diff options
author | Elie Tournier <[email protected]> | 2017-08-09 23:44:18 +0100 |
---|---|---|
committer | Matt Turner <[email protected]> | 2019-01-09 16:42:40 -0800 |
commit | 2119094b1de33342de8c3b7284e6d5b98452d256 (patch) | |
tree | f933d42b74b3d6bc3ffde494623d17fa532654b8 /src | |
parent | cad58fc5e7aba22dee7f9099e9fc46634b6a439c (diff) |
glsl: Add "built-in" functions to do sqrt(fp64)
Signed-off-by: Elie Tournier <[email protected]>
Diffstat (limited to 'src')
-rw-r--r-- | src/compiler/glsl/float64.glsl | 272 |
1 files changed, 272 insertions, 0 deletions
diff --git a/src/compiler/glsl/float64.glsl b/src/compiler/glsl/float64.glsl index 05e07d39ef6..7bfaa9cab47 100644 --- a/src/compiler/glsl/float64.glsl +++ b/src/compiler/glsl/float64.glsl @@ -1083,3 +1083,275 @@ __fp32_to_fp64(float f) __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1); return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1); } + +/* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the + * 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is + * modulo 2^96, so any carry out is lost. The result is broken into three + * 32-bit pieces which are stored at the locations pointed to by `z0Ptr', + * `z1Ptr', and `z2Ptr'. + */ +void +__add96(uint a0, uint a1, uint a2, + uint b0, uint b1, uint b2, + out uint z0Ptr, + out uint z1Ptr, + out uint z2Ptr) +{ + uint z2 = a2 + b2; + uint carry1 = uint(z2 < a2); + uint z1 = a1 + b1; + uint carry0 = uint(z1 < a1); + uint z0 = a0 + b0; + z1 += carry1; + z0 += uint(z1 < carry1); + z0 += carry0; + z2Ptr = z2; + z1Ptr = z1; + z0Ptr = z0; +} + +/* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from + * the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction + * is modulo 2^96, so any borrow out (carry out) is lost. The result is broken + * into three 32-bit pieces which are stored at the locations pointed to by + * `z0Ptr', `z1Ptr', and `z2Ptr'. + */ +void +__sub96(uint a0, uint a1, uint a2, + uint b0, uint b1, uint b2, + out uint z0Ptr, + out uint z1Ptr, + out uint z2Ptr) +{ + uint z2 = a2 - b2; + uint borrow1 = uint(a2 < b2); + uint z1 = a1 - b1; + uint borrow0 = uint(a1 < b1); + uint z0 = a0 - b0; + z0 -= uint(z1 < borrow1); + z1 -= borrow1; + z0 -= borrow0; + z2Ptr = z2; + z1Ptr = z1; + z0Ptr = z0; +} + +/* Returns an approximation to the 32-bit integer quotient obtained by dividing + * `b' into the 64-bit value formed by concatenating `a0' and `a1'. The + * divisor `b' must be at least 2^31. If q is the exact quotient truncated + * toward zero, the approximation returned lies between q and q + 2 inclusive. + * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit + * unsigned integer is returned. + */ +uint +__estimateDiv64To32(uint a0, uint a1, uint b) +{ + uint b0; + uint b1; + uint rem0 = 0u; + uint rem1 = 0u; + uint term0 = 0u; + uint term1 = 0u; + uint z; + + if (b <= a0) + return 0xFFFFFFFFu; + b0 = b>>16; + z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16; + __mul32To64(b, z, term0, term1); + __sub64(a0, a1, term0, term1, rem0, rem1); + while (int(rem0) < 0) { + z -= 0x10000u; + b1 = b<<16; + __add64(rem0, rem1, b0, b1, rem0, rem1); + } + rem0 = (rem0<<16) | (rem1>>16); + z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0; + return z; +} + +uint +__sqrtOddAdjustments(int index) +{ + uint res = 0u; + if (index == 0) + res = 0x0004u; + if (index == 1) + res = 0x0022u; + if (index == 2) + res = 0x005Du; + if (index == 3) + res = 0x00B1u; + if (index == 4) + res = 0x011Du; + if (index == 5) + res = 0x019Fu; + if (index == 6) + res = 0x0236u; + if (index == 7) + res = 0x02E0u; + if (index == 8) + res = 0x039Cu; + if (index == 9) + res = 0x0468u; + if (index == 10) + res = 0x0545u; + if (index == 11) + res = 0x631u; + if (index == 12) + res = 0x072Bu; + if (index == 13) + res = 0x0832u; + if (index == 14) + res = 0x0946u; + if (index == 15) + res = 0x0A67u; + + return res; +} + +uint +__sqrtEvenAdjustments(int index) +{ + uint res = 0u; + if (index == 0) + res = 0x0A2Du; + if (index == 1) + res = 0x08AFu; + if (index == 2) + res = 0x075Au; + if (index == 3) + res = 0x0629u; + if (index == 4) + res = 0x051Au; + if (index == 5) + res = 0x0429u; + if (index == 6) + res = 0x0356u; + if (index == 7) + res = 0x029Eu; + if (index == 8) + res = 0x0200u; + if (index == 9) + res = 0x0179u; + if (index == 10) + res = 0x0109u; + if (index == 11) + res = 0x00AFu; + if (index == 12) + res = 0x0068u; + if (index == 13) + res = 0x0034u; + if (index == 14) + res = 0x0012u; + if (index == 15) + res = 0x0002u; + + return res; +} + +/* Returns an approximation to the square root of the 32-bit significand given + * by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of + * `aExp' (the least significant bit) is 1, the integer returned approximates + * 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' + * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either + * case, the approximation returned lies strictly within +/-2 of the exact + * value. + */ +uint +__estimateSqrt32(int aExp, uint a) +{ + uint z; + + int index = int(a>>27 & 15u); + if ((aExp & 1) != 0) { + z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index); + z = ((a / z)<<14) + (z<<15); + a >>= 1; + } else { + z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index); + z = a / z + z; + z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15); + if (z <= a) + return uint(int(a)>>1); + } + return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1); +} + +/* Returns the square root of the double-precision floating-point value `a'. + * The operation is performed according to the IEEE Standard for Floating-Point + * Arithmetic. + */ +uint64_t +__fsqrt64(uint64_t a) +{ + uint zFrac0 = 0u; + uint zFrac1 = 0u; + uint zFrac2 = 0u; + uint doubleZFrac0 = 0u; + uint rem0 = 0u; + uint rem1 = 0u; + uint rem2 = 0u; + uint rem3 = 0u; + uint term0 = 0u; + uint term1 = 0u; + uint term2 = 0u; + uint term3 = 0u; + uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL; + + uint aFracLo = __extractFloat64FracLo(a); + uint aFracHi = __extractFloat64FracHi(a); + int aExp = __extractFloat64Exp(a); + uint aSign = __extractFloat64Sign(a); + if (aExp == 0x7FF) { + if ((aFracHi | aFracLo) != 0u) + return __propagateFloat64NaN(a, a); + if (aSign == 0u) + return a; + return default_nan; + } + if (aSign != 0u) { + if ((uint(aExp) | aFracHi | aFracLo) == 0u) + return a; + return default_nan; + } + if (aExp == 0) { + if ((aFracHi | aFracLo) == 0u) + return __packFloat64(0u, 0, 0u, 0u); + __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo); + } + int zExp = ((aExp - 0x3FF)>>1) + 0x3FE; + aFracHi |= 0x00100000u; + __shortShift64Left(aFracHi, aFracLo, 11, term0, term1); + zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u; + if (zFrac0 == 0u) + zFrac0 = 0x7FFFFFFFu; + doubleZFrac0 = zFrac0 + zFrac0; + __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo); + __mul32To64(zFrac0, zFrac0, term0, term1); + __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1); + while (int(rem0) < 0) { + --zFrac0; + doubleZFrac0 -= 2u; + __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1); + } + zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0); + if ((zFrac1 & 0x1FFu) <= 5u) { + if (zFrac1 == 0u) + zFrac1 = 1u; + __mul32To64(doubleZFrac0, zFrac1, term1, term2); + __sub64(rem1, 0u, term1, term2, rem1, rem2); + __mul32To64(zFrac1, zFrac1, term2, term3); + __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3); + while (int(rem1) < 0) { + --zFrac1; + __shortShift64Left(0u, zFrac1, 1, term2, term3); + term3 |= 1u; + term2 |= doubleZFrac0; + __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3); + } + zFrac1 |= uint((rem1 | rem2 | rem3) != 0u); + } + __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2); + return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2); +} |