable(ir->var->name);
+ if (existing != NULL)
+ ir->var = existing;
+ else {
+ ir_variable *copy = ir->var->clone(this->target, NULL);
+
+ this->symbols->add_variable(copy);
+ this->instructions->push_head(copy);
+ ir->var = copy;
+ }
+
+ return visit_continue;
+ }
+
+ private:
+ struct gl_shader *target;
+ glsl_symbol_table *symbols;
+ exec_list *instructions;
+ hash_table *temps;
+ };
+
+ remap_visitor v(target, temps);
+
+ inst->accept(&v);
+}
+
+
+/**
+ * Move non-declarations from one instruction stream to another
+ *
+ * The intended usage pattern of this function is to pass the pointer to the
+ * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
+ * pointer) for \c last and \c false for \c make_copies on the first
+ * call. Successive calls pass the return value of the previous call for
+ * \c last and \c true for \c make_copies.
+ *
+ * \param instructions Source instruction stream
+ * \param last Instruction after which new instructions should be
+ * inserted in the target instruction stream
+ * \param make_copies Flag selecting whether instructions in \c instructions
+ * should be copied (via \c ir_instruction::clone) into the
+ * target list or moved.
+ *
+ * \return
+ * The new "last" instruction in the target instruction stream. This pointer
+ * is suitable for use as the \c last parameter of a later call to this
+ * function.
+ */
+exec_node *
+move_non_declarations(exec_list *instructions, exec_node *last,
+ bool make_copies, gl_shader *target)
+{
+ hash_table *temps = NULL;
+
+ if (make_copies)
+ temps = hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+
+ foreach_in_list_safe(ir_instruction, inst, instructions) {
+ if (inst->as_function())
+ continue;
+
+ ir_variable *var = inst->as_variable();
+ if ((var != NULL) && (var->data.mode != ir_var_temporary))
+ continue;
+
+ assert(inst->as_assignment()
+ || inst->as_call()
+ || inst->as_if() /* for initializers with the ?: operator */
+ || ((var != NULL) && (var->data.mode == ir_var_temporary)));
+
+ if (make_copies) {
+ inst = inst->clone(target, NULL);
+
+ if (var != NULL)
+ hash_table_insert(temps, inst, var);
+ else
+ remap_variables(inst, target, temps);
+ } else {
+ inst->remove();
+ }
+
+ last->insert_after(inst);
+ last = inst;
+ }
+
+ if (make_copies)
+ hash_table_dtor(temps);
+
+ return last;
+}
+
+
+/**
+ * This class is only used in link_intrastage_shaders() below but declaring
+ * it inside that function leads to compiler warnings with some versions of
+ * gcc.
+ */
+class array_sizing_visitor : public ir_hierarchical_visitor {
+public:
+ array_sizing_visitor()
+ : mem_ctx(ralloc_context(NULL)),
+ unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare))
+ {
+ }
+
+ ~array_sizing_visitor()
+ {
+ hash_table_dtor(this->unnamed_interfaces);
+ ralloc_free(this->mem_ctx);
+ }
+
+ virtual ir_visitor_status visit(ir_variable *var)
+ {
+ const glsl_type *type_without_array;
+ fixup_type(&var->type, var->data.max_array_access,
+ var->data.from_ssbo_unsized_array);
+ type_without_array = var->type->without_array();
+ if (var->type->is_interface()) {
+ if (interface_contains_unsized_arrays(var->type)) {
+ const glsl_type *new_type =
+ resize_interface_members(var->type,
+ var->get_max_ifc_array_access(),
+ var->is_in_shader_storage_block());
+ var->type = new_type;
+ var->change_interface_type(new_type);
+ }
+ } else if (type_without_array->is_interface()) {
+ if (interface_contains_unsized_arrays(type_without_array)) {
+ const glsl_type *new_type =
+ resize_interface_members(type_without_array,
+ var->get_max_ifc_array_access(),
+ var->is_in_shader_storage_block());
+ var->change_interface_type(new_type);
+ var->type = update_interface_members_array(var->type, new_type);
+ }
+ } else if (const glsl_type *ifc_type = var->get_interface_type()) {
+ /* Store a pointer to the variable in the unnamed_interfaces
+ * hashtable.
+ */
+ ir_variable **interface_vars = (ir_variable **)
+ hash_table_find(this->unnamed_interfaces, ifc_type);
+ if (interface_vars == NULL) {
+ interface_vars = rzalloc_array(mem_ctx, ir_variable *,
+ ifc_type->length);
+ hash_table_insert(this->unnamed_interfaces, interface_vars,
+ ifc_type);
+ }
+ unsigned index = ifc_type->field_index(var->name);
+ assert(index < ifc_type->length);
+ assert(interface_vars[index] == NULL);
+ interface_vars[index] = var;
+ }
+ return visit_continue;
+ }
+
+ /**
+ * For each unnamed interface block that was discovered while running the
+ * visitor, adjust the interface type to reflect the newly assigned array
+ * sizes, and fix up the ir_variable nodes to point to the new interface
+ * type.
+ */
+ void fixup_unnamed_interface_types()
+ {
+ hash_table_call_foreach(this->unnamed_interfaces,
+ fixup_unnamed_interface_type, NULL);
+ }
+
+private:
+ /**
+ * If the type pointed to by \c type represents an unsized array, replace
+ * it with a sized array whose size is determined by max_array_access.
+ */
+ static void fixup_type(const glsl_type **type, unsigned max_array_access,
+ bool from_ssbo_unsized_array)
+ {
+ if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
+ *type = glsl_type::get_array_instance((*type)->fields.array,
+ max_array_access + 1);
+ assert(*type != NULL);
+ }
+ }
+
+ static const glsl_type *
+ update_interface_members_array(const glsl_type *type,
+ const glsl_type *new_interface_type)
+ {
+ const glsl_type *element_type = type->fields.array;
+ if (element_type->is_array()) {
+ const glsl_type *new_array_type =
+ update_interface_members_array(element_type, new_interface_type);
+ return glsl_type::get_array_instance(new_array_type, type->length);
+ } else {
+ return glsl_type::get_array_instance(new_interface_type,
+ type->length);
+ }
+ }
+
+ /**
+ * Determine whether the given interface type contains unsized arrays (if
+ * it doesn't, array_sizing_visitor doesn't need to process it).
+ */
+ static bool interface_contains_unsized_arrays(const glsl_type *type)
+ {
+ for (unsigned i = 0; i < type->length; i++) {
+ const glsl_type *elem_type = type->fields.structure[i].type;
+ if (elem_type->is_unsized_array())
+ return true;
+ }
+ return false;
+ }
+
+ /**
+ * Create a new interface type based on the given type, with unsized arrays
+ * replaced by sized arrays whose size is determined by
+ * max_ifc_array_access.
+ */
+ static const glsl_type *
+ resize_interface_members(const glsl_type *type,
+ const unsigned *max_ifc_array_access,
+ bool is_ssbo)
+ {
+ unsigned num_fields = type->length;
+ glsl_struct_field *fields = new glsl_struct_field[num_fields];
+ memcpy(fields, type->fields.structure,
+ num_fields * sizeof(*fields));
+ for (unsigned i = 0; i < num_fields; i++) {
+ /* If SSBO last member is unsized array, we don't replace it by a sized
+ * array.
+ */
+ if (is_ssbo && i == (num_fields - 1))
+ fixup_type(&fields[i].type, max_ifc_array_access[i],
+ true);
+ else
+ fixup_type(&fields[i].type, max_ifc_array_access[i],
+ false);
+ }
+ glsl_interface_packing packing =
+ (glsl_interface_packing) type->interface_packing;
+ const glsl_type *new_ifc_type =
+ glsl_type::get_interface_instance(fields, num_fields,
+ packing, type->name);
+ delete [] fields;
+ return new_ifc_type;
+ }
+
+ static void fixup_unnamed_interface_type(const void *key, void *data,
+ void *)
+ {
+ const glsl_type *ifc_type = (const glsl_type *) key;
+ ir_variable **interface_vars = (ir_variable **) data;
+ unsigned num_fields = ifc_type->length;
+ glsl_struct_field *fields = new glsl_struct_field[num_fields];
+ memcpy(fields, ifc_type->fields.structure,
+ num_fields * sizeof(*fields));
+ bool interface_type_changed = false;
+ for (unsigned i = 0; i < num_fields; i++) {
+ if (interface_vars[i] != NULL &&
+ fields[i].type != interface_vars[i]->type) {
+ fields[i].type = interface_vars[i]->type;
+ interface_type_changed = true;
+ }
+ }
+ if (!interface_type_changed) {
+ delete [] fields;
+ return;
+ }
+ glsl_interface_packing packing =
+ (glsl_interface_packing) ifc_type->interface_packing;
+ const glsl_type *new_ifc_type =
+ glsl_type::get_interface_instance(fields, num_fields, packing,
+ ifc_type->name);
+ delete [] fields;
+ for (unsigned i = 0; i < num_fields; i++) {
+ if (interface_vars[i] != NULL)
+ interface_vars[i]->change_interface_type(new_ifc_type);
+ }
+ }
+
+ /**
+ * Memory context used to allocate the data in \c unnamed_interfaces.
+ */
+ void *mem_ctx;
+
+ /**
+ * Hash table from const glsl_type * to an array of ir_variable *'s
+ * pointing to the ir_variables constituting each unnamed interface block.
+ */
+ hash_table *unnamed_interfaces;
+};
+
+
+/**
+ * Performs the cross-validation of tessellation control shader vertices and
+ * layout qualifiers for the attached tessellation control shaders,
+ * and propagates them to the linked TCS and linked shader program.
+ */
+static void
+link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
+ struct gl_shader *linked_shader,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ linked_shader->TessCtrl.VerticesOut = 0;
+
+ if (linked_shader->Stage != MESA_SHADER_TESS_CTRL)
+ return;
+
+ /* From the GLSL 4.0 spec (chapter 4.3.8.2):
+ *
+ * "All tessellation control shader layout declarations in a program
+ * must specify the same output patch vertex count. There must be at
+ * least one layout qualifier specifying an output patch vertex count
+ * in any program containing tessellation control shaders; however,
+ * such a declaration is not required in all tessellation control
+ * shaders."
+ */
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ struct gl_shader *shader = shader_list[i];
+
+ if (shader->TessCtrl.VerticesOut != 0) {
+ if (linked_shader->TessCtrl.VerticesOut != 0 &&
+ linked_shader->TessCtrl.VerticesOut != shader->TessCtrl.VerticesOut) {
+ linker_error(prog, "tessellation control shader defined with "
+ "conflicting output vertex count (%d and %d)\n",
+ linked_shader->TessCtrl.VerticesOut,
+ shader->TessCtrl.VerticesOut);
+ return;
+ }
+ linked_shader->TessCtrl.VerticesOut = shader->TessCtrl.VerticesOut;
+ }
+ }
+
+ /* Just do the intrastage -> interstage propagation right now,
+ * since we already know we're in the right type of shader program
+ * for doing it.
+ */
+ if (linked_shader->TessCtrl.VerticesOut == 0) {
+ linker_error(prog, "tessellation control shader didn't declare "
+ "vertices out layout qualifier\n");
+ return;
+ }
+ prog->TessCtrl.VerticesOut = linked_shader->TessCtrl.VerticesOut;
+}
+
+
+/**
+ * Performs the cross-validation of tessellation evaluation shader
+ * primitive type, vertex spacing, ordering and point_mode layout qualifiers
+ * for the attached tessellation evaluation shaders, and propagates them
+ * to the linked TES and linked shader program.
+ */
+static void
+link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
+ struct gl_shader *linked_shader,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ linked_shader->TessEval.PrimitiveMode = PRIM_UNKNOWN;
+ linked_shader->TessEval.Spacing = 0;
+ linked_shader->TessEval.VertexOrder = 0;
+ linked_shader->TessEval.PointMode = -1;
+
+ if (linked_shader->Stage != MESA_SHADER_TESS_EVAL)
+ return;
+
+ /* From the GLSL 4.0 spec (chapter 4.3.8.1):
+ *
+ * "At least one tessellation evaluation shader (compilation unit) in
+ * a program must declare a primitive mode in its input layout.
+ * Declaration vertex spacing, ordering, and point mode identifiers is
+ * optional. It is not required that all tessellation evaluation
+ * shaders in a program declare a primitive mode. If spacing or
+ * vertex ordering declarations are omitted, the tessellation
+ * primitive generator will use equal spacing or counter-clockwise
+ * vertex ordering, respectively. If a point mode declaration is
+ * omitted, the tessellation primitive generator will produce lines or
+ * triangles according to the primitive mode."
+ */
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ struct gl_shader *shader = shader_list[i];
+
+ if (shader->TessEval.PrimitiveMode != PRIM_UNKNOWN) {
+ if (linked_shader->TessEval.PrimitiveMode != PRIM_UNKNOWN &&
+ linked_shader->TessEval.PrimitiveMode != shader->TessEval.PrimitiveMode) {
+ linker_error(prog, "tessellation evaluation shader defined with "
+ "conflicting input primitive modes.\n");
+ return;
+ }
+ linked_shader->TessEval.PrimitiveMode = shader->TessEval.PrimitiveMode;
+ }
+
+ if (shader->TessEval.Spacing != 0) {
+ if (linked_shader->TessEval.Spacing != 0 &&
+ linked_shader->TessEval.Spacing != shader->TessEval.Spacing) {
+ linker_error(prog, "tessellation evaluation shader defined with "
+ "conflicting vertex spacing.\n");
+ return;
+ }
+ linked_shader->TessEval.Spacing = shader->TessEval.Spacing;
+ }
+
+ if (shader->TessEval.VertexOrder != 0) {
+ if (linked_shader->TessEval.VertexOrder != 0 &&
+ linked_shader->TessEval.VertexOrder != shader->TessEval.VertexOrder) {
+ linker_error(prog, "tessellation evaluation shader defined with "
+ "conflicting ordering.\n");
+ return;
+ }
+ linked_shader->TessEval.VertexOrder = shader->TessEval.VertexOrder;
+ }
+
+ if (shader->TessEval.PointMode != -1) {
+ if (linked_shader->TessEval.PointMode != -1 &&
+ linked_shader->TessEval.PointMode != shader->TessEval.PointMode) {
+ linker_error(prog, "tessellation evaluation shader defined with "
+ "conflicting point modes.\n");
+ return;
+ }
+ linked_shader->TessEval.PointMode = shader->TessEval.PointMode;
+ }
+
+ }
+
+ /* Just do the intrastage -> interstage propagation right now,
+ * since we already know we're in the right type of shader program
+ * for doing it.
+ */
+ if (linked_shader->TessEval.PrimitiveMode == PRIM_UNKNOWN) {
+ linker_error(prog,
+ "tessellation evaluation shader didn't declare input "
+ "primitive modes.\n");
+ return;
+ }
+ prog->TessEval.PrimitiveMode = linked_shader->TessEval.PrimitiveMode;
+
+ if (linked_shader->TessEval.Spacing == 0)
+ linked_shader->TessEval.Spacing = GL_EQUAL;
+ prog->TessEval.Spacing = linked_shader->TessEval.Spacing;
+
+ if (linked_shader->TessEval.VertexOrder == 0)
+ linked_shader->TessEval.VertexOrder = GL_CCW;
+ prog->TessEval.VertexOrder = linked_shader->TessEval.VertexOrder;
+
+ if (linked_shader->TessEval.PointMode == -1)
+ linked_shader->TessEval.PointMode = GL_FALSE;
+ prog->TessEval.PointMode = linked_shader->TessEval.PointMode;
+}
+
+
+/**
+ * Performs the cross-validation of layout qualifiers specified in
+ * redeclaration of gl_FragCoord for the attached fragment shaders,
+ * and propagates them to the linked FS and linked shader program.
+ */
+static void
+link_fs_input_layout_qualifiers(struct gl_shader_program *prog,
+ struct gl_shader *linked_shader,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ linked_shader->redeclares_gl_fragcoord = false;
+ linked_shader->uses_gl_fragcoord = false;
+ linked_shader->origin_upper_left = false;
+ linked_shader->pixel_center_integer = false;
+
+ if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
+ (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable))
+ return;
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ struct gl_shader *shader = shader_list[i];
+ /* From the GLSL 1.50 spec, page 39:
+ *
+ * "If gl_FragCoord is redeclared in any fragment shader in a program,
+ * it must be redeclared in all the fragment shaders in that program
+ * that have a static use gl_FragCoord."
+ */
+ if ((linked_shader->redeclares_gl_fragcoord
+ && !shader->redeclares_gl_fragcoord
+ && shader->uses_gl_fragcoord)
+ || (shader->redeclares_gl_fragcoord
+ && !linked_shader->redeclares_gl_fragcoord
+ && linked_shader->uses_gl_fragcoord)) {
+ linker_error(prog, "fragment shader defined with conflicting "
+ "layout qualifiers for gl_FragCoord\n");
+ }
+
+ /* From the GLSL 1.50 spec, page 39:
+ *
+ * "All redeclarations of gl_FragCoord in all fragment shaders in a
+ * single program must have the same set of qualifiers."
+ */
+ if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord
+ && (shader->origin_upper_left != linked_shader->origin_upper_left
+ || shader->pixel_center_integer != linked_shader->pixel_center_integer)) {
+ linker_error(prog, "fragment shader defined with conflicting "
+ "layout qualifiers for gl_FragCoord\n");
+ }
+
+ /* Update the linked shader state. Note that uses_gl_fragcoord should
+ * accumulate the results. The other values should replace. If there
+ * are multiple redeclarations, all the fields except uses_gl_fragcoord
+ * are already known to be the same.
+ */
+ if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
+ linked_shader->redeclares_gl_fragcoord =
+ shader->redeclares_gl_fragcoord;
+ linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord
+ || shader->uses_gl_fragcoord;
+ linked_shader->origin_upper_left = shader->origin_upper_left;
+ linked_shader->pixel_center_integer = shader->pixel_center_integer;
+ }
+
+ linked_shader->EarlyFragmentTests |= shader->EarlyFragmentTests;
+ }
+}
+
+/**
+ * Performs the cross-validation of geometry shader max_vertices and
+ * primitive type layout qualifiers for the attached geometry shaders,
+ * and propagates them to the linked GS and linked shader program.
+ */
+static void
+link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
+ struct gl_shader *linked_shader,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ linked_shader->Geom.VerticesOut = 0;
+ linked_shader->Geom.Invocations = 0;
+ linked_shader->Geom.InputType = PRIM_UNKNOWN;
+ linked_shader->Geom.OutputType = PRIM_UNKNOWN;
+
+ /* No in/out qualifiers defined for anything but GLSL 1.50+
+ * geometry shaders so far.
+ */
+ if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150)
+ return;
+
+ /* From the GLSL 1.50 spec, page 46:
+ *
+ * "All geometry shader output layout declarations in a program
+ * must declare the same layout and same value for
+ * max_vertices. There must be at least one geometry output
+ * layout declaration somewhere in a program, but not all
+ * geometry shaders (compilation units) are required to
+ * declare it."
+ */
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ struct gl_shader *shader = shader_list[i];
+
+ if (shader->Geom.InputType != PRIM_UNKNOWN) {
+ if (linked_shader->Geom.InputType != PRIM_UNKNOWN &&
+ linked_shader->Geom.InputType != shader->Geom.InputType) {
+ linker_error(prog, "geometry shader defined with conflicting "
+ "input types\n");
+ return;
+ }
+ linked_shader->Geom.InputType = shader->Geom.InputType;
+ }
+
+ if (shader->Geom.OutputType != PRIM_UNKNOWN) {
+ if (linked_shader->Geom.OutputType != PRIM_UNKNOWN &&
+ linked_shader->Geom.OutputType != shader->Geom.OutputType) {
+ linker_error(prog, "geometry shader defined with conflicting "
+ "output types\n");
+ return;
+ }
+ linked_shader->Geom.OutputType = shader->Geom.OutputType;
+ }
+
+ if (shader->Geom.VerticesOut != 0) {
+ if (linked_shader->Geom.VerticesOut != 0 &&
+ linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) {
+ linker_error(prog, "geometry shader defined with conflicting "
+ "output vertex count (%d and %d)\n",
+ linked_shader->Geom.VerticesOut,
+ shader->Geom.VerticesOut);
+ return;
+ }
+ linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut;
+ }
+
+ if (shader->Geom.Invocations != 0) {
+ if (linked_shader->Geom.Invocations != 0 &&
+ linked_shader->Geom.Invocations != shader->Geom.Invocations) {
+ linker_error(prog, "geometry shader defined with conflicting "
+ "invocation count (%d and %d)\n",
+ linked_shader->Geom.Invocations,
+ shader->Geom.Invocations);
+ return;
+ }
+ linked_shader->Geom.Invocations = shader->Geom.Invocations;
+ }
+ }
+
+ /* Just do the intrastage -> interstage propagation right now,
+ * since we already know we're in the right type of shader program
+ * for doing it.
+ */
+ if (linked_shader->Geom.InputType == PRIM_UNKNOWN) {
+ linker_error(prog,
+ "geometry shader didn't declare primitive input type\n");
+ return;
+ }
+ prog->Geom.InputType = linked_shader->Geom.InputType;
+
+ if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) {
+ linker_error(prog,
+ "geometry shader didn't declare primitive output type\n");
+ return;
+ }
+ prog->Geom.OutputType = linked_shader->Geom.OutputType;
+
+ if (linked_shader->Geom.VerticesOut == 0) {
+ linker_error(prog,
+ "geometry shader didn't declare max_vertices\n");
+ return;
+ }
+ prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut;
+
+ if (linked_shader->Geom.Invocations == 0)
+ linked_shader->Geom.Invocations = 1;
+
+ prog->Geom.Invocations = linked_shader->Geom.Invocations;
+}
+
+
+/**
+ * Perform cross-validation of compute shader local_size_{x,y,z} layout
+ * qualifiers for the attached compute shaders, and propagate them to the
+ * linked CS and linked shader program.
+ */
+static void
+link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
+ struct gl_shader *linked_shader,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ for (int i = 0; i < 3; i++)
+ linked_shader->Comp.LocalSize[i] = 0;
+
+ /* This function is called for all shader stages, but it only has an effect
+ * for compute shaders.
+ */
+ if (linked_shader->Stage != MESA_SHADER_COMPUTE)
+ return;
+
+ /* From the ARB_compute_shader spec, in the section describing local size
+ * declarations:
+ *
+ * If multiple compute shaders attached to a single program object
+ * declare local work-group size, the declarations must be identical;
+ * otherwise a link-time error results. Furthermore, if a program
+ * object contains any compute shaders, at least one must contain an
+ * input layout qualifier specifying the local work sizes of the
+ * program, or a link-time error will occur.
+ */
+ for (unsigned sh = 0; sh < num_shaders; sh++) {
+ struct gl_shader *shader = shader_list[sh];
+
+ if (shader->Comp.LocalSize[0] != 0) {
+ if (linked_shader->Comp.LocalSize[0] != 0) {
+ for (int i = 0; i < 3; i++) {
+ if (linked_shader->Comp.LocalSize[i] !=
+ shader->Comp.LocalSize[i]) {
+ linker_error(prog, "compute shader defined with conflicting "
+ "local sizes\n");
+ return;
+ }
+ }
+ }
+ for (int i = 0; i < 3; i++)
+ linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i];
+ }
+ }
+
+ /* Just do the intrastage -> interstage propagation right now,
+ * since we already know we're in the right type of shader program
+ * for doing it.
+ */
+ if (linked_shader->Comp.LocalSize[0] == 0) {
+ linker_error(prog, "compute shader didn't declare local size\n");
+ return;
+ }
+ for (int i = 0; i < 3; i++)
+ prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i];
+}
+
+
+/**
+ * Combine a group of shaders for a single stage to generate a linked shader
+ *
+ * \note
+ * If this function is supplied a single shader, it is cloned, and the new
+ * shader is returned.
+ */
+static struct gl_shader *
+link_intrastage_shaders(void *mem_ctx,
+ struct gl_context *ctx,
+ struct gl_shader_program *prog,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ struct gl_uniform_block *uniform_blocks = NULL;
+
+ /* Check that global variables defined in multiple shaders are consistent.
+ */
+ cross_validate_globals(prog, shader_list, num_shaders, false);
+ if (!prog->LinkStatus)
+ return NULL;
+
+ /* Check that interface blocks defined in multiple shaders are consistent.
+ */
+ validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
+ num_shaders);
+ if (!prog->LinkStatus)
+ return NULL;
+
+ /* Link up uniform blocks defined within this stage. */
+ const unsigned num_uniform_blocks =
+ link_uniform_blocks(mem_ctx, ctx, prog, shader_list, num_shaders,
+ &uniform_blocks);
+ if (!prog->LinkStatus)
+ return NULL;
+
+ /* Check that there is only a single definition of each function signature
+ * across all shaders.
+ */
+ for (unsigned i = 0; i < (num_shaders - 1); i++) {
+ foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
+ ir_function *const f = node->as_function();
+
+ if (f == NULL)
+ continue;
+
+ for (unsigned j = i + 1; j < num_shaders; j++) {
+ ir_function *const other =
+ shader_list[j]->symbols->get_function(f->name);
+
+ /* If the other shader has no function (and therefore no function
+ * signatures) with the same name, skip to the next shader.
+ */
+ if (other == NULL)
+ continue;
+
+ foreach_in_list(ir_function_signature, sig, &f->signatures) {
+ if (!sig->is_defined || sig->is_builtin())
+ continue;
+
+ ir_function_signature *other_sig =
+ other->exact_matching_signature(NULL, &sig->parameters);
+
+ if ((other_sig != NULL) && other_sig->is_defined
+ && !other_sig->is_builtin()) {
+ linker_error(prog, "function `%s' is multiply defined\n",
+ f->name);
+ return NULL;
+ }
+ }
+ }
+ }
+ }
+
+ /* Find the shader that defines main, and make a clone of it.
+ *
+ * Starting with the clone, search for undefined references. If one is
+ * found, find the shader that defines it. Clone the reference and add
+ * it to the shader. Repeat until there are no undefined references or
+ * until a reference cannot be resolved.
+ */
+ gl_shader *main = NULL;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (_mesa_get_main_function_signature(shader_list[i]) != NULL) {
+ main = shader_list[i];
+ break;
+ }
+ }
+
+ if (main == NULL) {
+ linker_error(prog, "%s shader lacks `main'\n",
+ _mesa_shader_stage_to_string(shader_list[0]->Stage));
+ return NULL;
+ }
+
+ gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
+ linked->ir = new(linked) exec_list;
+ clone_ir_list(mem_ctx, linked->ir, main->ir);
+
+ linked->BufferInterfaceBlocks = uniform_blocks;
+ linked->NumBufferInterfaceBlocks = num_uniform_blocks;
+ ralloc_steal(linked, linked->BufferInterfaceBlocks);
+
+ link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
+ link_tcs_out_layout_qualifiers(prog, linked, shader_list, num_shaders);
+ link_tes_in_layout_qualifiers(prog, linked, shader_list, num_shaders);
+ link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
+ link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders);
+
+ populate_symbol_table(linked);
+
+ /* The pointer to the main function in the final linked shader (i.e., the
+ * copy of the original shader that contained the main function).
+ */
+ ir_function_signature *const main_sig =
+ _mesa_get_main_function_signature(linked);
+
+ /* Move any instructions other than variable declarations or function
+ * declarations into main.
+ */
+ exec_node *insertion_point =
+ move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
+ linked);
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (shader_list[i] == main)
+ continue;
+
+ insertion_point = move_non_declarations(shader_list[i]->ir,
+ insertion_point, true, linked);
+ }
+
+ /* Check if any shader needs built-in functions. */
+ bool need_builtins = false;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (shader_list[i]->uses_builtin_functions) {
+ need_builtins = true;
+ break;
+ }
+ }
+
+ bool ok;
+ if (need_builtins) {
+ /* Make a temporary array one larger than shader_list, which will hold
+ * the built-in function shader as well.
+ */
+ gl_shader **linking_shaders = (gl_shader **)
+ calloc(num_shaders + 1, sizeof(gl_shader *));
+
+ ok = linking_shaders != NULL;
+
+ if (ok) {
+ memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *));
+ linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader();
+
+ ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1);
+
+ free(linking_shaders);
+ } else {
+ _mesa_error_no_memory(__func__);
+ }
+ } else {
+ ok = link_function_calls(prog, linked, shader_list, num_shaders);
+ }
+
+
+ if (!ok) {
+ _mesa_delete_shader(ctx, linked);
+ return NULL;
+ }
+
+ /* At this point linked should contain all of the linked IR, so
+ * validate it to make sure nothing went wrong.
+ */
+ validate_ir_tree(linked->ir);
+
+ /* Set the size of geometry shader input arrays */
+ if (linked->Stage == MESA_SHADER_GEOMETRY) {
+ unsigned num_vertices = vertices_per_prim(prog->Geom.InputType);
+ geom_array_resize_visitor input_resize_visitor(num_vertices, prog);
+ foreach_in_list(ir_instruction, ir, linked->ir) {
+ ir->accept(&input_resize_visitor);
+ }
+ }
+
+ if (ctx->Const.VertexID_is_zero_based)
+ lower_vertex_id(linked);
+
+ /* Validate correct usage of barrier() in the tess control shader */
+ if (linked->Stage == MESA_SHADER_TESS_CTRL) {
+ barrier_use_visitor visitor(prog);
+ foreach_in_list(ir_instruction, ir, linked->ir) {
+ ir->accept(&visitor);
+ }
+ }
+
+ /* Make a pass over all variable declarations to ensure that arrays with
+ * unspecified sizes have a size specified. The size is inferred from the
+ * max_array_access field.
+ */
+ array_sizing_visitor v;
+ v.run(linked->ir);
+ v.fixup_unnamed_interface_types();
+
+ return linked;
+}
+
+/**
+ * Update the sizes of linked shader uniform arrays to the maximum
+ * array index used.
+ *
+ * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
+ *
+ * If one or more elements of an array are active,
+ * GetActiveUniform will return the name of the array in name,
+ * subject to the restrictions listed above. The type of the array
+ * is returned in type. The size parameter contains the highest
+ * array element index used, plus one. The compiler or linker
+ * determines the highest index used. There will be only one
+ * active uniform reported by the GL per uniform array.
+
+ */
+static void
+update_array_sizes(struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
+ ir_variable *const var = node->as_variable();
+
+ if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
+ !var->type->is_array())
+ continue;
+
+ /* GL_ARB_uniform_buffer_object says that std140 uniforms
+ * will not be eliminated. Since we always do std140, just
+ * don't resize arrays in UBOs.
+ *
+ * Atomic counters are supposed to get deterministic
+ * locations assigned based on the declaration ordering and
+ * sizes, array compaction would mess that up.
+ *
+ * Subroutine uniforms are not removed.
+ */
+ if (var->is_in_buffer_block() || var->type->contains_atomic() ||
+ var->type->contains_subroutine())
+ continue;
+
+ unsigned int size = var->data.max_array_access;
+ for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
+ if (prog->_LinkedShaders[j] == NULL)
+ continue;
+
+ foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
+ ir_variable *other_var = node2->as_variable();
+ if (!other_var)
+ continue;
+
+ if (strcmp(var->name, other_var->name) == 0 &&
+ other_var->data.max_array_access > size) {
+ size = other_var->data.max_array_access;
+ }
+ }
+ }
+
+ if (size + 1 != var->type->length) {
+ /* If this is a built-in uniform (i.e., it's backed by some
+ * fixed-function state), adjust the number of state slots to
+ * match the new array size. The number of slots per array entry
+ * is not known. It seems safe to assume that the total number of
+ * slots is an integer multiple of the number of array elements.
+ * Determine the number of slots per array element by dividing by
+ * the old (total) size.
+ */
+ const unsigned num_slots = var->get_num_state_slots();
+ if (num_slots > 0) {
+ var->set_num_state_slots((size + 1)
+ * (num_slots / var->type->length));
+ }
+
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ size + 1);
+ /* FINISHME: We should update the types of array
+ * dereferences of this variable now.
+ */
+ }
+ }
+ }
+}
+
+/**
+ * Resize tessellation evaluation per-vertex inputs to the size of
+ * tessellation control per-vertex outputs.
+ */
+static void
+resize_tes_inputs(struct gl_context *ctx,
+ struct gl_shader_program *prog)
+{
+ if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
+ return;
+
+ gl_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
+ gl_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
+
+ /* If no control shader is present, then the TES inputs are statically
+ * sized to MaxPatchVertices; the actual size of the arrays won't be
+ * known until draw time.
+ */
+ const int num_vertices = tcs
+ ? tcs->TessCtrl.VerticesOut
+ : ctx->Const.MaxPatchVertices;
+
+ tess_eval_array_resize_visitor input_resize_visitor(num_vertices, prog);
+ foreach_in_list(ir_instruction, ir, tes->ir) {
+ ir->accept(&input_resize_visitor);
+ }
+
+ if (tcs) {
+ /* Convert the gl_PatchVerticesIn system value into a constant, since
+ * the value is known at this point.
+ */
+ foreach_in_list(ir_instruction, ir, tes->ir) {
+ ir_variable *var = ir->as_variable();
+ if (var && var->data.mode == ir_var_system_value &&
+ var->data.location == SYSTEM_VALUE_VERTICES_IN) {
+ void *mem_ctx = ralloc_parent(var);
+ var->data.mode = ir_var_auto;
+ var->data.location = 0;
+ var->constant_value = new(mem_ctx) ir_constant(num_vertices);
+ }
+ }
+ }
+}
+
+/**
+ * Find a contiguous set of available bits in a bitmask.
+ *
+ * \param used_mask Bits representing used (1) and unused (0) locations
+ * \param needed_count Number of contiguous bits needed.
+ *
+ * \return
+ * Base location of the available bits on success or -1 on failure.
+ */
+int
+find_available_slots(unsigned used_mask, unsigned needed_count)
+{
+ unsigned needed_mask = (1 << needed_count) - 1;
+ const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
+
+ /* The comparison to 32 is redundant, but without it GCC emits "warning:
+ * cannot optimize possibly infinite loops" for the loop below.
+ */
+ if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
+ return -1;
+
+ for (int i = 0; i <= max_bit_to_test; i++) {
+ if ((needed_mask & ~used_mask) == needed_mask)
+ return i;
+
+ needed_mask <<= 1;
+ }
+
+ return -1;
+}
+
+
+/**
+ * Assign locations for either VS inputs or FS outputs
+ *
+ * \param prog Shader program whose variables need locations assigned
+ * \param constants Driver specific constant values for the program.
+ * \param target_index Selector for the program target to receive location
+ * assignmnets. Must be either \c MESA_SHADER_VERTEX or
+ * \c MESA_SHADER_FRAGMENT.
+ *
+ * \return
+ * If locations are successfully assigned, true is returned. Otherwise an
+ * error is emitted to the shader link log and false is returned.
+ */
+bool
+assign_attribute_or_color_locations(gl_shader_program *prog,
+ struct gl_constants *constants,
+ unsigned target_index)
+{
+ /* Maximum number of generic locations. This corresponds to either the
+ * maximum number of draw buffers or the maximum number of generic
+ * attributes.
+ */
+ unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
+ constants->Program[target_index].MaxAttribs :
+ MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
+
+ /* Mark invalid locations as being used.
+ */
+ unsigned used_locations = (max_index >= 32)
+ ? ~0 : ~((1 << max_index) - 1);
+ unsigned double_storage_locations = 0;
+
+ assert((target_index == MESA_SHADER_VERTEX)
+ || (target_index == MESA_SHADER_FRAGMENT));
+
+ gl_shader *const sh = prog->_LinkedShaders[target_index];
+ if (sh == NULL)
+ return true;
+
+ /* Operate in a total of four passes.
+ *
+ * 1. Invalidate the location assignments for all vertex shader inputs.
+ *
+ * 2. Assign locations for inputs that have user-defined (via
+ * glBindVertexAttribLocation) locations and outputs that have
+ * user-defined locations (via glBindFragDataLocation).
+ *
+ * 3. Sort the attributes without assigned locations by number of slots
+ * required in decreasing order. Fragmentation caused by attribute
+ * locations assigned by the application may prevent large attributes
+ * from having enough contiguous space.
+ *
+ * 4. Assign locations to any inputs without assigned locations.
+ */
+
+ const int generic_base = (target_index == MESA_SHADER_VERTEX)
+ ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
+
+ const enum ir_variable_mode direction =
+ (target_index == MESA_SHADER_VERTEX)
+ ? ir_var_shader_in : ir_var_shader_out;
+
+
+ /* Temporary storage for the set of attributes that need locations assigned.
+ */
+ struct temp_attr {
+ unsigned slots;
+ ir_variable *var;
+
+ /* Used below in the call to qsort. */
+ static int compare(const void *a, const void *b)
+ {
+ const temp_attr *const l = (const temp_attr *) a;
+ const temp_attr *const r = (const temp_attr *) b;
+
+ /* Reversed because we want a descending order sort below. */
+ return r->slots - l->slots;
+ }
+ } to_assign[16];
+
+ unsigned num_attr = 0;
+
+ foreach_in_list(ir_instruction, node, sh->ir) {
+ ir_variable *const var = node->as_variable();
+
+ if ((var == NULL) || (var->data.mode != (unsigned) direction))
+ continue;
+
+ if (var->data.explicit_location) {
+ var->data.is_unmatched_generic_inout = 0;
+ if ((var->data.location >= (int)(max_index + generic_base))
+ || (var->data.location < 0)) {
+ linker_error(prog,
+ "invalid explicit location %d specified for `%s'\n",
+ (var->data.location < 0)
+ ? var->data.location
+ : var->data.location - generic_base,
+ var->name);
+ return false;
+ }
+ } else if (target_index == MESA_SHADER_VERTEX) {
+ unsigned binding;
+
+ if (prog->AttributeBindings->get(binding, var->name)) {
+ assert(binding >= VERT_ATTRIB_GENERIC0);
+ var->data.location = binding;
+ var->data.is_unmatched_generic_inout = 0;
+ }
+ } else if (target_index == MESA_SHADER_FRAGMENT) {
+ unsigned binding;
+ unsigned index;
+
+ if (prog->FragDataBindings->get(binding, var->name)) {
+ assert(binding >= FRAG_RESULT_DATA0);
+ var->data.location = binding;
+ var->data.is_unmatched_generic_inout = 0;
+
+ if (prog->FragDataIndexBindings->get(index, var->name)) {
+ var->data.index = index;
+ }
+ }
+ }
+
+ /* From GL4.5 core spec, section 15.2 (Shader Execution):
+ *
+ * "Output binding assignments will cause LinkProgram to fail:
+ * ...
+ * If the program has an active output assigned to a location greater
+ * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
+ * an active output assigned an index greater than or equal to one;"
+ */
+ if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
+ var->data.location - generic_base >=
+ (int) constants->MaxDualSourceDrawBuffers) {
+ linker_error(prog,
+ "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
+ "with index %u for %s\n",
+ var->data.location - generic_base, var->data.index,
+ var->name);
+ return false;
+ }
+
+ const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX ? true : false);
+
+ /* If the variable is not a built-in and has a location statically
+ * assigned in the shader (presumably via a layout qualifier), make sure
+ * that it doesn't collide with other assigned locations. Otherwise,
+ * add it to the list of variables that need linker-assigned locations.
+ */
+ if (var->data.location != -1) {
+ if (var->data.location >= generic_base && var->data.index < 1) {
+ /* From page 61 of the OpenGL 4.0 spec:
+ *
+ * "LinkProgram will fail if the attribute bindings assigned
+ * by BindAttribLocation do not leave not enough space to
+ * assign a location for an active matrix attribute or an
+ * active attribute array, both of which require multiple
+ * contiguous generic attributes."
+ *
+ * I think above text prohibits the aliasing of explicit and
+ * automatic assignments. But, aliasing is allowed in manual
+ * assignments of attribute locations. See below comments for
+ * the details.
+ *
+ * From OpenGL 4.0 spec, page 61:
+ *
+ * "It is possible for an application to bind more than one
+ * attribute name to the same location. This is referred to as
+ * aliasing. This will only work if only one of the aliased
+ * attributes is active in the executable program, or if no
+ * path through the shader consumes more than one attribute of
+ * a set of attributes aliased to the same location. A link
+ * error can occur if the linker determines that every path
+ * through the shader consumes multiple aliased attributes,
+ * but implementations are not required to generate an error
+ * in this case."
+ *
+ * From GLSL 4.30 spec, page 54:
+ *
+ * "A program will fail to link if any two non-vertex shader
+ * input variables are assigned to the same location. For
+ * vertex shaders, multiple input variables may be assigned
+ * to the same location using either layout qualifiers or via
+ * the OpenGL API. However, such aliasing is intended only to
+ * support vertex shaders where each execution path accesses
+ * at most one input per each location. Implementations are
+ * permitted, but not required, to generate link-time errors
+ * if they detect that every path through the vertex shader
+ * executable accesses multiple inputs assigned to any single
+ * location. For all shader types, a program will fail to link
+ * if explicit location assignments leave the linker unable
+ * to find space for other variables without explicit
+ * assignments."
+ *
+ * From OpenGL ES 3.0 spec, page 56:
+ *
+ * "Binding more than one attribute name to the same location
+ * is referred to as aliasing, and is not permitted in OpenGL
+ * ES Shading Language 3.00 vertex shaders. LinkProgram will
+ * fail when this condition exists. However, aliasing is
+ * possible in OpenGL ES Shading Language 1.00 vertex shaders.
+ * This will only work if only one of the aliased attributes
+ * is active in the executable program, or if no path through
+ * the shader consumes more than one attribute of a set of
+ * attributes aliased to the same location. A link error can
+ * occur if the linker determines that every path through the
+ * shader consumes multiple aliased attributes, but implemen-
+ * tations are not required to generate an error in this case."
+ *
+ * After looking at above references from OpenGL, OpenGL ES and
+ * GLSL specifications, we allow aliasing of vertex input variables
+ * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
+ *
+ * NOTE: This is not required by the spec but its worth mentioning
+ * here that we're not doing anything to make sure that no path
+ * through the vertex shader executable accesses multiple inputs
+ * assigned to any single location.
+ */
+
+ /* Mask representing the contiguous slots that will be used by
+ * this attribute.
+ */
+ const unsigned attr = var->data.location - generic_base;
+ const unsigned use_mask = (1 << slots) - 1;
+ const char *const string = (target_index == MESA_SHADER_VERTEX)
+ ? "vertex shader input" : "fragment shader output";
+
+ /* Generate a link error if the requested locations for this
+ * attribute exceed the maximum allowed attribute location.
+ */
+ if (attr + slots > max_index) {
+ linker_error(prog,
+ "insufficient contiguous locations "
+ "available for %s `%s' %d %d %d\n", string,
+ var->name, used_locations, use_mask, attr);
+ return false;
+ }
+
+ /* Generate a link error if the set of bits requested for this
+ * attribute overlaps any previously allocated bits.
+ */
+ if ((~(use_mask << attr) & used_locations) != used_locations) {
+ if (target_index == MESA_SHADER_FRAGMENT ||
+ (prog->IsES && prog->Version >= 300)) {
+ linker_error(prog,
+ "overlapping location is assigned "
+ "to %s `%s' %d %d %d\n", string,
+ var->name, used_locations, use_mask, attr);
+ return false;
+ } else {
+ linker_warning(prog,
+ "overlapping location is assigned "
+ "to %s `%s' %d %d %d\n", string,
+ var->name, used_locations, use_mask, attr);
+ }
+ }
+
+ used_locations |= (use_mask << attr);
+
+ /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
+ *
+ * "A program with more than the value of MAX_VERTEX_ATTRIBS
+ * active attribute variables may fail to link, unless
+ * device-dependent optimizations are able to make the program
+ * fit within available hardware resources. For the purposes
+ * of this test, attribute variables of the type dvec3, dvec4,
+ * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
+ * count as consuming twice as many attributes as equivalent
+ * single-precision types. While these types use the same number
+ * of generic attributes as their single-precision equivalents,
+ * implementations are permitted to consume two single-precision
+ * vectors of internal storage for each three- or four-component
+ * double-precision vector."
+ *
+ * Mark this attribute slot as taking up twice as much space
+ * so we can count it properly against limits. According to
+ * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
+ * is optional behavior, but it seems preferable.
+ */
+ if (var->type->without_array()->is_dual_slot_double())
+ double_storage_locations |= (use_mask << attr);
+ }
+
+ continue;
+ }
+
+ to_assign[num_attr].slots = slots;
+ to_assign[num_attr].var = var;
+ num_attr++;
+ }
+
+ if (target_index == MESA_SHADER_VERTEX) {
+ unsigned total_attribs_size =
+ _mesa_bitcount(used_locations & ((1 << max_index) - 1)) +
+ _mesa_bitcount(double_storage_locations);
+ if (total_attribs_size > max_index) {
+ linker_error(prog,
+ "attempt to use %d vertex attribute slots only %d available ",
+ total_attribs_size, max_index);
+ return false;
+ }
+ }
+
+ /* If all of the attributes were assigned locations by the application (or
+ * are built-in attributes with fixed locations), return early. This should
+ * be the common case.
+ */
+ if (num_attr == 0)
+ return true;
+
+ qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
+
+ if (target_index == MESA_SHADER_VERTEX) {
+ /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
+ * only be explicitly assigned by via glBindAttribLocation. Mark it as
+ * reserved to prevent it from being automatically allocated below.
+ */
+ find_deref_visitor find("gl_Vertex");
+ find.run(sh->ir);
+ if (find.variable_found())
+ used_locations |= (1 << 0);
+ }
+
+ for (unsigned i = 0; i < num_attr; i++) {
+ /* Mask representing the contiguous slots that will be used by this
+ * attribute.
+ */
+ const unsigned use_mask = (1 << to_assign[i].slots) - 1;
+
+ int location = find_available_slots(used_locations, to_assign[i].slots);
+
+ if (location < 0) {
+ const char *const string = (target_index == MESA_SHADER_VERTEX)
+ ? "vertex shader input" : "fragment shader output";
+
+ linker_error(prog,
+ "insufficient contiguous locations "
+ "available for %s `%s'\n",
+ string, to_assign[i].var->name);
+ return false;
+ }
+
+ to_assign[i].var->data.location = generic_base + location;
+ to_assign[i].var->data.is_unmatched_generic_inout = 0;
+ used_locations |= (use_mask << location);
+ }
+
+ return true;
+}
+
+/**
+ * Match explicit locations of outputs to inputs and deactivate the
+ * unmatch flag if found so we don't optimise them away.
+ */
+static void
+match_explicit_outputs_to_inputs(struct gl_shader_program *prog,
+ gl_shader *producer,
+ gl_shader *consumer)
+{
+ glsl_symbol_table parameters;
+ ir_variable *explicit_locations[MAX_VARYING] = { NULL };
+
+ /* Find all shader outputs in the "producer" stage.
+ */
+ foreach_in_list(ir_instruction, node, producer->ir) {
+ ir_variable *const var = node->as_variable();
+
+ if ((var == NULL) || (var->data.mode != ir_var_shader_out))
+ continue;
+
+ if (var->data.explicit_location &&
+ var->data.location >= VARYING_SLOT_VAR0) {
+ const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
+ if (explicit_locations[idx] == NULL)
+ explicit_locations[idx] = var;
+ }
+ }
+
+ /* Match inputs to outputs */
+ foreach_in_list(ir_instruction, node, consumer->ir) {
+ ir_variable *const input = node->as_variable();
+
+ if ((input == NULL) || (input->data.mode != ir_var_shader_in))
+ continue;
+
+ ir_variable *output = NULL;
+ if (input->data.explicit_location
+ && input->data.location >= VARYING_SLOT_VAR0) {
+ output = explicit_locations[input->data.location - VARYING_SLOT_VAR0];
+
+ if (output != NULL){
+ input->data.is_unmatched_generic_inout = 0;
+ output->data.is_unmatched_generic_inout = 0;
+ }
+ }
+ }
+}
+
+/**
+ * Store the gl_FragDepth layout in the gl_shader_program struct.
+ */
+static void
+store_fragdepth_layout(struct gl_shader_program *prog)
+{
+ if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
+ return;
+ }
+
+ struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
+
+ /* We don't look up the gl_FragDepth symbol directly because if
+ * gl_FragDepth is not used in the shader, it's removed from the IR.
+ * However, the symbol won't be removed from the symbol table.
+ *
+ * We're only interested in the cases where the variable is NOT removed
+ * from the IR.
+ */
+ foreach_in_list(ir_instruction, node, ir) {
+ ir_variable *const var = node->as_variable();
+
+ if (var == NULL || var->data.mode != ir_var_shader_out) {
+ continue;
+ }
+
+ if (strcmp(var->name, "gl_FragDepth") == 0) {
+ switch (var->data.depth_layout) {
+ case ir_depth_layout_none:
+ prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
+ return;
+ case ir_depth_layout_any:
+ prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
+ return;
+ case ir_depth_layout_greater:
+ prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
+ return;
+ case ir_depth_layout_less:
+ prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
+ return;
+ case ir_depth_layout_unchanged:
+ prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
+ return;
+ default:
+ assert(0);
+ return;
+ }
+ }
+ }
+}
+
+/**
+ * Validate the resources used by a program versus the implementation limits
+ */
+static void
+check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+
+ if (sh == NULL)
+ continue;
+
+ if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) {
+ linker_error(prog, "Too many %s shader texture samplers\n",
+ _mesa_shader_stage_to_string(i));
+ }
+
+ if (sh->num_uniform_components >
+ ctx->Const.Program[i].MaxUniformComponents) {
+ if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
+ linker_warning(prog, "Too many %s shader default uniform block "
+ "components, but the driver will try to optimize "
+ "them out; this is non-portable out-of-spec "
+ "behavior\n",
+ _mesa_shader_stage_to_string(i));
+ } else {
+ linker_error(prog, "Too many %s shader default uniform block "
+ "components\n",
+ _mesa_shader_stage_to_string(i));
+ }
+ }
+
+ if (sh->num_combined_uniform_components >
+ ctx->Const.Program[i].MaxCombinedUniformComponents) {
+ if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
+ linker_warning(prog, "Too many %s shader uniform components, "
+ "but the driver will try to optimize them out; "
+ "this is non-portable out-of-spec behavior\n",
+ _mesa_shader_stage_to_string(i));
+ } else {
+ linker_error(prog, "Too many %s shader uniform components\n",
+ _mesa_shader_stage_to_string(i));
+ }
+ }
+ }
+
+ unsigned blocks[MESA_SHADER_STAGES] = {0};
+ unsigned total_uniform_blocks = 0;
+ unsigned shader_blocks[MESA_SHADER_STAGES] = {0};
+ unsigned total_shader_storage_blocks = 0;
+
+ for (unsigned i = 0; i < prog->NumBufferInterfaceBlocks; i++) {
+ /* Don't check SSBOs for Uniform Block Size */
+ if (!prog->BufferInterfaceBlocks[i].IsShaderStorage &&
+ prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxUniformBlockSize) {
+ linker_error(prog, "Uniform block %s too big (%d/%d)\n",
+ prog->BufferInterfaceBlocks[i].Name,
+ prog->BufferInterfaceBlocks[i].UniformBufferSize,
+ ctx->Const.MaxUniformBlockSize);
+ }
+
+ if (prog->BufferInterfaceBlocks[i].IsShaderStorage &&
+ prog->BufferInterfaceBlocks[i].UniformBufferSize > ctx->Const.MaxShaderStorageBlockSize) {
+ linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
+ prog->BufferInterfaceBlocks[i].Name,
+ prog->BufferInterfaceBlocks[i].UniformBufferSize,
+ ctx->Const.MaxShaderStorageBlockSize);
+ }
+
+ for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
+ if (prog->InterfaceBlockStageIndex[j][i] != -1) {
+ struct gl_shader *sh = prog->_LinkedShaders[j];
+ int stage_index = prog->InterfaceBlockStageIndex[j][i];
+ if (sh && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage) {
+ shader_blocks[j]++;
+ total_shader_storage_blocks++;
+ } else {
+ blocks[j]++;
+ total_uniform_blocks++;
+ }
+ }
+ }
+
+ if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
+ linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
+ total_uniform_blocks,
+ ctx->Const.MaxCombinedUniformBlocks);
+ } else {
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ const unsigned max_uniform_blocks =
+ ctx->Const.Program[i].MaxUniformBlocks;
+ if (blocks[i] > max_uniform_blocks) {
+ linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
+ _mesa_shader_stage_to_string(i),
+ blocks[i],
+ max_uniform_blocks);
+ break;
+ }
+ }
+ }
+
+ if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
+ linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
+ total_shader_storage_blocks,
+ ctx->Const.MaxCombinedShaderStorageBlocks);
+ } else {
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ const unsigned max_shader_storage_blocks =
+ ctx->Const.Program[i].MaxShaderStorageBlocks;
+ if (shader_blocks[i] > max_shader_storage_blocks) {
+ linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
+ _mesa_shader_stage_to_string(i),
+ shader_blocks[i],
+ max_shader_storage_blocks);
+ break;
+ }
+ }
+ }
+ }
+}
+
+static void
+link_calculate_subroutine_compat(struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+ int count;
+ if (!sh)
+ continue;
+
+ for (unsigned j = 0; j < sh->NumSubroutineUniformRemapTable; j++) {
+ struct gl_uniform_storage *uni = sh->SubroutineUniformRemapTable[j];
+
+ if (!uni)
+ continue;
+
+ count = 0;
+ for (unsigned f = 0; f < sh->NumSubroutineFunctions; f++) {
+ struct gl_subroutine_function *fn = &sh->SubroutineFunctions[f];
+ for (int k = 0; k < fn->num_compat_types; k++) {
+ if (fn->types[k] == uni->type) {
+ count++;
+ break;
+ }
+ }
+ }
+ uni->num_compatible_subroutines = count;
+ }
+ }
+}
+
+static void
+check_subroutine_resources(struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+
+ if (sh) {
+ if (sh->NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS)
+ linker_error(prog, "Too many %s shader subroutine uniforms\n",
+ _mesa_shader_stage_to_string(i));
+ }
+ }
+}
+/**
+ * Validate shader image resources.
+ */
+static void
+check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+ unsigned total_image_units = 0;
+ unsigned fragment_outputs = 0;
+ unsigned total_shader_storage_blocks = 0;
+
+ if (!ctx->Extensions.ARB_shader_image_load_store)
+ return;
+
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+
+ if (sh) {
+ if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms)
+ linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
+ _mesa_shader_stage_to_string(i), sh->NumImages,
+ ctx->Const.Program[i].MaxImageUniforms);
+
+ total_image_units += sh->NumImages;
+
+ for (unsigned j = 0; j < prog->NumBufferInterfaceBlocks; j++) {
+ int stage_index = prog->InterfaceBlockStageIndex[i][j];
+ if (stage_index != -1 && sh->BufferInterfaceBlocks[stage_index].IsShaderStorage)
+ total_shader_storage_blocks++;
+ }
+
+ if (i == MESA_SHADER_FRAGMENT) {
+ foreach_in_list(ir_instruction, node, sh->ir) {
+ ir_variable *var = node->as_variable();
+ if (var && var->data.mode == ir_var_shader_out)
+ /* since there are no double fs outputs - pass false */
+ fragment_outputs += var->type->count_attribute_slots(false);
+ }
+ }
+ }
+ }
+
+ if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
+ linker_error(prog, "Too many combined image uniforms\n");
+
+ if (total_image_units + fragment_outputs + total_shader_storage_blocks >
+ ctx->Const.MaxCombinedShaderOutputResources)
+ linker_error(prog, "Too many combined image uniforms, shader storage "
+ " buffers and fragment outputs\n");
+}
+
+
+/**
+ * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
+ * for a variable, checks for overlaps between other uniforms using explicit
+ * locations.
+ */
+static bool
+reserve_explicit_locations(struct gl_shader_program *prog,
+ string_to_uint_map *map, ir_variable *var)
+{
+ unsigned slots = var->type->uniform_locations();
+ unsigned max_loc = var->data.location + slots - 1;
+
+ /* Resize remap table if locations do not fit in the current one. */
+ if (max_loc + 1 > prog->NumUniformRemapTable) {
+ prog->UniformRemapTable =
+ reralloc(prog, prog->UniformRemapTable,
+ gl_uniform_storage *,
+ max_loc + 1);
+
+ if (!prog->UniformRemapTable) {
+ linker_error(prog, "Out of memory during linking.\n");
+ return false;
+ }
+
+ /* Initialize allocated space. */
+ for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
+ prog->UniformRemapTable[i] = NULL;
+
+ prog->NumUniformRemapTable = max_loc + 1;
+ }
+
+ for (unsigned i = 0; i < slots; i++) {
+ unsigned loc = var->data.location + i;
+
+ /* Check if location is already used. */
+ if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
+
+ /* Possibly same uniform from a different stage, this is ok. */
+ unsigned hash_loc;
+ if (map->get(hash_loc, var->name) && hash_loc == loc - i)
+ continue;
+
+ /* ARB_explicit_uniform_location specification states:
+ *
+ * "No two default-block uniform variables in the program can have
+ * the same location, even if they are unused, otherwise a compiler
+ * or linker error will be generated."
+ */
+ linker_error(prog,
+ "location qualifier for uniform %s overlaps "
+ "previously used location\n",
+ var->name);
+ return false;
+ }
+
+ /* Initialize location as inactive before optimization
+ * rounds and location assignment.
+ */
+ prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
+ }
+
+ /* Note, base location used for arrays. */
+ map->put(var->data.location, var->name);
+
+ return true;
+}
+
+static bool
+reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
+ struct gl_shader *sh,
+ ir_variable *var)
+{
+ unsigned slots = var->type->uniform_locations();
+ unsigned max_loc = var->data.location + slots - 1;
+
+ /* Resize remap table if locations do not fit in the current one. */
+ if (max_loc + 1 > sh->NumSubroutineUniformRemapTable) {
+ sh->SubroutineUniformRemapTable =
+ reralloc(sh, sh->SubroutineUniformRemapTable,
+ gl_uniform_storage *,
+ max_loc + 1);
+
+ if (!sh->SubroutineUniformRemapTable) {
+ linker_error(prog, "Out of memory during linking.\n");
+ return false;
+ }
+
+ /* Initialize allocated space. */
+ for (unsigned i = sh->NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
+ sh->SubroutineUniformRemapTable[i] = NULL;
+
+ sh->NumSubroutineUniformRemapTable = max_loc + 1;
+ }
+
+ for (unsigned i = 0; i < slots; i++) {
+ unsigned loc = var->data.location + i;
+
+ /* Check if location is already used. */
+ if (sh->SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
+
+ /* ARB_explicit_uniform_location specification states:
+ * "No two subroutine uniform variables can have the same location
+ * in the same shader stage, otherwise a compiler or linker error
+ * will be generated."
+ */
+ linker_error(prog,
+ "location qualifier for uniform %s overlaps "
+ "previously used location\n",
+ var->name);
+ return false;
+ }
+
+ /* Initialize location as inactive before optimization
+ * rounds and location assignment.
+ */
+ sh->SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
+ }
+
+ return true;
+}
+/**
+ * Check and reserve all explicit uniform locations, called before
+ * any optimizations happen to handle also inactive uniforms and
+ * inactive array elements that may get trimmed away.
+ */
+static void
+check_explicit_uniform_locations(struct gl_context *ctx,
+ struct gl_shader_program *prog)
+{
+ if (!ctx->Extensions.ARB_explicit_uniform_location)
+ return;
+
+ /* This map is used to detect if overlapping explicit locations
+ * occur with the same uniform (from different stage) or a different one.
+ */
+ string_to_uint_map *uniform_map = new string_to_uint_map;
+
+ if (!uniform_map) {
+ linker_error(prog, "Out of memory during linking.\n");
+ return;
+ }
+
+ unsigned entries_total = 0;
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = prog->_LinkedShaders[i];
+
+ if (!sh)
+ continue;
+
+ foreach_in_list(ir_instruction, node, sh->ir) {
+ ir_variable *var = node->as_variable();
+ if (!var || var->data.mode != ir_var_uniform)
+ continue;
+
+ entries_total += var->type->uniform_locations();
+
+ if (var->data.explicit_location) {
+ bool ret;
+ if (var->type->without_array()->is_subroutine())
+ ret = reserve_subroutine_explicit_locations(prog, sh, var);
+ else
+ ret = reserve_explicit_locations(prog, uniform_map, var);
+ if (!ret) {
+ delete uniform_map;
+ return;
+ }
+ }
+ }
+ }
+
+ /* Verify that total amount of entries for explicit and implicit locations
+ * is less than MAX_UNIFORM_LOCATIONS.
+ */
+ if (entries_total >= ctx->Const.MaxUserAssignableUniformLocations) {
+ linker_error(prog, "count of uniform locations >= MAX_UNIFORM_LOCATIONS"
+ "(%u >= %u)", entries_total,
+ ctx->Const.MaxUserAssignableUniformLocations);
+ }
+ delete uniform_map;
+}
+
+static bool
+should_add_buffer_variable(struct gl_shader_program *shProg,
+ GLenum type, const char *name)
+{
+ bool found_interface = false;
+ unsigned block_name_len = 0;
+ const char *block_name_dot = strchr(name, '.');
+
+ /* These rules only apply to buffer variables. So we return
+ * true for the rest of types.
+ */
+ if (type != GL_BUFFER_VARIABLE)
+ return true;
+
+ for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
+ const char *block_name = shProg->BufferInterfaceBlocks[i].Name;
+ block_name_len = strlen(block_name);
+
+ const char *block_square_bracket = strchr(block_name, '[');
+ if (block_square_bracket) {
+ /* The block is part of an array of named interfaces,
+ * for the name comparison we ignore the "[x]" part.
+ */
+ block_name_len -= strlen(block_square_bracket);
+ }
+
+ if (block_name_dot) {
+ /* Check if the variable name starts with the interface
+ * name. The interface name (if present) should have the
+ * length than the interface block name we are comparing to.
+ */
+ unsigned len = strlen(name) - strlen(block_name_dot);
+ if (len != block_name_len)
+ continue;
+ }
+
+ if (strncmp(block_name, name, block_name_len) == 0) {
+ found_interface = true;
+ break;
+ }
+ }
+
+ /* We remove the interface name from the buffer variable name,
+ * including the dot that follows it.
+ */
+ if (found_interface)
+ name = name + block_name_len + 1;
+
+ /* From: ARB_program_interface_query extension:
+ *
+ * "For an active shader storage block member declared as an array, an
+ * entry will be generated only for the first array element, regardless
+ * of its type. For arrays of aggregate types, the enumeration rules are
+ * applied recursively for the single enumerated array element.
+ */
+ const char *struct_first_dot = strchr(name, '.');
+ const char *first_square_bracket = strchr(name, '[');
+
+ /* The buffer variable is on top level and it is not an array */
+ if (!first_square_bracket) {
+ return true;
+ /* The shader storage block member is a struct, then generate the entry */
+ } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
+ return true;
+ } else {
+ /* Shader storage block member is an array, only generate an entry for the
+ * first array element.
+ */
+ if (strncmp(first_square_bracket, "[0]", 3) == 0)
+ return true;
+ }
+
+ return false;
+}
+
+static bool
+add_program_resource(struct gl_shader_program *prog, GLenum type,
+ const void *data, uint8_t stages)
+{
+ assert(data);
+
+ /* If resource already exists, do not add it again. */
+ for (unsigned i = 0; i < prog->NumProgramResourceList; i++)
+ if (prog->ProgramResourceList[i].Data == data)
+ return true;
+
+ prog->ProgramResourceList =
+ reralloc(prog,
+ prog->ProgramResourceList,
+ gl_program_resource,
+ prog->NumProgramResourceList + 1);
+
+ if (!prog->ProgramResourceList) {
+ linker_error(prog, "Out of memory during linking.\n");
+ return false;
+ }
+
+ struct gl_program_resource *res =
+ &prog->ProgramResourceList[prog->NumProgramResourceList];
+
+ res->Type = type;
+ res->Data = data;
+ res->StageReferences = stages;
+
+ prog->NumProgramResourceList++;
+
+ return true;
+}
+
+/* Function checks if a variable var is a packed varying and
+ * if given name is part of packed varying's list.
+ *
+ * If a variable is a packed varying, it has a name like
+ * 'packed:a,b,c' where a, b and c are separate variables.
+ */
+static bool
+included_in_packed_varying(ir_variable *var, const char *name)
+{
+ if (strncmp(var->name, "packed:", 7) != 0)
+ return false;
+
+ char *list = strdup(var->name + 7);
+ assert(list);
+
+ bool found = false;
+ char *saveptr;
+ char *token = strtok_r(list, ",", &saveptr);
+ while (token) {
+ if (strcmp(token, name) == 0) {
+ found = true;
+ break;
+ }
+ token = strtok_r(NULL, ",", &saveptr);
+ }
+ free(list);
+ return found;
+}
+
+/**
+ * Function builds a stage reference bitmask from variable name.
+ */
+static uint8_t
+build_stageref(struct gl_shader_program *shProg, const char *name,
+ unsigned mode)
+{
+ uint8_t stages = 0;
+
+ /* Note, that we assume MAX 8 stages, if there will be more stages, type
+ * used for reference mask in gl_program_resource will need to be changed.
+ */
+ assert(MESA_SHADER_STAGES < 8);
+
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = shProg->_LinkedShaders[i];
+ if (!sh)
+ continue;
+
+ /* Shader symbol table may contain variables that have
+ * been optimized away. Search IR for the variable instead.
+ */
+ foreach_in_list(ir_instruction, node, sh->ir) {
+ ir_variable *var = node->as_variable();
+ if (var) {
+ unsigned baselen = strlen(var->name);
+
+ if (included_in_packed_varying(var, name)) {
+ stages |= (1 << i);
+ break;
+ }
+
+ /* Type needs to match if specified, otherwise we might
+ * pick a variable with same name but different interface.
+ */
+ if (var->data.mode != mode)
+ continue;
+
+ if (strncmp(var->name, name, baselen) == 0) {
+ /* Check for exact name matches but also check for arrays and
+ * structs.
+ */
+ if (name[baselen] == '\0' ||
+ name[baselen] == '[' ||
+ name[baselen] == '.') {
+ stages |= (1 << i);
+ break;
+ }
+ }
+ }
+ }
+ }
+ return stages;
+}
+
+/**
+ * Create gl_shader_variable from ir_variable class.
+ */
+static gl_shader_variable *
+create_shader_variable(struct gl_shader_program *shProg, const ir_variable *in)
+{
+ gl_shader_variable *out = ralloc(shProg, struct gl_shader_variable);
+ if (!out)
+ return NULL;
+
+ out->type = in->type;
+ out->name = ralloc_strdup(shProg, in->name);
+
+ if (!out->name)
+ return NULL;
+
+ out->location = in->data.location;
+ out->index = in->data.index;
+ out->patch = in->data.patch;
+ out->mode = in->data.mode;
+
+ return out;
+}
+
+static bool
+add_interface_variables(struct gl_shader_program *shProg,
+ exec_list *ir, GLenum programInterface)
+{
+ foreach_in_list(ir_instruction, node, ir) {
+ ir_variable *var = node->as_variable();
+ uint8_t mask = 0;
+
+ if (!var)
+ continue;
+
+ switch (var->data.mode) {
+ /* From GL 4.3 core spec, section 11.1.1 (Vertex Attributes):
+ * "For GetActiveAttrib, all active vertex shader input variables
+ * are enumerated, including the special built-in inputs gl_VertexID
+ * and gl_InstanceID."
+ */
+ case ir_var_system_value:
+ if (var->data.location != SYSTEM_VALUE_VERTEX_ID &&
+ var->data.location != SYSTEM_VALUE_VERTEX_ID_ZERO_BASE &&
+ var->data.location != SYSTEM_VALUE_INSTANCE_ID)
+ continue;
+ /* Mark special built-in inputs referenced by the vertex stage so
+ * that they are considered active by the shader queries.
+ */
+ mask = (1 << (MESA_SHADER_VERTEX));
+ /* FALLTHROUGH */
+ case ir_var_shader_in:
+ if (programInterface != GL_PROGRAM_INPUT)
+ continue;
+ break;
+ case ir_var_shader_out:
+ if (programInterface != GL_PROGRAM_OUTPUT)
+ continue;
+ break;
+ default:
+ continue;
+ };
+
+ /* Skip packed varyings, packed varyings are handled separately
+ * by add_packed_varyings.
+ */
+ if (strncmp(var->name, "packed:", 7) == 0)
+ continue;
+
+ /* Skip fragdata arrays, these are handled separately
+ * by add_fragdata_arrays.
+ */
+ if (strncmp(var->name, "gl_out_FragData", 15) == 0)
+ continue;
+
+ gl_shader_variable *sha_v = create_shader_variable(shProg, var);
+ if (!sha_v)
+ return false;
+
+ if (!add_program_resource(shProg, programInterface, sha_v,
+ build_stageref(shProg, sha_v->name,
+ sha_v->mode) | mask))
+ return false;
+ }
+ return true;
+}
+
+static bool
+add_packed_varyings(struct gl_shader_program *shProg, int stage, GLenum type)
+{
+ struct gl_shader *sh = shProg->_LinkedShaders[stage];
+ GLenum iface;
+
+ if (!sh || !sh->packed_varyings)
+ return true;
+
+ foreach_in_list(ir_instruction, node, sh->packed_varyings) {
+ ir_variable *var = node->as_variable();
+ if (var) {
+ switch (var->data.mode) {
+ case ir_var_shader_in:
+ iface = GL_PROGRAM_INPUT;
+ break;
+ case ir_var_shader_out:
+ iface = GL_PROGRAM_OUTPUT;
+ break;
+ default:
+ unreachable("unexpected type");
+ }
+
+ if (type == iface) {
+ gl_shader_variable *sha_v = create_shader_variable(shProg, var);
+ if (!sha_v)
+ return false;
+ if (!add_program_resource(shProg, iface, sha_v,
+ build_stageref(shProg, sha_v->name,
+ sha_v->mode)))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+static bool
+add_fragdata_arrays(struct gl_shader_program *shProg)
+{
+ struct gl_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
+
+ if (!sh || !sh->fragdata_arrays)
+ return true;
+
+ foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
+ ir_variable *var = node->as_variable();
+ if (var) {
+ assert(var->data.mode == ir_var_shader_out);
+ gl_shader_variable *sha_v = create_shader_variable(shProg, var);
+ if (!sha_v)
+ return false;
+ if (!add_program_resource(shProg, GL_PROGRAM_OUTPUT, sha_v,
+ 1 << MESA_SHADER_FRAGMENT))
+ return false;
+ }
+ }
+ return true;
+}
+
+static char*
+get_top_level_name(const char *name)
+{
+ const char *first_dot = strchr(name, '.');
+ const char *first_square_bracket = strchr(name, '[');
+ int name_size = 0;
+ /* From ARB_program_interface_query spec:
+ *
+ * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
+ * number of active array elements of the top-level shader storage block
+ * member containing to the active variable is written to <params>. If the
+ * top-level block member is not declared as an array, the value one is
+ * written to <params>. If the top-level block member is an array with no
+ * declared size, the value zero is written to <params>.
+ */
+
+ /* The buffer variable is on top level.*/
+ if (!first_square_bracket && !first_dot)
+ name_size = strlen(name);
+ else if ((!first_square_bracket ||
+ (first_dot && first_dot < first_square_bracket)))
+ name_size = first_dot - name;
+ else
+ name_size = first_square_bracket - name;
+
+ return strndup(name, name_size);
+}
+
+static char*
+get_var_name(const char *name)
+{
+ const char *first_dot = strchr(name, '.');
+
+ if (!first_dot)
+ return strdup(name);
+
+ return strndup(first_dot+1, strlen(first_dot) - 1);
+}
+
+static bool
+is_top_level_shader_storage_block_member(const char* name,
+ const char* interface_name,
+ const char* field_name)
+{
+ bool result = false;
+
+ /* If the given variable is already a top-level shader storage
+ * block member, then return array_size = 1.
+ * We could have two possibilities: if we have an instanced
+ * shader storage block or not instanced.
+ *
+ * For the first, we check create a name as it was in top level and
+ * compare it with the real name. If they are the same, then
+ * the variable is already at top-level.
+ *
+ * Full instanced name is: interface name + '.' + var name +
+ * NULL character
+ */
+ int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
+ char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
+ if (!full_instanced_name) {
+ fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
+ return false;
+ }
+
+ snprintf(full_instanced_name, name_length, "%s.%s",
+ interface_name, field_name);
+
+ /* Check if its top-level shader storage block member of an
+ * instanced interface block, or of a unnamed interface block.
+ */
+ if (strcmp(name, full_instanced_name) == 0 ||
+ strcmp(name, field_name) == 0)
+ result = true;
+
+ free(full_instanced_name);
+ return result;
+}
+
+static int
+get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
+ char *interface_name, char *var_name)
+{
+ /* From GL_ARB_program_interface_query spec:
+ *
+ * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer
+ * identifying the number of active array elements of the top-level
+ * shader storage block member containing to the active variable is
+ * written to <params>. If the top-level block member is not
+ * declared as an array, the value one is written to <params>. If
+ * the top-level block member is an array with no declared size,
+ * the value zero is written to <params>.
+ */
+ if (is_top_level_shader_storage_block_member(uni->name,
+ interface_name,
+ var_name))
+ return 1;
+ else if (field->type->is_unsized_array())
+ return 0;
+ else if (field->type->is_array())
+ return field->type->length;
+
+ return 1;
+}
+
+static int
+get_array_stride(struct gl_uniform_storage *uni, const glsl_type *interface,
+ const glsl_struct_field *field, char *interface_name,
+ char *var_name)
+{
+ /* From GL_ARB_program_interface_query:
+ *
+ * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
+ * identifying the stride between array elements of the top-level
+ * shader storage block member containing the active variable is
+ * written to <params>. For top-level block members declared as
+ * arrays, the value written is the difference, in basic machine
+ * units, between the offsets of the active variable for
+ * consecutive elements in the top-level array. For top-level
+ * block members not declared as an array, zero is written to
+ * <params>."
+ */
+ if (field->type->is_array()) {
+ const enum glsl_matrix_layout matrix_layout =
+ glsl_matrix_layout(field->matrix_layout);
+ bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
+ const glsl_type *array_type = field->type->fields.array;
+
+ if (is_top_level_shader_storage_block_member(uni->name,
+ interface_name,
+ var_name))
+ return 0;
+
+ if (interface->interface_packing != GLSL_INTERFACE_PACKING_STD430) {
+ if (array_type->is_record() || array_type->is_array())
+ return glsl_align(array_type->std140_size(row_major), 16);
+ else
+ return MAX2(array_type->std140_base_alignment(row_major), 16);
+ } else {
+ return array_type->std430_array_stride(row_major);
+ }
+ }
+ return 0;
+}
+
+static void
+calculate_array_size_and_stride(struct gl_shader_program *shProg,
+ struct gl_uniform_storage *uni)
+{
+ int block_index = uni->block_index;
+ int array_size = -1;
+ int array_stride = -1;
+ char *var_name = get_top_level_name(uni->name);
+ char *interface_name =
+ get_top_level_name(shProg->BufferInterfaceBlocks[block_index].Name);
+
+ if (strcmp(var_name, interface_name) == 0) {
+ /* Deal with instanced array of SSBOs */
+ char *temp_name = get_var_name(uni->name);
+ if (!temp_name) {
+ linker_error(shProg, "Out of memory during linking.\n");
+ goto write_top_level_array_size_and_stride;
+ }
+ free(var_name);
+ var_name = get_top_level_name(temp_name);
+ free(temp_name);
+ if (!var_name) {
+ linker_error(shProg, "Out of memory during linking.\n");
+ goto write_top_level_array_size_and_stride;
+ }
+ }
+
+ for (unsigned i = 0; i < shProg->NumShaders; i++) {
+ if (shProg->Shaders[i] == NULL)
+ continue;
+
+ const gl_shader *stage = shProg->Shaders[i];
+ foreach_in_list(ir_instruction, node, stage->ir) {
+ ir_variable *var = node->as_variable();
+ if (!var || !var->get_interface_type() ||
+ var->data.mode != ir_var_shader_storage)
+ continue;
+
+ const glsl_type *interface = var->get_interface_type();
+
+ if (strcmp(interface_name, interface->name) != 0)
+ continue;
+
+ for (unsigned i = 0; i < interface->length; i++) {
+ const glsl_struct_field *field = &interface->fields.structure[i];
+ if (strcmp(field->name, var_name) != 0)
+ continue;
+
+ array_stride = get_array_stride(uni, interface, field,
+ interface_name, var_name);
+ array_size = get_array_size(uni, field, interface_name, var_name);
+ goto write_top_level_array_size_and_stride;
+ }
+ }
+ }
+write_top_level_array_size_and_stride:
+ free(interface_name);
+ free(var_name);
+ uni->top_level_array_stride = array_stride;
+ uni->top_level_array_size = array_size;
+}
+
+/**
+ * Builds up a list of program resources that point to existing
+ * resource data.
+ */
+void
+build_program_resource_list(struct gl_shader_program *shProg)
+{
+ /* Rebuild resource list. */
+ if (shProg->ProgramResourceList) {
+ ralloc_free(shProg->ProgramResourceList);
+ shProg->ProgramResourceList = NULL;
+ shProg->NumProgramResourceList = 0;
+ }
+
+ int input_stage = MESA_SHADER_STAGES, output_stage = 0;
+
+ /* Determine first input and final output stage. These are used to
+ * detect which variables should be enumerated in the resource list
+ * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
+ */
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (!shProg->_LinkedShaders[i])
+ continue;
+ if (input_stage == MESA_SHADER_STAGES)
+ input_stage = i;
+ output_stage = i;
+ }
+
+ /* Empty shader, no resources. */
+ if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
+ return;
+
+ /* Program interface needs to expose varyings in case of SSO. */
+ if (shProg->SeparateShader) {
+ if (!add_packed_varyings(shProg, input_stage, GL_PROGRAM_INPUT))
+ return;
+
+ if (!add_packed_varyings(shProg, output_stage, GL_PROGRAM_OUTPUT))
+ return;
+ }
+
+ if (!add_fragdata_arrays(shProg))
+ return;
+
+ /* Add inputs and outputs to the resource list. */
+ if (!add_interface_variables(shProg, shProg->_LinkedShaders[input_stage]->ir,
+ GL_PROGRAM_INPUT))
+ return;
+
+ if (!add_interface_variables(shProg, shProg->_LinkedShaders[output_stage]->ir,
+ GL_PROGRAM_OUTPUT))
+ return;
+
+ /* Add transform feedback varyings. */
+ if (shProg->LinkedTransformFeedback.NumVarying > 0) {
+ for (int i = 0; i < shProg->LinkedTransformFeedback.NumVarying; i++) {
+ if (!add_program_resource(shProg, GL_TRANSFORM_FEEDBACK_VARYING,
+ &shProg->LinkedTransformFeedback.Varyings[i],
+ 0))
+ return;
+ }
+ }
+
+ /* Add uniforms from uniform storage. */
+ for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
+ /* Do not add uniforms internally used by Mesa. */
+ if (shProg->UniformStorage[i].hidden)
+ continue;
+
+ uint8_t stageref =
+ build_stageref(shProg, shProg->UniformStorage[i].name,
+ ir_var_uniform);
+
+ /* Add stagereferences for uniforms in a uniform block. */
+ int block_index = shProg->UniformStorage[i].block_index;
+ if (block_index != -1) {
+ for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
+ if (shProg->InterfaceBlockStageIndex[j][block_index] != -1)
+ stageref |= (1 << j);
+ }
+ }
+
+ bool is_shader_storage = shProg->UniformStorage[i].is_shader_storage;
+ GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
+ if (!should_add_buffer_variable(shProg, type,
+ shProg->UniformStorage[i].name))
+ continue;
+
+ if (is_shader_storage) {
+ calculate_array_size_and_stride(shProg, &shProg->UniformStorage[i]);
+ }
+
+ if (!add_program_resource(shProg, type,
+ &shProg->UniformStorage[i], stageref))
+ return;
+ }
+
+ /* Add program uniform blocks and shader storage blocks. */
+ for (unsigned i = 0; i < shProg->NumBufferInterfaceBlocks; i++) {
+ bool is_shader_storage = shProg->BufferInterfaceBlocks[i].IsShaderStorage;
+ GLenum type = is_shader_storage ? GL_SHADER_STORAGE_BLOCK : GL_UNIFORM_BLOCK;
+ if (!add_program_resource(shProg, type,
+ &shProg->BufferInterfaceBlocks[i], 0))
+ return;
+ }
+
+ /* Add atomic counter buffers. */
+ for (unsigned i = 0; i < shProg->NumAtomicBuffers; i++) {
+ if (!add_program_resource(shProg, GL_ATOMIC_COUNTER_BUFFER,
+ &shProg->AtomicBuffers[i], 0))
+ return;
+ }
+
+ for (unsigned i = 0; i < shProg->NumUniformStorage; i++) {
+ GLenum type;
+ if (!shProg->UniformStorage[i].hidden)
+ continue;
+
+ for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
+ if (!shProg->UniformStorage[i].opaque[j].active ||
+ !shProg->UniformStorage[i].type->is_subroutine())
+ continue;
+
+ type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
+ /* add shader subroutines */
+ if (!add_program_resource(shProg, type, &shProg->UniformStorage[i], 0))
+ return;
+ }
+ }
+
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ struct gl_shader *sh = shProg->_LinkedShaders[i];
+ GLuint type;
+
+ if (!sh)
+ continue;
+
+ type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
+ for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
+ if (!add_program_resource(shProg, type, &sh->SubroutineFunctions[j], 0))
+ return;
+ }
+ }
+}
+
+/**
+ * This check is done to make sure we allow only constant expression
+ * indexing and "constant-index-expression" (indexing with an expression
+ * that includes loop induction variable).
+ */
+static bool
+validate_sampler_array_indexing(struct gl_context *ctx,
+ struct gl_shader_program *prog)
+{
+ dynamic_sampler_array_indexing_visitor v;
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ bool no_dynamic_indexing =
+ ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
+
+ /* Search for array derefs in shader. */
+ v.run(prog->_LinkedShaders[i]->ir);
+ if (v.uses_dynamic_sampler_array_indexing()) {
+ const char *msg = "sampler arrays indexed with non-constant "
+ "expressions is forbidden in GLSL %s %u";
+ /* Backend has indicated that it has no dynamic indexing support. */
+ if (no_dynamic_indexing) {
+ linker_error(prog, msg, prog->IsES ? "ES" : "", prog->Version);
+ return false;
+ } else {
+ linker_warning(prog, msg, prog->IsES ? "ES" : "", prog->Version);
+ }
+ }
+ }
+ return true;
+}
+
+static void
+link_assign_subroutine_types(struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ gl_shader *sh = prog->_LinkedShaders[i];
+
+ if (sh == NULL)
+ continue;
+
+ foreach_in_list(ir_instruction, node, sh->ir) {
+ ir_function *fn = node->as_function();
+ if (!fn)
+ continue;
+
+ if (fn->is_subroutine)
+ sh->NumSubroutineUniformTypes++;
+
+ if (!fn->num_subroutine_types)
+ continue;
+
+ sh->SubroutineFunctions = reralloc(sh, sh->SubroutineFunctions,
+ struct gl_subroutine_function,
+ sh->NumSubroutineFunctions + 1);
+ sh->SubroutineFunctions[sh->NumSubroutineFunctions].name = ralloc_strdup(sh, fn->name);
+ sh->SubroutineFunctions[sh->NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
+ sh->SubroutineFunctions[sh->NumSubroutineFunctions].types =
+ ralloc_array(sh, const struct glsl_type *,
+ fn->num_subroutine_types);
+
+ /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
+ * GLSL 4.5 spec:
+ *
+ * "Each subroutine with an index qualifier in the shader must be
+ * given a unique index, otherwise a compile or link error will be
+ * generated."
+ */
+ for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
+ if (sh->SubroutineFunctions[j].index != -1 &&
+ sh->SubroutineFunctions[j].index == fn->subroutine_index) {
+ linker_error(prog, "each subroutine index qualifier in the "
+ "shader must be unique\n");
+ return;
+ }
+ }
+ sh->SubroutineFunctions[sh->NumSubroutineFunctions].index =
+ fn->subroutine_index;
+
+ for (int j = 0; j < fn->num_subroutine_types; j++)
+ sh->SubroutineFunctions[sh->NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
+ sh->NumSubroutineFunctions++;
+ }
+
+ /* Assign index for subroutines without an explicit index*/
+ int index = 0;
+ for (unsigned j = 0; j < sh->NumSubroutineFunctions; j++) {
+ while (sh->SubroutineFunctions[j].index == -1) {
+ for (unsigned k = 0; k < sh->NumSubroutineFunctions; k++) {
+ if (sh->SubroutineFunctions[k].index == index)
+ break;
+ else if (k == sh->NumSubroutineFunctions - 1)
+ sh->SubroutineFunctions[j].index = index;
+ }
+ index++;
+ }
+ }
+ }
+}
+
+static void
+split_ubos_and_ssbos(void *mem_ctx,
+ struct gl_uniform_block *blocks,
+ unsigned num_blocks,
+ struct gl_uniform_block ***ubos,
+ unsigned *num_ubos,
+ unsigned **ubo_interface_block_indices,
+ struct gl_uniform_block ***ssbos,
+ unsigned *num_ssbos,
+ unsigned **ssbo_interface_block_indices)
+{
+ unsigned num_ubo_blocks = 0;
+ unsigned num_ssbo_blocks = 0;
+
+ for (unsigned i = 0; i < num_blocks; i++) {
+ if (blocks[i].IsShaderStorage)
+ num_ssbo_blocks++;
+ else
+ num_ubo_blocks++;
+ }
+
+ *ubos = ralloc_array(mem_ctx, gl_uniform_block *, num_ubo_blocks);
+ *num_ubos = 0;
+
+ *ssbos = ralloc_array(mem_ctx, gl_uniform_block *, num_ssbo_blocks);
+ *num_ssbos = 0;
+
+ if (ubo_interface_block_indices)
+ *ubo_interface_block_indices =
+ ralloc_array(mem_ctx, unsigned, num_ubo_blocks);
+
+ if (ssbo_interface_block_indices)
+ *ssbo_interface_block_indices =
+ ralloc_array(mem_ctx, unsigned, num_ssbo_blocks);
+
+ for (unsigned i = 0; i < num_blocks; i++) {
+ if (blocks[i].IsShaderStorage) {
+ (*ssbos)[*num_ssbos] = &blocks[i];
+ if (ssbo_interface_block_indices)
+ (*ssbo_interface_block_indices)[*num_ssbos] = i;
+ (*num_ssbos)++;
+ } else {
+ (*ubos)[*num_ubos] = &blocks[i];
+ if (ubo_interface_block_indices)
+ (*ubo_interface_block_indices)[*num_ubos] = i;
+ (*num_ubos)++;
+ }
+ }
+
+ assert(*num_ubos + *num_ssbos == num_blocks);
+}
+
+static void
+set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
+{
+ assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
+
+ foreach_in_list(ir_instruction, node, ir) {
+ ir_variable *const var = node->as_variable();
+
+ if (var == NULL || var->data.mode != io_mode)
+ continue;
+
+ /* Don't set always active on builtins that haven't been redeclared */
+ if (var->data.how_declared == ir_var_declared_implicitly)
+ continue;
+
+ var->data.always_active_io = true;
+ }
+}
+
+/**
+ * When separate shader programs are enabled, only input/outputs between
+ * the stages of a multi-stage separate program can be safely removed
+ * from the shader interface. Other inputs/outputs must remain active.
+ */
+static void
+disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
+{
+ unsigned first, last;
+ assert(prog->SeparateShader);
+
+ first = MESA_SHADER_STAGES;
+ last = 0;
+
+ /* Determine first and last stage. Excluding the compute stage */
+ for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
+ if (!prog->_LinkedShaders[i])
+ continue;
+ if (first == MESA_SHADER_STAGES)
+ first = i;
+ last = i;
+ }
+
+ if (first == MESA_SHADER_STAGES)
+ return;
+
+ for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
+ gl_shader *sh = prog->_LinkedShaders[stage];
+ if (!sh)
+ continue;
+
+ if (first == last) {
+ /* For a single shader program only allow inputs to the vertex shader
+ * and outputs from the fragment shader to be removed.
+ */
+ if (stage != MESA_SHADER_VERTEX)
+ set_always_active_io(sh->ir, ir_var_shader_in);
+ if (stage != MESA_SHADER_FRAGMENT)
+ set_always_active_io(sh->ir, ir_var_shader_out);
+ } else {
+ /* For multi-stage separate shader programs only allow inputs and
+ * outputs between the shader stages to be removed as well as inputs
+ * to the vertex shader and outputs from the fragment shader.
+ */
+ if (stage == first && stage != MESA_SHADER_VERTEX)
+ set_always_active_io(sh->ir, ir_var_shader_in);
+ else if (stage == last && stage != MESA_SHADER_FRAGMENT)
+ set_always_active_io(sh->ir, ir_var_shader_out);
+ }
+ }
+}
+
+void
+link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+ tfeedback_decl *tfeedback_decls = NULL;
+ unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying;
+
+ void *mem_ctx = ralloc_context(NULL); // temporary linker context
+
+ prog->LinkStatus = true; /* All error paths will set this to false */
+ prog->Validated = false;
+ prog->_Used = false;
+
+ prog->ARB_fragment_coord_conventions_enable = false;
+
+ /* Separate the shaders into groups based on their type.
+ */
+ struct gl_shader **shader_list[MESA_SHADER_STAGES];
+ unsigned num_shaders[MESA_SHADER_STAGES];
+
+ for (int i = 0; i < MESA_SHADER_STAGES; i++) {
+ shader_list[i] = (struct gl_shader **)
+ calloc(prog->NumShaders, sizeof(struct gl_shader *));
+ num_shaders[i] = 0;
+ }
+
+ unsigned min_version = UINT_MAX;
+ unsigned max_version = 0;
+ const bool is_es_prog =
+ (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false;
+ for (unsigned i = 0; i < prog->NumShaders; i++) {
+ min_version = MIN2(min_version, prog->Shaders[i]->Version);
+ max_version = MAX2(max_version, prog->Shaders[i]->Version);
+
+ if (prog->Shaders[i]->IsES != is_es_prog) {
+ linker_error(prog, "all shaders must use same shading "
+ "language version\n");
+ goto done;
+ }
+
+ if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
+ prog->ARB_fragment_coord_conventions_enable = true;
+ }
+
+ gl_shader_stage shader_type = prog->Shaders[i]->Stage;
+ shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
+ num_shaders[shader_type]++;
+ }
+
+ /* In desktop GLSL, different shader versions may be linked together. In
+ * GLSL ES, all shader versions must be the same.
+ */
+ if (is_es_prog && min_version != max_version) {
+ linker_error(prog, "all shaders must use same shading "
+ "language version\n");
+ goto done;
+ }
+
+ prog->Version = max_version;
+ prog->IsES = is_es_prog;
+
+ /* From OpenGL 4.5 Core specification (7.3 Program Objects):
+ * "Linking can fail for a variety of reasons as specified in the OpenGL
+ * Shading Language Specification, as well as any of the following
+ * reasons:
+ *
+ * * No shader objects are attached to program.
+ *
+ * ..."
+ *
+ * Same rule applies for OpenGL ES >= 3.1.
+ */
+
+ if (prog->NumShaders == 0 &&
+ ((ctx->API == API_OPENGL_CORE && ctx->Version >= 45) ||
+ (ctx->API == API_OPENGLES2 && ctx->Version >= 31))) {
+ linker_error(prog, "No shader objects are attached to program.\n");
+ goto done;
+ }
+
+ /* Some shaders have to be linked with some other shaders present.
+ */
+ if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
+ num_shaders[MESA_SHADER_VERTEX] == 0 &&
+ !prog->SeparateShader) {
+ linker_error(prog, "Geometry shader must be linked with "
+ "vertex shader\n");
+ goto done;
+ }
+ if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
+ num_shaders[MESA_SHADER_VERTEX] == 0 &&
+ !prog->SeparateShader) {
+ linker_error(prog, "Tessellation evaluation shader must be linked with "
+ "vertex shader\n");
+ goto done;
+ }
+ if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
+ num_shaders[MESA_SHADER_VERTEX] == 0 &&
+ !prog->SeparateShader) {
+ linker_error(prog, "Tessellation control shader must be linked with "
+ "vertex shader\n");
+ goto done;
+ }
+
+ /* The spec is self-contradictory here. It allows linking without a tess
+ * eval shader, but that can only be used with transform feedback and
+ * rasterization disabled. However, transform feedback isn't allowed
+ * with GL_PATCHES, so it can't be used.
+ *
+ * More investigation showed that the idea of transform feedback after
+ * a tess control shader was dropped, because some hw vendors couldn't
+ * support tessellation without a tess eval shader, but the linker section
+ * wasn't updated to reflect that.
+ *
+ * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
+ * spec bug.
+ *
+ * Do what's reasonable and always require a tess eval shader if a tess
+ * control shader is present.
+ */
+ if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
+ num_shaders[MESA_SHADER_TESS_EVAL] == 0 &&
+ !prog->SeparateShader) {
+ linker_error(prog, "Tessellation control shader must be linked with "
+ "tessellation evaluation shader\n");
+ goto done;
+ }
+
+ /* Compute shaders have additional restrictions. */
+ if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
+ num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
+ linker_error(prog, "Compute shaders may not be linked with any other "
+ "type of shader\n");
+ }
+
+ for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] != NULL)
+ _mesa_delete_shader(ctx, prog->_LinkedShaders[i]);
+
+ prog->_LinkedShaders[i] = NULL;
+ }
+
+ /* Link all shaders for a particular stage and validate the result.
+ */
+ for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
+ if (num_shaders[stage] > 0) {
+ gl_shader *const sh =
+ link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
+ num_shaders[stage]);
+
+ if (!prog->LinkStatus) {
+ if (sh)
+ _mesa_delete_shader(ctx, sh);
+ goto done;
+ }
+
+ switch (stage) {
+ case MESA_SHADER_VERTEX:
+ validate_vertex_shader_executable(prog, sh);
+ break;
+ case MESA_SHADER_TESS_CTRL:
+ /* nothing to be done */
+ break;
+ case MESA_SHADER_TESS_EVAL:
+ validate_tess_eval_shader_executable(prog, sh);
+ break;
+ case MESA_SHADER_GEOMETRY:
+ validate_geometry_shader_executable(prog, sh);
+ break;
+ case MESA_SHADER_FRAGMENT:
+ validate_fragment_shader_executable(prog, sh);
+ break;
+ }
+ if (!prog->LinkStatus) {
+ if (sh)
+ _mesa_delete_shader(ctx, sh);
+ goto done;
+ }
+
+ _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh);
+ }
+ }
+
+ if (num_shaders[MESA_SHADER_GEOMETRY] > 0)
+ prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize;
+ else if (num_shaders[MESA_SHADER_TESS_EVAL] > 0)
+ prog->LastClipDistanceArraySize = prog->TessEval.ClipDistanceArraySize;
+ else if (num_shaders[MESA_SHADER_VERTEX] > 0)
+ prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize;
+ else
+ prog->LastClipDistanceArraySize = 0; /* Not used */
+
+ /* Here begins the inter-stage linking phase. Some initial validation is
+ * performed, then locations are assigned for uniforms, attributes, and
+ * varyings.
+ */
+ cross_validate_uniforms(prog);
+ if (!prog->LinkStatus)
+ goto done;
+
+ unsigned first, last, prev;
+
+ first = MESA_SHADER_STAGES;
+ last = 0;
+
+ /* Determine first and last stage. */
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (!prog->_LinkedShaders[i])
+ continue;
+ if (first == MESA_SHADER_STAGES)
+ first = i;
+ last = i;
+ }
+
+ check_explicit_uniform_locations(ctx, prog);
+ link_assign_subroutine_types(prog);
+
+ if (!prog->LinkStatus)
+ goto done;
+
+ resize_tes_inputs(ctx, prog);
+
+ /* Validate the inputs of each stage with the output of the preceding
+ * stage.
+ */
+ prev = first;
+ for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
+ prog->_LinkedShaders[i]);
+ if (!prog->LinkStatus)
+ goto done;
+
+ cross_validate_outputs_to_inputs(prog,
+ prog->_LinkedShaders[prev],
+ prog->_LinkedShaders[i]);
+ if (!prog->LinkStatus)
+ goto done;
+
+ prev = i;
+ }
+
+ /* Cross-validate uniform blocks between shader stages */
+ validate_interstage_uniform_blocks(prog, prog->_LinkedShaders,
+ MESA_SHADER_STAGES);
+ if (!prog->LinkStatus)
+ goto done;
+
+ for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] != NULL)
+ lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
+ }
+
+ /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
+ * it before optimization because we want most of the checks to get
+ * dropped thanks to constant propagation.
+ *
+ * This rule also applies to GLSL ES 3.00.
+ */
+ if (max_version >= (is_es_prog ? 300 : 130)) {
+ struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
+ if (sh) {
+ lower_discard_flow(sh->ir);
+ }
+ }
+
+ if (prog->SeparateShader)
+ disable_varying_optimizations_for_sso(prog);
+
+ if (!interstage_cross_validate_uniform_blocks(prog))
+ goto done;
+
+ /* Do common optimization before assigning storage for attributes,
+ * uniforms, and varyings. Later optimization could possibly make
+ * some of that unused.
+ */
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
+ if (!prog->LinkStatus)
+ goto done;
+
+ if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) {
+ lower_clip_distance(prog->_LinkedShaders[i]);
+ }
+
+ if (ctx->Const.LowerTessLevel) {
+ lower_tess_level(prog->_LinkedShaders[i]);
+ }
+
+ while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false,
+ &ctx->Const.ShaderCompilerOptions[i],
+ ctx->Const.NativeIntegers))
+ ;
+
+ lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir);
+ }
+
+ /* Validation for special cases where we allow sampler array indexing
+ * with loop induction variable. This check emits a warning or error
+ * depending if backend can handle dynamic indexing.
+ */
+ if ((!prog->IsES && prog->Version < 130) ||
+ (prog->IsES && prog->Version < 300)) {
+ if (!validate_sampler_array_indexing(ctx, prog))
+ goto done;
+ }
+
+ /* Check and validate stream emissions in geometry shaders */
+ validate_geometry_shader_emissions(ctx, prog);
+
+ /* Mark all generic shader inputs and outputs as unpaired. */
+ for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
+ if (prog->_LinkedShaders[i] != NULL) {
+ link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
+ }
+ }
+
+ prev = first;
+ for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ match_explicit_outputs_to_inputs(prog, prog->_LinkedShaders[prev],
+ prog->_LinkedShaders[i]);
+ prev = i;
+ }
+
+ if (!assign_attribute_or_color_locations(prog, &ctx->Const,
+ MESA_SHADER_VERTEX)) {
+ goto done;
+ }
+
+ if (!assign_attribute_or_color_locations(prog, &ctx->Const,
+ MESA_SHADER_FRAGMENT)) {
+ goto done;
+ }
+
+ if (num_tfeedback_decls != 0) {
+ /* From GL_EXT_transform_feedback:
+ * A program will fail to link if:
+ *
+ * * the <count> specified by TransformFeedbackVaryingsEXT is
+ * non-zero, but the program object has no vertex or geometry
+ * shader;
+ */
+ if (first == MESA_SHADER_FRAGMENT) {
+ linker_error(prog, "Transform feedback varyings specified, but "
+ "no vertex or geometry shader is present.\n");
+ goto done;
+ }
+
+ tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl,
+ prog->TransformFeedback.NumVarying);
+ if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls,
+ prog->TransformFeedback.VaryingNames,
+ tfeedback_decls))
+ goto done;
+ }
+
+ /* Linking the stages in the opposite order (from fragment to vertex)
+ * ensures that inter-shader outputs written to in an earlier stage are
+ * eliminated if they are (transitively) not used in a later stage.
+ */
+ int next;
+
+ if (first < MESA_SHADER_FRAGMENT) {
+ gl_shader *const sh = prog->_LinkedShaders[last];
+
+ if (first != MESA_SHADER_VERTEX) {
+ /* There was no vertex shader, but we still have to assign varying
+ * locations for use by tessellation/geometry shader inputs in SSO.
+ *
+ * If the shader is not separable (i.e., prog->SeparateShader is
+ * false), linking will have already failed when first is not
+ * MESA_SHADER_VERTEX.
+ */
+ if (!assign_varying_locations(ctx, mem_ctx, prog,
+ NULL, prog->_LinkedShaders[first],
+ num_tfeedback_decls, tfeedback_decls))
+ goto done;
+ }
+
+ if (last != MESA_SHADER_FRAGMENT &&
+ (num_tfeedback_decls != 0 || prog->SeparateShader)) {
+ /* There was no fragment shader, but we still have to assign varying
+ * locations for use by transform feedback.
+ */
+ if (!assign_varying_locations(ctx, mem_ctx, prog,
+ sh, NULL,
+ num_tfeedback_decls, tfeedback_decls))
+ goto done;
+ }
+
+ do_dead_builtin_varyings(ctx, sh, NULL,
+ num_tfeedback_decls, tfeedback_decls);
+
+ remove_unused_shader_inputs_and_outputs(prog->SeparateShader, sh,
+ ir_var_shader_out);
+ }
+ else if (first == MESA_SHADER_FRAGMENT) {
+ /* If the program only contains a fragment shader...
+ */
+ gl_shader *const sh = prog->_LinkedShaders[first];
+
+ do_dead_builtin_varyings(ctx, NULL, sh,
+ num_tfeedback_decls, tfeedback_decls);
+
+ if (prog->SeparateShader) {
+ if (!assign_varying_locations(ctx, mem_ctx, prog,
+ NULL /* producer */,
+ sh /* consumer */,
+ 0 /* num_tfeedback_decls */,
+ NULL /* tfeedback_decls */))
+ goto done;
+ } else {
+ remove_unused_shader_inputs_and_outputs(false, sh,
+ ir_var_shader_in);
+ }
+ }
+
+ next = last;
+ for (int i = next - 1; i >= 0; i--) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ gl_shader *const sh_i = prog->_LinkedShaders[i];
+ gl_shader *const sh_next = prog->_LinkedShaders[next];
+
+ if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next,
+ next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
+ tfeedback_decls))
+ goto done;
+
+ do_dead_builtin_varyings(ctx, sh_i, sh_next,
+ next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0,
+ tfeedback_decls);
+
+ /* This must be done after all dead varyings are eliminated. */
+ if (!check_against_output_limit(ctx, prog, sh_i))
+ goto done;
+ if (!check_against_input_limit(ctx, prog, sh_next))
+ goto done;
+
+ next = i;
+ }
+
+ if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls))
+ goto done;
+
+ update_array_sizes(prog);
+ link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue);
+ link_assign_atomic_counter_resources(ctx, prog);
+ store_fragdepth_layout(prog);
+
+ link_calculate_subroutine_compat(prog);
+ check_resources(ctx, prog);
+ check_subroutine_resources(prog);
+ check_image_resources(ctx, prog);
+ link_check_atomic_counter_resources(ctx, prog);
+
+ if (!prog->LinkStatus)
+ goto done;
+
+ /* OpenGL ES requires that a vertex shader and a fragment shader both be
+ * present in a linked program. GL_ARB_ES2_compatibility doesn't say
+ * anything about shader linking when one of the shaders (vertex or
+ * fragment shader) is absent. So, the extension shouldn't change the
+ * behavior specified in GLSL specification.
+ */
+ if (!prog->SeparateShader && ctx->API == API_OPENGLES2) {
+ /* With ES < 3.1 one needs to have always vertex + fragment shader. */
+ if (ctx->Version < 31) {
+ if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
+ linker_error(prog, "program lacks a vertex shader\n");
+ } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
+ linker_error(prog, "program lacks a fragment shader\n");
+ }
+ } else {
+ /* From OpenGL ES 3.1 specification (7.3 Program Objects):
+ * "Linking can fail for a variety of reasons as specified in the
+ * OpenGL ES Shading Language Specification, as well as any of the
+ * following reasons:
+ *
+ * ...
+ *
+ * * program contains objects to form either a vertex shader or
+ * fragment shader, and program is not separable, and does not
+ * contain objects to form both a vertex shader and fragment
+ * shader."
+ */
+ if (!!prog->_LinkedShaders[MESA_SHADER_VERTEX] ^
+ !!prog->_LinkedShaders[MESA_SHADER_FRAGMENT]) {
+ linker_error(prog, "Program needs to contain both vertex and "
+ "fragment shaders.\n");
+ }
+ }
+ }
+
+ /* Split BufferInterfaceBlocks into UniformBlocks and ShaderStorageBlocks
+ * for gl_shader_program and gl_shader, so that drivers that need separate
+ * index spaces for each set can have that.
+ */
+ for (unsigned i = MESA_SHADER_VERTEX; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] != NULL) {
+ gl_shader *sh = prog->_LinkedShaders[i];
+ split_ubos_and_ssbos(sh,
+ sh->BufferInterfaceBlocks,
+ sh->NumBufferInterfaceBlocks,
+ &sh->UniformBlocks,
+ &sh->NumUniformBlocks,
+ NULL,
+ &sh->ShaderStorageBlocks,
+ &sh->NumShaderStorageBlocks,
+ NULL);
+ }
+ }
+
+ split_ubos_and_ssbos(prog,
+ prog->BufferInterfaceBlocks,
+ prog->NumBufferInterfaceBlocks,
+ &prog->UniformBlocks,
+ &prog->NumUniformBlocks,
+ &prog->UboInterfaceBlockIndex,
+ &prog->ShaderStorageBlocks,
+ &prog->NumShaderStorageBlocks,
+ &prog->SsboInterfaceBlockIndex);
+
+ /* FINISHME: Assign fragment shader output locations. */
+
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ if (ctx->Const.ShaderCompilerOptions[i].LowerBufferInterfaceBlocks)
+ lower_ubo_reference(prog->_LinkedShaders[i]);
+
+ if (ctx->Const.ShaderCompilerOptions[i].LowerShaderSharedVariables)
+ lower_shared_reference(prog->_LinkedShaders[i],
+ &prog->Comp.SharedSize);
+
+ lower_vector_derefs(prog->_LinkedShaders[i]);
+ }
+
+done:
+ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
+ free(shader_list[i]);
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ /* Do a final validation step to make sure that the IR wasn't
+ * invalidated by any modifications performed after intrastage linking.
+ */
+ validate_ir_tree(prog->_LinkedShaders[i]->ir);
+
+ /* Retain any live IR, but trash the rest. */
+ reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
+
+ /* The symbol table in the linked shaders may contain references to
+ * variables that were removed (e.g., unused uniforms). Since it may
+ * contain junk, there is no possible valid use. Delete it and set the
+ * pointer to NULL.
+ */
+ delete prog->_LinkedShaders[i]->symbols;
+ prog->_LinkedShaders[i]->symbols = NULL;
+ }
+
+ ralloc_free(mem_ctx);
+}