summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorBrian Paul <[email protected]>2015-03-07 13:15:22 -0700
committerBrian Paul <[email protected]>2015-03-12 07:52:45 -0600
commit97f6d50f7247c40eeef33219e5cf5ccb7bf6d4ea (patch)
tree2b36183e510eff7b3b6a64be95943bfc34540787 /src
parentbe4e198be00c03e88315058eb81187a9547e3e87 (diff)
mesa: reindent querymatrix.c
Use 3-space indents, not 4. Move some comments after the case statements. Acked-by: Matt Turner <[email protected]>
Diffstat (limited to 'src')
-rw-r--r--src/mesa/main/querymatrix.c229
1 files changed, 115 insertions, 114 deletions
diff --git a/src/mesa/main/querymatrix.c b/src/mesa/main/querymatrix.c
index 095817cf5b9..ca6b023379e 100644
--- a/src/mesa/main/querymatrix.c
+++ b/src/mesa/main/querymatrix.c
@@ -38,119 +38,120 @@
#define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
-GLbitfield GLAPIENTRY _mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
+GLbitfield GLAPIENTRY
+_mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
{
- GLfloat matrix[16];
- GLint tmp;
- GLenum currentMode = GL_FALSE;
- GLenum desiredMatrix = GL_FALSE;
- /* The bitfield returns 1 for each component that is invalid (i.e.
- * NaN or Inf). In case of error, everything is invalid.
- */
- GLbitfield rv;
- register unsigned int i;
- unsigned int bit;
-
- /* This data structure defines the mapping between the current matrix
- * mode and the desired matrix identifier.
- */
- static struct {
- GLenum currentMode;
- GLenum desiredMatrix;
- } modes[] = {
- {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
- {GL_PROJECTION, GL_PROJECTION_MATRIX},
- {GL_TEXTURE, GL_TEXTURE_MATRIX},
- };
-
- /* Call Mesa to get the current matrix in floating-point form. First,
- * we have to figure out what the current matrix mode is.
- */
- _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
- currentMode = (GLenum) tmp;
-
- /* The mode is either GL_FALSE, if for some reason we failed to query
- * the mode, or a given mode from the above table. Search for the
- * returned mode to get the desired matrix; if we don't find it,
- * we can return immediately, as _mesa_GetInteger() will have
- * logged the necessary error already.
- */
- for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
- if (modes[i].currentMode == currentMode) {
- desiredMatrix = modes[i].desiredMatrix;
- break;
- }
- }
- if (desiredMatrix == GL_FALSE) {
- /* Early error means all values are invalid. */
- return 0xffff;
- }
-
- /* Now pull the matrix itself. */
- _mesa_GetFloatv(desiredMatrix, matrix);
-
- rv = 0;
- for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
- float normalizedFraction;
- int exp;
-
- switch (fpclassify(matrix[i])) {
- /* A "subnormal" or denormalized number is too small to be
- * represented in normal format; but despite that it's a
- * valid floating point number. FP_ZERO and FP_NORMAL
- * are both valid as well. We should be fine treating
- * these three cases as legitimate floating-point numbers.
- */
- case FP_SUBNORMAL:
- case FP_NORMAL:
- case FP_ZERO:
- normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
- mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
- exponent[i] = (GLint) exp;
- break;
-
- /* If the entry is not-a-number or an infinity, then the
- * matrix component is invalid. The invalid flag for
- * the component is already set; might as well set the
- * other return values to known values. We'll set
- * distinct values so that a savvy end user could determine
- * whether the matrix component was a NaN or an infinity,
- * but this is more useful for debugging than anything else
- * since the standard doesn't specify any such magic
- * values to return.
- */
- case FP_NAN:
- mantissa[i] = INT_TO_FIXED(0);
- exponent[i] = (GLint) 0;
- rv |= bit;
- break;
-
- case FP_INFINITE:
- /* Return +/- 1 based on whether it's a positive or
- * negative infinity.
- */
- if (matrix[i] > 0) {
- mantissa[i] = INT_TO_FIXED(1);
- }
- else {
- mantissa[i] = -INT_TO_FIXED(1);
- }
- exponent[i] = (GLint) 0;
- rv |= bit;
- break;
-
- /* We should never get here; but here's a catching case
- * in case fpclassify() is returnings something unexpected.
- */
- default:
- mantissa[i] = INT_TO_FIXED(2);
- exponent[i] = (GLint) 0;
- rv |= bit;
- break;
- }
-
- } /* for each component */
-
- /* All done */
- return rv;
+ GLfloat matrix[16];
+ GLint tmp;
+ GLenum currentMode = GL_FALSE;
+ GLenum desiredMatrix = GL_FALSE;
+ /* The bitfield returns 1 for each component that is invalid (i.e.
+ * NaN or Inf). In case of error, everything is invalid.
+ */
+ GLbitfield rv;
+ register unsigned int i;
+ unsigned int bit;
+
+ /* This data structure defines the mapping between the current matrix
+ * mode and the desired matrix identifier.
+ */
+ static struct {
+ GLenum currentMode;
+ GLenum desiredMatrix;
+ } modes[] = {
+ {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
+ {GL_PROJECTION, GL_PROJECTION_MATRIX},
+ {GL_TEXTURE, GL_TEXTURE_MATRIX},
+ };
+
+ /* Call Mesa to get the current matrix in floating-point form. First,
+ * we have to figure out what the current matrix mode is.
+ */
+ _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
+ currentMode = (GLenum) tmp;
+
+ /* The mode is either GL_FALSE, if for some reason we failed to query
+ * the mode, or a given mode from the above table. Search for the
+ * returned mode to get the desired matrix; if we don't find it,
+ * we can return immediately, as _mesa_GetInteger() will have
+ * logged the necessary error already.
+ */
+ for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
+ if (modes[i].currentMode == currentMode) {
+ desiredMatrix = modes[i].desiredMatrix;
+ break;
+ }
+ }
+ if (desiredMatrix == GL_FALSE) {
+ /* Early error means all values are invalid. */
+ return 0xffff;
+ }
+
+ /* Now pull the matrix itself. */
+ _mesa_GetFloatv(desiredMatrix, matrix);
+
+ rv = 0;
+ for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
+ float normalizedFraction;
+ int exp;
+
+ switch (fpclassify(matrix[i])) {
+ case FP_SUBNORMAL:
+ case FP_NORMAL:
+ case FP_ZERO:
+ /* A "subnormal" or denormalized number is too small to be
+ * represented in normal format; but despite that it's a
+ * valid floating point number. FP_ZERO and FP_NORMAL
+ * are both valid as well. We should be fine treating
+ * these three cases as legitimate floating-point numbers.
+ */
+ normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
+ mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
+ exponent[i] = (GLint) exp;
+ break;
+
+ case FP_NAN:
+ /* If the entry is not-a-number or an infinity, then the
+ * matrix component is invalid. The invalid flag for
+ * the component is already set; might as well set the
+ * other return values to known values. We'll set
+ * distinct values so that a savvy end user could determine
+ * whether the matrix component was a NaN or an infinity,
+ * but this is more useful for debugging than anything else
+ * since the standard doesn't specify any such magic
+ * values to return.
+ */
+ mantissa[i] = INT_TO_FIXED(0);
+ exponent[i] = (GLint) 0;
+ rv |= bit;
+ break;
+
+ case FP_INFINITE:
+ /* Return +/- 1 based on whether it's a positive or
+ * negative infinity.
+ */
+ if (matrix[i] > 0) {
+ mantissa[i] = INT_TO_FIXED(1);
+ }
+ else {
+ mantissa[i] = -INT_TO_FIXED(1);
+ }
+ exponent[i] = (GLint) 0;
+ rv |= bit;
+ break;
+
+ default:
+ /* We should never get here; but here's a catching case
+ * in case fpclassify() is returnings something unexpected.
+ */
+ mantissa[i] = INT_TO_FIXED(2);
+ exponent[i] = (GLint) 0;
+ rv |= bit;
+ break;
+ }
+
+ } /* for each component */
+
+ /* All done */
+ return rv;
}