summaryrefslogtreecommitdiffstats
path: root/src/amd/addrlib/gfx9/rbmap.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/amd/addrlib/gfx9/rbmap.cpp')
-rw-r--r--src/amd/addrlib/gfx9/rbmap.cpp1388
1 files changed, 1388 insertions, 0 deletions
diff --git a/src/amd/addrlib/gfx9/rbmap.cpp b/src/amd/addrlib/gfx9/rbmap.cpp
new file mode 100644
index 00000000000..470b9f37d7e
--- /dev/null
+++ b/src/amd/addrlib/gfx9/rbmap.cpp
@@ -0,0 +1,1388 @@
+/*
+ * Copyright © 2017 Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
+ * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
+ * USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ */
+
+// This class generates rb id map based rb id equations
+
+//#define DPI_DEBUG 1
+// Unlock more verbose debug messages (V* borrows from dj -v * to indicate most verbosity)
+//#define DPI_DEBUG_V4 1
+//#define DPI_DEBUG_V5 1
+//#define DPI_DEBUG_PIPE_CASES 1
+// "----+----|----+----|----+----|----+----|"
+#include "addrcommon.h"
+#include "rbmap.h"
+
+RB_MAP::RB_MAP(void)
+{
+ Initialize();
+}
+
+VOID RB_MAP::Get_Comp_Block_Screen_Space( CoordEq& addr, int bytes_log2, int* w, int* h, int* d)
+{
+ int n, i;
+ if( w ) *w = 0;
+ if( h ) *h = 0;
+ if( d ) *d = 0;
+ for( n=0; n<bytes_log2; n++ ) { // go up to the bytes_log2 bit
+ for( i=0; i<addr[n].getsize(); i++ ) {
+ char dim = addr[n][i].getdim();
+ int ord = addr[n][i].getord();
+ if( w && dim == 'x' && ord >= *w ) *w = ord+1;
+ if( h && dim == 'y' && ord >= *h ) *h = ord+1;
+ if( d && dim == 'z' && ord >= *d ) *d = ord+1;
+ }
+ }
+}
+
+void
+RB_MAP::Get_Meta_Block_Screen_Space( int num_comp_blocks_log2, bool is_thick, bool y_biased,
+ int comp_block_width_log2, int comp_block_height_log2, int comp_block_depth_log2,
+
+ // Outputs
+ int& meta_block_width_log2, int& meta_block_height_log2, int& meta_block_depth_log2 )
+{
+ meta_block_width_log2 = comp_block_width_log2;
+ meta_block_height_log2 = comp_block_height_log2;
+ meta_block_depth_log2 = comp_block_depth_log2;
+ int n;
+
+ for( n=0; n<num_comp_blocks_log2; n++ ) {
+ if( (meta_block_height_log2 < meta_block_width_log2) ||
+ (y_biased && (meta_block_height_log2 == meta_block_width_log2)) ) {
+ if ( !is_thick || (meta_block_height_log2 <= meta_block_depth_log2) )
+ meta_block_height_log2++;
+ else
+ meta_block_depth_log2++;
+ }
+ else {
+ if ( !is_thick || (meta_block_width_log2 <= meta_block_depth_log2) )
+ meta_block_width_log2++;
+ else
+ meta_block_depth_log2++;
+ }
+ }
+}
+
+void
+RB_MAP::cap_pipe( int xmode, bool is_thick, int& num_ses_log2, int bpp_log2, int num_samples_log2, int pipe_interleave_log2, int& block_size_log2, int& num_pipes_log2 )
+{
+ // pipes+SEs can't exceed 32 for now
+ if( num_pipes_log2+num_ses_log2 > 5 ) {
+ num_pipes_log2 = 5-num_ses_log2;
+ }
+
+ // Since we are not supporting SE affinity anymore, just add nu_ses to num_pipes, and set num_ses to 0
+ num_pipes_log2 += num_ses_log2;
+ num_ses_log2 = 0;
+
+ // If block size is set to variable (0), compute the size
+ if( block_size_log2 == 0 ) {
+ //
+ //TODO Temporary disable till RTL can drive Var signals properly
+ }
+
+ if( xmode != NONE ) {
+ int max_pipes_log2 = block_size_log2 - pipe_interleave_log2;
+ if( is_thick ) {
+ // For 3d, treat the num_pipes as the sum of num_pipes and gpus
+ num_pipes_log2 = num_pipes_log2 + num_ses_log2;
+ num_ses_log2 = 0;
+ } else {
+ int block_space_used = num_pipes_log2+pipe_interleave_log2;
+ if( block_space_used < 10+bpp_log2 ) block_space_used = 10+bpp_log2;
+ // if the num gpus exceeds however many bits we have left between block size and block_space_used+num_samples
+ // then set num_ses_log2 to 0
+ if( num_ses_log2 > block_size_log2 - block_space_used - num_samples_log2) {
+ num_pipes_log2 = num_pipes_log2 + num_ses_log2;
+ num_ses_log2 = 0;
+ }
+ }
+ if( num_pipes_log2 > max_pipes_log2 ) {
+ // If it exceeds the space we have left, cap it to that
+ num_pipes_log2 = max_pipes_log2;
+ }
+ } else {
+ num_pipes_log2 = num_pipes_log2 + num_ses_log2;
+ num_ses_log2 = 0;
+ }
+}
+
+void RB_MAP::Get_Data_Offset_Equation( CoordEq& data_eq, int data_type, int bpp_log2, int num_samples_log2, int block_size_log2 )
+{
+ bool is_linear = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D_LINEAR );
+ bool is_thick = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z );
+ bool is_color = ( data_type == DATA_COLOR2D || data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is_s = ( data_type == DATA_COLOR3D_S );
+ Coordinate cx( 'x', 0 );
+ Coordinate cy( 'y', 0 );
+ Coordinate cz( 'z', 0 );
+ Coordinate cs( 's', 0 );
+ // Clear the equation
+ data_eq.resize(0);
+ data_eq.resize(27);
+ if( block_size_log2 == 0 ) block_size_log2 = 16;
+
+ if( is_linear ) {
+ Coordinate cm( 'm', 0 );
+ int i;
+ data_eq.resize(49);
+ for( i=0; i<49; i++ ) {
+ data_eq[i].add(cm);
+ cm++;
+ }
+ } else if( is_thick ) {
+ // Color 3d (_S and _Z modes; _D is same as color 2d)
+ int i;
+ if( is_s ) {
+ // Standard 3d swizzle
+ // Fill in bottom x bits
+ for( i=bpp_log2; i<4; i++ ) {
+ data_eq[i].add(cx);
+ cx++;
+ }
+ // Fill in 2 bits of y and then z
+ for( i=4; i<6; i++ ) {
+ data_eq[i].add(cy);
+ cy++;
+ }
+ for( i=6; i<8; i++ ) {
+ data_eq[i].add(cz);
+ cz++;
+ }
+ if (bpp_log2 < 2) {
+ // fill in z & y bit
+ data_eq[8].add(cz);
+ data_eq[9].add(cy);
+ cz++;
+ cy++;
+ } else if( bpp_log2 == 2 ) {
+ // fill in y and x bit
+ data_eq[8].add(cy);
+ data_eq[9].add(cx);
+ cy++;
+ cx++;
+ } else {
+ // fill in 2 x bits
+ data_eq[8].add(cx);
+ cx++;
+ data_eq[9].add(cx);
+ cx++;
+ }
+ } else {
+ // Z 3d swizzle
+ int m2d_end = (bpp_log2==0) ? 3 : ((bpp_log2 < 4) ? 4 : 5);
+ int num_zs = (bpp_log2==0 || bpp_log2==4) ? 2 : ((bpp_log2==1) ? 3 : 1);
+ data_eq.mort2d( cx, cy, bpp_log2, m2d_end );
+ for( i=m2d_end+1; i<=m2d_end+num_zs; i++ ) {
+ data_eq[i].add(cz);
+ cz++;
+ }
+ if( bpp_log2 == 0 || bpp_log2 == 3 ) {
+ // add an x and z
+ data_eq[6].add(cx);
+ data_eq[7].add(cz);
+ cx++;
+ cz++;
+ } else if( bpp_log2 == 2 ) {
+ // add a y and z
+ data_eq[6].add(cy);
+ data_eq[7].add(cz);
+ cy++;
+ cz++;
+ }
+ // add y and x
+ data_eq[8].add(cy);
+ data_eq[9].add(cx);
+ cy++;
+ cx++;
+ }
+ // Fill in bit 10 and up
+ data_eq.mort3d( cz, cy, cx, 10 );
+ } else if( is_color ) {
+ // Color 2D
+ int micro_y_bits = (8-bpp_log2) / 2;
+ int tile_split_start = block_size_log2 - num_samples_log2;
+ int i;
+ // Fill in bottom x bits
+ for( i=bpp_log2;i<4; i++ ) {
+ data_eq[i].add(cx);
+ cx++;
+ }
+ // Fill in bottom y bits
+ for( i=4; i<4+micro_y_bits; i++ ) {
+ data_eq[i].add(cy);
+ cy++;
+ }
+ // Fill in last of the micro_x bits
+ for( i=4+micro_y_bits; i<8; i++ ) {
+ data_eq[i].add(cx);
+ cx++;
+ }
+ // Fill in x/y bits below sample split
+ data_eq.mort2d( cy, cx, 8, tile_split_start-1 );
+ // Fill in sample bits
+ for( i=0; i<num_samples_log2; i++ ) {
+ cs.set( 's', i );
+ data_eq[tile_split_start+i].add(cs);
+ }
+ // Fill in x/y bits above sample split
+ if( (num_samples_log2 & 1) ^ (block_size_log2 & 1) ) data_eq.mort2d( cx, cy, block_size_log2 );
+ else data_eq.mort2d( cy, cx, block_size_log2 );
+ } else {
+ // Z, stencil or fmask
+ // First, figure out where each section of bits starts
+ int sample_start = bpp_log2;
+ int pixel_start = bpp_log2 + num_samples_log2;
+ int y_maj_start = 6 + num_samples_log2;
+
+ // Put in sample bits
+ int s;
+ for( s=0; s<num_samples_log2; s++ ) {
+ cs.set( 's', s );
+ data_eq[sample_start+s].add(cs);
+ }
+ // Put in the x-major order pixel bits
+ data_eq.mort2d( cx, cy, pixel_start, y_maj_start-1 );
+ // Put in the y-major order pixel bits
+ data_eq.mort2d( cy, cx, y_maj_start );
+ }
+}
+
+void RB_MAP::Get_RB_Equation( CoordEq& rb_equation, int num_ses_log2, int num_rbs_log2 )
+{
+ // RB's are distributed on 16x16, except when we have 1 rb per se, in which case its 32x32
+ int rb_region = (num_rbs_log2 == 0) ? 5 : 4;
+ Coordinate cx( 'x', rb_region );
+ Coordinate cy( 'y', rb_region );
+ int i, start = 0, num_total_rbs_log2 = num_ses_log2 + num_rbs_log2;
+ // Clear the rb equation
+ rb_equation.resize(0);
+ rb_equation.resize(num_total_rbs_log2);
+ if( num_ses_log2 > 0 && num_rbs_log2 == 1 ) {
+ // Special case when more than 1 SE, and only 1 RB per SE
+ rb_equation[0].add(cx);
+ rb_equation[0].add(cy);
+ cx++;
+ cy++;
+ rb_equation[0].add(cy);
+ start++;
+ }
+ for( i=0; i<2*(num_total_rbs_log2-start); i++ ) {
+ int index = start + (((start+i)>=num_total_rbs_log2) ? 2*(num_total_rbs_log2-start)-i-1 : i);
+ Coordinate& c = ((i % 2) == 1) ? cx : cy;
+ rb_equation[index].add(c);
+ c++;
+ }
+}
+
+//void getcheq( CoordEq& pipe_equation, CoordEq& addr, int pipe_interleave_log2, int num_pipes_log2,
+void
+RB_MAP::Get_Pipe_Equation( CoordEq& pipe_equation, CoordEq& addr,
+ int pipe_interleave_log2,
+ int num_pipes_log2,
+
+ int block_size_log2,
+ int num_samples_log2,
+
+ int xmode, int data_type
+ )
+{
+ int pipe;
+ CoordEq addr_f, xormask, xormask2;
+ Coordinate tile_min( 'x', 3 );
+
+ bool is_color = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D || data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR2D_LINEAR || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is_thick = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z );
+
+ // For color, filter out sample bits only
+ // otherwise filter out everything under an 8x8 tile
+ if( is_color )
+ tile_min.set( 'x', 0 );
+
+ addr.copy( addr_f );
+
+ // Z/stencil is no longer tile split
+ if( is_color )
+ addr_f.shift( -num_samples_log2, block_size_log2- num_samples_log2 );
+
+ int i;
+ addr_f.copy( pipe_equation, pipe_interleave_log2, num_pipes_log2 ); //@todo kr needs num_ses_log2??
+
+
+ // This section should only apply to z/stencil, maybe fmask
+ // If the pipe bit is below the comp block size, then keep moving up the address until we find a bit that is above
+ for( pipe=0; addr_f[pipe_interleave_log2 + pipe][0] < tile_min; pipe++ ) {
+ }
+
+ // if pipe is 0, then the first pipe bit is above the comp block size, so we don't need to do anything
+ // Note, this if condition is not necessary, since if we execute the loop when pipe==0, we will get the same pipe equation
+ if ( pipe != 0 ) {
+ int j = pipe;
+
+
+ for( i=0; i<num_pipes_log2; i++ ) {
+ // Copy the jth bit above pipe interleave to the current pipe equation bit
+ addr_f[pipe_interleave_log2 + j].copyto(pipe_equation[i]);
+ j++;
+
+
+ }
+
+
+ }
+
+ if( xmode == PRT ) {
+ // Clear out bits above the block size if prt's are enabled
+ addr_f.resize(block_size_log2);
+ addr_f.resize(48);
+ }
+
+ if( xmode != NONE ) {
+ if( is_thick ) {
+ addr_f.copy( xormask2, pipe_interleave_log2+num_pipes_log2, 2*num_pipes_log2 );
+
+ xormask.resize( num_pipes_log2 );
+ for( pipe=0; pipe<num_pipes_log2; pipe++ ) {
+ xormask[pipe].add( xormask2[2*pipe] );
+ xormask[pipe].add( xormask2[2*pipe+1] );
+ }
+ } else {
+ Coordinate co;
+ // Xor in the bits above the pipe+gpu bits
+ addr_f.copy( xormask, pipe_interleave_log2 + pipe + num_pipes_log2, num_pipes_log2 );
+ if( num_samples_log2 == 0 && (xmode != PRT) ) {
+ // if 1xaa and not prt, then xor in the z bits
+ xormask2.resize(0);
+ xormask2.resize(num_pipes_log2);
+ for( pipe=0; pipe<num_pipes_log2; pipe++ ) {
+ co.set( 'z', num_pipes_log2-1 - pipe );
+ xormask2[pipe].add( co );
+ }
+
+ pipe_equation.xorin( xormask2 );
+ }
+ }
+
+ xormask.reverse();
+ pipe_equation.xorin( xormask );
+
+ }
+}
+
+void RB_MAP::get_meta_miptail_coord( int& x, int& y, int& z, int mip_in_tail, int blk_width_log2, int blk_height_log2, int blk_depth_log2 )
+{
+ bool is_thick = (blk_depth_log2>0);
+ int m;
+ int mip_width = 1 << blk_width_log2;
+ int mip_height = 1 << (blk_height_log2-1);
+ int mip_depth = 1 << blk_depth_log2;
+
+ // Find the minimal increment, based on the block size and 2d/3d
+ int min_inc;
+ if(is_thick) {
+ min_inc = (blk_height_log2 >= 9) ? 128 : ((blk_height_log2 == 8) ? 64 : 32);
+ } else if(blk_height_log2>=10) {
+ min_inc = 256;
+ } else if(blk_height_log2==9) {
+ min_inc = 128;
+ } else {
+ min_inc = 64;
+ }
+
+ for( m=0; m<mip_in_tail; m++ ) {
+ if( mip_width <= 32 ) {
+ // special case when below 32x32 mipmap
+ switch(mip_in_tail-m) {
+ case 0: break; // 32x32
+ case 1: x+=32; break; // 16x16
+ case 2: y+=32; break; // 8x8
+ case 3: y+=32; x+=16; break;// 4x4
+ case 4: y+=32; x+=32; break;// 2x2
+ case 5: y+=32; x+=48; break;// 1x1
+ // The following are for BC/ASTC formats
+ case 6: y+=48; break; // 1/2 x 1/2
+ case 7: y+=48; x+=16; break;// 1/4 x 1/4
+ case 8: y+=48; x+=32; break;// 1/8 x 1/8
+ default:y+=48; x+=48; break;// 1/16 x 1/16
+ }
+ m = mip_in_tail; // break the loop
+ } else {
+ if( mip_width <= min_inc ) {
+ // if we're below the minimal increment...
+ if( is_thick ) {
+ // For 3d, just go in z direction
+ z += mip_depth;
+ } else {
+ // For 2d, first go across, then down
+ if( mip_width * 2 == min_inc ) {
+ // if we're 2 mips below, that's when we go back in x, and down in y
+ x -= min_inc;
+ y += min_inc;
+ } else {
+ // otherwise, just go across in x
+ x += min_inc;
+ }
+ }
+ } else {
+ // On even mip, go down, otherwise, go across
+ if( m&1 ) {
+ x += mip_width;
+ } else {
+ y += mip_height;
+ }
+ }
+ // Divide the width by 2
+ mip_width = mip_width / 2;
+ // After the first mip in tail, the mip is always a square
+ mip_height = mip_width;
+ // ...or for 3d, a cube
+ if(is_thick) mip_depth = mip_width;
+ }
+ }
+}
+
+void RB_MAP::get_mip_coord( int& x, int& y, int& z, int mip,
+ int meta_blk_width_log2, int meta_blk_height_log2, int meta_blk_depth_log2,
+ int data_blk_width_log2, int data_blk_height_log2,
+ int& surf_width, int& surf_height, int& surf_depth, int epitch, int max_mip,
+ int data_type, int bpp_log2, bool meta_linear )
+{
+ if( meta_linear ) {
+ get_mip_coord_linear( x, y, z, mip, data_blk_width_log2, data_blk_height_log2,
+ surf_width, surf_height, surf_depth, epitch, max_mip, data_type, bpp_log2 );
+ } else {
+ get_mip_coord_nonlinear( x, y, z, mip, meta_blk_width_log2, meta_blk_height_log2, meta_blk_depth_log2,
+ surf_width, surf_height, surf_depth, epitch, max_mip, data_type );
+ }
+}
+
+void RB_MAP::get_mip_coord_linear( int& x, int& y, int& z,
+ int mip,
+ int data_blk_width_log2, int data_blk_height_log2,
+ int& surf_width, int& surf_height, int& surf_depth, int epitch,
+ int max_mip, int data_type, int bpp_log2
+ )
+{
+ bool data_linear = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D_LINEAR );
+
+ if( data_linear ) {
+ // linear width is padded out to 256 Bytes
+ int width_padding = 8 - bpp_log2;
+ int width_pad_mask = ~(0xffffffff << width_padding);
+ int padded_surf_width = surf_width;
+ int padded_surf_height = (data_type == DATA_COLOR1D) ? 1 : surf_height;
+
+ if( max_mip > 0 ) {
+ int mip_width = padded_surf_width;
+ int mip_height = padded_surf_height;
+ int padded_mip_height = 0;
+ int mip_base = 0;
+ int m = 0;
+ while( (mip_width >= 1 || mip_height >= 1) && m <= max_mip ) {
+ if( mip == m ) mip_base = padded_mip_height;
+ padded_mip_height += mip_height;
+ m++;
+ mip_width = (mip_width / 2) + (mip_width & 1);
+ mip_height = (mip_height / 2) + (mip_height & 1);
+ }
+ if( mip >= m ) {
+ // assert error
+ mip_base = padded_mip_height - mip_height;
+ }
+ padded_surf_height = padded_mip_height;
+
+ if(epitch > 0){
+ padded_surf_height = epitch;
+ }
+ y += mip_base;
+ padded_surf_width = ((surf_width >> width_padding) + ((surf_width & width_pad_mask) ? 1 : 0)) << width_padding;
+ }
+ else{
+ padded_surf_width = ((surf_width >> width_padding) + ((surf_width & width_pad_mask) ? 1 : 0)) << width_padding;
+
+ // Pad up epitch to meta block width
+ if( (epitch & width_pad_mask) != 0 ) {
+ epitch = ((epitch >> width_padding) + 1) << width_padding;
+ }
+ // Take max of epitch and computed surf width
+ if( epitch < padded_surf_width ) {
+ // assert error
+ } else {
+ padded_surf_width = epitch;
+ }
+ }
+
+ surf_width = padded_surf_width;
+ surf_height = padded_surf_height;
+ }
+ else {
+ // padding based data block size
+ int width_pad_mask = ~(0xffffffff << data_blk_width_log2);
+ int height_pad_mask = ~(0xffffffff << data_blk_height_log2);
+
+ // Pad the data surface dimensions by the block dimensions, and put the result in compressed block dimension units
+ surf_width = ((surf_width >> data_blk_width_log2) + ((surf_width & width_pad_mask) ? 1 : 0)) << data_blk_width_log2;
+ surf_height = ((surf_height >> data_blk_height_log2) + ((surf_height & height_pad_mask) ? 1 : 0)) << data_blk_height_log2;
+
+ // Tiled data, linear metadata
+ if( max_mip > 0 ) {
+ // we don't allow mipmapping on tiled data, with linear metadata
+ // assert error
+ }
+
+ // Pad up epitch to data block width
+ if( (epitch & width_pad_mask) != 0 ) {
+ epitch = ((epitch >> data_blk_width_log2) + 1) << data_blk_width_log2;
+ }
+ // Take max of epitch and computed surf width
+ if( epitch < surf_width ) {
+ // assert error
+ } else {
+ surf_width = epitch;
+ }
+ }
+}
+
+void RB_MAP::get_mip_coord_nonlinear( int& x, int& y, int& z,
+ int mip,
+ int meta_blk_width_log2, int meta_blk_height_log2, int meta_blk_depth_log2,
+
+ // Outputs
+ int& surf_width, int& surf_height, int& surf_depth,
+
+ int epitch, int max_mip, int data_type
+ )
+{
+ bool is3d = (data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ int order; // 0 = xmajor, 1 = ymajor, 2 = zmajor
+
+ int mip_width = surf_width;
+ int mip_height = surf_height;
+ int mip_depth = (is3d) ? surf_depth : 1;
+
+ // Divide surface w/h/d by block size, padding if needed
+ surf_width = (((surf_width & ((1<<meta_blk_width_log2 )-1)) != 0) ? 1 : 0) + (surf_width >> meta_blk_width_log2);
+ surf_height = (((surf_height & ((1<<meta_blk_height_log2)-1)) != 0) ? 1 : 0) + (surf_height >> meta_blk_height_log2);
+ surf_depth = (((surf_depth & ((1<<meta_blk_depth_log2 )-1)) != 0) ? 1 : 0) + (surf_depth >> meta_blk_depth_log2);
+ epitch = (((epitch & ((1<<meta_blk_width_log2 )-1)) != 0) ? 1 : 0) + (epitch >> meta_blk_width_log2);
+
+ if( max_mip > 0 ) {
+ // Determine major order
+ if( is3d && surf_depth > surf_width && surf_depth > surf_height ) {
+ order = 2; // Z major
+ }
+ else if( surf_width >= surf_height ) {
+ order = 0; // X major
+ }
+ else {
+ order = 1; // Y major
+ }
+
+ // Check if mip 0 is in the tail
+ bool in_tail = (mip_width <= (1<<meta_blk_width_log2)) &&
+ (mip_height <= (1<<(meta_blk_height_log2-1))) &&
+ (!is3d || (mip_depth <= (1<<meta_blk_depth_log2)));
+ // Pad the mip w/h/d, which is just the surf w/h/d times blk dim
+ mip_width = surf_width << meta_blk_width_log2;
+ mip_height = surf_height << meta_blk_height_log2;
+ mip_depth = surf_depth << meta_blk_depth_log2;
+
+ if( !in_tail ) {
+ // Select the dimension that stores the mip chain, based on major order
+ // Then pad it out to max(2, ceil(mip_dim/2))
+ int& mip_dim = (order == 1) ? surf_width : surf_height;
+ // in y-major, if height > 2 blocks, then we need extra padding;
+ // in x or z major, it only occurs if width/depth is greater than 4 blocks
+ // Height is special, since we can enter the mip tail when height is 1/2 block high
+ int order_dim_limit = (order == 1) ? 2 : 4;
+ int& order_dim = (order == 0) ? surf_width : ((order == 1) ? surf_height : surf_depth);
+ if( mip_dim < 3 && order_dim > order_dim_limit && max_mip >= 3 ) mip_dim += 2;
+ else mip_dim += (mip_dim/2) + (mip_dim&1);
+ }
+
+ int m;
+ for( m=0; m<mip; m++ ) {
+ if( in_tail ) {
+ get_meta_miptail_coord( x, y, z, mip-m, meta_blk_width_log2, meta_blk_height_log2, meta_blk_depth_log2 );
+ m = mip; // break the loop
+ } else {
+ // Move either x, y, or z by the mip dimension based on which mip we're on and the order
+ if(m>=3 || m&1) {
+ switch(order) {
+ case 0: x += mip_width; break;
+ case 1: y += mip_height; break;
+ case 2: z += mip_depth; break;
+ }
+ } else {
+ switch(order) {
+ case 0: y += mip_height; break;
+ case 1: x += mip_width; break;
+ case 2: y += mip_height; break;
+ }
+ }
+ // Compute next mip's dimensions
+ mip_width = (mip_width/2);
+ mip_height = (mip_height/2);
+ mip_depth = (mip_depth/2);
+ // See if it's in the tail
+ in_tail = (mip_width <= (1<<meta_blk_width_log2)) &&
+ (mip_height <= (1<<(meta_blk_height_log2-1))) &&
+ (!is3d || (mip_depth <= (1<<meta_blk_depth_log2)));
+ // Pad out mip dimensions
+ mip_width = ((mip_width >> meta_blk_width_log2) + ((mip_width & ((1<<meta_blk_width_log2) -1)) != 0)) << meta_blk_width_log2;
+ mip_height = ((mip_height >> meta_blk_height_log2) + ((mip_height & ((1<<meta_blk_height_log2)-1)) != 0)) << meta_blk_height_log2;
+ mip_depth = ((mip_depth >> meta_blk_depth_log2) + ((mip_depth & ((1<<meta_blk_depth_log2) -1)) != 0)) << meta_blk_depth_log2;
+ }
+ }
+ } else {
+ // Take max of epitch and computed surf width
+ surf_width = (surf_width > epitch) ? surf_width : epitch;
+ }
+
+ // Multiply the surface dimension by block size
+ surf_width = surf_width << meta_blk_width_log2;
+ surf_height = surf_height << meta_blk_height_log2;
+ surf_depth = surf_depth << meta_blk_depth_log2;
+
+}
+
+void
+RB_MAP::get_meta_eq( CoordEq& metaaddr,
+ int max_mip, int num_ses_log2, int num_rbs_log2,
+ int &num_pipes_log2,
+ int block_size_log2, int bpp_log2, int num_samples_log2, int max_comp_frag_log2,
+ int pipe_interleave_log2,
+ int xmode,
+ int data_type,
+ int meta_alignment, bool meta_linear)
+{
+ // Metaaddressing
+ Coordinate co;
+ CoordEq cur_rbeq, pipe_equation, orig_pipe_equation;
+
+ bool data_linear = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D_LINEAR );
+ bool is_color = ( data_linear || data_type == DATA_COLOR2D || data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is3d = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is_thick = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z );
+
+ bool is_fmask = (data_type == DATA_FMASK);
+ bool is_pipe_aligned = (meta_alignment == META_ALIGN_PIPE) || (meta_alignment == META_ALIGN_PIPE_RB);
+ bool is_rb_aligned = (meta_alignment == META_ALIGN_RB) || (meta_alignment == META_ALIGN_PIPE_RB);
+
+ bool is_mipmapped = (max_mip > 0) ? true : false;
+
+ int pipe_mask = 0x0;
+ int comp_frag_log2 = (is_color && (num_samples_log2 > max_comp_frag_log2)) ? max_comp_frag_log2 : num_samples_log2;
+
+ int uncomp_frag_log2 = num_samples_log2 - comp_frag_log2;
+
+ // Constraints on linear
+ if ( data_linear ) {
+ xmode = NONE;
+ num_samples_log2 = 0;
+ is_rb_aligned = false;
+ meta_linear = true;
+ }
+ if( meta_linear && !data_linear ) {
+ is_pipe_aligned = false;
+ }
+
+ // Min metablock size if thick is 64KB, otherwise 4KB
+ int min_meta_block_size_log2 = (is_thick) ? 16 : 12;
+
+ // metadata word size is 1/2 byte for cmask, 1 byte for color, and 4 bytes for z/stencil
+ int metadata_word_size_log2 = (is_fmask) ? -1 : ((is_color) ? 0 : 2);
+
+ int metadata_words_per_page_log2 = min_meta_block_size_log2 - metadata_word_size_log2;
+
+ // Get the total # of RB's before modifying due to rb align
+ int num_total_rbs_pre_rb_align_log2 = num_ses_log2 + num_rbs_log2;
+
+ // Cap the pipe bits to block size
+ int num_ses_data_log2 = num_ses_log2;
+ cap_pipe( xmode, is_thick, num_ses_data_log2, bpp_log2,
+ num_samples_log2, pipe_interleave_log2, block_size_log2, num_pipes_log2 );
+
+ // if not pipe aligned, set num_pipes_log2, num_ses_log2 to 0
+ if( !is_pipe_aligned ) {
+ num_pipes_log2 = 0;
+ num_ses_data_log2 = 0;
+ }
+
+ // Get the correct data address and rb equation
+ CoordEq dataaddr;
+ Get_Data_Offset_Equation( dataaddr,
+ (meta_linear) ? DATA_COLOR1D : data_type,
+ bpp_log2, num_samples_log2, block_size_log2 );
+
+
+ // if not rb aligned, set num_ses_log2/rbs_log2 to 0; note, this is done after generating the data equation
+ if( !is_rb_aligned ) {
+ num_ses_log2 = 0;
+ num_rbs_log2 = 0;
+ }
+
+ // Get pipe and rb equations
+ Get_Pipe_Equation( pipe_equation, dataaddr, pipe_interleave_log2,
+ num_pipes_log2, block_size_log2, num_samples_log2, xmode, data_type );
+
+ CoordEq& this_rbeq = rb_equation[num_ses_log2][num_rbs_log2];
+
+ num_pipes_log2 = pipe_equation.getsize();
+
+ if( meta_linear ) {
+ dataaddr.copy( metaaddr );
+ if( data_linear ) {
+ if( is_pipe_aligned ) {
+ // Remove the pipe bits
+ metaaddr.shift( -num_pipes_log2, pipe_interleave_log2 );
+ }
+ // Divide by comp block size, which for linear (which is always color) is 256 B
+ metaaddr.shift( -8 );
+ if( is_pipe_aligned ) {
+ // Put pipe bits back in
+ metaaddr.shift( num_pipes_log2, pipe_interleave_log2 );
+ int i;
+ for( i=0; i<num_pipes_log2; i++ ) {
+ pipe_equation[i].copyto(metaaddr[pipe_interleave_log2+i]);
+ }
+ }
+ }
+ metaaddr.shift( 1 );
+ return;
+ }
+
+ int i, j, k, old_size, new_size;
+ int num_total_rbs_log2 = num_ses_log2 + num_rbs_log2;
+
+ // For non-color surfaces, compessed block size is always 8x8; for color, it's always a 256 bytes sized region
+ int comp_blk_width_log2 = 3, comp_blk_height_log2 = 3, comp_blk_depth_log2 = 0;
+ int comp_blk_size_log2 = 8;
+
+ // For color surfaces, compute the comp block width, height, and depth
+ // For non-color surfaces, compute the comp block size
+ if( is_color ) {
+ Get_Comp_Block_Screen_Space( dataaddr, comp_blk_size_log2, &comp_blk_width_log2, &comp_blk_height_log2, &comp_blk_depth_log2 );
+ metadata_words_per_page_log2 -= num_samples_log2; // factor out num fragments for color surfaces
+ }
+ else {
+ comp_blk_size_log2 = 6 + num_samples_log2 + bpp_log2;
+ }
+
+ // Compute meta block width and height
+ int num_comp_blks_per_meta_blk;
+ if (num_pipes_log2==0 && num_ses_log2==0 && num_rbs_log2==0) {
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+ else {
+ num_comp_blks_per_meta_blk = num_total_rbs_pre_rb_align_log2 + ((is_thick) ? 18 : 10);
+
+ if( num_comp_blks_per_meta_blk + comp_blk_size_log2 > 27+bpp_log2)
+ num_comp_blks_per_meta_blk = 27+bpp_log2 - comp_blk_size_log2;
+
+ if( metadata_words_per_page_log2 > num_comp_blks_per_meta_blk )
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+
+ int meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2;
+ Get_Meta_Block_Screen_Space( num_comp_blks_per_meta_blk, is_thick, is_mipmapped, // mipmaps should be y-biased
+ comp_blk_width_log2, comp_blk_height_log2, comp_blk_depth_log2,
+ meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2 );
+
+ // Make sure the metaaddr is cleared
+ metaaddr.resize(0);
+ metaaddr.resize(27);
+
+ //------------------------------------------------------------------------------------------------------------------------
+ // Use the growing square or growing cube order for thick as a starting point for the metadata address
+ //------------------------------------------------------------------------------------------------------------------------
+ if( is_thick ) {
+ Coordinate cx( 'x', 0 );
+ Coordinate cy( 'y', 0 );
+ Coordinate cz( 'z', 0 );
+ if(is_mipmapped) {
+ metaaddr.mort3d( cy, cx, cz );
+ } else {
+ metaaddr.mort3d( cx, cy, cz );
+ }
+ }
+ else {
+ Coordinate cx( 'x', 0 );
+ Coordinate cy( 'y', 0 );
+ Coordinate cs;
+
+ if(is_mipmapped) {
+ metaaddr.mort2d( cy, cx, comp_frag_log2 );
+ } else {
+ metaaddr.mort2d( cx, cy, comp_frag_log2 );
+ }
+
+ //------------------------------------------------------------------------------------------------------------------------
+ // Put the compressible fragments at the lsb
+ // the uncompressible frags will be at the msb of the micro address
+ //------------------------------------------------------------------------------------------------------------------------
+ int s;
+ for( s=0; s<comp_frag_log2; s++ ) {
+ cs.set( 's', s );
+ metaaddr[s].add(cs);
+ }
+ }
+
+ // Keep a copy of the pipe and rb equations
+ this_rbeq.copy( cur_rbeq );
+ pipe_equation.copy( orig_pipe_equation );
+
+ // filter out everything under the compressed block size
+ co.set( 'x', comp_blk_width_log2 );
+ metaaddr.Filter( '<', co, 0, 'x' );
+ co.set( 'y', comp_blk_height_log2 );
+ metaaddr.Filter( '<', co, 0, 'y' );
+ co.set( 'z', comp_blk_depth_log2 );
+ metaaddr.Filter( '<', co, 0, 'z' );
+ // For non-color, filter out sample bits
+ if( !is_color ) {
+ co.set( 'x', 0 );
+ metaaddr.Filter( '<', co, 0, 's' );
+ }
+
+ // filter out everything above the metablock size
+ co.set( 'x', meta_block_width_log2-1 );
+ metaaddr.Filter( '>', co, 0, 'x' );
+ co.set( 'y', meta_block_height_log2-1 );
+ metaaddr.Filter( '>', co, 0, 'y' );
+ co.set( 'z', meta_block_depth_log2-1 );
+ metaaddr.Filter( '>', co, 0, 'z' );
+
+ // filter out everything above the metablock size for the channel bits
+ co.set( 'x', meta_block_width_log2-1 );
+ pipe_equation.Filter( '>', co, 0, 'x' );
+ co.set( 'y', meta_block_height_log2-1 );
+ pipe_equation.Filter( '>', co, 0, 'y' );
+ co.set( 'z', meta_block_depth_log2-1 );
+ pipe_equation.Filter( '>', co, 0, 'z' );
+
+ // Make sure we still have the same number of channel bits
+ if( pipe_equation.getsize() != static_cast<UINT_32>(num_pipes_log2) ) {
+ // assert
+ }
+
+ // Loop through all channel and rb bits, and make sure these components exist in the metadata address
+ for( i=0; i<num_pipes_log2; i++ ) {
+ for( j=pipe_equation[i].getsize()-1; j>=0; j-- ) {
+ if( !metaaddr.Exists( pipe_equation[i][j] ) ) {
+ // assert
+ }
+ }
+ }
+ for( i=0; i<num_total_rbs_log2; i++ ) {
+ for( j=cur_rbeq[i].getsize()-1; j>=0; j-- ) {
+ if( !metaaddr.Exists( cur_rbeq[i][j] ) ) {
+ // assert
+ }
+ }
+ }
+
+ // Loop through each rb id bit; if it is equal to any of the filtered channel bits, clear it
+ int old_rb_bits_left = num_total_rbs_log2;
+ for( i=0; i<num_total_rbs_log2; i++ ) {
+ for(j=0; j<num_pipes_log2; j++ ) {
+ if( cur_rbeq[i] == pipe_equation[j] ) {
+ cur_rbeq[i].Clear();
+ old_rb_bits_left--;
+ // Mark which pipe bit caused the RB bit to be dropped
+ pipe_mask |= (1 << j);
+ }
+ }
+ }
+
+ // Loop through each bit of the channel, get the smallest coordinate, and remove it from the metaaddr, and rb_equation
+ for( i=0; i<num_pipes_log2; i++ ) {
+ pipe_equation[i].getsmallest( co );
+
+ old_size = metaaddr.getsize();
+ metaaddr.Filter( '=', co );
+ new_size = metaaddr.getsize();
+ if( new_size != old_size-1 ) {
+ // assert warning
+ }
+ pipe_equation.remove( co );
+ for( j=0; j<num_total_rbs_log2; j++ ) {
+ if( cur_rbeq[j].remove( co ) ) {
+ // if we actually removed something from this bit, then add the remaining
+ // channel bits, as these can be removed for this bit
+ for( k=0; k<pipe_equation[i].getsize(); k++ ) {
+ if( pipe_equation[i][k] != co ) {
+ cur_rbeq[j].add( pipe_equation[i][k] );
+ }
+ }
+ // if the rb bit is still empty, then we have to mark all pipe bits as affecting the RB
+ if( cur_rbeq[j].getsize() == 0 ) {
+ pipe_mask = (1 << num_pipes_log2) - 1;
+ }
+ }
+ }
+ }
+
+ // Loop through the rb bits and see what remain; filter out the smallest coordinate if it remains
+ int rb_bits_left = 0;
+ for( i=0; i<num_total_rbs_log2; i++ ) {
+ if( cur_rbeq[i].getsize() > 0 ) {
+ rb_bits_left++;
+ cur_rbeq[i].getsmallest( co );
+ old_size = metaaddr.getsize();
+ metaaddr.Filter( '=', co );
+ new_size = metaaddr.getsize();
+ if( new_size != old_size-1 ) {
+ // assert warning
+ }
+ for( j=i+1; j<num_total_rbs_log2; j++ ) {
+ if( cur_rbeq[j].remove( co ) ) {
+ // if we actually removed something from this bit, then add the remaining
+ // rb bits, as these can be removed for this bit
+ for( k=0; k<cur_rbeq[i].getsize(); k++ ) {
+ if( cur_rbeq[i][k] != co ) {
+ cur_rbeq[j].add( cur_rbeq[i][k] );
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // capture the size of the metaaddr
+ i = metaaddr.getsize();
+ // resize to 49 bits...make this a nibble address
+ metaaddr.resize(49);
+ // Concatenate the macro address above the current address
+ for( j=0; i<49; i++, j++ ) {
+ co.set( 'm', j );
+ metaaddr[i].add( co );
+ }
+
+ // Multiply by meta element size (in nibbles)
+ if( is_color ) {
+ metaaddr.shift( 1 ); // Byte size element
+ } else if( data_type == DATA_Z_STENCIL ) {
+ metaaddr.shift( 3 ); // 4 Byte size elements
+ }
+
+ //------------------------------------------------------------------------------------------------------------------------
+ // Note the pipe_interleave_log2+1 is because address is a nibble address
+ // Shift up from pipe interleave number of channel and rb bits left, and uncompressed fragments
+ //------------------------------------------------------------------------------------------------------------------------
+
+ metaaddr.shift( num_pipes_log2 + rb_bits_left + uncomp_frag_log2,
+ pipe_interleave_log2+1 );
+
+ // Put in the channel bits
+ for( i=0; i<num_pipes_log2; i++ ) {
+ orig_pipe_equation[i].copyto( metaaddr[pipe_interleave_log2+1 + i] );
+ }
+
+ // Put in remaining rb bits
+ i = 0;
+ for( j=0; j<rb_bits_left; i=(i+1) % num_total_rbs_log2 ) {
+ if( cur_rbeq[i].getsize() > 0 ) {
+ rb_equation[num_ses_log2][num_rbs_log2][i].copyto( metaaddr[pipe_interleave_log2+1 + num_pipes_log2 + j] );
+ // Mark any rb bit we add in to the rb mask
+ j++;
+ }
+ }
+
+ //------------------------------------------------------------------------------------------------------------------------
+ // Put in the uncompressed fragment bits
+ //------------------------------------------------------------------------------------------------------------------------
+ for( i=0; i<uncomp_frag_log2; i++ ) {
+ co.set( 's', comp_frag_log2+i );
+ metaaddr[pipe_interleave_log2+1 + num_pipes_log2 + rb_bits_left + i].add( co );
+ }
+
+
+ //------------------------------------------------------------------------------------------------------------------------
+ // Check that the metadata SE bits match the data address
+ //------------------------------------------------------------------------------------------------------------------------
+ for( i=0; i<num_ses_data_log2; i++ ) {
+ if(num_total_rbs_log2-num_ses_data_log2+i >= 0){
+ if( metaaddr[ pipe_interleave_log2+1 + num_pipes_log2-num_ses_data_log2 + i ] != dataaddr[ pipe_interleave_log2 + num_pipes_log2-num_ses_data_log2 + i ] ||
+ metaaddr[ pipe_interleave_log2+1 + num_pipes_log2-num_ses_data_log2 + i ] != rb_equation[num_ses_log2][num_rbs_log2][num_total_rbs_log2-num_ses_data_log2+i]) {
+ //FIXME: Removed to prevent logs from growing large in size // cout << "Warning: GPU bit " << i << " differs from data addr or RB equation on " << data_name << title << endl;
+ //FIXME: Removed to prevent logs from growing large in size // cout << " Data: " << dataaddr[ pipe_interleave_log2 + num_pipes_log2-num_ses_data_log2 + i ] << endl;
+ //FIXME: Removed to prevent logs from growing large in size // cout << "MData: " << metaaddr[ pipe_interleave_log2+1 + num_pipes_log2-num_ses_data_log2 + i ] << endl;
+ //FIXME: Removed to prevent logs from growing large in size // cout << " RBeq: " << rb_equation[num_ses_log2][num_rbs_log2][num_total_rbs_log2-num_ses_data_log2+i] << endl;
+ //FIXME: Removed to prevent logs from growing large in size // cout << " Pipe: " << orig_pipe_equation << endl;
+ //FIXME: Removed to prevent logs from growing large in size // cout << " DEq: " << dataaddr << endl;
+ }
+ }
+ }
+}
+
+long
+RB_MAP::get_meta_addr_calc( int x, int y, int z, int s,
+ long surf_base, int element_bytes_log2, int num_samples_log2, int max_comp_frag_log2,
+ long pitch, long slice,
+ int max_mip,
+
+ //int swizzle_mode,
+ int xmode, int pipe_xor, int block_size_log2,
+
+ /*int num_banks_log2,*/
+ int num_pipes_log2,
+ int pipe_interleave_log2,
+
+ int meta_alignment,
+ int dim_type,
+ int x_mip_org, int y_mip_org, int z_mip_org,
+
+ int num_ses_log2, int num_rbs_log2,
+ /*bool se_affinity_enable, */
+
+ int data_type,
+
+ int l2_metablk_w, int l2_metablk_h, int l2_metablk_d,
+ bool meta_linear
+ )
+{
+ int bpp_log2 = element_bytes_log2;
+ int mip_base_x = x_mip_org;
+ int mip_base_y = y_mip_org;
+ int mip_base_z = z_mip_org;
+
+ CoordEq metaaddr;
+
+ bool se_affinity_enable = false;
+ //int max_pipe_bytes = std::max(1<<num_pipes_log2 * 1<<pipe_interleave_log2, 1024 * 1<<log2_element_bytes);
+ //int max_banks_samples = std::max(1<<num_banks_log2, 1<<num_samples_log2);
+ //int block_size_log2 = max(4096, max_pipe_bytes * max_bank_samples * 1<<num_ses_log2);
+
+ bool data_linear = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D_LINEAR );
+ bool is_color = ( data_linear || data_type == DATA_COLOR2D || data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is_thick = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z );
+ bool is_fmask = (data_type == DATA_FMASK);
+
+ bool is_pipe_aligned = (meta_alignment == META_ALIGN_PIPE) || (meta_alignment == META_ALIGN_PIPE_RB);
+ bool is_rb_aligned = (meta_alignment == META_ALIGN_RB) || (meta_alignment == META_ALIGN_PIPE_RB);
+
+ if ( data_linear )
+ meta_linear = true;
+
+ if ( !data_linear && meta_linear)
+ max_mip = 0;
+
+ // Min metablock size if thick is 64KB, otherwise 4KB
+ int min_meta_block_size_log2 = (is_thick) ? 16 : 12;
+
+ // metadata word size is 1/2 byte for cmask, 1 byte for color, and 4 bytes for z/stencil
+ int metadata_word_size_log2 = (is_fmask) ? -1 : ((is_color) ? 0 : 2);
+ int metadata_words_per_page_log2 = min_meta_block_size_log2 - metadata_word_size_log2;
+
+ int num_ses_data_log2 = num_ses_log2;
+ int block_size_data_log2 = block_size_log2;
+ int num_pipes_data_log2 = num_pipes_log2;
+
+ //int num_banks_data_log2 = num_banks_log2;
+ cap_pipe( xmode, is_thick, num_ses_data_log2, bpp_log2, num_samples_log2, pipe_interleave_log2, block_size_data_log2, num_pipes_data_log2/*, num_banks_data_log2 */);
+
+ // Get the correct data address and rb equation
+ CoordEq dataaddr;
+ Get_Data_Offset_Equation( dataaddr, data_type, bpp_log2, num_samples_log2, block_size_data_log2 );
+
+ get_meta_eq( metaaddr, max_mip, num_ses_log2, num_rbs_log2, num_pipes_log2, /*num_banks_log2,*/ block_size_log2,
+ bpp_log2, num_samples_log2, max_comp_frag_log2, pipe_interleave_log2, xmode,
+ data_type, meta_alignment, meta_linear);
+ // For non-color surfaces, compessed block size is always 8x8; for color, it's always a 256 bytes sized region
+ int comp_blk_width_log2 = 3, comp_blk_height_log2 = 3, comp_blk_depth_log2 = 0;
+ int comp_blk_size_log2 = 8;
+
+ if ( is_color ){
+ Get_Comp_Block_Screen_Space( dataaddr, comp_blk_size_log2, &comp_blk_width_log2, &comp_blk_height_log2, &comp_blk_depth_log2 );
+ metadata_words_per_page_log2 -= num_samples_log2; // factor out num fragments for color surfaces
+ }
+ else {
+ comp_blk_size_log2 = 6 + num_samples_log2 + bpp_log2;
+ }
+
+ // Compute meta block width and height
+ int num_total_rbs_log2 = num_ses_log2 + num_rbs_log2;
+ int num_comp_blks_per_meta_blk;
+ if((!is_pipe_aligned || num_pipes_log2==0) && (!is_rb_aligned || (num_ses_log2==0 && num_rbs_log2==0))) {
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+ else {
+ num_comp_blks_per_meta_blk = num_total_rbs_log2 + ((is_thick) ? 18 : 10);
+ if( num_comp_blks_per_meta_blk + comp_blk_size_log2 > 27+bpp_log2) num_comp_blks_per_meta_blk = 27+bpp_log2 - comp_blk_size_log2;
+ if( metadata_words_per_page_log2 > num_comp_blks_per_meta_blk )
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+
+ int meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2;
+
+ //@@todo kr missing meta_block_width*
+
+ // Get the data block size
+ int data_block_width_log2, data_block_height_log2, data_block_depth_log2;
+
+ Get_Meta_Block_Screen_Space( block_size_log2 - comp_blk_size_log2,
+ is_thick, true,
+ comp_blk_width_log2, comp_blk_height_log2, comp_blk_depth_log2,
+ data_block_width_log2, data_block_height_log2, data_block_depth_log2 );
+
+ meta_block_width_log2 = l2_metablk_w;
+ meta_block_height_log2 = l2_metablk_h;
+ meta_block_depth_log2 = l2_metablk_d;
+
+ int meta_x = mip_base_x + x ;
+ int meta_y = mip_base_y + y ;
+ int meta_z = mip_base_z + z ;
+
+ if( meta_linear ){
+ if(!data_linear) {
+ // Tiled data, linear metadata
+ meta_x = meta_x >> comp_blk_width_log2;
+ meta_y = meta_y >> comp_blk_height_log2;
+ meta_z = meta_z >> comp_blk_depth_log2;
+ pitch = pitch >> comp_blk_width_log2;
+ slice = slice >> (comp_blk_width_log2 + comp_blk_height_log2);
+ }
+ else{
+ meta_x = meta_x << bpp_log2;
+ meta_y = meta_y << bpp_log2;
+ meta_z = meta_z << bpp_log2;
+ }
+ }
+ else{
+ meta_x = meta_x >> meta_block_width_log2;
+ meta_y = meta_y >> meta_block_height_log2;
+ meta_z = meta_z >> meta_block_depth_log2;
+
+ pitch = pitch >> meta_block_width_log2;
+ slice = slice >> (meta_block_width_log2 + meta_block_height_log2);
+ }
+
+ long macroaddr = (long)meta_x + (long)meta_y*(long)pitch + (long)meta_z*(long)slice;
+
+ int mip_tail_x, mip_tail_y, mip_tail_z;
+ mip_tail_x = mip_base_x & ((1 << meta_block_width_log2 )-1);
+ mip_tail_y = mip_base_y & ((1 << meta_block_height_log2)-1);
+ mip_tail_z = mip_base_z & ((1 << meta_block_depth_log2)-1);
+
+ int mip_x = x + mip_tail_x;
+ int mip_y = y + mip_tail_y;
+ int mip_z = z + mip_tail_z;
+
+ // the pipe_interleave_log2+1 is because we are dealing with nibble addresses
+ long pipe_xor_mask = (pipe_xor & ((1 << num_pipes_data_log2)-1)) << (pipe_interleave_log2+1);
+
+ // shift surf_base to make it a nibble address
+ long meta_offset_from_base_nibble_address = metaaddr.solve( mip_x, mip_y, mip_z, s, macroaddr );
+
+ long address = (surf_base << 1) + (meta_offset_from_base_nibble_address ^ pipe_xor_mask);
+
+ return address;
+}
+
+#if 0
+long
+RB_MAP::get_meta_addr( int x, int y, int z, int s, int mip,
+ int surf_width, int surf_height, int surf_depth, int lpitch,
+ long surf_base, int pipe_xor, int max_mip,
+ int num_ses_log2, int num_rbs_log2, int num_pipes_log2,
+ int block_size_log2, int bpp_log2, int num_samples_log2, int max_comp_frag_log2,
+ int pipe_interleave_log2, int xmode, int data_type, int meta_alignment, bool meta_linear)
+{
+ CoordEq metaaddr;
+
+ bool data_linear = ( data_type == DATA_COLOR1D || data_type == DATA_COLOR2D_LINEAR );
+ bool is_color = ( data_linear || data_type == DATA_COLOR2D || data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z || data_type == DATA_COLOR3D_D_NOT_USED );
+ bool is_thick = ( data_type == DATA_COLOR3D_S || data_type == DATA_COLOR3D_Z );
+ bool is_fmask = (data_type == DATA_FMASK);
+
+ bool is_pipe_aligned = (meta_alignment == META_ALIGN_PIPE) || (meta_alignment == META_ALIGN_PIPE_RB);
+ bool is_rb_aligned = (meta_alignment == META_ALIGN_RB) || (meta_alignment == META_ALIGN_PIPE_RB);
+
+ bool is_mipmapped = (max_mip > 0) ? true : false;
+
+ if( data_linear ) meta_linear = true;
+ // Don't allow mipmapping on the tiled data, meta linear case
+ // or if we have linear 2d/3d surface
+
+ #ifdef ADDRESS__LPITCH_DISABLE__0
+ if( (!data_linear && meta_linear) || (data_type == DATA_COLOR2D_LINEAR) ) max_mip = 0;
+ #else
+ if( !data_linear && meta_linear) max_mip = 0;
+ #endif
+
+ // Min metablock size if thick is 64KB, otherwise 4KB
+ int min_meta_block_size_log2 = (is_thick) ? 16 : 12;
+
+
+ // metadata word size is 1/2 byte for cmask, 1 byte for color, and 4 bytes for z/stencil
+ int metadata_word_size_log2 = (is_fmask) ? -1 : ((is_color) ? 0 : 2);
+ int metadata_words_per_page_log2 = min_meta_block_size_log2 - metadata_word_size_log2;
+
+ // Cap the pipe bits to block size
+ int num_ses_data_log2 = num_ses_log2;
+ int block_size_data_log2 = block_size_log2;
+ int num_pipes_data_log2 = num_pipes_log2;
+
+ cap_pipe( xmode, is_thick, num_ses_data_log2, bpp_log2, num_samples_log2, pipe_interleave_log2, block_size_data_log2, num_pipes_data_log2 );
+
+ // Get the correct data address and rb equation
+ CoordEq dataaddr;
+ Get_Data_Offset_Equation( dataaddr, data_type, bpp_log2, num_samples_log2, block_size_data_log2 );
+
+ get_meta_eq( metaaddr, max_mip, num_ses_log2, num_rbs_log2, num_pipes_log2, block_size_log2,
+ bpp_log2, num_samples_log2, max_comp_frag_log2, pipe_interleave_log2, xmode, data_type,
+ meta_alignment, meta_linear);
+
+ // For non-color surfaces, compessed block size is always 8x8; for color, it's always a 256 bytes sized region
+ int comp_blk_width_log2 = 3, comp_blk_height_log2 = 3, comp_blk_depth_log2 = 0;
+ int comp_blk_size_log2 = 8;
+
+ if ( is_color ) {
+ Get_Comp_Block_Screen_Space( dataaddr, comp_blk_size_log2, &comp_blk_width_log2, &comp_blk_height_log2, &comp_blk_depth_log2 );
+ metadata_words_per_page_log2 -= num_samples_log2; // factor out num fragments for color surfaces
+ } else {
+ comp_blk_size_log2 = 6 + num_samples_log2 + bpp_log2;
+ }
+
+ // Compute meta block width and height
+ int num_total_rbs_log2 = num_ses_log2 + num_rbs_log2;
+
+ int num_comp_blks_per_meta_blk;
+ if((!is_pipe_aligned || num_pipes_log2==0) && (!is_rb_aligned || (num_ses_log2==0 && num_rbs_log2==0))) {
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+ else {
+ num_comp_blks_per_meta_blk = num_total_rbs_log2 + ((is_thick) ? 18 : 10);
+
+ if( num_comp_blks_per_meta_blk + comp_blk_size_log2 > 27+bpp_log2) num_comp_blks_per_meta_blk = 27+bpp_log2 - comp_blk_size_log2;
+
+ if( metadata_words_per_page_log2 > num_comp_blks_per_meta_blk )
+ num_comp_blks_per_meta_blk = metadata_words_per_page_log2;
+ }
+
+ int meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2;
+
+
+ Get_Meta_Block_Screen_Space( num_comp_blks_per_meta_blk, is_thick, is_mipmapped,
+ comp_blk_width_log2, comp_blk_height_log2, comp_blk_depth_log2,
+ meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2 );
+
+ // Get the data block size
+ int data_block_width_log2, data_block_height_log2, data_block_depth_log2;
+
+ Get_Meta_Block_Screen_Space( block_size_log2 - comp_blk_size_log2, is_thick, true,
+ comp_blk_width_log2, comp_blk_height_log2, comp_blk_depth_log2,
+ data_block_width_log2, data_block_height_log2, data_block_depth_log2 );
+
+ int meta_x, meta_y, meta_z;
+ int meta_surf_width = surf_width;
+ int meta_surf_height = surf_height;
+ int meta_surf_depth = surf_depth;
+
+ int mip_base_x=0, mip_base_y=0, mip_base_z=0;
+ get_mip_coord( mip_base_x, mip_base_y, mip_base_z, mip,
+ meta_block_width_log2, meta_block_height_log2, meta_block_depth_log2,
+ data_block_width_log2, data_block_height_log2,
+ meta_surf_width, meta_surf_height, meta_surf_depth, lpitch, max_mip,
+ data_type, bpp_log2, meta_linear );
+
+ meta_x = mip_base_x + x;
+ meta_y = mip_base_y + y;
+ meta_z = mip_base_z + z;
+
+ if( meta_linear ) {
+ if( !data_linear ) {
+ // Tiled data, linear metadata
+ meta_x = meta_x >> comp_blk_width_log2;
+ meta_y = meta_y >> comp_blk_height_log2;
+ meta_z = meta_z >> comp_blk_depth_log2;
+ meta_surf_width = meta_surf_width >> comp_blk_width_log2;
+ meta_surf_height = meta_surf_height >> comp_blk_height_log2;
+ }
+ else{
+ meta_x = meta_x << bpp_log2;
+ meta_y = meta_y << bpp_log2;
+ meta_z = meta_z << bpp_log2;
+ }
+ } else {
+ meta_x = meta_x >> meta_block_width_log2;
+ meta_y = meta_y >> meta_block_height_log2;
+ meta_z = meta_z >> meta_block_depth_log2;
+ meta_surf_width = meta_surf_width >> meta_block_width_log2;
+ meta_surf_height = meta_surf_height >> meta_block_height_log2;
+ }
+
+ long macroaddr = (long)meta_x + (long)meta_y*(long)meta_surf_width + (long)meta_z*(long)meta_surf_width*(long)meta_surf_height;
+
+ int mip_tail_x, mip_tail_y, mip_tail_z;
+ mip_tail_x = mip_base_x & ((1 << meta_block_width_log2 )-1);
+ mip_tail_y = mip_base_y & ((1 << meta_block_height_log2)-1);
+ mip_tail_z = mip_base_z & ((1 << meta_block_depth_log2)-1);
+
+ int mip_x = x + mip_tail_x;
+ int mip_y = y + mip_tail_y;
+ int mip_z = z + mip_tail_z;
+
+ // the pipe_interleave_log2+1 is because we are dealing with nibble addresses
+ long pipe_xor_mask = (pipe_xor & ((1 << num_pipes_data_log2)-1)) << (pipe_interleave_log2+1);
+
+ // shift surf_base to make it a nibble address
+ long address = (surf_base << 1) + (metaaddr.solve( mip_x, mip_y, mip_z, s, macroaddr ) ^ pipe_xor_mask);
+
+ return address;
+}
+#endif
+
+void
+RB_MAP::Initialize()
+{
+ int num_se_log2, num_rb_per_se_log2;
+ for( num_se_log2=0; num_se_log2<5; num_se_log2++ ) {
+ for( num_rb_per_se_log2=0; num_rb_per_se_log2<3; num_rb_per_se_log2++ ) {
+ Get_RB_Equation( rb_equation[num_se_log2][num_rb_per_se_log2], num_se_log2, num_rb_per_se_log2 );
+ }
+ }
+
+ int pix_size_log2, num_samples_log2;
+ for( pix_size_log2=0; pix_size_log2<4; pix_size_log2++ ) {
+ for( num_samples_log2=0; num_samples_log2<4; num_samples_log2++ ) {
+ Get_Data_Offset_Equation( zaddr[pix_size_log2][num_samples_log2], DATA_Z_STENCIL, pix_size_log2, num_samples_log2, 16 );
+ }
+ }
+
+ for( pix_size_log2=0; pix_size_log2<5; pix_size_log2++ ) {
+ for( num_samples_log2=0; num_samples_log2<4; num_samples_log2++ ) {
+ Get_Data_Offset_Equation( caddr[pix_size_log2][num_samples_log2], DATA_COLOR2D, pix_size_log2, num_samples_log2, 16 );
+ }
+ }
+
+ for( pix_size_log2=0; pix_size_log2<5; pix_size_log2++ ) {
+ Get_Data_Offset_Equation( c3addr[pix_size_log2][0], DATA_COLOR3D_S, pix_size_log2, 0, 16 );
+ Get_Data_Offset_Equation( c3addr[pix_size_log2][1], DATA_COLOR3D_Z, pix_size_log2, 0, 16 );
+ }
+}
+