diff options
-rw-r--r-- | src/gallium/drivers/radeonsi/si_shader_tgsi_alu.c | 130 |
1 files changed, 107 insertions, 23 deletions
diff --git a/src/gallium/drivers/radeonsi/si_shader_tgsi_alu.c b/src/gallium/drivers/radeonsi/si_shader_tgsi_alu.c index 1c37345d41d..c0c92a8c154 100644 --- a/src/gallium/drivers/radeonsi/si_shader_tgsi_alu.c +++ b/src/gallium/drivers/radeonsi/si_shader_tgsi_alu.c @@ -959,6 +959,62 @@ static void build_cube_intrinsic(struct gallivm_state *gallivm, } } +/** + * Build a manual selection sequence for cube face sc/tc coordinates and + * major axis vector (multiplied by 2 for consistency) for the given + * vec3 \p coords, for the face implied by \p selcoords. + * + * For the major axis, we always adjust the sign to be in the direction of + * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards + * the selcoords major axis. + */ +static void build_cube_select(LLVMBuilderRef builder, + const struct cube_selection_coords *selcoords, + const LLVMValueRef *coords, + LLVMValueRef *out_st, + LLVMValueRef *out_ma) +{ + LLVMTypeRef f32 = LLVMTypeOf(coords[0]); + LLVMValueRef is_ma_positive; + LLVMValueRef sgn_ma; + LLVMValueRef is_ma_z, is_not_ma_z; + LLVMValueRef is_ma_y; + LLVMValueRef is_ma_x; + LLVMValueRef sgn; + LLVMValueRef tmp; + + is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE, + selcoords->ma, LLVMConstReal(f32, 0.0), ""); + sgn_ma = LLVMBuildSelect(builder, is_ma_positive, + LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), ""); + + is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), ""); + is_not_ma_z = LLVMBuildNot(builder, is_ma_z, ""); + is_ma_y = LLVMBuildAnd(builder, is_not_ma_z, + LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), ""); + is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), ""); + + /* Select sc */ + tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], coords[0], ""); + sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0), + LLVMBuildSelect(builder, is_ma_x, sgn_ma, + LLVMBuildFNeg(builder, sgn_ma, ""), ""), ""); + out_st[0] = LLVMBuildFMul(builder, tmp, sgn, ""); + + /* Select tc */ + tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], ""); + sgn = LLVMBuildSelect(builder, is_ma_y, LLVMBuildFNeg(builder, sgn_ma, ""), + LLVMConstReal(f32, -1.0), ""); + out_st[1] = LLVMBuildFMul(builder, tmp, sgn, ""); + + /* Select ma */ + tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], + LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), ""); + sgn = LLVMBuildSelect(builder, is_ma_positive, + LLVMConstReal(f32, 2.0), LLVMConstReal(f32, -2.0), ""); + *out_ma = LLVMBuildFMul(builder, tmp, sgn, ""); +} + static void si_llvm_cube_to_2d_coords(struct lp_build_tgsi_context *bld_base, LLVMValueRef *in, LLVMValueRef *out) { @@ -997,10 +1053,21 @@ void si_prepare_cube_coords(struct lp_build_tgsi_context *bld_base, unsigned opcode = emit_data->inst->Instruction.Opcode; struct gallivm_state *gallivm = bld_base->base.gallivm; LLVMBuilderRef builder = gallivm->builder; + LLVMTypeRef type = bld_base->base.elem_type; + struct cube_selection_coords selcoords; LLVMValueRef coords[4]; - unsigned i; + LLVMValueRef invma; - si_llvm_cube_to_2d_coords(bld_base, coords_arg, coords); + build_cube_intrinsic(gallivm, coords_arg, &selcoords); + + invma = lp_build_intrinsic(builder, "llvm.fabs.f32", + type, &selcoords.ma, 1, LP_FUNC_ATTR_READNONE); + invma = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_RCP, invma); + + for (int i = 0; i < 2; ++i) + coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, ""); + + coords[2] = selcoords.id; if (opcode == TGSI_OPCODE_TXD && derivs_arg) { LLVMValueRef derivs[4]; @@ -1008,34 +1075,51 @@ void si_prepare_cube_coords(struct lp_build_tgsi_context *bld_base, /* Convert cube derivatives to 2D derivatives. */ for (axis = 0; axis < 2; axis++) { - LLVMValueRef shifted_cube_coords[4], shifted_coords[4]; - - /* Shift the cube coordinates by the derivatives to get - * the cube coordinates of the "neighboring pixel". - */ - for (i = 0; i < 3; i++) - shifted_cube_coords[i] = - LLVMBuildFAdd(builder, coords_arg[i], - derivs_arg[axis*3+i], ""); - shifted_cube_coords[3] = LLVMGetUndef(bld_base->base.elem_type); - - /* Project the shifted cube coordinates onto the face. */ - si_llvm_cube_to_2d_coords(bld_base, shifted_cube_coords, - shifted_coords); - - /* Subtract both sets of 2D coordinates to get 2D derivatives. - * This won't work if the shifted coordinates ended up - * in a different face. + LLVMValueRef deriv_st[2]; + LLVMValueRef deriv_ma; + + /* Transform the derivative alongside the texture + * coordinate. Mathematically, the correct formula is + * as follows. Assume we're projecting onto the +Z face + * and denote by dx/dh the derivative of the (original) + * X texture coordinate with respect to horizontal + * window coordinates. The projection onto the +Z face + * plane is: + * + * f(x,z) = x/z + * + * Then df/dh = df/dx * dx/dh + df/dz * dz/dh + * = 1/z * dx/dh - x/z * 1/z * dz/dh. + * + * This motivatives the implementation below. + * + * Whether this actually gives the expected results for + * apps that might feed in derivatives obtained via + * finite differences is anyone's guess. The OpenGL spec + * seems awfully quiet about how textureGrad for cube + * maps should be handled. */ - for (i = 0; i < 2; i++) + build_cube_select(builder, &selcoords, &derivs_arg[axis * 3], + deriv_st, &deriv_ma); + + deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, ""); + + for (int i = 0; i < 2; ++i) derivs[axis * 2 + i] = - LLVMBuildFSub(builder, shifted_coords[i], - coords[i], ""); + LLVMBuildFSub(builder, + LLVMBuildFMul(builder, deriv_st[i], invma, ""), + LLVMBuildFMul(builder, deriv_ma, coords[i], ""), ""); } memcpy(derivs_arg, derivs, sizeof(derivs)); } + /* Shift the texture coordinate. This must be applied after the + * derivative calculation. + */ + for (int i = 0; i < 2; ++i) + coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(type, 1.5), ""); + if (target == TGSI_TEXTURE_CUBE_ARRAY || target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) { /* for cube arrays coord.z = coord.w(array_index) * 8 + face */ |