diff options
Diffstat (limited to 'src/amd/compiler/aco_insert_exec_mask.cpp')
-rw-r--r-- | src/amd/compiler/aco_insert_exec_mask.cpp | 1078 |
1 files changed, 1078 insertions, 0 deletions
diff --git a/src/amd/compiler/aco_insert_exec_mask.cpp b/src/amd/compiler/aco_insert_exec_mask.cpp new file mode 100644 index 00000000000..7886a4c77e2 --- /dev/null +++ b/src/amd/compiler/aco_insert_exec_mask.cpp @@ -0,0 +1,1078 @@ +/* + * Copyright © 2019 Valve Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + */ + +#include "aco_ir.h" +#include "aco_builder.h" + +namespace aco { + +namespace { + +enum WQMState : uint8_t { + Unspecified = 0, + Exact = 1 << 0, + WQM = 1 << 1, /* with control flow applied */ + Preserve_WQM = 1 << 2, + Exact_Branch = 1 << 3, +}; + +enum mask_type : uint8_t { + mask_type_global = 1 << 0, + mask_type_exact = 1 << 1, + mask_type_wqm = 1 << 2, + mask_type_loop = 1 << 3, /* active lanes of a loop */ + mask_type_initial = 1 << 4, /* initially active lanes */ +}; + +struct wqm_ctx { + Program* program; + /* state for WQM propagation */ + std::set<unsigned> worklist; + std::vector<uint16_t> defined_in; + std::vector<bool> needs_wqm; + std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */ + bool loop; + bool wqm; + wqm_ctx(Program* program) : program(program), + defined_in(program->peekAllocationId(), 0xFFFF), + needs_wqm(program->peekAllocationId()), + branch_wqm(program->blocks.size()), + loop(false), + wqm(false) + { + for (unsigned i = 0; i < program->blocks.size(); i++) + worklist.insert(i); + } +}; + +struct loop_info { + Block* loop_header; + uint16_t num_exec_masks; + uint8_t needs; + bool has_divergent_break; + bool has_divergent_continue; + bool has_discard; + loop_info(Block* b, uint16_t num, uint8_t needs, bool breaks, bool cont, bool discard) : + loop_header(b), num_exec_masks(num), needs(needs), has_divergent_break(breaks), + has_divergent_continue(cont), has_discard(discard) {} +}; + +struct block_info { + std::vector<std::pair<Temp, uint8_t>> exec; + std::vector<WQMState> instr_needs; + uint8_t block_needs; + uint8_t ever_again_needs; + /* more... */ +}; + +struct exec_ctx { + Program *program; + std::vector<block_info> info; + std::vector<loop_info> loop; + bool handle_wqm = false; + exec_ctx(Program *program) : program(program), info(program->blocks.size()) {} +}; + +bool pred_by_exec_mask(aco_ptr<Instruction>& instr) { + if (instr->format == Format::SMEM || instr->isSALU()) + return false; + if (instr->format == Format::PSEUDO_BARRIER) + return false; + + if (instr->format == Format::PSEUDO) { + switch (instr->opcode) { + case aco_opcode::p_create_vector: + return instr->definitions[0].getTemp().type() == RegType::vgpr; + case aco_opcode::p_extract_vector: + case aco_opcode::p_split_vector: + return instr->operands[0].getTemp().type() == RegType::vgpr; + case aco_opcode::p_spill: + case aco_opcode::p_reload: + return false; + default: + break; + } + } + + if (instr->opcode == aco_opcode::v_readlane_b32 || + instr->opcode == aco_opcode::v_writelane_b32) + return false; + + return true; +} + +bool needs_exact(aco_ptr<Instruction>& instr) { + if (instr->format == Format::MUBUF) { + MUBUF_instruction *mubuf = static_cast<MUBUF_instruction *>(instr.get()); + return mubuf->disable_wqm; + } else if (instr->format == Format::MTBUF) { + MTBUF_instruction *mtbuf = static_cast<MTBUF_instruction *>(instr.get()); + return mtbuf->disable_wqm; + } else if (instr->format == Format::MIMG) { + MIMG_instruction *mimg = static_cast<MIMG_instruction *>(instr.get()); + return mimg->disable_wqm; + } else { + return instr->format == Format::EXP || instr->opcode == aco_opcode::p_fs_buffer_store_smem; + } +} + +void set_needs_wqm(wqm_ctx &ctx, Temp tmp) +{ + if (!ctx.needs_wqm[tmp.id()]) { + ctx.needs_wqm[tmp.id()] = true; + if (ctx.defined_in[tmp.id()] != 0xFFFF) + ctx.worklist.insert(ctx.defined_in[tmp.id()]); + } +} + +void mark_block_wqm(wqm_ctx &ctx, unsigned block_idx) +{ + if (ctx.branch_wqm[block_idx]) + return; + + ctx.branch_wqm[block_idx] = true; + Block& block = ctx.program->blocks[block_idx]; + aco_ptr<Instruction>& branch = block.instructions.back(); + + if (branch->opcode != aco_opcode::p_branch) { + assert(!branch->operands.empty() && branch->operands[0].isTemp()); + set_needs_wqm(ctx, branch->operands[0].getTemp()); + } + + /* TODO: this sets more branch conditions to WQM than it needs to + * it should be enough to stop at the "exec mask top level" */ + if (block.kind & block_kind_top_level) + return; + + for (unsigned pred_idx : block.logical_preds) + mark_block_wqm(ctx, pred_idx); +} + +void get_block_needs(wqm_ctx &ctx, exec_ctx &exec_ctx, Block* block) +{ + block_info& info = exec_ctx.info[block->index]; + + std::vector<WQMState> instr_needs(block->instructions.size()); + + if (block->kind & block_kind_top_level) { + if (ctx.loop && ctx.wqm) { + /* mark all break conditions as WQM */ + unsigned block_idx = block->index + 1; + while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)) { + if (ctx.program->blocks[block_idx].kind & block_kind_break) + mark_block_wqm(ctx, block_idx); + block_idx++; + } + } else if (ctx.loop && !ctx.wqm) { + /* Ensure a branch never results in an exec mask with only helper + * invocations (which can cause a loop to repeat infinitively if it's + * break branches are done in exact). */ + unsigned block_idx = block->index; + do { + if ((ctx.program->blocks[block_idx].kind & block_kind_branch)) + exec_ctx.info[block_idx].block_needs |= Exact_Branch; + block_idx++; + } while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)); + } + + ctx.loop = false; + ctx.wqm = false; + } + + for (int i = block->instructions.size() - 1; i >= 0; --i) + { + aco_ptr<Instruction>& instr = block->instructions[i]; + + WQMState needs = needs_exact(instr) ? Exact : Unspecified; + bool propagate_wqm = instr->opcode == aco_opcode::p_wqm; + bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if; + bool pred_by_exec = pred_by_exec_mask(instr); + for (const Definition& definition : instr->definitions) { + if (!definition.isTemp()) + continue; + const unsigned def = definition.tempId(); + ctx.defined_in[def] = block->index; + if (needs == Unspecified && ctx.needs_wqm[def]) { + needs = pred_by_exec ? WQM : Unspecified; + propagate_wqm = true; + } + } + + if (propagate_wqm) { + for (const Operand& op : instr->operands) { + if (op.isTemp()) { + set_needs_wqm(ctx, op.getTemp()); + } + } + } else if (preserve_wqm && info.block_needs & WQM) { + needs = Preserve_WQM; + } + + /* ensure the condition controlling the control flow for this phi is in WQM */ + if (needs == WQM && instr->opcode == aco_opcode::p_phi) { + for (unsigned pred_idx : block->logical_preds) + mark_block_wqm(ctx, pred_idx); + } + + instr_needs[i] = needs; + info.block_needs |= needs; + } + + info.instr_needs = instr_needs; + + /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>", + * <cond> should be computed in WQM */ + if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) { + for (unsigned pred_idx : block->logical_preds) + mark_block_wqm(ctx, pred_idx); + ctx.wqm = true; + } + if (block->kind & block_kind_loop_header) + ctx.loop = true; +} + +void calculate_wqm_needs(exec_ctx& exec_ctx) +{ + wqm_ctx ctx(exec_ctx.program); + + while (!ctx.worklist.empty()) { + unsigned block_index = *std::prev(ctx.worklist.end()); + ctx.worklist.erase(std::prev(ctx.worklist.end())); + + get_block_needs(ctx, exec_ctx, &exec_ctx.program->blocks[block_index]); + } + + uint8_t ever_again_needs = 0; + for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) { + exec_ctx.info[i].ever_again_needs = ever_again_needs; + Block& block = exec_ctx.program->blocks[i]; + + if (block.kind & block_kind_needs_lowering) + exec_ctx.info[i].block_needs |= Exact; + + /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */ + if ((block.kind & block_kind_discard || + block.kind & block_kind_uses_discard_if) && + ever_again_needs & WQM) + exec_ctx.info[i].block_needs |= Preserve_WQM; + + ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch; + if (block.kind & block_kind_discard || + block.kind & block_kind_uses_discard_if) + ever_again_needs |= Exact; + + /* don't propagate WQM preservation further than the next top_level block */ + if (block.kind & block_kind_top_level) + ever_again_needs &= ~Preserve_WQM; + else + exec_ctx.info[i].block_needs &= ~Preserve_WQM; + } + exec_ctx.handle_wqm = true; +} + +void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) +{ + if (ctx.info[idx].exec.back().second & mask_type_wqm) + return; + if (ctx.info[idx].exec.back().second & mask_type_global) { + Temp exec_mask = ctx.info[idx].exec.back().first; + exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), exec_mask); + ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm); + return; + } + /* otherwise, the WQM mask should be one below the current mask */ + ctx.info[idx].exec.pop_back(); + assert(ctx.info[idx].exec.back().second & mask_type_wqm); + ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), + ctx.info[idx].exec.back().first); +} + +void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) +{ + if (ctx.info[idx].exec.back().second & mask_type_exact) + return; + if (ctx.info[idx].exec.back().second & mask_type_global) { + ctx.info[idx].exec.pop_back(); + assert(ctx.info[idx].exec.back().second & mask_type_exact); + ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), + ctx.info[idx].exec.back().first); + return; + } + /* otherwise, we create an exact mask and push to the stack */ + Temp wqm = ctx.info[idx].exec.back().first; + Temp exact = bld.tmp(s2); + wqm = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), + bld.exec(Definition(exact)), ctx.info[idx].exec[0].first, bld.exec(wqm)); + ctx.info[idx].exec.back().first = wqm; + ctx.info[idx].exec.emplace_back(exact, mask_type_exact); +} + +unsigned add_coupling_code(exec_ctx& ctx, Block* block, + std::vector<aco_ptr<Instruction>>& instructions) +{ + unsigned idx = block->index; + Builder bld(ctx.program, &instructions); + std::vector<unsigned>& preds = block->linear_preds; + + /* start block */ + if (idx == 0) { + aco_ptr<Instruction>& startpgm = block->instructions[0]; + assert(startpgm->opcode == aco_opcode::p_startpgm); + Temp exec_mask = startpgm->definitions.back().getTemp(); + bld.insert(std::move(startpgm)); + + if (ctx.handle_wqm) { + ctx.info[0].exec.emplace_back(exec_mask, mask_type_global | mask_type_exact | mask_type_initial); + /* if this block only needs WQM, initialize already */ + if (ctx.info[0].block_needs == WQM) + transition_to_WQM(ctx, bld, 0); + } else { + uint8_t mask = mask_type_global; + if (ctx.program->needs_wqm) { + exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), bld.exec(exec_mask)); + mask |= mask_type_wqm; + } else { + mask |= mask_type_exact; + } + ctx.info[0].exec.emplace_back(exec_mask, mask); + } + + return 1; + } + + /* loop entry block */ + if (block->kind & block_kind_loop_header) { + assert(preds[0] == idx - 1); + ctx.info[idx].exec = ctx.info[idx - 1].exec; + loop_info& info = ctx.loop.back(); + while (ctx.info[idx].exec.size() > info.num_exec_masks) + ctx.info[idx].exec.pop_back(); + + /* create ssa names for outer exec masks */ + if (info.has_discard) { + aco_ptr<Pseudo_instruction> phi; + for (int i = 0; i < info.num_exec_masks - 1; i++) { + phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)); + phi->definitions[0] = bld.def(s2); + phi->operands[0] = Operand(ctx.info[preds[0]].exec[i].first); + ctx.info[idx].exec[i].first = bld.insert(std::move(phi)); + } + } + + /* create ssa name for restore mask */ + if (info.has_divergent_break) { + /* this phi might be trivial but ensures a parallelcopy on the loop header */ + aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; + phi->definitions[0] = bld.def(s2); + phi->operands[0] = Operand(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first); + ctx.info[idx].exec.back().first = bld.insert(std::move(phi)); + } + + /* create ssa name for loop active mask */ + aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; + if (info.has_divergent_continue) + phi->definitions[0] = bld.def(s2); + else + phi->definitions[0] = bld.def(s2, exec); + phi->operands[0] = Operand(ctx.info[preds[0]].exec.back().first); + Temp loop_active = bld.insert(std::move(phi)); + + if (info.has_divergent_break) { + uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop; + ctx.info[idx].exec.emplace_back(loop_active, mask_type); + } else { + ctx.info[idx].exec.back().first = loop_active; + ctx.info[idx].exec.back().second |= mask_type_loop; + } + + /* create a parallelcopy to move the active mask to exec */ + unsigned i = 0; + if (info.has_divergent_continue) { + while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { + bld.insert(std::move(block->instructions[i])); + i++; + } + uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); + ctx.info[idx].exec.emplace_back(bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), + ctx.info[idx].exec.back().first), mask_type); + } + + return i; + } + + /* loop exit block */ + if (block->kind & block_kind_loop_exit) { + Block* header = ctx.loop.back().loop_header; + loop_info& info = ctx.loop.back(); + + for (ASSERTED unsigned pred : preds) + assert(ctx.info[pred].exec.size() >= info.num_exec_masks); + + /* fill the loop header phis */ + std::vector<unsigned>& header_preds = header->linear_preds; + int k = 0; + if (info.has_discard) { + while (k < info.num_exec_masks - 1) { + aco_ptr<Instruction>& phi = header->instructions[k]; + assert(phi->opcode == aco_opcode::p_linear_phi); + for (unsigned i = 1; i < phi->operands.size(); i++) + phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[k].first); + k++; + } + } + aco_ptr<Instruction>& phi = header->instructions[k++]; + assert(phi->opcode == aco_opcode::p_linear_phi); + for (unsigned i = 1; i < phi->operands.size(); i++) + phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first); + + if (info.has_divergent_break) { + aco_ptr<Instruction>& phi = header->instructions[k]; + assert(phi->opcode == aco_opcode::p_linear_phi); + for (unsigned i = 1; i < phi->operands.size(); i++) + phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks].first); + } + + assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); + + /* create the loop exit phis if not trivial */ + for (unsigned k = 0; k < info.num_exec_masks; k++) { + Temp same = ctx.info[preds[0]].exec[k].first; + uint8_t type = ctx.info[header_preds[0]].exec[k].second; + bool trivial = true; + + for (unsigned i = 1; i < preds.size() && trivial; i++) { + if (ctx.info[preds[i]].exec[k].first != same) + trivial = false; + } + + if (trivial) { + ctx.info[idx].exec.emplace_back(same, type); + } else { + /* create phi for loop footer */ + aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; + phi->definitions[0] = bld.def(s2); + for (unsigned i = 0; i < phi->operands.size(); i++) + phi->operands[i] = Operand(ctx.info[preds[i]].exec[k].first); + ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); + } + } + assert(ctx.info[idx].exec.size() == info.num_exec_masks); + + /* create a parallelcopy to move the live mask to exec */ + unsigned i = 0; + while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { + bld.insert(std::move(block->instructions[i])); + i++; + } + + if (ctx.handle_wqm) { + if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { + if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || + (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { + ctx.info[idx].exec.back().second |= mask_type_global; + transition_to_Exact(ctx, bld, idx); + ctx.handle_wqm = false; + } + } + if (ctx.info[idx].block_needs == WQM) + transition_to_WQM(ctx, bld, idx); + else if (ctx.info[idx].block_needs == Exact) + transition_to_Exact(ctx, bld, idx); + } + + ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), + ctx.info[idx].exec.back().first); + + ctx.loop.pop_back(); + return i; + } + + if (preds.size() == 1) { + ctx.info[idx].exec = ctx.info[preds[0]].exec; + } else { + assert(preds.size() == 2); + /* if one of the predecessors ends in exact mask, we pop it from stack */ + unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(), + ctx.info[preds[1]].exec.size()); + if (block->kind & block_kind_top_level && !(block->kind & block_kind_merge)) + num_exec_masks = std::min(num_exec_masks, 2u); + + /* create phis for diverged exec masks */ + for (unsigned i = 0; i < num_exec_masks; i++) { + bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge); + if (!in_exec && ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) { + assert(ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second); + ctx.info[idx].exec.emplace_back(ctx.info[preds[0]].exec[i]); + continue; + } + + Temp phi = bld.pseudo(aco_opcode::p_linear_phi, in_exec ? bld.def(s2, exec) : bld.def(s2), + ctx.info[preds[0]].exec[i].first, + ctx.info[preds[1]].exec[i].first); + uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; + ctx.info[idx].exec.emplace_back(phi, mask_type); + } + } + + unsigned i = 0; + while (block->instructions[i]->opcode == aco_opcode::p_phi || + block->instructions[i]->opcode == aco_opcode::p_linear_phi) { + bld.insert(std::move(block->instructions[i])); + i++; + } + + if (block->kind & block_kind_merge) + ctx.info[idx].exec.pop_back(); + + if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 3) { + assert(ctx.info[idx].exec.back().second == mask_type_exact); + assert(block->kind & block_kind_merge); + ctx.info[idx].exec.pop_back(); + } + + /* try to satisfy the block's needs */ + if (ctx.handle_wqm) { + if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { + if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || + (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { + ctx.info[idx].exec.back().second |= mask_type_global; + transition_to_Exact(ctx, bld, idx); + ctx.handle_wqm = false; + } + } + if (ctx.info[idx].block_needs == WQM) + transition_to_WQM(ctx, bld, idx); + else if (ctx.info[idx].block_needs == Exact) + transition_to_Exact(ctx, bld, idx); + } + + if (block->kind & block_kind_merge) { + Temp restore = ctx.info[idx].exec.back().first; + ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), restore); + } + + return i; +} + +void lower_fs_buffer_store_smem(Builder& bld, bool need_check, aco_ptr<Instruction>& instr, Temp cur_exec) +{ + Operand offset = instr->operands[1]; + if (need_check) { + /* if exec is zero, then use UINT32_MAX as an offset and make this store a no-op */ + Temp nonempty = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), cur_exec, Operand(0u)); + + if (offset.isLiteral()) + offset = bld.sop1(aco_opcode::s_mov_b32, bld.def(s1), offset); + + offset = bld.sop2(aco_opcode::s_cselect_b32, bld.hint_m0(bld.def(s1)), + offset, Operand(UINT32_MAX), bld.scc(nonempty)); + } else if (offset.isConstant() && offset.constantValue() > 0xFFFFF) { + offset = bld.sop1(aco_opcode::s_mov_b32, bld.hint_m0(bld.def(s1)), offset); + } + if (!offset.isConstant()) + offset.setFixed(m0); + + switch (instr->operands[2].size()) { + case 1: + instr->opcode = aco_opcode::s_buffer_store_dword; + break; + case 2: + instr->opcode = aco_opcode::s_buffer_store_dwordx2; + break; + case 4: + instr->opcode = aco_opcode::s_buffer_store_dwordx4; + break; + default: + unreachable("Invalid SMEM buffer store size"); + } + instr->operands[1] = offset; + /* as_uniform() needs to be done here so it's done in exact mode and helper + * lanes don't contribute. */ + instr->operands[2] = Operand(bld.as_uniform(instr->operands[2])); +} + +void process_instructions(exec_ctx& ctx, Block* block, + std::vector<aco_ptr<Instruction>>& instructions, + unsigned idx) +{ + WQMState state; + if (ctx.info[block->index].exec.back().second & mask_type_wqm) + state = WQM; + else { + assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact); + state = Exact; + } + + /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */ + bool process = (ctx.handle_wqm && + (ctx.info[block->index].block_needs & state) != + (ctx.info[block->index].block_needs & (WQM | Exact))) || + block->kind & block_kind_uses_discard_if || + block->kind & block_kind_needs_lowering; + if (!process) { + std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx); + instructions.insert(instructions.end(), + std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it), + std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(block->instructions.end())); + return; + } + + Builder bld(ctx.program, &instructions); + + for (; idx < block->instructions.size(); idx++) { + aco_ptr<Instruction> instr = std::move(block->instructions[idx]); + + WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified; + + if (instr->opcode == aco_opcode::p_discard_if) { + if (ctx.info[block->index].block_needs & Preserve_WQM) { + assert(block->kind & block_kind_top_level); + transition_to_WQM(ctx, bld, block->index); + ctx.info[block->index].exec.back().second &= ~mask_type_global; + } + unsigned num = ctx.info[block->index].exec.size(); + assert(num); + Operand cond = instr->operands[0]; + instr.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)); + for (unsigned i = 0; i < num; i++) { + instr->operands[i] = Operand(ctx.info[block->index].exec[i].first); + if (i == num - 1) + instr->operands[i].setFixed(exec); + Temp new_mask = bld.tmp(s2); + instr->definitions[i] = Definition(new_mask); + ctx.info[block->index].exec[i].first = new_mask; + } + assert((ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); + instr->definitions[num - 1].setFixed(exec); + instr->operands[num] = cond; + instr->definitions[num] = bld.def(s1, scc); + + } else if (needs == WQM && state != WQM) { + transition_to_WQM(ctx, bld, block->index); + state = WQM; + } else if (needs == Exact && state != Exact) { + transition_to_Exact(ctx, bld, block->index); + state = Exact; + } + + if (instr->opcode == aco_opcode::p_is_helper || instr->opcode == aco_opcode::p_load_helper) { + Definition dst = instr->definitions[0]; + if (state == Exact) { + instr.reset(create_instruction<SOP1_instruction>(aco_opcode::s_mov_b64, Format::SOP1, 1, 1)); + instr->operands[0] = Operand(0u); + instr->definitions[0] = dst; + } else { + std::pair<Temp, uint8_t>& exact_mask = ctx.info[block->index].exec[0]; + if (instr->opcode == aco_opcode::p_load_helper && + !(ctx.info[block->index].exec[0].second & mask_type_initial)) { + /* find last initial exact mask */ + for (int i = block->index; i >= 0; i--) { + if (ctx.program->blocks[i].kind & block_kind_top_level && + ctx.info[i].exec[0].second & mask_type_initial) { + exact_mask = ctx.info[i].exec[0]; + break; + } + } + } + + assert(instr->opcode == aco_opcode::p_is_helper || exact_mask.second & mask_type_initial); + assert(exact_mask.second & mask_type_exact); + + instr.reset(create_instruction<SOP2_instruction>(aco_opcode::s_andn2_b64, Format::SOP2, 2, 2)); + instr->operands[0] = Operand(ctx.info[block->index].exec.back().first); /* current exec */ + instr->operands[1] = Operand(exact_mask.first); + instr->definitions[0] = dst; + instr->definitions[1] = bld.def(s1, scc); + } + } else if (instr->opcode == aco_opcode::p_demote_to_helper) { + /* turn demote into discard_if with only exact masks */ + assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == (mask_type_exact | mask_type_global)); + ctx.info[block->index].exec[0].second &= ~mask_type_initial; + + int num = 0; + Temp cond; + if (instr->operands.empty()) { + /* transition to exact and set exec to zero */ + Temp old_exec = ctx.info[block->index].exec.back().first; + Temp new_exec = bld.tmp(s2); + cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), + bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec)); + if (ctx.info[block->index].exec.back().second & mask_type_exact) { + ctx.info[block->index].exec.back().first = new_exec; + } else { + ctx.info[block->index].exec.back().first = cond; + ctx.info[block->index].exec.emplace_back(new_exec, mask_type_exact); + } + } else { + /* demote_if: transition to exact */ + transition_to_Exact(ctx, bld, block->index); + assert(instr->operands[0].isTemp()); + cond = instr->operands[0].getTemp(); + num = 1; + } + + for (unsigned i = 0; i < ctx.info[block->index].exec.size() - 1; i++) + num += ctx.info[block->index].exec[i].second & mask_type_exact ? 1 : 0; + instr.reset(create_instruction<Instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)); + int k = 0; + for (unsigned i = 0; k < num; i++) { + if (ctx.info[block->index].exec[i].second & mask_type_exact) { + instr->operands[k] = Operand(ctx.info[block->index].exec[i].first); + Temp new_mask = bld.tmp(s2); + instr->definitions[k] = Definition(new_mask); + if (i == ctx.info[block->index].exec.size() - 1) + instr->definitions[k].setFixed(exec); + k++; + ctx.info[block->index].exec[i].first = new_mask; + } + } + assert(k == num); + instr->definitions[num] = bld.def(s1, scc); + instr->operands[num] = Operand(cond); + state = Exact; + + } else if (instr->opcode == aco_opcode::p_fs_buffer_store_smem) { + bool need_check = ctx.info[block->index].exec.size() != 1 && + !(ctx.info[block->index].exec[ctx.info[block->index].exec.size() - 2].second & Exact); + lower_fs_buffer_store_smem(bld, need_check, instr, ctx.info[block->index].exec.back().first); + } + + bld.insert(std::move(instr)); + } +} + +void add_branch_code(exec_ctx& ctx, Block* block) +{ + unsigned idx = block->index; + Builder bld(ctx.program, block); + + if (idx == ctx.program->blocks.size() - 1) + return; + + /* try to disable wqm handling */ + if (ctx.handle_wqm && block->kind & block_kind_top_level) { + if (ctx.info[idx].exec.size() == 3) { + assert(ctx.info[idx].exec[1].second == mask_type_wqm); + ctx.info[idx].exec.pop_back(); + } + assert(ctx.info[idx].exec.size() <= 2); + + if (ctx.info[idx].ever_again_needs == 0 || + ctx.info[idx].ever_again_needs == Exact) { + /* transition to Exact */ + aco_ptr<Instruction> branch = std::move(block->instructions.back()); + block->instructions.pop_back(); + ctx.info[idx].exec.back().second |= mask_type_global; + transition_to_Exact(ctx, bld, idx); + bld.insert(std::move(branch)); + ctx.handle_wqm = false; + + } else if (ctx.info[idx].block_needs & Preserve_WQM) { + /* transition to WQM and remove global flag */ + aco_ptr<Instruction> branch = std::move(block->instructions.back()); + block->instructions.pop_back(); + transition_to_WQM(ctx, bld, idx); + ctx.info[idx].exec.back().second &= ~mask_type_global; + bld.insert(std::move(branch)); + } + } + + if (block->kind & block_kind_loop_preheader) { + /* collect information about the succeeding loop */ + bool has_divergent_break = false; + bool has_divergent_continue = false; + bool has_discard = false; + uint8_t needs = 0; + unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; + + for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { + Block& loop_block = ctx.program->blocks[i]; + needs |= ctx.info[i].block_needs; + + if (loop_block.kind & block_kind_uses_discard_if || + loop_block.kind & block_kind_discard) + has_discard = true; + if (loop_block.loop_nest_depth != loop_nest_depth) + continue; + + if (loop_block.kind & block_kind_uniform) + continue; + else if (loop_block.kind & block_kind_break) + has_divergent_break = true; + else if (loop_block.kind & block_kind_continue) + has_divergent_continue = true; + } + + if (ctx.handle_wqm) { + if (needs & WQM) { + aco_ptr<Instruction> branch = std::move(block->instructions.back()); + block->instructions.pop_back(); + transition_to_WQM(ctx, bld, idx); + bld.insert(std::move(branch)); + } else { + aco_ptr<Instruction> branch = std::move(block->instructions.back()); + block->instructions.pop_back(); + transition_to_Exact(ctx, bld, idx); + bld.insert(std::move(branch)); + } + } + + unsigned num_exec_masks = ctx.info[idx].exec.size(); + if (block->kind & block_kind_top_level) + num_exec_masks = std::min(num_exec_masks, 2u); + + ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], + num_exec_masks, + needs, + has_divergent_break, + has_divergent_continue, + has_discard); + } + + if (block->kind & block_kind_discard) { + + assert(block->instructions.back()->format == Format::PSEUDO_BRANCH); + aco_ptr<Instruction> branch = std::move(block->instructions.back()); + block->instructions.pop_back(); + + /* create a discard_if() instruction with the exec mask as condition */ + unsigned num = 0; + if (ctx.loop.size()) { + /* if we're in a loop, only discard from the outer exec masks */ + num = ctx.loop.back().num_exec_masks; + } else { + num = ctx.info[idx].exec.size() - 1; + } + + Temp old_exec = ctx.info[idx].exec.back().first; + Temp new_exec = bld.tmp(s2); + Temp cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), + bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec)); + ctx.info[idx].exec.back().first = new_exec; + + aco_ptr<Pseudo_instruction> discard{create_instruction<Pseudo_instruction>(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)}; + for (unsigned i = 0; i < num; i++) { + discard->operands[i] = Operand(ctx.info[block->index].exec[i].first); + Temp new_mask = bld.tmp(s2); + discard->definitions[i] = Definition(new_mask); + ctx.info[block->index].exec[i].first = new_mask; + } + assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); + discard->operands[num] = Operand(cond); + discard->definitions[num] = bld.def(s1, scc); + + bld.insert(std::move(discard)); + if ((block->kind & (block_kind_break | block_kind_uniform)) == block_kind_break) + ctx.info[idx].exec.back().first = cond; + bld.insert(std::move(branch)); + /* no return here as it can be followed by a divergent break */ + } + + if (block->kind & block_kind_continue_or_break) { + assert(block->instructions.back()->opcode == aco_opcode::p_branch); + block->instructions.pop_back(); + + /* because of how linear_succs is created, this needs to be swapped */ + std::swap(block->linear_succs[0], block->linear_succs[1]); + + assert(ctx.program->blocks[block->linear_succs[1]].kind & block_kind_loop_header); + assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit); + + if (ctx.info[idx].exec.back().second & mask_type_loop) { + bld.branch(aco_opcode::p_cbranch_nz, bld.exec(ctx.info[idx].exec.back().first), block->linear_succs[1], block->linear_succs[0]); + } else { + Temp cond = Temp(); + for (int exec_idx = ctx.info[idx].exec.size() - 1; exec_idx >= 0; exec_idx--) { + if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) { + cond = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), ctx.info[idx].exec[exec_idx].first, Operand(0u)); + break; + } + } + assert(cond != Temp()); + + bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); + } + return; + } + + if (block->kind & block_kind_uniform) { + Pseudo_branch_instruction* branch = static_cast<Pseudo_branch_instruction*>(block->instructions.back().get()); + if (branch->opcode == aco_opcode::p_branch) { + branch->target[0] = block->linear_succs[0]; + } else { + branch->target[0] = block->linear_succs[1]; + branch->target[1] = block->linear_succs[0]; + } + return; + } + + if (block->kind & block_kind_branch) { + + if (ctx.handle_wqm && + ctx.info[idx].exec.size() >= 2 && + ctx.info[idx].exec.back().second == mask_type_exact && + !(ctx.info[idx].block_needs & Exact_Branch) && + ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) { + /* return to wqm before branching */ + ctx.info[idx].exec.pop_back(); + } + + // orig = s_and_saveexec_b64 + assert(block->linear_succs.size() == 2); + assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); + Temp cond = block->instructions.back()->operands[0].getTemp(); + block->instructions.pop_back(); + + if (ctx.info[idx].block_needs & Exact_Branch) + transition_to_Exact(ctx, bld, idx); + + Temp current_exec = ctx.info[idx].exec.back().first; + uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); + + Temp then_mask = bld.tmp(s2); + Temp old_exec = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), + bld.exec(Definition(then_mask)), cond, bld.exec(current_exec)); + + ctx.info[idx].exec.back().first = old_exec; + + /* add next current exec to the stack */ + ctx.info[idx].exec.emplace_back(then_mask, mask_type); + + bld.branch(aco_opcode::p_cbranch_z, bld.exec(then_mask), block->linear_succs[1], block->linear_succs[0]); + return; + } + + if (block->kind & block_kind_invert) { + // exec = s_andn2_b64 (original_exec, exec) + assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_nz); + block->instructions.pop_back(); + Temp then_mask = ctx.info[idx].exec.back().first; + uint8_t mask_type = ctx.info[idx].exec.back().second; + ctx.info[idx].exec.pop_back(); + Temp orig_exec = ctx.info[idx].exec.back().first; + Temp else_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2, exec), + bld.def(s1, scc), orig_exec, bld.exec(then_mask)); + + /* add next current exec to the stack */ + ctx.info[idx].exec.emplace_back(else_mask, mask_type); + + bld.branch(aco_opcode::p_cbranch_z, bld.exec(else_mask), block->linear_succs[1], block->linear_succs[0]); + return; + } + + if (block->kind & block_kind_break) { + // loop_mask = s_andn2_b64 (loop_mask, exec) + assert(block->instructions.back()->opcode == aco_opcode::p_branch); + block->instructions.pop_back(); + + Temp current_exec = ctx.info[idx].exec.back().first; + Temp cond = Temp(); + for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { + cond = bld.tmp(s1); + Temp exec_mask = ctx.info[idx].exec[exec_idx].first; + exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)), + exec_mask, current_exec); + ctx.info[idx].exec[exec_idx].first = exec_mask; + if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) + break; + } + + /* check if the successor is the merge block, otherwise set exec to 0 */ + // TODO: this could be done better by directly branching to the merge block + unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; + Block& succ = ctx.program->blocks[succ_idx]; + if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { + ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u)); + } + + bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); + return; + } + + if (block->kind & block_kind_continue) { + assert(block->instructions.back()->opcode == aco_opcode::p_branch); + block->instructions.pop_back(); + + Temp current_exec = ctx.info[idx].exec.back().first; + Temp cond = Temp(); + for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { + if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) + break; + cond = bld.tmp(s1); + Temp exec_mask = ctx.info[idx].exec[exec_idx].first; + exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)), + exec_mask, bld.exec(current_exec)); + ctx.info[idx].exec[exec_idx].first = exec_mask; + } + assert(cond != Temp()); + + /* check if the successor is the merge block, otherwise set exec to 0 */ + // TODO: this could be done better by directly branching to the merge block + unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; + Block& succ = ctx.program->blocks[succ_idx]; + if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { + ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u)); + } + + bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); + return; + } +} + +void process_block(exec_ctx& ctx, Block* block) +{ + std::vector<aco_ptr<Instruction>> instructions; + instructions.reserve(block->instructions.size()); + + unsigned idx = add_coupling_code(ctx, block, instructions); + + assert(block->index != ctx.program->blocks.size() - 1 || + ctx.info[block->index].exec.size() <= 2); + + process_instructions(ctx, block, instructions, idx); + + block->instructions = std::move(instructions); + + add_branch_code(ctx, block); + + block->live_out_exec = ctx.info[block->index].exec.back().first; +} + +} /* end namespace */ + + +void insert_exec_mask(Program *program) +{ + exec_ctx ctx(program); + + if (program->needs_wqm && program->needs_exact) + calculate_wqm_needs(ctx); + + for (Block& block : program->blocks) + process_block(ctx, &block); + +} + +} + |