diff options
-rw-r--r-- | src/glsl/Makefile.am | 6 | ||||
-rw-r--r-- | src/glsl/Makefile.sources | 1 | ||||
-rw-r--r-- | src/glsl/nir/.gitignore | 1 | ||||
-rw-r--r-- | src/glsl/nir/nir_constant_expressions.h | 31 | ||||
-rw-r--r-- | src/glsl/nir/nir_constant_expressions.py | 352 | ||||
-rw-r--r-- | src/glsl/nir/nir_opcodes.py | 580 |
6 files changed, 787 insertions, 184 deletions
diff --git a/src/glsl/Makefile.am b/src/glsl/Makefile.am index 1691c46c4fe..e89a9ad5d89 100644 --- a/src/glsl/Makefile.am +++ b/src/glsl/Makefile.am @@ -40,6 +40,7 @@ EXTRA_DIST = tests glcpp/tests README TODO glcpp/README \ glcpp/glcpp-lex.l \ glcpp/glcpp-parse.y \ nir/nir_algebraic.py \ + nir/nir_constant_expressions.py \ nir/nir_opcodes.py \ nir/nir_opcodes_c.py \ nir/nir_opcodes_h.py \ @@ -215,6 +216,7 @@ BUILT_SOURCES = \ glsl_lexer.cpp \ glcpp/glcpp-parse.c \ glcpp/glcpp-lex.c \ + nir/nir_constant_expressions.c \ nir/nir_opcodes.c \ nir/nir_opcodes.h \ nir/nir_opt_algebraic.c @@ -230,6 +232,10 @@ dist-hook: $(RM) glcpp/tests/*.out $(RM) glcpp/tests/subtest*/*.out +nir/nir_constant_expressions.c: nir/nir_opcodes.py nir/nir_constant_expressions.py nir/nir_constant_expressions.h + $(MKDIR_P) nir; \ + $(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/nir/nir_constant_expressions.py > $@ + nir/nir_opcodes.h: nir/nir_opcodes.py nir/nir_opcodes_h.py $(MKDIR_P) nir; \ $(PYTHON2) $(PYTHON_FLAGS) $(srcdir)/nir/nir_opcodes_h.py > $@ diff --git a/src/glsl/Makefile.sources b/src/glsl/Makefile.sources index 97c637ebdc3..face22ec680 100644 --- a/src/glsl/Makefile.sources +++ b/src/glsl/Makefile.sources @@ -11,6 +11,7 @@ LIBGLCPP_GENERATED_FILES = \ glcpp/glcpp-parse.c NIR_GENERATED_FILES = \ + nir/nir_constant_expressions.c \ nir/nir_opcodes.c \ nir/nir_opcodes.h \ nir/nir_opt_algebraic.c diff --git a/src/glsl/nir/.gitignore b/src/glsl/nir/.gitignore index 4c28193612f..261f64f7188 100644 --- a/src/glsl/nir/.gitignore +++ b/src/glsl/nir/.gitignore @@ -1,3 +1,4 @@ nir_opt_algebraic.c nir_opcodes.c nir_opcodes.h +nir_constant_expressions.c diff --git a/src/glsl/nir/nir_constant_expressions.h b/src/glsl/nir/nir_constant_expressions.h new file mode 100644 index 00000000000..97997f2e514 --- /dev/null +++ b/src/glsl/nir/nir_constant_expressions.h @@ -0,0 +1,31 @@ +/* + * Copyright © 2014 Connor Abbott + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Connor Abbott ([email protected]) + * + */ + +#include "nir.h" + +nir_const_value nir_eval_const_opcode(nir_op op, unsigned num_components, + nir_const_value *src); diff --git a/src/glsl/nir/nir_constant_expressions.py b/src/glsl/nir/nir_constant_expressions.py new file mode 100644 index 00000000000..22bc4f09583 --- /dev/null +++ b/src/glsl/nir/nir_constant_expressions.py @@ -0,0 +1,352 @@ +#! /usr/bin/python2 +template = """\ +/* + * Copyright (C) 2014 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + * Authors: + * Jason Ekstrand ([email protected]) + */ + +#include <math.h> +#include "main/core.h" +#include "nir_constant_expressions.h" + +#if defined(_MSC_VER) && (_MSC_VER < 1800) +static int isnormal(double x) +{ + return _fpclass(x) == _FPCLASS_NN || _fpclass(x) == _FPCLASS_PN; +} +#elif defined(__SUNPRO_CC) +#include <ieeefp.h> +static int isnormal(double x) +{ + return fpclass(x) == FP_NORMAL; +} +#endif + +#if defined(_MSC_VER) +static double copysign(double x, double y) +{ + return _copysign(x, y); +} +#endif + +/** + * Evaluate one component of packSnorm4x8. + */ +static uint8_t +pack_snorm_1x8(float x) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * packSnorm4x8 + * ------------ + * The conversion for component c of v to fixed point is done as + * follows: + * + * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) + * + * We must first cast the float to an int, because casting a negative + * float to a uint is undefined. + */ + return (uint8_t) (int8_t) + _mesa_round_to_even(CLAMP(x, -1.0f, +1.0f) * 127.0f); +} + +/** + * Evaluate one component of packSnorm2x16. + */ +static uint16_t +pack_snorm_1x16(float x) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * packSnorm2x16 + * ------------- + * The conversion for component c of v to fixed point is done as + * follows: + * + * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) + * + * We must first cast the float to an int, because casting a negative + * float to a uint is undefined. + */ + return (uint16_t) (int16_t) + _mesa_round_to_even(CLAMP(x, -1.0f, +1.0f) * 32767.0f); +} + +/** + * Evaluate one component of unpackSnorm4x8. + */ +static float +unpack_snorm_1x8(uint8_t u) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * unpackSnorm4x8 + * -------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackSnorm4x8: clamp(f / 127.0, -1, +1) + */ + return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); +} + +/** + * Evaluate one component of unpackSnorm2x16. + */ +static float +unpack_snorm_1x16(uint16_t u) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * unpackSnorm2x16 + * --------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) + */ + return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); +} + +/** + * Evaluate one component packUnorm4x8. + */ +static uint8_t +pack_unorm_1x8(float x) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * packUnorm4x8 + * ------------ + * The conversion for component c of v to fixed point is done as + * follows: + * + * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) + */ + return (uint8_t) _mesa_round_to_even(CLAMP(x, 0.0f, 1.0f) * 255.0f); +} + +/** + * Evaluate one component packUnorm2x16. + */ +static uint16_t +pack_unorm_1x16(float x) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * packUnorm2x16 + * ------------- + * The conversion for component c of v to fixed point is done as + * follows: + * + * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) + */ + return (uint16_t) _mesa_round_to_even(CLAMP(x, 0.0f, 1.0f) * 65535.0f); +} + +/** + * Evaluate one component of unpackUnorm4x8. + */ +static float +unpack_unorm_1x8(uint8_t u) +{ + /* From section 8.4 of the GLSL 4.30 spec: + * + * unpackUnorm4x8 + * -------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackUnorm4x8: f / 255.0 + */ + return (float) u / 255.0f; +} + +/** + * Evaluate one component of unpackUnorm2x16. + */ +static float +unpack_unorm_1x16(uint16_t u) +{ + /* From section 8.4 of the GLSL ES 3.00 spec: + * + * unpackUnorm2x16 + * --------------- + * The conversion for unpacked fixed-point value f to floating point is + * done as follows: + * + * unpackUnorm2x16: f / 65535.0 + */ + return (float) u / 65535.0f; +} + +/** + * Evaluate one component of packHalf2x16. + */ +static uint16_t +pack_half_1x16(float x) +{ + return _mesa_float_to_half(x); +} + +/** + * Evaluate one component of unpackHalf2x16. + */ +static float +unpack_half_1x16(uint16_t u) +{ + return _mesa_half_to_float(u); +} + +/* Some typed vector structures to make things like src0.y work */ +% for type in ["float", "int", "unsigned", "bool"]: +struct ${type}_vec { + ${type} x; + ${type} y; + ${type} z; + ${type} w; +}; +% endfor + +% for name, op in sorted(opcodes.iteritems()): +static nir_const_value +evaluate_${name}(unsigned num_components, nir_const_value *_src) +{ + nir_const_value _dst_val = { { {0, 0, 0, 0} } }; + + ## For each non-per-component input, create a variable srcN that + ## contains x, y, z, and w elements which are filled in with the + ## appropriately-typed values. + % for j in range(op.num_inputs): + % if op.input_sizes[j] == 0: + <% continue %> + % elif "src" + str(j) not in op.const_expr: + ## Avoid unused variable warnings + <% continue %> + %endif + + struct ${op.input_types[j]}_vec src${j} = { + % for k in range(op.input_sizes[j]): + % if op.input_types[j] == "bool": + _src[${j}].u[${k}] != 0, + % else: + _src[${j}].${op.input_types[j][:1]}[${k}], + % endif + % endfor + }; + % endfor + + % if op.output_size == 0: + ## For per-component instructions, we need to iterate over the + ## components and apply the constant expression one component + ## at a time. + for (unsigned _i = 0; _i < num_components; _i++) { + ## For each per-component input, create a variable srcN that + ## contains the value of the current (_i'th) component. + % for j in range(op.num_inputs): + % if op.input_sizes[j] != 0: + <% continue %> + % elif "src" + str(j) not in op.const_expr: + ## Avoid unused variable warnings + <% continue %> + % elif op.input_types[j] == "bool": + bool src${j} = _src[${j}].u[_i] != 0; + % else: + ${op.input_types[j]} src${j} = _src[${j}].${op.input_types[j][:1]}[_i]; + % endif + % endfor + + ## Create an appropriately-typed variable dst and assign the + ## result of the const_expr to it. If const_expr already contains + ## writes to dst, just include const_expr directly. + % if "dst" in op.const_expr: + ${op.output_type} dst; + ${op.const_expr} + % else: + ${op.output_type} dst = ${op.const_expr}; + % endif + + ## Store the current component of the actual destination to the + ## value of dst. + % if op.output_type == "bool": + ## Sanitize the C value to a proper NIR bool + _dst_val.u[_i] = dst ? NIR_TRUE : NIR_FALSE; + % else: + _dst_val.${op.output_type[:1]}[_i] = dst; + % endif + } + % else: + ## In the non-per-component case, create a struct dst with + ## appropriately-typed elements x, y, z, and w and assign the result + ## of the const_expr to all components of dst, or include the + ## const_expr directly if it writes to dst already. + struct ${op.output_type}_vec dst; + + % if "dst" in op.const_expr: + ${op.const_expr} + % else: + ## Splat the value to all components. This way expressions which + ## write the same value to all components don't need to explicitly + ## write to dest. One such example is fnoise which has a + ## const_expr of 0.0f. + dst.x = dst.y = dst.z = dst.w = ${op.const_expr}; + % endif + + ## For each component in the destination, copy the value of dst to + ## the actual destination. + % for k in range(op.output_size): + % if op.output_type == "bool": + ## Sanitize the C value to a proper NIR bool + _dst_val.u[${k}] = dst.${"xyzw"[k]} ? NIR_TRUE : NIR_FALSE; + % else: + _dst_val.${op.output_type[:1]}[${k}] = dst.${"xyzw"[k]}; + % endif + % endfor + % endif + + return _dst_val; +} +% endfor + +nir_const_value +nir_eval_const_opcode(nir_op op, unsigned num_components, + nir_const_value *src) +{ + switch (op) { +% for name in sorted(opcodes.iterkeys()): + case nir_op_${name}: { + return evaluate_${name}(num_components, src); + break; + } +% endfor + default: + unreachable("shouldn't get here"); + } +}""" + +from nir_opcodes import opcodes +from mako.template import Template + +print Template(template).render(opcodes=opcodes) diff --git a/src/glsl/nir/nir_opcodes.py b/src/glsl/nir/nir_opcodes.py index 5bafbb0229e..5fe957296eb 100644 --- a/src/glsl/nir/nir_opcodes.py +++ b/src/glsl/nir/nir_opcodes.py @@ -24,6 +24,7 @@ # Authors: # Connor Abbott ([email protected]) + # Class that represents all the information we have about the opcode # NOTE: this must be kept in sync with nir_op_info @@ -32,7 +33,7 @@ class Opcode(object): NOTE: this must be kept in sync with nir_op_info """ def __init__(self, name, output_size, output_type, input_sizes, - input_types, algebraic_properties): + input_types, algebraic_properties, const_expr): """Parameters: - name is the name of the opcode (prepend nir_op_ for the enum name) @@ -40,6 +41,27 @@ class Opcode(object): - input_types is a list of types - algebraic_properties is a space-seperated string, where nir_op_is_ is prepended before each entry + - const_expr is an expression or series of statements that computes the + constant value of the opcode given the constant values of its inputs. + + Constant expressions are formed from the variables src0, src1, ..., + src(N-1), where N is the number of arguments. The output of the + expression should be stored in the dst variable. Per-component input + and output variables will be scalars and non-per-component input and + output variables will be a struct with fields named x, y, z, and w + all of the correct type. Input and output variables can be assumed + to already be of the correct type and need no conversion. In + particular, the conversion from the C bool type to/from NIR_TRUE and + NIR_FALSE happens automatically. + + For per-component instructions, the entire expression will be + executed once for each component. For non-per-component + instructions, the expression is expected to store the correct values + in dst.x, dst.y, etc. If "dst" does not exist anywhere in the + constant expression, an assignment to dst will happen automatically + and the result will be equivalent to "dst = <expression>" for + per-component instructions and "dst.x = dst.y = ... = <expression>" + for non-per-component instructions. """ assert isinstance(name, str) assert isinstance(output_size, int) @@ -49,6 +71,7 @@ class Opcode(object): assert isinstance(input_types, list) assert isinstance(input_types[0], str) assert isinstance(algebraic_properties, str) + assert isinstance(const_expr, str) assert len(input_sizes) == len(input_types) assert 0 <= output_size <= 4 for size in input_sizes: @@ -62,6 +85,7 @@ class Opcode(object): self.input_sizes = input_sizes self.input_types = input_types self.algebraic_properties = algebraic_properties + self.const_expr = const_expr # helper variables for strings tfloat = "float" @@ -76,178 +100,289 @@ associative = "associative " opcodes = {} def opcode(name, output_size, output_type, input_sizes, input_types, - algebraic_properties): + algebraic_properties, const_expr): assert name not in opcodes opcodes[name] = Opcode(name, output_size, output_type, input_sizes, - input_types, algebraic_properties) - -def unop_convert(name, in_type, out_type): - opcode(name, 0, out_type, [0], [in_type], "") - -def unop(name, ty): - opcode(name, 0, ty, [0], [ty], "") - -def unop_horiz(name, output_size, output_type, input_size, input_type): - opcode(name, output_size, output_type, [input_size], [input_type], "") - -def unop_reduce(name, output_size, output_type, input_type): - unop_horiz(name + "2", output_size, output_type, 2, input_type) - unop_horiz(name + "3", output_size, output_type, 3, input_type) - unop_horiz(name + "4", output_size, output_type, 4, input_type) + input_types, algebraic_properties, const_expr) + +def unop_convert(name, in_type, out_type, const_expr): + opcode(name, 0, out_type, [0], [in_type], "", const_expr) + +def unop(name, ty, const_expr): + opcode(name, 0, ty, [0], [ty], "", const_expr) + +def unop_horiz(name, output_size, output_type, input_size, input_type, + const_expr): + opcode(name, output_size, output_type, [input_size], [input_type], "", + const_expr) + +def unop_reduce(name, output_size, output_type, input_type, prereduce_expr, + reduce_expr, final_expr): + def prereduce(src): + return "(" + prereduce_expr.format(src=src) + ")" + def final(src): + return final_expr.format(src="(" + src + ")") + def reduce_(src0, src1): + return reduce_expr.format(src0=src0, src1=src1) + src0 = prereduce("src0.x") + src1 = prereduce("src0.y") + src2 = prereduce("src0.z") + src3 = prereduce("src0.w") + unop_horiz(name + "2", output_size, output_type, 2, input_type, + final(reduce_(src0, src1))) + unop_horiz(name + "3", output_size, output_type, 3, input_type, + final(reduce_(reduce_(src0, src1), src2))) + unop_horiz(name + "4", output_size, output_type, 4, input_type, + final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) # These two move instructions differ in what modifiers they support and what # the negate modifier means. Otherwise, they are identical. -unop("fmov", tfloat) -unop("imov", tint) - -unop("ineg", tint) -unop("fneg", tfloat) -unop("inot", tint) # invert every bit of the integer -unop("fnot", tfloat) # (src == 0.0) ? 1.0 : 0.0 -unop("fsign", tfloat) -unop("isign", tint) -unop("iabs", tint) -unop("fabs", tfloat) -unop("fsat", tfloat) -unop("frcp", tfloat) -unop("frsq", tfloat) -unop("fsqrt", tfloat) -unop("fexp", tfloat) # < e^x -unop("flog", tfloat) # log base e -unop("fexp2", tfloat) -unop("flog2", tfloat) -unop_convert("f2i", tfloat, tint) # Float-to-integer conversion. -unop_convert("f2u", tfloat, tunsigned) # Float-to-unsigned conversion -unop_convert("i2f", tint, tfloat) # Integer-to-float conversion. -unop_convert("f2b", tfloat, tbool) # Float-to-boolean conversion -unop_convert("b2f", tbool, tfloat) # Boolean-to-float conversion -unop_convert("i2b", tint, tbool) # int-to-boolean conversion -unop_convert("b2i", tbool, tint) # Boolean-to-int conversion -unop_convert("u2f", tunsigned, tfloat) #Unsigned-to-float conversion. - -unop_reduce("bany", 1, tbool, tbool) # returns ~0 if any component of src[0] != 0 -unop_reduce("ball", 1, tbool, tbool) # returns ~0 if all components of src[0] != 0 -unop_reduce("fany", 1, tfloat, tfloat) # returns 1.0 if any component of src[0] != 0 -unop_reduce("fall", 1, tfloat, tfloat) # returns 1.0 if all components of src[0] != 0 +unop("fmov", tfloat, "src0") +unop("imov", tint, "src0") + +unop("ineg", tint, "-src0") +unop("fneg", tfloat, "-src0") +unop("inot", tint, "~src0") # invert every bit of the integer +unop("fnot", tfloat, "(src0 == 0.0f) ? 1.0f : 0.0f") +unop("fsign", tfloat, "(src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f)") +unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)") +unop("iabs", tint, "abs(src0)") +unop("fabs", tfloat, "fabsf(src0)") +unop("fsat", tfloat, "(src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0)") +unop("frcp", tfloat, "1.0f / src0") +unop("frsq", tfloat, "1.0f / sqrtf(src0)") +unop("fsqrt", tfloat, "sqrtf(src0)") +unop("fexp", tfloat, "expf(src0)") # < e^x +unop("flog", tfloat, "logf(src0)") # log base e +unop("fexp2", tfloat, "exp2f(src0)") +unop("flog2", tfloat, "log2f(src0)") +unop_convert("f2i", tfloat, tint, "src0") # Float-to-integer conversion. +unop_convert("f2u", tfloat, tunsigned, "src0") # Float-to-unsigned conversion +unop_convert("i2f", tint, tfloat, "src0") # Integer-to-float conversion. +# Float-to-boolean conversion +unop_convert("f2b", tfloat, tbool, "src0 == 0.0f") +# Boolean-to-float conversion +unop_convert("b2f", tbool, tfloat, "src0 ? 1.0f : 0.0f") +# Int-to-boolean conversion +unop_convert("i2b", tint, tbool, "src0 == 0") +unop_convert("b2i", tbool, tint, "src0 ? 0 : -1") # Boolean-to-int conversion +unop_convert("u2f", tunsigned, tfloat, "src0") #Unsigned-to-float conversion. + +unop_reduce("bany", 1, tbool, tbool, "{src}", "{src0} || {src1}", "{src}") +unop_reduce("ball", 1, tbool, tbool, "{src}", "{src0} && {src1}", "{src}") +unop_reduce("fany", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} || {src1}", + "{src} ? 1.0f : 0.0f") +unop_reduce("fall", 1, tfloat, tfloat, "{src} != 0.0f", "{src0} && {src1}", + "{src} ? 1.0f : 0.0f") # Unary floating-point rounding operations. -unop("ftrunc", tfloat) -unop("fceil", tfloat) -unop("ffloor", tfloat) -unop("ffract", tfloat) -unop("fround_even", tfloat) +unop("ftrunc", tfloat, "truncf(src0)") +unop("fceil", tfloat, "ceilf(src0)") +unop("ffloor", tfloat, "floorf(src0)") +unop("ffract", tfloat, "src0 - floorf(src0)") +unop("fround_even", tfloat, "_mesa_round_to_even(src0)") # Trigonometric operations. -unop("fsin", tfloat) -unop("fcos", tfloat) -unop("fsin_reduced", tfloat) -unop("fcos_reduced", tfloat) +unop("fsin", tfloat, "sinf(src0)") +unop("fcos", tfloat, "cosf(src0)") +unop("fsin_reduced", tfloat, "sinf(src0)") +unop("fcos_reduced", tfloat, "cosf(src0)") # Partial derivatives. -unop("fddx", tfloat) -unop("fddy", tfloat) -unop("fddx_fine", tfloat) -unop("fddy_fine", tfloat) -unop("fddx_coarse", tfloat) -unop("fddy_coarse", tfloat) +unop("fddx", tfloat, "0.0f") # the derivative of a constant is 0. +unop("fddy", tfloat, "0.0f") +unop("fddx_fine", tfloat, "0.0f") +unop("fddy_fine", tfloat, "0.0f") +unop("fddx_coarse", tfloat, "0.0f") +unop("fddy_coarse", tfloat, "0.0f") # Floating point pack and unpack operations. - -unop_horiz("pack_snorm_2x16", 1, tunsigned, 2, tfloat) -unop_horiz("pack_snorm_4x8", 1, tunsigned, 4, tfloat) -unop_horiz("pack_unorm_2x16", 1, tunsigned, 2, tfloat) -unop_horiz("pack_unorm_4x8", 1, tunsigned, 4, tfloat) -unop_horiz("pack_half_2x16", 1, tunsigned, 2, tfloat) -unop_horiz("unpack_snorm_2x16", 2, tfloat, 1, tunsigned) -unop_horiz("unpack_snorm_4x8", 4, tfloat, 1, tunsigned) -unop_horiz("unpack_unorm_2x16", 2, tfloat, 1, tunsigned) -unop_horiz("unpack_unorm_4x8", 4, tfloat, 1, tunsigned) -unop_horiz("unpack_half_2x16", 2, tfloat, 1, tunsigned) +def pack_2x16(fmt): + unop_horiz("pack_" + fmt + "_2x16", 1, tunsigned, 2, tfloat, """ +dst.x = (uint32_t) pack_fmt_1x16(src0.x); +dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16; +""".replace("fmt", fmt)) + +def pack_4x8(fmt): + unop_horiz("pack_" + fmt + "_4x8", 1, tunsigned, 4, tfloat, """ +dst.x = (uint32_t) pack_fmt_1x8(src0.x); +dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8; +dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16; +dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24; +""".replace("fmt", fmt)) + +def unpack_2x16(fmt): + unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat, 1, tunsigned, """ +dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff)); +dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16)); +""".replace("fmt", fmt)) + +def unpack_4x8(fmt): + unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat, 1, tunsigned, """ +dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff)); +dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff)); +dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff)); +dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24)); +""".replace("fmt", fmt)) + + +pack_2x16("snorm") +pack_4x8("snorm") +pack_2x16("unorm") +pack_4x8("unorm") +pack_2x16("half") +unpack_2x16("snorm") +unpack_4x8("snorm") +unpack_2x16("unorm") +unpack_4x8("unorm") +unpack_2x16("half") # Lowered floating point unpacking operations. -unop_horiz("unpack_half_2x16_split_x", 1, tfloat, 1, tunsigned) -unop_horiz("unpack_half_2x16_split_y", 1, tfloat, 1, tunsigned) +unop_horiz("unpack_half_2x16_split_x", 1, tfloat, 1, tunsigned, """ +dst.x = unpack_half_1x16((uint16_t)(src0.x & 0xffff)); +""") +unop_horiz("unpack_half_2x16_split_y", 1, tfloat, 1, tunsigned, """ +dst.y = unpack_half_1x16((uint16_t)(src0.x >> 16)); +""") # Bit operations, part of ARB_gpu_shader5. -unop("bitfield_reverse", tunsigned) -unop("bit_count", tunsigned) -unop_convert("ufind_msb", tunsigned, tint) -unop("ifind_msb", tint) -unop("find_lsb", tint) +unop("bitfield_reverse", tunsigned, """ +/* we're not winning any awards for speed here, but that's ok */ +dst = 0; +for (unsigned bit = 0; bit < 32; bit++) + dst |= ((src0 >> bit) & 1) << (31 - bit); +""") +unop("bit_count", tunsigned, """ +dst = 0; +for (unsigned bit = 0; bit < 32; bit++) { + if ((src0 >> bit) & 1) + dst++; +} +""") + +unop_convert("ufind_msb", tunsigned, tint, """ +dst = -1; +for (int bit = 31; bit > 0; bit--) { + if ((src0 >> bit) & 1) { + dst = bit; + break; + } +} +""") + +unop("ifind_msb", tint, """ +dst = -1; +for (int bit = 31; bit >= 0; bit--) { + /* If src0 < 0, we're looking for the first 0 bit. + * if src0 >= 0, we're looking for the first 1 bit. + */ + if ((((src0 >> bit) & 1) && (src0 >= 0)) || + (!((src0 >> bit) & 1) && (src0 < 0))) { + dst = bit; + break; + } +} +""") + +unop("find_lsb", tint, """ +dst = -1; +for (unsigned bit = 0; bit < 32; bit++) { + if ((src0 >> bit) & 1) { + dst = bit; + break; + } +} +""") for i in xrange(1, 5): for j in xrange(1, 5): - unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat) + unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f") -def binop_convert(name, out_type, in_type, alg_props): - opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props) +def binop_convert(name, out_type, in_type, alg_props, const_expr): + opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props, const_expr) -def binop(name, ty, alg_props): - binop_convert(name, ty, ty, alg_props) +def binop(name, ty, alg_props, const_expr): + binop_convert(name, ty, ty, alg_props, const_expr) -def binop_compare(name, ty, alg_props): - binop_convert(name, ty, tbool, alg_props) +def binop_compare(name, ty, alg_props, const_expr): + binop_convert(name, tbool, ty, alg_props, const_expr) def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size, - src2_type): - opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], "") - -def binop_reduce(name, output_size, output_type, src_type): - opcode(name + "2",output_size, output_type, - [2, 2], [src_type, src_type], commutative) + src2_type, const_expr): + opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], + "", const_expr) + +def binop_reduce(name, output_size, output_type, src_type, prereduce_expr, + reduce_expr, final_expr): + def final(src): + return final_expr.format(src= "(" + src + ")") + def reduce_(src0, src1): + return reduce_expr.format(src0=src0, src1=src1) + def prereduce(src0, src1): + return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")" + src0 = prereduce("src0.x", "src1.x") + src1 = prereduce("src0.y", "src1.y") + src2 = prereduce("src0.z", "src1.z") + src3 = prereduce("src0.w", "src1.w") + opcode(name + "2", output_size, output_type, + [2, 2], [src_type, src_type], commutative, + final(reduce_(src0, src1))) opcode(name + "3", output_size, output_type, - [3, 3], [src_type, src_type], commutative) + [3, 3], [src_type, src_type], commutative, + final(reduce_(reduce_(src0, src1), src2))) opcode(name + "4", output_size, output_type, - [4, 4], [src_type, src_type], commutative) + [4, 4], [src_type, src_type], commutative, + final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) -binop("fadd", tfloat, commutative + associative) -binop("iadd", tint, commutative + associative) -binop("fsub", tfloat, "") -binop("isub", tint, "") +binop("fadd", tfloat, commutative + associative, "src0 + src1") +binop("iadd", tint, commutative + associative, "src0 + src1") +binop("fsub", tfloat, "", "src0 - src1") +binop("isub", tint, "", "src0 - src1") -binop("fmul", tfloat, commutative + associative) +binop("fmul", tfloat, commutative + associative, "src0 * src1") # low 32-bits of signed/unsigned integer multiply -binop("imul", tint, commutative + associative) +binop("imul", tint, commutative + associative, "src0 * src1") # high 32-bits of signed integer multiply -binop("imul_high", tint, commutative) +binop("imul_high", tint, commutative, + "(int32_t)(((int64_t) src0 * (int64_t) src1) >> 32)") # high 32-bits of unsigned integer multiply -binop("umul_high", tunsigned, commutative) +binop("umul_high", tunsigned, commutative, + "(uint32_t)(((uint64_t) src0 * (uint64_t) src1) >> 32)") -binop("fdiv", tfloat, "") -binop("idiv", tint, "") -binop("udiv", tunsigned, "") +binop("fdiv", tfloat, "", "src0 / src1") +binop("idiv", tint, "", "src0 / src1") +binop("udiv", tunsigned, "", "src0 / src1") # returns a boolean representing the carry resulting from the addition of # the two unsigned arguments. -binop_convert("uadd_carry", tbool, tunsigned, - commutative) +binop_convert("uadd_carry", tbool, tunsigned, commutative, "src0 + src1 < src0") # returns a boolean representing the borrow resulting from the subtraction # of the two unsigned arguments. -binop_convert("usub_borrow", tbool, tunsigned, "") +binop_convert("usub_borrow", tbool, tunsigned, "", "src1 < src0") -binop("fmod", tfloat, "") -binop("umod", tunsigned, "") +binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)") +binop("umod", tunsigned, "", "src1 == 0 ? 0 : src0 % src1") # # Comparisons @@ -256,41 +391,47 @@ binop("umod", tunsigned, "") # these integer-aware comparisons return a boolean (0 or ~0) -binop_compare("flt", tfloat, "") -binop_compare("fge", tfloat, "") -binop_compare("feq", tfloat, commutative) -binop_compare("fne", tfloat, commutative) -binop_compare("ilt", tint, "") -binop_compare("ige", tint, "") -binop_compare("ieq", tint, commutative) -binop_compare("ine", tint, commutative) -binop_compare("ult", tunsigned, "") -binop_compare("uge", tunsigned, "") +binop_compare("flt", tfloat, "", "src0 < src1") +binop_compare("fge", tfloat, "", "src0 >= src1") +binop_compare("feq", tfloat, commutative, "src0 == src1") +binop_compare("fne", tfloat, commutative, "src0 != src1") +binop_compare("ilt", tint, "", "src0 < src1") +binop_compare("ige", tint, "", "src0 >= src1") +binop_compare("ieq", tint, commutative, "src0 == src1") +binop_compare("ine", tint, commutative, "src0 != src1") +binop_compare("ult", tunsigned, "", "src0 < src1") +binop_compare("uge", tunsigned, "", "src0 >= src1") # integer-aware GLSL-style comparisons that compare floats and ints -binop_reduce("ball_fequal", 1, tbool, tfloat) -binop_reduce("bany_fnequal", 1, tbool, tfloat) -binop_reduce("ball_iequal", 1, tbool, tint) -binop_reduce("bany_inequal", 1, tbool, tint) +binop_reduce("ball_fequal", 1, tbool, tfloat, "{src0} == {src1}", + "{src0} && {src1}", "{src}") +binop_reduce("bany_fnequal", 1, tbool, tfloat, "{src0} != {src1}", + "{src0} || {src1}", "{src}") +binop_reduce("ball_iequal", 1, tbool, tint, "{src0} == {src1}", + "{src0} && {src1}", "{src}") +binop_reduce("bany_inequal", 1, tbool, tint, "{src0} != {src1}", + "{src0} || {src1}", "{src}") # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0 -binop_reduce("fall_equal", 1, tfloat, tfloat) -binop_reduce("fany_nequal", 1, tfloat, tfloat) +binop_reduce("fall_equal", 1, tfloat, tfloat, "{src0} == {src1}", + "{src0} && {src1}", "{src} ? 1.0f : 0.0f") +binop_reduce("fany_nequal", 1, tfloat, tfloat, "{src0} != {src1}", + "{src0} || {src1}", "{src} ? 1.0f : 0.0f") # These comparisons for integer-less hardware return 1.0 and 0.0 for true # and false respectively -binop("slt", tfloat, "") # Set on Less Than -binop("sge", tfloat, "") # Set on Greater Than or Equal -binop("seq", tfloat, commutative) # Set on Equal -binop("sne", tfloat, commutative) # Set on Not Equal +binop("slt", tfloat, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than +binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal +binop("seq", tfloat, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal +binop("sne", tfloat, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal -binop("ishl", tint, "") -binop("ishr", tint, "") -binop("ushr", tunsigned, "") +binop("ishl", tint, "", "src0 << src1") +binop("ishr", tint, "", "src0 >> src1") +binop("ushr", tunsigned, "", "src0 >> src1") # bitwise logic operators # @@ -298,9 +439,9 @@ binop("ushr", tunsigned, "") # integers. -binop("iand", tunsigned, commutative + associative) -binop("ior", tunsigned, commutative + associative) -binop("ixor", tunsigned, commutative + associative) +binop("iand", tunsigned, commutative + associative, "src0 & src1") +binop("ior", tunsigned, commutative + associative, "src0 | src1") +binop("ixor", tunsigned, commutative + associative, "src0 ^ src1") # floating point logic operators @@ -308,42 +449,60 @@ binop("ixor", tunsigned, commutative + associative) # These use (src != 0.0) for testing the truth of the input, and output 1.0 # for true and 0.0 for false -binop("fand", tfloat, commutative) -binop("for", tfloat, commutative) -binop("fxor", tfloat, commutative) - -binop_reduce("fdot", 1, tfloat, tfloat) - -binop("fmin", tfloat, "") -binop("imin", tint, commutative + associative) -binop("umin", tunsigned, commutative + associative) -binop("fmax", tfloat, "") -binop("imax", tint, commutative + associative) -binop("umax", tunsigned, commutative + associative) - -binop("fpow", tfloat, "") - -binop_horiz("pack_half_2x16_split", 1, tunsigned, 1, tfloat, 1, tfloat) - -binop("bfm", tunsigned, "") - -binop("ldexp", tunsigned, "") +binop("fand", tfloat, commutative, + "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f") +binop("for", tfloat, commutative, + "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f") +binop("fxor", tfloat, commutative, + "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f") + +binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", + "{src}") + +binop("fmin", tfloat, "", "fminf(src0, src1)") +binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1") +binop("umin", tunsigned, commutative + associative, "src1 > src0 ? src0 : src1") +binop("fmax", tfloat, "", "fmaxf(src0, src1)") +binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0") +binop("umax", tunsigned, commutative + associative, "src1 > src0 ? src1 : src0") + +binop("fpow", tfloat, "", "powf(src0, src1)") + +binop_horiz("pack_half_2x16_split", 1, tunsigned, 1, tfloat, 1, tfloat, + "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)") + +binop_convert("bfm", tunsigned, tint, "", """ +int offset = src0, bits = src1; +if (offset < 0 || bits < 0 || offset + bits > 32) + dst = 0; /* undefined per the spec */ +else + dst = ((1 << bits)- 1) << offset; +""") + +opcode("ldexp", 0, tunsigned, [0, 0], [tfloat, tint], "", """ +dst = ldexp(src0, src1); +/* flush denormals to zero. */ +if (!isnormal(dst)) + dst = copysign(0.0f, src0); +""") # Combines the first component of each input to make a 2-component vector. -binop_horiz("vec2", 2, tunsigned, 1, tunsigned, 1, tunsigned) +binop_horiz("vec2", 2, tunsigned, 1, tunsigned, 1, tunsigned, """ +dst.x = src0.x; +dst.y = src1.x; +""") -def triop(name, ty): - opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "") -def triop_horiz(name, output_size, src1_size, src2_size, src3_size): +def triop(name, ty, const_expr): + opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "", const_expr) +def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr): opcode(name, output_size, tunsigned, [src1_size, src2_size, src3_size], - [tunsigned, tunsigned, tunsigned], "") + [tunsigned, tunsigned, tunsigned], "", const_expr) -# fma(a, b, c) = (a# b) + c -triop("ffma", tfloat) +triop("ffma", tfloat, "src0 * src1 + src2") -triop("flrp", tfloat) +triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2") # Conditional Select # @@ -352,30 +511,83 @@ triop("flrp", tfloat) # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0). -triop("fcsel", tfloat) +triop("fcsel", tfloat, "(src0 != 0.0f) ? src1 : src2") opcode("bcsel", 0, tunsigned, [0, 0, 0], - [tbool, tunsigned, tunsigned], "") - -triop("bfi", tunsigned) - -triop("ubitfield_extract", tunsigned) -opcode("ibitfield_extract", 0, tint, [0, 0, 0], - [tint, tunsigned, tunsigned], "") + [tbool, tunsigned, tunsigned], "", "src0 ? src1 : src2") + +triop("bfi", tunsigned, """ +unsigned mask = src0, insert = src1 & mask, base = src2; +if (mask == 0) { + dst = base; +} else { + unsigned tmp = mask; + while (!(tmp & 1)) { + tmp >>= 1; + insert <<= 1; + } + dst = (base & ~mask) | insert; +} +""") + +opcode("ubitfield_extract", 0, tunsigned, + [0, 1, 1], [tunsigned, tint, tint], "", """ +unsigned base = src0; +int offset = src1.x, bits = src2.x; +if (bits == 0) { + dst = 0; +} else if (bits < 0 || offset < 0 || offset + bits > 32) { + dst = 0; /* undefined per the spec */ +} else { + dst = (base >> offset) & ((1 << bits) - 1); +} +""") +opcode("ibitfield_extract", 0, tint, + [0, 1, 1], [tint, tint, tint], "", """ +int base = src0; +int offset = src1.x, bits = src2.x; +if (bits == 0) { + dst = 0; +} else if (offset < 0 || bits < 0 || offset + bits > 32) { + dst = 0; +} else { + dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */ +} +""") # Combines the first component of each input to make a 3-component vector. -triop_horiz("vec3", 3, 1, 1, 1) +triop_horiz("vec3", 3, 1, 1, 1, """ +dst.x = src0.x; +dst.y = src1.x; +dst.z = src2.x; +""") -def quadop(name): - opcode(name, 0, tunsigned, [0, 0, 0, 0], - [tunsigned, tunsigned, tunsigned, tunsigned], - "") -def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, src4_size): +def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, + src4_size, const_expr): opcode(name, output_size, tunsigned, [src1_size, src2_size, src3_size, src4_size], [tunsigned, tunsigned, tunsigned, tunsigned], - "") + "", const_expr) + +opcode("bitfield_insert", 0, tunsigned, [0, 0, 1, 1], + [tunsigned, tunsigned, tint, tint], "", """ +unsigned base = src0, insert = src1; +int offset = src2.x, bits = src3.x; +if (bits == 0) { + dst = 0; +} else if (offset < 0 || bits < 0 || bits + offset > 32) { + dst = 0; +} else { + unsigned mask = ((1 << bits) - 1) << offset; + dst = (base & ~mask) | ((insert << bits) & mask); +} +""") + +quadop_horiz("vec4", 4, 1, 1, 1, 1, """ +dst.x = src0.x; +dst.y = src1.x; +dst.z = src2.x; +dst.w = src3.x; +""") -quadop("bitfield_insert") -quadop_horiz("vec4", 4, 1, 1, 1, 1) |