summaryrefslogtreecommitdiffstats
path: root/src/compiler/glsl/ast_function.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/compiler/glsl/ast_function.cpp')
-rw-r--r--src/compiler/glsl/ast_function.cpp2098
1 files changed, 2098 insertions, 0 deletions
diff --git a/src/compiler/glsl/ast_function.cpp b/src/compiler/glsl/ast_function.cpp
new file mode 100644
index 00000000000..0eb456a2b1f
--- /dev/null
+++ b/src/compiler/glsl/ast_function.cpp
@@ -0,0 +1,2098 @@
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "glsl_symbol_table.h"
+#include "ast.h"
+#include "compiler/glsl_types.h"
+#include "ir.h"
+#include "main/core.h" /* for MIN2 */
+#include "main/shaderobj.h"
+
+static ir_rvalue *
+convert_component(ir_rvalue *src, const glsl_type *desired_type);
+
+bool
+apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
+ struct _mesa_glsl_parse_state *state);
+
+static unsigned
+process_parameters(exec_list *instructions, exec_list *actual_parameters,
+ exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ unsigned count = 0;
+
+ foreach_list_typed(ast_node, ast, link, parameters) {
+ ir_rvalue *result = ast->hir(instructions, state);
+
+ ir_constant *const constant = result->constant_expression_value();
+ if (constant != NULL)
+ result = constant;
+
+ actual_parameters->push_tail(result);
+ count++;
+ }
+
+ return count;
+}
+
+
+/**
+ * Generate a source prototype for a function signature
+ *
+ * \param return_type Return type of the function. May be \c NULL.
+ * \param name Name of the function.
+ * \param parameters List of \c ir_instruction nodes representing the
+ * parameter list for the function. This may be either a
+ * formal (\c ir_variable) or actual (\c ir_rvalue)
+ * parameter list. Only the type is used.
+ *
+ * \return
+ * A ralloced string representing the prototype of the function.
+ */
+char *
+prototype_string(const glsl_type *return_type, const char *name,
+ exec_list *parameters)
+{
+ char *str = NULL;
+
+ if (return_type != NULL)
+ str = ralloc_asprintf(NULL, "%s ", return_type->name);
+
+ ralloc_asprintf_append(&str, "%s(", name);
+
+ const char *comma = "";
+ foreach_in_list(const ir_variable, param, parameters) {
+ ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
+ comma = ", ";
+ }
+
+ ralloc_strcat(&str, ")");
+ return str;
+}
+
+static bool
+verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
+ const ir_variable *formal, const ir_variable *actual)
+{
+ /**
+ * From the ARB_shader_image_load_store specification:
+ *
+ * "The values of image variables qualified with coherent,
+ * volatile, restrict, readonly, or writeonly may not be passed
+ * to functions whose formal parameters lack such
+ * qualifiers. [...] It is legal to have additional qualifiers
+ * on a formal parameter, but not to have fewer."
+ */
+ if (actual->data.image_coherent && !formal->data.image_coherent) {
+ _mesa_glsl_error(loc, state,
+ "function call parameter `%s' drops "
+ "`coherent' qualifier", formal->name);
+ return false;
+ }
+
+ if (actual->data.image_volatile && !formal->data.image_volatile) {
+ _mesa_glsl_error(loc, state,
+ "function call parameter `%s' drops "
+ "`volatile' qualifier", formal->name);
+ return false;
+ }
+
+ if (actual->data.image_restrict && !formal->data.image_restrict) {
+ _mesa_glsl_error(loc, state,
+ "function call parameter `%s' drops "
+ "`restrict' qualifier", formal->name);
+ return false;
+ }
+
+ if (actual->data.image_read_only && !formal->data.image_read_only) {
+ _mesa_glsl_error(loc, state,
+ "function call parameter `%s' drops "
+ "`readonly' qualifier", formal->name);
+ return false;
+ }
+
+ if (actual->data.image_write_only && !formal->data.image_write_only) {
+ _mesa_glsl_error(loc, state,
+ "function call parameter `%s' drops "
+ "`writeonly' qualifier", formal->name);
+ return false;
+ }
+
+ return true;
+}
+
+static bool
+verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
+ ir_variable *var)
+{
+ if (!var ||
+ (!var->is_in_shader_storage_block() &&
+ var->data.mode != ir_var_shader_shared)) {
+ _mesa_glsl_error(loc, state, "First argument to atomic function "
+ "must be a buffer or shared variable");
+ return false;
+ }
+ return true;
+}
+
+static bool
+is_atomic_function(const char *func_name)
+{
+ return !strcmp(func_name, "atomicAdd") ||
+ !strcmp(func_name, "atomicMin") ||
+ !strcmp(func_name, "atomicMax") ||
+ !strcmp(func_name, "atomicAnd") ||
+ !strcmp(func_name, "atomicOr") ||
+ !strcmp(func_name, "atomicXor") ||
+ !strcmp(func_name, "atomicExchange") ||
+ !strcmp(func_name, "atomicCompSwap");
+}
+
+/**
+ * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
+ * that 'const_in' formal parameters (an extension in our IR) correspond to
+ * ir_constant actual parameters.
+ */
+static bool
+verify_parameter_modes(_mesa_glsl_parse_state *state,
+ ir_function_signature *sig,
+ exec_list &actual_ir_parameters,
+ exec_list &actual_ast_parameters)
+{
+ exec_node *actual_ir_node = actual_ir_parameters.head;
+ exec_node *actual_ast_node = actual_ast_parameters.head;
+
+ foreach_in_list(const ir_variable, formal, &sig->parameters) {
+ /* The lists must be the same length. */
+ assert(!actual_ir_node->is_tail_sentinel());
+ assert(!actual_ast_node->is_tail_sentinel());
+
+ const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
+ const ast_expression *const actual_ast =
+ exec_node_data(ast_expression, actual_ast_node, link);
+
+ /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
+ * FIXME: 0:0(0).
+ */
+ YYLTYPE loc = actual_ast->get_location();
+
+ /* Verify that 'const_in' parameters are ir_constants. */
+ if (formal->data.mode == ir_var_const_in &&
+ actual->ir_type != ir_type_constant) {
+ _mesa_glsl_error(&loc, state,
+ "parameter `in %s' must be a constant expression",
+ formal->name);
+ return false;
+ }
+
+ /* Verify that shader_in parameters are shader inputs */
+ if (formal->data.must_be_shader_input) {
+ ir_variable *var = actual->variable_referenced();
+ if (var && var->data.mode != ir_var_shader_in) {
+ _mesa_glsl_error(&loc, state,
+ "parameter `%s` must be a shader input",
+ formal->name);
+ return false;
+ }
+
+ if (actual->ir_type == ir_type_swizzle) {
+ _mesa_glsl_error(&loc, state,
+ "parameter `%s` must not be swizzled",
+ formal->name);
+ return false;
+ }
+ }
+
+ /* Verify that 'out' and 'inout' actual parameters are lvalues. */
+ if (formal->data.mode == ir_var_function_out
+ || formal->data.mode == ir_var_function_inout) {
+ const char *mode = NULL;
+ switch (formal->data.mode) {
+ case ir_var_function_out: mode = "out"; break;
+ case ir_var_function_inout: mode = "inout"; break;
+ default: assert(false); break;
+ }
+
+ /* This AST-based check catches errors like f(i++). The IR-based
+ * is_lvalue() is insufficient because the actual parameter at the
+ * IR-level is just a temporary value, which is an l-value.
+ */
+ if (actual_ast->non_lvalue_description != NULL) {
+ _mesa_glsl_error(&loc, state,
+ "function parameter '%s %s' references a %s",
+ mode, formal->name,
+ actual_ast->non_lvalue_description);
+ return false;
+ }
+
+ ir_variable *var = actual->variable_referenced();
+ if (var)
+ var->data.assigned = true;
+
+ if (var && var->data.read_only) {
+ _mesa_glsl_error(&loc, state,
+ "function parameter '%s %s' references the "
+ "read-only variable '%s'",
+ mode, formal->name,
+ actual->variable_referenced()->name);
+ return false;
+ } else if (!actual->is_lvalue()) {
+ _mesa_glsl_error(&loc, state,
+ "function parameter '%s %s' is not an lvalue",
+ mode, formal->name);
+ return false;
+ }
+ }
+
+ if (formal->type->is_image() &&
+ actual->variable_referenced()) {
+ if (!verify_image_parameter(&loc, state, formal,
+ actual->variable_referenced()))
+ return false;
+ }
+
+ actual_ir_node = actual_ir_node->next;
+ actual_ast_node = actual_ast_node->next;
+ }
+
+ /* The first parameter of atomic functions must be a buffer variable */
+ const char *func_name = sig->function_name();
+ bool is_atomic = is_atomic_function(func_name);
+ if (is_atomic) {
+ const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.head;
+
+ const ast_expression *const actual_ast =
+ exec_node_data(ast_expression, actual_ast_parameters.head, link);
+ YYLTYPE loc = actual_ast->get_location();
+
+ if (!verify_first_atomic_parameter(&loc, state,
+ actual->variable_referenced())) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static void
+fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
+ exec_list *before_instructions, exec_list *after_instructions,
+ bool parameter_is_inout)
+{
+ ir_expression *const expr = actual->as_expression();
+
+ /* If the types match exactly and the parameter is not a vector-extract,
+ * nothing needs to be done to fix the parameter.
+ */
+ if (formal_type == actual->type
+ && (expr == NULL || expr->operation != ir_binop_vector_extract))
+ return;
+
+ /* To convert an out parameter, we need to create a temporary variable to
+ * hold the value before conversion, and then perform the conversion after
+ * the function call returns.
+ *
+ * This has the effect of transforming code like this:
+ *
+ * void f(out int x);
+ * float value;
+ * f(value);
+ *
+ * Into IR that's equivalent to this:
+ *
+ * void f(out int x);
+ * float value;
+ * int out_parameter_conversion;
+ * f(out_parameter_conversion);
+ * value = float(out_parameter_conversion);
+ *
+ * If the parameter is an ir_expression of ir_binop_vector_extract,
+ * additional conversion is needed in the post-call re-write.
+ */
+ ir_variable *tmp =
+ new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
+
+ before_instructions->push_tail(tmp);
+
+ /* If the parameter is an inout parameter, copy the value of the actual
+ * parameter to the new temporary. Note that no type conversion is allowed
+ * here because inout parameters must match types exactly.
+ */
+ if (parameter_is_inout) {
+ /* Inout parameters should never require conversion, since that would
+ * require an implicit conversion to exist both to and from the formal
+ * parameter type, and there are no bidirectional implicit conversions.
+ */
+ assert (actual->type == formal_type);
+
+ ir_dereference_variable *const deref_tmp_1 =
+ new(mem_ctx) ir_dereference_variable(tmp);
+ ir_assignment *const assignment =
+ new(mem_ctx) ir_assignment(deref_tmp_1, actual);
+ before_instructions->push_tail(assignment);
+ }
+
+ /* Replace the parameter in the call with a dereference of the new
+ * temporary.
+ */
+ ir_dereference_variable *const deref_tmp_2 =
+ new(mem_ctx) ir_dereference_variable(tmp);
+ actual->replace_with(deref_tmp_2);
+
+
+ /* Copy the temporary variable to the actual parameter with optional
+ * type conversion applied.
+ */
+ ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
+ if (actual->type != formal_type)
+ rhs = convert_component(rhs, actual->type);
+
+ ir_rvalue *lhs = actual;
+ if (expr != NULL && expr->operation == ir_binop_vector_extract) {
+ lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx, NULL),
+ expr->operands[1]->clone(mem_ctx, NULL));
+ }
+
+ ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
+ after_instructions->push_tail(assignment_2);
+}
+
+/**
+ * Generate a function call.
+ *
+ * For non-void functions, this returns a dereference of the temporary variable
+ * which stores the return value for the call. For void functions, this returns
+ * NULL.
+ */
+static ir_rvalue *
+generate_call(exec_list *instructions, ir_function_signature *sig,
+ exec_list *actual_parameters,
+ ir_variable *sub_var,
+ ir_rvalue *array_idx,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ exec_list post_call_conversions;
+
+ /* Perform implicit conversion of arguments. For out parameters, we need
+ * to place them in a temporary variable and do the conversion after the
+ * call takes place. Since we haven't emitted the call yet, we'll place
+ * the post-call conversions in a temporary exec_list, and emit them later.
+ */
+ foreach_two_lists(formal_node, &sig->parameters,
+ actual_node, actual_parameters) {
+ ir_rvalue *actual = (ir_rvalue *) actual_node;
+ ir_variable *formal = (ir_variable *) formal_node;
+
+ if (formal->type->is_numeric() || formal->type->is_boolean()) {
+ switch (formal->data.mode) {
+ case ir_var_const_in:
+ case ir_var_function_in: {
+ ir_rvalue *converted
+ = convert_component(actual, formal->type);
+ actual->replace_with(converted);
+ break;
+ }
+ case ir_var_function_out:
+ case ir_var_function_inout:
+ fix_parameter(ctx, actual, formal->type,
+ instructions, &post_call_conversions,
+ formal->data.mode == ir_var_function_inout);
+ break;
+ default:
+ assert (!"Illegal formal parameter mode");
+ break;
+ }
+ }
+ }
+
+ /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
+ *
+ * "Initializers for const declarations must be formed from literal
+ * values, other const variables (not including function call
+ * paramaters), or expressions of these.
+ *
+ * Constructors may be used in such expressions, but function calls may
+ * not."
+ *
+ * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
+ *
+ * "A constant expression is one of
+ *
+ * ...
+ *
+ * - a built-in function call whose arguments are all constant
+ * expressions, with the exception of the texture lookup
+ * functions, the noise functions, and ftransform. The built-in
+ * functions dFdx, dFdy, and fwidth must return 0 when evaluated
+ * inside an initializer with an argument that is a constant
+ * expression."
+ *
+ * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
+ *
+ * "A constant expression is one of
+ *
+ * ...
+ *
+ * - a built-in function call whose arguments are all constant
+ * expressions, with the exception of the texture lookup
+ * functions."
+ *
+ * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
+ *
+ * "A constant expression is one of
+ *
+ * ...
+ *
+ * - a built-in function call whose arguments are all constant
+ * expressions, with the exception of the texture lookup
+ * functions. The built-in functions dFdx, dFdy, and fwidth must
+ * return 0 when evaluated inside an initializer with an argument
+ * that is a constant expression."
+ *
+ * If the function call is a constant expression, don't generate any
+ * instructions; just generate an ir_constant.
+ */
+ if (state->is_version(120, 100)) {
+ ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
+ if (value != NULL) {
+ return value;
+ }
+ }
+
+ ir_dereference_variable *deref = NULL;
+ if (!sig->return_type->is_void()) {
+ /* Create a new temporary to hold the return value. */
+ char *const name = ir_variable::temporaries_allocate_names
+ ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
+ : NULL;
+
+ ir_variable *var;
+
+ var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
+ instructions->push_tail(var);
+
+ ralloc_free(name);
+
+ deref = new(ctx) ir_dereference_variable(var);
+ }
+
+ ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx);
+ instructions->push_tail(call);
+
+ /* Also emit any necessary out-parameter conversions. */
+ instructions->append_list(&post_call_conversions);
+
+ return deref ? deref->clone(ctx, NULL) : NULL;
+}
+
+/**
+ * Given a function name and parameter list, find the matching signature.
+ */
+static ir_function_signature *
+match_function_by_name(const char *name,
+ exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ ir_function *f = state->symbols->get_function(name);
+ ir_function_signature *local_sig = NULL;
+ ir_function_signature *sig = NULL;
+
+ /* Is the function hidden by a record type constructor? */
+ if (state->symbols->get_type(name))
+ goto done; /* no match */
+
+ /* Is the function hidden by a variable (impossible in 1.10)? */
+ if (!state->symbols->separate_function_namespace
+ && state->symbols->get_variable(name))
+ goto done; /* no match */
+
+ if (f != NULL) {
+ /* In desktop GL, the presence of a user-defined signature hides any
+ * built-in signatures, so we must ignore them. In contrast, in ES2
+ * user-defined signatures add new overloads, so we must consider them.
+ */
+ bool allow_builtins = state->es_shader || !f->has_user_signature();
+
+ /* Look for a match in the local shader. If exact, we're done. */
+ bool is_exact = false;
+ sig = local_sig = f->matching_signature(state, actual_parameters,
+ allow_builtins, &is_exact);
+ if (is_exact)
+ goto done;
+
+ if (!allow_builtins)
+ goto done;
+ }
+
+ /* Local shader has no exact candidates; check the built-ins. */
+ _mesa_glsl_initialize_builtin_functions();
+ sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
+
+done:
+ if (sig != NULL) {
+ /* If the match is from a linked built-in shader, import the prototype. */
+ if (sig != local_sig) {
+ if (f == NULL) {
+ f = new(ctx) ir_function(name);
+ state->symbols->add_global_function(f);
+ emit_function(state, f);
+ }
+ f->add_signature(sig->clone_prototype(f, NULL));
+ }
+ }
+ return sig;
+}
+
+static ir_function_signature *
+match_subroutine_by_name(const char *name,
+ exec_list *actual_parameters,
+ struct _mesa_glsl_parse_state *state,
+ ir_variable **var_r)
+{
+ void *ctx = state;
+ ir_function_signature *sig = NULL;
+ ir_function *f, *found = NULL;
+ const char *new_name;
+ ir_variable *var;
+ bool is_exact = false;
+
+ new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name);
+ var = state->symbols->get_variable(new_name);
+ if (!var)
+ return NULL;
+
+ for (int i = 0; i < state->num_subroutine_types; i++) {
+ f = state->subroutine_types[i];
+ if (strcmp(f->name, var->type->without_array()->name))
+ continue;
+ found = f;
+ break;
+ }
+
+ if (!found)
+ return NULL;
+ *var_r = var;
+ sig = found->matching_signature(state, actual_parameters,
+ false, &is_exact);
+ return sig;
+}
+
+static ir_rvalue *
+generate_array_index(void *mem_ctx, exec_list *instructions,
+ struct _mesa_glsl_parse_state *state, YYLTYPE loc,
+ const ast_expression *array, ast_expression *idx,
+ const char **function_name, exec_list *actual_parameters)
+{
+ if (array->oper == ast_array_index) {
+ /* This handles arrays of arrays */
+ ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
+ state, loc,
+ array->subexpressions[0],
+ array->subexpressions[1],
+ function_name, actual_parameters);
+ ir_rvalue *outer_array_idx = idx->hir(instructions, state);
+
+ YYLTYPE index_loc = idx->get_location();
+ return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
+ outer_array_idx, loc,
+ index_loc);
+ } else {
+ ir_variable *sub_var = NULL;
+ *function_name = array->primary_expression.identifier;
+
+ match_subroutine_by_name(*function_name, actual_parameters,
+ state, &sub_var);
+
+ ir_rvalue *outer_array_idx = idx->hir(instructions, state);
+ return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
+ }
+}
+
+static void
+print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
+ ir_function *f)
+{
+ if (f == NULL)
+ return;
+
+ foreach_in_list(ir_function_signature, sig, &f->signatures) {
+ if (sig->is_builtin() && !sig->is_builtin_available(state))
+ continue;
+
+ char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
+ _mesa_glsl_error(loc, state, " %s", str);
+ ralloc_free(str);
+ }
+}
+
+/**
+ * Raise a "no matching function" error, listing all possible overloads the
+ * compiler considered so developers can figure out what went wrong.
+ */
+static void
+no_matching_function_error(const char *name,
+ YYLTYPE *loc,
+ exec_list *actual_parameters,
+ _mesa_glsl_parse_state *state)
+{
+ gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
+
+ if (state->symbols->get_function(name) == NULL
+ && (!state->uses_builtin_functions
+ || sh->symbols->get_function(name) == NULL)) {
+ _mesa_glsl_error(loc, state, "no function with name '%s'", name);
+ } else {
+ char *str = prototype_string(NULL, name, actual_parameters);
+ _mesa_glsl_error(loc, state,
+ "no matching function for call to `%s'; candidates are:",
+ str);
+ ralloc_free(str);
+
+ print_function_prototypes(state, loc, state->symbols->get_function(name));
+
+ if (state->uses_builtin_functions) {
+ print_function_prototypes(state, loc, sh->symbols->get_function(name));
+ }
+ }
+}
+
+/**
+ * Perform automatic type conversion of constructor parameters
+ *
+ * This implements the rules in the "Conversion and Scalar Constructors"
+ * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
+ */
+static ir_rvalue *
+convert_component(ir_rvalue *src, const glsl_type *desired_type)
+{
+ void *ctx = ralloc_parent(src);
+ const unsigned a = desired_type->base_type;
+ const unsigned b = src->type->base_type;
+ ir_expression *result = NULL;
+
+ if (src->type->is_error())
+ return src;
+
+ assert(a <= GLSL_TYPE_BOOL);
+ assert(b <= GLSL_TYPE_BOOL);
+
+ if (a == b)
+ return src;
+
+ switch (a) {
+ case GLSL_TYPE_UINT:
+ switch (b) {
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2u, src);
+ break;
+ case GLSL_TYPE_FLOAT:
+ result = new(ctx) ir_expression(ir_unop_f2u, src);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_i2u,
+ new(ctx) ir_expression(ir_unop_b2i, src));
+ break;
+ case GLSL_TYPE_DOUBLE:
+ result = new(ctx) ir_expression(ir_unop_d2u, src);
+ break;
+ }
+ break;
+ case GLSL_TYPE_INT:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_u2i, src);
+ break;
+ case GLSL_TYPE_FLOAT:
+ result = new(ctx) ir_expression(ir_unop_f2i, src);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_b2i, src);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ result = new(ctx) ir_expression(ir_unop_d2i, src);
+ break;
+ }
+ break;
+ case GLSL_TYPE_FLOAT:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
+ break;
+ }
+ break;
+ case GLSL_TYPE_BOOL:
+ switch (b) {
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_i2b,
+ new(ctx) ir_expression(ir_unop_u2i, src));
+ break;
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_FLOAT:
+ result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
+ break;
+ }
+ break;
+ case GLSL_TYPE_DOUBLE:
+ switch (b) {
+ case GLSL_TYPE_INT:
+ result = new(ctx) ir_expression(ir_unop_i2d, src);
+ break;
+ case GLSL_TYPE_UINT:
+ result = new(ctx) ir_expression(ir_unop_u2d, src);
+ break;
+ case GLSL_TYPE_BOOL:
+ result = new(ctx) ir_expression(ir_unop_f2d,
+ new(ctx) ir_expression(ir_unop_b2f, src));
+ break;
+ case GLSL_TYPE_FLOAT:
+ result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
+ break;
+ }
+ }
+
+ assert(result != NULL);
+ assert(result->type == desired_type);
+
+ /* Try constant folding; it may fold in the conversion we just added. */
+ ir_constant *const constant = result->constant_expression_value();
+ return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
+}
+
+/**
+ * Dereference a specific component from a scalar, vector, or matrix
+ */
+static ir_rvalue *
+dereference_component(ir_rvalue *src, unsigned component)
+{
+ void *ctx = ralloc_parent(src);
+ assert(component < src->type->components());
+
+ /* If the source is a constant, just create a new constant instead of a
+ * dereference of the existing constant.
+ */
+ ir_constant *constant = src->as_constant();
+ if (constant)
+ return new(ctx) ir_constant(constant, component);
+
+ if (src->type->is_scalar()) {
+ return src;
+ } else if (src->type->is_vector()) {
+ return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
+ } else {
+ assert(src->type->is_matrix());
+
+ /* Dereference a row of the matrix, then call this function again to get
+ * a specific element from that row.
+ */
+ const int c = component / src->type->column_type()->vector_elements;
+ const int r = component % src->type->column_type()->vector_elements;
+ ir_constant *const col_index = new(ctx) ir_constant(c);
+ ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
+
+ col->type = src->type->column_type();
+
+ return dereference_component(col, r);
+ }
+
+ assert(!"Should not get here.");
+ return NULL;
+}
+
+
+static ir_rvalue *
+process_vec_mat_constructor(exec_list *instructions,
+ const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+
+ /* The ARB_shading_language_420pack spec says:
+ *
+ * "If an initializer is a list of initializers enclosed in curly braces,
+ * the variable being declared must be a vector, a matrix, an array, or a
+ * structure.
+ *
+ * int i = { 1 }; // illegal, i is not an aggregate"
+ */
+ if (constructor_type->vector_elements <= 1) {
+ _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
+ "matrices, arrays, and structs");
+ return ir_rvalue::error_value(ctx);
+ }
+
+ exec_list actual_parameters;
+ const unsigned parameter_count =
+ process_parameters(instructions, &actual_parameters, parameters, state);
+
+ if (parameter_count == 0
+ || (constructor_type->is_vector() &&
+ constructor_type->vector_elements != parameter_count)
+ || (constructor_type->is_matrix() &&
+ constructor_type->matrix_columns != parameter_count)) {
+ _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
+ constructor_type->is_vector() ? "vector" : "matrix",
+ constructor_type->vector_elements);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ bool all_parameters_are_constant = true;
+
+ /* Type cast each parameter and, if possible, fold constants. */
+ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
+ ir_rvalue *result = ir;
+
+ /* Apply implicit conversions (not the scalar constructor rules!). See
+ * the spec quote above. */
+ if (constructor_type->base_type != result->type->base_type) {
+ const glsl_type *desired_type =
+ glsl_type::get_instance(constructor_type->base_type,
+ ir->type->vector_elements,
+ ir->type->matrix_columns);
+ if (result->type->can_implicitly_convert_to(desired_type, state)) {
+ /* Even though convert_component() implements the constructor
+ * conversion rules (not the implicit conversion rules), its safe
+ * to use it here because we already checked that the implicit
+ * conversion is legal.
+ */
+ result = convert_component(ir, desired_type);
+ }
+ }
+
+ if (constructor_type->is_matrix()) {
+ if (result->type != constructor_type->column_type()) {
+ _mesa_glsl_error(loc, state, "type error in matrix constructor: "
+ "expected: %s, found %s",
+ constructor_type->column_type()->name,
+ result->type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+ } else if (result->type != constructor_type->get_scalar_type()) {
+ _mesa_glsl_error(loc, state, "type error in vector constructor: "
+ "expected: %s, found %s",
+ constructor_type->get_scalar_type()->name,
+ result->type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant = result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ ir->replace_with(result);
+ }
+
+ if (all_parameters_are_constant)
+ return new(ctx) ir_constant(constructor_type, &actual_parameters);
+
+ ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
+ ir_var_temporary);
+ instructions->push_tail(var);
+
+ int i = 0;
+
+ foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
+ ir_instruction *assignment = NULL;
+
+ if (var->type->is_matrix()) {
+ ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
+ new(ctx) ir_constant(i));
+ assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
+ } else {
+ /* use writemask rather than index for vector */
+ assert(var->type->is_vector());
+ assert(i < 4);
+ ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+ assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i));
+ }
+
+ instructions->push_tail(assignment);
+
+ i++;
+ }
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+static ir_rvalue *
+process_array_constructor(exec_list *instructions,
+ const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ /* Array constructors come in two forms: sized and unsized. Sized array
+ * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
+ * variables. In this case the number of parameters must exactly match the
+ * specified size of the array.
+ *
+ * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
+ * are vec4 variables. In this case the size of the array being constructed
+ * is determined by the number of parameters.
+ *
+ * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "There must be exactly the same number of arguments as the size of
+ * the array being constructed. If no size is present in the
+ * constructor, then the array is explicitly sized to the number of
+ * arguments provided. The arguments are assigned in order, starting at
+ * element 0, to the elements of the constructed array. Each argument
+ * must be the same type as the element type of the array, or be a type
+ * that can be converted to the element type of the array according to
+ * Section 4.1.10 "Implicit Conversions.""
+ */
+ exec_list actual_parameters;
+ const unsigned parameter_count =
+ process_parameters(instructions, &actual_parameters, parameters, state);
+ bool is_unsized_array = constructor_type->is_unsized_array();
+
+ if ((parameter_count == 0) ||
+ (!is_unsized_array && (constructor_type->length != parameter_count))) {
+ const unsigned min_param = is_unsized_array
+ ? 1 : constructor_type->length;
+
+ _mesa_glsl_error(loc, state, "array constructor must have %s %u "
+ "parameter%s",
+ is_unsized_array ? "at least" : "exactly",
+ min_param, (min_param <= 1) ? "" : "s");
+ return ir_rvalue::error_value(ctx);
+ }
+
+ if (is_unsized_array) {
+ constructor_type =
+ glsl_type::get_array_instance(constructor_type->fields.array,
+ parameter_count);
+ assert(constructor_type != NULL);
+ assert(constructor_type->length == parameter_count);
+ }
+
+ bool all_parameters_are_constant = true;
+ const glsl_type *element_type = constructor_type->fields.array;
+
+ /* Type cast each parameter and, if possible, fold constants. */
+ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
+ ir_rvalue *result = ir;
+
+ const glsl_base_type element_base_type =
+ constructor_type->fields.array->base_type;
+
+ /* Apply implicit conversions (not the scalar constructor rules!). See
+ * the spec quote above. */
+ if (element_base_type != result->type->base_type) {
+ const glsl_type *desired_type =
+ glsl_type::get_instance(element_base_type,
+ ir->type->vector_elements,
+ ir->type->matrix_columns);
+
+ if (result->type->can_implicitly_convert_to(desired_type, state)) {
+ /* Even though convert_component() implements the constructor
+ * conversion rules (not the implicit conversion rules), its safe
+ * to use it here because we already checked that the implicit
+ * conversion is legal.
+ */
+ result = convert_component(ir, desired_type);
+ }
+ }
+
+ if (constructor_type->fields.array->is_unsized_array()) {
+ /* As the inner parameters of the constructor are created without
+ * knowledge of each other we need to check to make sure unsized
+ * parameters of unsized constructors all end up with the same size.
+ *
+ * e.g we make sure to fail for a constructor like this:
+ * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
+ * vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
+ * vec4[](vec4(0.0), vec4(1.0)));
+ */
+ if (element_type->is_unsized_array()) {
+ /* This is the first parameter so just get the type */
+ element_type = result->type;
+ } else if (element_type != result->type) {
+ _mesa_glsl_error(loc, state, "type error in array constructor: "
+ "expected: %s, found %s",
+ element_type->name,
+ result->type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+ } else if (result->type != constructor_type->fields.array) {
+ _mesa_glsl_error(loc, state, "type error in array constructor: "
+ "expected: %s, found %s",
+ constructor_type->fields.array->name,
+ result->type->name);
+ return ir_rvalue::error_value(ctx);
+ } else {
+ element_type = result->type;
+ }
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant = result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ ir->replace_with(result);
+ }
+
+ if (constructor_type->fields.array->is_unsized_array()) {
+ constructor_type =
+ glsl_type::get_array_instance(element_type,
+ parameter_count);
+ assert(constructor_type != NULL);
+ assert(constructor_type->length == parameter_count);
+ }
+
+ if (all_parameters_are_constant)
+ return new(ctx) ir_constant(constructor_type, &actual_parameters);
+
+ ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
+ ir_var_temporary);
+ instructions->push_tail(var);
+
+ int i = 0;
+ foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
+ ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
+ new(ctx) ir_constant(i));
+
+ ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
+ instructions->push_tail(assignment);
+
+ i++;
+ }
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+/**
+ * Try to convert a record constructor to a constant expression
+ */
+static ir_constant *
+constant_record_constructor(const glsl_type *constructor_type,
+ exec_list *parameters, void *mem_ctx)
+{
+ foreach_in_list(ir_instruction, node, parameters) {
+ ir_constant *constant = node->as_constant();
+ if (constant == NULL)
+ return NULL;
+ node->replace_with(constant);
+ }
+
+ return new(mem_ctx) ir_constant(constructor_type, parameters);
+}
+
+
+/**
+ * Determine if a list consists of a single scalar r-value
+ */
+bool
+single_scalar_parameter(exec_list *parameters)
+{
+ const ir_rvalue *const p = (ir_rvalue *) parameters->head;
+ assert(((ir_rvalue *)p)->as_rvalue() != NULL);
+
+ return (p->type->is_scalar() && p->next->is_tail_sentinel());
+}
+
+
+/**
+ * Generate inline code for a vector constructor
+ *
+ * The generated constructor code will consist of a temporary variable
+ * declaration of the same type as the constructor. A sequence of assignments
+ * from constructor parameters to the temporary will follow.
+ *
+ * \return
+ * An \c ir_dereference_variable of the temprorary generated in the constructor
+ * body.
+ */
+ir_rvalue *
+emit_inline_vector_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *ctx)
+{
+ assert(!parameters->is_empty());
+
+ ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
+ instructions->push_tail(var);
+
+ /* There are three kinds of vector constructors.
+ *
+ * - Construct a vector from a single scalar by replicating that scalar to
+ * all components of the vector.
+ *
+ * - Construct a vector from at least a matrix. This case should already
+ * have been taken care of in ast_function_expression::hir by breaking
+ * down the matrix into a series of column vectors.
+ *
+ * - Construct a vector from an arbirary combination of vectors and
+ * scalars. The components of the constructor parameters are assigned
+ * to the vector in order until the vector is full.
+ */
+ const unsigned lhs_components = type->components();
+ if (single_scalar_parameter(parameters)) {
+ ir_rvalue *first_param = (ir_rvalue *)parameters->head;
+ ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
+ lhs_components);
+ ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
+ const unsigned mask = (1U << lhs_components) - 1;
+
+ assert(rhs->type == lhs->type);
+
+ ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
+ instructions->push_tail(inst);
+ } else {
+ unsigned base_component = 0;
+ unsigned base_lhs_component = 0;
+ ir_constant_data data;
+ unsigned constant_mask = 0, constant_components = 0;
+
+ memset(&data, 0, sizeof(data));
+
+ foreach_in_list(ir_rvalue, param, parameters) {
+ unsigned rhs_components = param->type->components();
+
+ /* Do not try to assign more components to the vector than it has!
+ */
+ if ((rhs_components + base_lhs_component) > lhs_components) {
+ rhs_components = lhs_components - base_lhs_component;
+ }
+
+ const ir_constant *const c = param->as_constant();
+ if (c != NULL) {
+ for (unsigned i = 0; i < rhs_components; i++) {
+ switch (c->type->base_type) {
+ case GLSL_TYPE_UINT:
+ data.u[i + base_component] = c->get_uint_component(i);
+ break;
+ case GLSL_TYPE_INT:
+ data.i[i + base_component] = c->get_int_component(i);
+ break;
+ case GLSL_TYPE_FLOAT:
+ data.f[i + base_component] = c->get_float_component(i);
+ break;
+ case GLSL_TYPE_DOUBLE:
+ data.d[i + base_component] = c->get_double_component(i);
+ break;
+ case GLSL_TYPE_BOOL:
+ data.b[i + base_component] = c->get_bool_component(i);
+ break;
+ default:
+ assert(!"Should not get here.");
+ break;
+ }
+ }
+
+ /* Mask of fields to be written in the assignment.
+ */
+ constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
+ constant_components += rhs_components;
+
+ base_component += rhs_components;
+ }
+ /* Advance the component index by the number of components
+ * that were just assigned.
+ */
+ base_lhs_component += rhs_components;
+ }
+
+ if (constant_mask != 0) {
+ ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+ const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
+ constant_components,
+ 1);
+ ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
+ instructions->push_tail(inst);
+ }
+
+ base_component = 0;
+ foreach_in_list(ir_rvalue, param, parameters) {
+ unsigned rhs_components = param->type->components();
+
+ /* Do not try to assign more components to the vector than it has!
+ */
+ if ((rhs_components + base_component) > lhs_components) {
+ rhs_components = lhs_components - base_component;
+ }
+
+ /* If we do not have any components left to copy, break out of the
+ * loop. This can happen when initializing a vec4 with a mat3 as the
+ * mat3 would have been broken into a series of column vectors.
+ */
+ if (rhs_components == 0) {
+ break;
+ }
+
+ const ir_constant *const c = param->as_constant();
+ if (c == NULL) {
+ /* Mask of fields to be written in the assignment.
+ */
+ const unsigned write_mask = ((1U << rhs_components) - 1)
+ << base_component;
+
+ ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+
+ /* Generate a swizzle so that LHS and RHS sizes match.
+ */
+ ir_rvalue *rhs =
+ new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+ instructions->push_tail(inst);
+ }
+
+ /* Advance the component index by the number of components that were
+ * just assigned.
+ */
+ base_component += rhs_components;
+ }
+ }
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+/**
+ * Generate assignment of a portion of a vector to a portion of a matrix column
+ *
+ * \param src_base First component of the source to be used in assignment
+ * \param column Column of destination to be assiged
+ * \param row_base First component of the destination column to be assigned
+ * \param count Number of components to be assigned
+ *
+ * \note
+ * \c src_base + \c count must be less than or equal to the number of components
+ * in the source vector.
+ */
+ir_instruction *
+assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
+ ir_rvalue *src, unsigned src_base, unsigned count,
+ void *mem_ctx)
+{
+ ir_constant *col_idx = new(mem_ctx) ir_constant(column);
+ ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
+
+ assert(column_ref->type->components() >= (row_base + count));
+ assert(src->type->components() >= (src_base + count));
+
+ /* Generate a swizzle that extracts the number of components from the source
+ * that are to be assigned to the column of the matrix.
+ */
+ if (count < src->type->vector_elements) {
+ src = new(mem_ctx) ir_swizzle(src,
+ src_base + 0, src_base + 1,
+ src_base + 2, src_base + 3,
+ count);
+ }
+
+ /* Mask of fields to be written in the assignment.
+ */
+ const unsigned write_mask = ((1U << count) - 1) << row_base;
+
+ return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
+}
+
+
+/**
+ * Generate inline code for a matrix constructor
+ *
+ * The generated constructor code will consist of a temporary variable
+ * declaration of the same type as the constructor. A sequence of assignments
+ * from constructor parameters to the temporary will follow.
+ *
+ * \return
+ * An \c ir_dereference_variable of the temprorary generated in the constructor
+ * body.
+ */
+ir_rvalue *
+emit_inline_matrix_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *ctx)
+{
+ assert(!parameters->is_empty());
+
+ ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
+ instructions->push_tail(var);
+
+ /* There are three kinds of matrix constructors.
+ *
+ * - Construct a matrix from a single scalar by replicating that scalar to
+ * along the diagonal of the matrix and setting all other components to
+ * zero.
+ *
+ * - Construct a matrix from an arbirary combination of vectors and
+ * scalars. The components of the constructor parameters are assigned
+ * to the matrix in column-major order until the matrix is full.
+ *
+ * - Construct a matrix from a single matrix. The source matrix is copied
+ * to the upper left portion of the constructed matrix, and the remaining
+ * elements take values from the identity matrix.
+ */
+ ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
+ if (single_scalar_parameter(parameters)) {
+ /* Assign the scalar to the X component of a vec4, and fill the remaining
+ * components with zero.
+ */
+ glsl_base_type param_base_type = first_param->type->base_type;
+ assert(param_base_type == GLSL_TYPE_FLOAT ||
+ param_base_type == GLSL_TYPE_DOUBLE);
+ ir_variable *rhs_var =
+ new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
+ "mat_ctor_vec",
+ ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_constant_data zero;
+ for (unsigned i = 0; i < 4; i++)
+ if (param_base_type == GLSL_TYPE_FLOAT)
+ zero.f[i] = 0.0;
+ else
+ zero.d[i] = 0.0;
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
+ new(ctx) ir_constant(rhs_var->type, &zero),
+ NULL);
+ instructions->push_tail(inst);
+
+ ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+
+ inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
+ instructions->push_tail(inst);
+
+ /* Assign the temporary vector to each column of the destination matrix
+ * with a swizzle that puts the X component on the diagonal of the
+ * matrix. In some cases this may mean that the X component does not
+ * get assigned into the column at all (i.e., when the matrix has more
+ * columns than rows).
+ */
+ static const unsigned rhs_swiz[4][4] = {
+ { 0, 1, 1, 1 },
+ { 1, 0, 1, 1 },
+ { 1, 1, 0, 1 },
+ { 1, 1, 1, 0 }
+ };
+
+ const unsigned cols_to_init = MIN2(type->matrix_columns,
+ type->vector_elements);
+ for (unsigned i = 0; i < cols_to_init; i++) {
+ ir_constant *const col_idx = new(ctx) ir_constant(i);
+ ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
+
+ ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+ ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
+ type->vector_elements);
+
+ inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+
+ for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
+ ir_constant *const col_idx = new(ctx) ir_constant(i);
+ ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
+
+ ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
+ ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
+ type->vector_elements);
+
+ inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+ } else if (first_param->type->is_matrix()) {
+ /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "If a matrix is constructed from a matrix, then each component
+ * (column i, row j) in the result that has a corresponding
+ * component (column i, row j) in the argument will be initialized
+ * from there. All other components will be initialized to the
+ * identity matrix. If a matrix argument is given to a matrix
+ * constructor, it is an error to have any other arguments."
+ */
+ assert(first_param->next->is_tail_sentinel());
+ ir_rvalue *const src_matrix = first_param;
+
+ /* If the source matrix is smaller, pre-initialize the relavent parts of
+ * the destination matrix to the identity matrix.
+ */
+ if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
+ || (src_matrix->type->vector_elements < var->type->vector_elements)) {
+
+ /* If the source matrix has fewer rows, every column of the destination
+ * must be initialized. Otherwise only the columns in the destination
+ * that do not exist in the source must be initialized.
+ */
+ unsigned col =
+ (src_matrix->type->vector_elements < var->type->vector_elements)
+ ? 0 : src_matrix->type->matrix_columns;
+
+ const glsl_type *const col_type = var->type->column_type();
+ for (/* empty */; col < var->type->matrix_columns; col++) {
+ ir_constant_data ident;
+
+ ident.f[0] = 0.0;
+ ident.f[1] = 0.0;
+ ident.f[2] = 0.0;
+ ident.f[3] = 0.0;
+
+ ident.f[col] = 1.0;
+
+ ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
+
+ ir_rvalue *const lhs =
+ new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
+
+ ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
+ instructions->push_tail(inst);
+ }
+ }
+
+ /* Assign columns from the source matrix to the destination matrix.
+ *
+ * Since the parameter will be used in the RHS of multiple assignments,
+ * generate a temporary and copy the paramter there.
+ */
+ ir_variable *const rhs_var =
+ new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
+ ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_dereference *const rhs_var_ref =
+ new(ctx) ir_dereference_variable(rhs_var);
+ ir_instruction *const inst =
+ new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
+ instructions->push_tail(inst);
+
+ const unsigned last_row = MIN2(src_matrix->type->vector_elements,
+ var->type->vector_elements);
+ const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
+ var->type->matrix_columns);
+
+ unsigned swiz[4] = { 0, 0, 0, 0 };
+ for (unsigned i = 1; i < last_row; i++)
+ swiz[i] = i;
+
+ const unsigned write_mask = (1U << last_row) - 1;
+
+ for (unsigned i = 0; i < last_col; i++) {
+ ir_dereference *const lhs =
+ new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
+ ir_rvalue *const rhs_col =
+ new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
+
+ /* If one matrix has columns that are smaller than the columns of the
+ * other matrix, wrap the column access of the larger with a swizzle
+ * so that the LHS and RHS of the assignment have the same size (and
+ * therefore have the same type).
+ *
+ * It would be perfectly valid to unconditionally generate the
+ * swizzles, this this will typically result in a more compact IR tree.
+ */
+ ir_rvalue *rhs;
+ if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
+ rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
+ } else {
+ rhs = rhs_col;
+ }
+
+ ir_instruction *inst =
+ new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+ instructions->push_tail(inst);
+ }
+ } else {
+ const unsigned cols = type->matrix_columns;
+ const unsigned rows = type->vector_elements;
+ unsigned remaining_slots = rows * cols;
+ unsigned col_idx = 0;
+ unsigned row_idx = 0;
+
+ foreach_in_list(ir_rvalue, rhs, parameters) {
+ unsigned rhs_components = rhs->type->components();
+ unsigned rhs_base = 0;
+
+ if (remaining_slots == 0)
+ break;
+
+ /* Since the parameter might be used in the RHS of two assignments,
+ * generate a temporary and copy the paramter there.
+ */
+ ir_variable *rhs_var =
+ new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
+ instructions->push_tail(rhs_var);
+
+ ir_dereference *rhs_var_ref =
+ new(ctx) ir_dereference_variable(rhs_var);
+ ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
+ instructions->push_tail(inst);
+
+ do {
+ /* Assign the current parameter to as many components of the matrix
+ * as it will fill.
+ *
+ * NOTE: A single vector parameter can span two matrix columns. A
+ * single vec4, for example, can completely fill a mat2.
+ */
+ unsigned count = MIN2(rows - row_idx,
+ rhs_components - rhs_base);
+
+ rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
+ ir_instruction *inst = assign_to_matrix_column(var, col_idx,
+ row_idx,
+ rhs_var_ref,
+ rhs_base,
+ count, ctx);
+ instructions->push_tail(inst);
+ rhs_base += count;
+ row_idx += count;
+ remaining_slots -= count;
+
+ /* Sometimes, there is still data left in the parameters and
+ * components left to be set in the destination but in other
+ * column.
+ */
+ if (row_idx >= rows) {
+ row_idx = 0;
+ col_idx++;
+ }
+ } while(remaining_slots > 0 && rhs_base < rhs_components);
+ }
+ }
+
+ return new(ctx) ir_dereference_variable(var);
+}
+
+
+ir_rvalue *
+emit_inline_record_constructor(const glsl_type *type,
+ exec_list *instructions,
+ exec_list *parameters,
+ void *mem_ctx)
+{
+ ir_variable *const var =
+ new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
+ ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
+
+ instructions->push_tail(var);
+
+ exec_node *node = parameters->head;
+ for (unsigned i = 0; i < type->length; i++) {
+ assert(!node->is_tail_sentinel());
+
+ ir_dereference *const lhs =
+ new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
+ type->fields.structure[i].name);
+
+ ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
+ assert(rhs != NULL);
+
+ ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
+
+ instructions->push_tail(assign);
+ node = node->next;
+ }
+
+ return d;
+}
+
+
+static ir_rvalue *
+process_record_constructor(exec_list *instructions,
+ const glsl_type *constructor_type,
+ YYLTYPE *loc, exec_list *parameters,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ exec_list actual_parameters;
+
+ process_parameters(instructions, &actual_parameters,
+ parameters, state);
+
+ exec_node *node = actual_parameters.head;
+ for (unsigned i = 0; i < constructor_type->length; i++) {
+ ir_rvalue *ir = (ir_rvalue *) node;
+
+ if (node->is_tail_sentinel()) {
+ _mesa_glsl_error(loc, state,
+ "insufficient parameters to constructor for `%s'",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
+ ir, state)) {
+ node->replace_with(ir);
+ } else {
+ _mesa_glsl_error(loc, state,
+ "parameter type mismatch in constructor for `%s.%s' "
+ "(%s vs %s)",
+ constructor_type->name,
+ constructor_type->fields.structure[i].name,
+ ir->type->name,
+ constructor_type->fields.structure[i].type->name);
+ return ir_rvalue::error_value(ctx);;
+ }
+
+ node = node->next;
+ }
+
+ if (!node->is_tail_sentinel()) {
+ _mesa_glsl_error(loc, state, "too many parameters in constructor "
+ "for `%s'", constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ ir_rvalue *const constant =
+ constant_record_constructor(constructor_type, &actual_parameters,
+ state);
+
+ return (constant != NULL)
+ ? constant
+ : emit_inline_record_constructor(constructor_type, instructions,
+ &actual_parameters, state);
+}
+
+ir_rvalue *
+ast_function_expression::handle_method(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ const ast_expression *field = subexpressions[0];
+ ir_rvalue *op;
+ ir_rvalue *result;
+ void *ctx = state;
+ /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
+ YYLTYPE loc = get_location();
+ state->check_version(120, 300, &loc, "methods not supported");
+
+ const char *method;
+ method = field->primary_expression.identifier;
+
+ op = field->subexpressions[0]->hir(instructions, state);
+ if (strcmp(method, "length") == 0) {
+ if (!this->expressions.is_empty()) {
+ _mesa_glsl_error(&loc, state, "length method takes no arguments");
+ goto fail;
+ }
+
+ if (op->type->is_array()) {
+ if (op->type->is_unsized_array()) {
+ if (!state->has_shader_storage_buffer_objects()) {
+ _mesa_glsl_error(&loc, state, "length called on unsized array"
+ " only available with "
+ "ARB_shader_storage_buffer_object");
+ }
+ /* Calculate length of an unsized array in run-time */
+ result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op);
+ } else {
+ result = new(ctx) ir_constant(op->type->array_size());
+ }
+ } else if (op->type->is_vector()) {
+ if (state->has_420pack()) {
+ /* .length() returns int. */
+ result = new(ctx) ir_constant((int) op->type->vector_elements);
+ } else {
+ _mesa_glsl_error(&loc, state, "length method on matrix only available"
+ "with ARB_shading_language_420pack");
+ goto fail;
+ }
+ } else if (op->type->is_matrix()) {
+ if (state->has_420pack()) {
+ /* .length() returns int. */
+ result = new(ctx) ir_constant((int) op->type->matrix_columns);
+ } else {
+ _mesa_glsl_error(&loc, state, "length method on matrix only available"
+ "with ARB_shading_language_420pack");
+ goto fail;
+ }
+ } else {
+ _mesa_glsl_error(&loc, state, "length called on scalar.");
+ goto fail;
+ }
+ } else {
+ _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
+ goto fail;
+ }
+ return result;
+fail:
+ return ir_rvalue::error_value(ctx);
+}
+
+ir_rvalue *
+ast_function_expression::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ /* There are three sorts of function calls.
+ *
+ * 1. constructors - The first subexpression is an ast_type_specifier.
+ * 2. methods - Only the .length() method of array types.
+ * 3. functions - Calls to regular old functions.
+ *
+ */
+ if (is_constructor()) {
+ const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
+ YYLTYPE loc = type->get_location();
+ const char *name;
+
+ const glsl_type *const constructor_type = type->glsl_type(& name, state);
+
+ /* constructor_type can be NULL if a variable with the same name as the
+ * structure has come into scope.
+ */
+ if (constructor_type == NULL) {
+ _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
+ "may be shadowed by a variable with the same name)",
+ type->type_name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+
+ /* Constructors for opaque types are illegal.
+ */
+ if (constructor_type->contains_opaque()) {
+ _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ if (constructor_type->is_array()) {
+ if (!state->check_version(120, 300, &loc,
+ "array constructors forbidden")) {
+ return ir_rvalue::error_value(ctx);
+ }
+
+ return process_array_constructor(instructions, constructor_type,
+ & loc, &this->expressions, state);
+ }
+
+
+ /* There are two kinds of constructor calls. Constructors for arrays and
+ * structures must have the exact number of arguments with matching types
+ * in the correct order. These constructors follow essentially the same
+ * type matching rules as functions.
+ *
+ * Constructors for built-in language types, such as mat4 and vec2, are
+ * free form. The only requirements are that the parameters must provide
+ * enough values of the correct scalar type and that no arguments are
+ * given past the last used argument.
+ *
+ * When using the C-style initializer syntax from GLSL 4.20, constructors
+ * must have the exact number of arguments with matching types in the
+ * correct order.
+ */
+ if (constructor_type->is_record()) {
+ return process_record_constructor(instructions, constructor_type,
+ &loc, &this->expressions,
+ state);
+ }
+
+ if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
+ return ir_rvalue::error_value(ctx);
+
+ /* Total number of components of the type being constructed. */
+ const unsigned type_components = constructor_type->components();
+
+ /* Number of components from parameters that have actually been
+ * consumed. This is used to perform several kinds of error checking.
+ */
+ unsigned components_used = 0;
+
+ unsigned matrix_parameters = 0;
+ unsigned nonmatrix_parameters = 0;
+ exec_list actual_parameters;
+
+ foreach_list_typed(ast_node, ast, link, &this->expressions) {
+ ir_rvalue *result = ast->hir(instructions, state);
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "It is an error to provide extra arguments beyond this
+ * last used argument."
+ */
+ if (components_used >= type_components) {
+ _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
+ "constructor",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ if (!result->type->is_numeric() && !result->type->is_boolean()) {
+ _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
+ "non-numeric data type",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ /* Count the number of matrix and nonmatrix parameters. This
+ * is used below to enforce some of the constructor rules.
+ */
+ if (result->type->is_matrix())
+ matrix_parameters++;
+ else
+ nonmatrix_parameters++;
+
+ actual_parameters.push_tail(result);
+ components_used += result->type->components();
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "It is an error to construct matrices from other matrices. This
+ * is reserved for future use."
+ */
+ if (matrix_parameters > 0
+ && constructor_type->is_matrix()
+ && !state->check_version(120, 100, &loc,
+ "cannot construct `%s' from a matrix",
+ constructor_type->name)) {
+ return ir_rvalue::error_value(ctx);
+ }
+
+ /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "If a matrix argument is given to a matrix constructor, it is
+ * an error to have any other arguments."
+ */
+ if ((matrix_parameters > 0)
+ && ((matrix_parameters + nonmatrix_parameters) > 1)
+ && constructor_type->is_matrix()) {
+ _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
+ "matrix must be only parameter",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "In these cases, there must be enough components provided in the
+ * arguments to provide an initializer for every component in the
+ * constructed value."
+ */
+ if (components_used < type_components && components_used != 1
+ && matrix_parameters == 0) {
+ _mesa_glsl_error(& loc, state, "too few components to construct "
+ "`%s'",
+ constructor_type->name);
+ return ir_rvalue::error_value(ctx);
+ }
+
+ /* Matrices can never be consumed as is by any constructor but matrix
+ * constructors. If the constructor type is not matrix, always break the
+ * matrix up into a series of column vectors.
+ */
+ if (!constructor_type->is_matrix()) {
+ foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
+ if (!matrix->type->is_matrix())
+ continue;
+
+ /* Create a temporary containing the matrix. */
+ ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
+ ir_var_temporary);
+ instructions->push_tail(var);
+ instructions->push_tail(new(ctx) ir_assignment(new(ctx)
+ ir_dereference_variable(var), matrix, NULL));
+ var->constant_value = matrix->constant_expression_value();
+
+ /* Replace the matrix with dereferences of its columns. */
+ for (int i = 0; i < matrix->type->matrix_columns; i++) {
+ matrix->insert_before(new (ctx) ir_dereference_array(var,
+ new(ctx) ir_constant(i)));
+ }
+ matrix->remove();
+ }
+ }
+
+ bool all_parameters_are_constant = true;
+
+ /* Type cast each parameter and, if possible, fold constants.*/
+ foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
+ const glsl_type *desired_type =
+ glsl_type::get_instance(constructor_type->base_type,
+ ir->type->vector_elements,
+ ir->type->matrix_columns);
+ ir_rvalue *result = convert_component(ir, desired_type);
+
+ /* Attempt to convert the parameter to a constant valued expression.
+ * After doing so, track whether or not all the parameters to the
+ * constructor are trivially constant valued expressions.
+ */
+ ir_rvalue *const constant = result->constant_expression_value();
+
+ if (constant != NULL)
+ result = constant;
+ else
+ all_parameters_are_constant = false;
+
+ if (result != ir) {
+ ir->replace_with(result);
+ }
+ }
+
+ /* If all of the parameters are trivially constant, create a
+ * constant representing the complete collection of parameters.
+ */
+ if (all_parameters_are_constant) {
+ return new(ctx) ir_constant(constructor_type, &actual_parameters);
+ } else if (constructor_type->is_scalar()) {
+ return dereference_component((ir_rvalue *) actual_parameters.head,
+ 0);
+ } else if (constructor_type->is_vector()) {
+ return emit_inline_vector_constructor(constructor_type,
+ instructions,
+ &actual_parameters,
+ ctx);
+ } else {
+ assert(constructor_type->is_matrix());
+ return emit_inline_matrix_constructor(constructor_type,
+ instructions,
+ &actual_parameters,
+ ctx);
+ }
+ } else if (subexpressions[0]->oper == ast_field_selection) {
+ return handle_method(instructions, state);
+ } else {
+ const ast_expression *id = subexpressions[0];
+ const char *func_name;
+ YYLTYPE loc = get_location();
+ exec_list actual_parameters;
+ ir_variable *sub_var = NULL;
+ ir_rvalue *array_idx = NULL;
+
+ process_parameters(instructions, &actual_parameters, &this->expressions,
+ state);
+
+ if (id->oper == ast_array_index) {
+ array_idx = generate_array_index(ctx, instructions, state, loc,
+ id->subexpressions[0],
+ id->subexpressions[1], &func_name,
+ &actual_parameters);
+ } else {
+ func_name = id->primary_expression.identifier;
+ }
+
+ ir_function_signature *sig =
+ match_function_by_name(func_name, &actual_parameters, state);
+
+ ir_rvalue *value = NULL;
+ if (sig == NULL) {
+ sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var);
+ }
+
+ if (sig == NULL) {
+ no_matching_function_error(func_name, &loc, &actual_parameters, state);
+ value = ir_rvalue::error_value(ctx);
+ } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
+ /* an error has already been emitted */
+ value = ir_rvalue::error_value(ctx);
+ } else {
+ value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state);
+ if (!value) {
+ ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
+ "void_var",
+ ir_var_temporary);
+ instructions->push_tail(tmp);
+ value = new(ctx) ir_dereference_variable(tmp);
+ }
+ }
+
+ return value;
+ }
+
+ unreachable("not reached");
+}
+
+bool
+ast_function_expression::has_sequence_subexpression() const
+{
+ foreach_list_typed(const ast_node, ast, link, &this->expressions) {
+ if (ast->has_sequence_subexpression())
+ return true;
+ }
+
+ return false;
+}
+
+ir_rvalue *
+ast_aggregate_initializer::hir(exec_list *instructions,
+ struct _mesa_glsl_parse_state *state)
+{
+ void *ctx = state;
+ YYLTYPE loc = this->get_location();
+
+ if (!this->constructor_type) {
+ _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
+ return ir_rvalue::error_value(ctx);
+ }
+ const glsl_type *const constructor_type = this->constructor_type;
+
+ if (!state->has_420pack()) {
+ _mesa_glsl_error(&loc, state, "C-style initialization requires the "
+ "GL_ARB_shading_language_420pack extension");
+ return ir_rvalue::error_value(ctx);
+ }
+
+ if (constructor_type->is_array()) {
+ return process_array_constructor(instructions, constructor_type, &loc,
+ &this->expressions, state);
+ }
+
+ if (constructor_type->is_record()) {
+ return process_record_constructor(instructions, constructor_type, &loc,
+ &this->expressions, state);
+ }
+
+ return process_vec_mat_constructor(instructions, constructor_type, &loc,
+ &this->expressions, state);
+}