diff options
author | Lionel Landwerlin <[email protected]> | 2019-09-04 13:52:13 +0300 |
---|---|---|
committer | Marge Bot <[email protected]> | 2020-03-27 14:14:49 +0000 |
commit | 33b9c7a7f68bb5a4362751ba7daf1ba2b10ece95 (patch) | |
tree | 66055e428c76b293d276660adba1ce6867a7eb21 /src | |
parent | f5c5574f427c710fa2ed7413dc970ccb649b16d7 (diff) |
intel/perf: break GL query stuff away
This stuff is somewhat specific to the GL extension & drivers. On
Vulkan we won't use this, it also made a rather large file.
v2: Fix Android build (Lionel)
Signed-off-by: Lionel Landwerlin <[email protected]>
Acked-by: Jason Ekstrand <[email protected]>
Acked-by: Tapani Pälli <[email protected]>
Reviewed-by: Rafael Antognolli <[email protected]>
Reviewed-by: Mark Janes <[email protected]>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4344>
Diffstat (limited to 'src')
-rw-r--r-- | src/gallium/drivers/iris/iris_perf.c | 1 | ||||
-rw-r--r-- | src/gallium/drivers/iris/iris_perf.h | 1 | ||||
-rw-r--r-- | src/gallium/drivers/iris/iris_performance_query.c | 3 | ||||
-rw-r--r-- | src/gallium/drivers/iris/iris_query.c | 1 | ||||
-rw-r--r-- | src/intel/Makefile.sources | 4 | ||||
-rw-r--r-- | src/intel/perf/gen_perf.c | 1555 | ||||
-rw-r--r-- | src/intel/perf/gen_perf.h | 46 | ||||
-rw-r--r-- | src/intel/perf/gen_perf_query.c | 1584 | ||||
-rw-r--r-- | src/intel/perf/gen_perf_query.h | 88 | ||||
-rw-r--r-- | src/intel/perf/meson.build | 1 | ||||
-rw-r--r-- | src/mesa/drivers/dri/i965/brw_context.h | 1 | ||||
-rw-r--r-- | src/mesa/drivers/dri/i965/brw_performance_query.c | 1 |
12 files changed, 1685 insertions, 1601 deletions
diff --git a/src/gallium/drivers/iris/iris_perf.c b/src/gallium/drivers/iris/iris_perf.c index 784890e4728..ab1d32c1361 100644 --- a/src/gallium/drivers/iris/iris_perf.c +++ b/src/gallium/drivers/iris/iris_perf.c @@ -22,7 +22,6 @@ #include "iris_perf.h" #include "iris_context.h" -#include "perf/gen_perf_regs.h" static void * iris_oa_bo_alloc(void *bufmgr, const char *name, uint64_t size) diff --git a/src/gallium/drivers/iris/iris_perf.h b/src/gallium/drivers/iris/iris_perf.h index a6c132dfe9c..c1f7ea2072c 100644 --- a/src/gallium/drivers/iris/iris_perf.h +++ b/src/gallium/drivers/iris/iris_perf.h @@ -24,6 +24,7 @@ #define IRIS_PERF_H #include "perf/gen_perf.h" +#include "perf/gen_perf_query.h" void iris_perf_init_vtbl(struct gen_perf_config *cfg); diff --git a/src/gallium/drivers/iris/iris_performance_query.c b/src/gallium/drivers/iris/iris_performance_query.c index 2f990762315..825f4c44268 100644 --- a/src/gallium/drivers/iris/iris_performance_query.c +++ b/src/gallium/drivers/iris/iris_performance_query.c @@ -25,9 +25,6 @@ #include "iris_context.h" #include "iris_perf.h" -#include "perf/gen_perf.h" -#include "perf/gen_perf_regs.h" - struct iris_perf_query { struct gl_perf_query_object base; struct gen_perf_query_object *query; diff --git a/src/gallium/drivers/iris/iris_query.c b/src/gallium/drivers/iris/iris_query.c index a6e062ded0f..b6481200bde 100644 --- a/src/gallium/drivers/iris/iris_query.c +++ b/src/gallium/drivers/iris/iris_query.c @@ -33,7 +33,6 @@ #include <stdio.h> #include <errno.h> -#include "perf/gen_perf.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_context.h" diff --git a/src/intel/Makefile.sources b/src/intel/Makefile.sources index 216fe35450e..195ce3e67d8 100644 --- a/src/intel/Makefile.sources +++ b/src/intel/Makefile.sources @@ -357,8 +357,10 @@ GEN_PERF_XML_FILES = \ GEN_PERF_FILES = \ perf/gen_perf.c \ perf/gen_perf.h \ + perf/gen_perf_mdapi.c \ perf/gen_perf_mdapi.h \ - perf/gen_perf_mdapi.c + perf/gen_perf_query.h \ + perf/gen_perf_query.c GEN_PERF_GENERATED_FILES = \ perf/gen_perf_metrics.c \ diff --git a/src/intel/perf/gen_perf.c b/src/intel/perf/gen_perf.c index a654eeb4033..c3c7f2e891a 100644 --- a/src/intel/perf/gen_perf.c +++ b/src/intel/perf/gen_perf.c @@ -36,345 +36,23 @@ #include <drm-uapi/i915_drm.h> #include "common/gen_gem.h" -#include "gen_perf.h" -#include "gen_perf_regs.h" -#include "perf/gen_perf_mdapi.h" -#include "perf/gen_perf_metrics.h" #include "dev/gen_debug.h" #include "dev/gen_device_info.h" + +#include "perf/gen_perf.h" +#include "perf/gen_perf_regs.h" +#include "perf/gen_perf_mdapi.h" +#include "perf/gen_perf_metrics.h" + #include "util/bitscan.h" #include "util/mesa-sha1.h" #include "util/u_math.h" #define FILE_DEBUG_FLAG DEBUG_PERFMON -#define MI_RPC_BO_SIZE 4096 -#define MI_FREQ_START_OFFSET_BYTES (3072) -#define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2) -#define MI_FREQ_END_OFFSET_BYTES (3076) - -#define MAP_READ (1 << 0) -#define MAP_WRITE (1 << 1) #define OA_REPORT_INVALID_CTX_ID (0xffffffff) -/** - * Periodic OA samples are read() into these buffer structures via the - * i915 perf kernel interface and appended to the - * perf_ctx->sample_buffers linked list. When we process the - * results of an OA metrics query we need to consider all the periodic - * samples between the Begin and End MI_REPORT_PERF_COUNT command - * markers. - * - * 'Periodic' is a simplification as there are other automatic reports - * written by the hardware also buffered here. - * - * Considering three queries, A, B and C: - * - * Time ----> - * ________________A_________________ - * | | - * | ________B_________ _____C___________ - * | | | | | | - * - * And an illustration of sample buffers read over this time frame: - * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ] - * - * These nodes may hold samples for query A: - * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ] - * - * These nodes may hold samples for query B: - * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ] - * - * These nodes may hold samples for query C: - * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ] - * - * The illustration assumes we have an even distribution of periodic - * samples so all nodes have the same size plotted against time: - * - * Note, to simplify code, the list is never empty. - * - * With overlapping queries we can see that periodic OA reports may - * relate to multiple queries and care needs to be take to keep - * track of sample buffers until there are no queries that might - * depend on their contents. - * - * We use a node ref counting system where a reference ensures that a - * node and all following nodes can't be freed/recycled until the - * reference drops to zero. - * - * E.g. with a ref of one here: - * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] - * - * These nodes could be freed or recycled ("reaped"): - * [ 0 ][ 0 ] - * - * These must be preserved until the leading ref drops to zero: - * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] - * - * When a query starts we take a reference on the current tail of - * the list, knowing that no already-buffered samples can possibly - * relate to the newly-started query. A pointer to this node is - * also saved in the query object's ->oa.samples_head. - * - * E.g. starting query A while there are two nodes in .sample_buffers: - * ________________A________ - * | - * - * [ 0 ][ 1 ] - * ^_______ Add a reference and store pointer to node in - * A->oa.samples_head - * - * Moving forward to when the B query starts with no new buffer nodes: - * (for reference, i915 perf reads() are only done when queries finish) - * ________________A_______ - * | ________B___ - * | | - * - * [ 0 ][ 2 ] - * ^_______ Add a reference and store pointer to - * node in B->oa.samples_head - * - * Once a query is finished, after an OA query has become 'Ready', - * once the End OA report has landed and after we we have processed - * all the intermediate periodic samples then we drop the - * ->oa.samples_head reference we took at the start. - * - * So when the B query has finished we have: - * ________________A________ - * | ______B___________ - * | | | - * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ] - * ^_______ Drop B->oa.samples_head reference - * - * We still can't free these due to the A->oa.samples_head ref: - * [ 1 ][ 0 ][ 0 ][ 0 ] - * - * When the A query finishes: (note there's a new ref for C's samples_head) - * ________________A_________________ - * | | - * | _____C_________ - * | | | - * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ] - * ^_______ Drop A->oa.samples_head reference - * - * And we can now reap these nodes up to the C->oa.samples_head: - * [ X ][ X ][ X ][ X ] - * keeping -> [ 1 ][ 0 ][ 0 ] - * - * We reap old sample buffers each time we finish processing an OA - * query by iterating the sample_buffers list from the head until we - * find a referenced node and stop. - * - * Reaped buffers move to a perfquery.free_sample_buffers list and - * when we come to read() we first look to recycle a buffer from the - * free_sample_buffers list before allocating a new buffer. - */ -struct oa_sample_buf { - struct exec_node link; - int refcount; - int len; - uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10]; - uint32_t last_timestamp; -}; - -/** - * gen representation of a performance query object. - * - * NB: We want to keep this structure relatively lean considering that - * applications may expect to allocate enough objects to be able to - * query around all draw calls in a frame. - */ -struct gen_perf_query_object -{ - const struct gen_perf_query_info *queryinfo; - - /* See query->kind to know which state below is in use... */ - union { - struct { - - /** - * BO containing OA counter snapshots at query Begin/End time. - */ - void *bo; - - /** - * Address of mapped of @bo - */ - void *map; - - /** - * The MI_REPORT_PERF_COUNT command lets us specify a unique - * ID that will be reflected in the resulting OA report - * that's written by the GPU. This is the ID we're expecting - * in the begin report and the the end report should be - * @begin_report_id + 1. - */ - int begin_report_id; - - /** - * Reference the head of the brw->perfquery.sample_buffers - * list at the time that the query started (so we only need - * to look at nodes after this point when looking for samples - * related to this query) - * - * (See struct brw_oa_sample_buf description for more details) - */ - struct exec_node *samples_head; - - /** - * false while in the unaccumulated_elements list, and set to - * true when the final, end MI_RPC snapshot has been - * accumulated. - */ - bool results_accumulated; - - /** - * Frequency of the GT at begin and end of the query. - */ - uint64_t gt_frequency[2]; - - /** - * Accumulated OA results between begin and end of the query. - */ - struct gen_perf_query_result result; - } oa; - - struct { - /** - * BO containing starting and ending snapshots for the - * statistics counters. - */ - void *bo; - } pipeline_stats; - }; -}; - -struct gen_perf_context { - struct gen_perf_config *perf; - - void * ctx; /* driver context (eg, brw_context) */ - void * bufmgr; - const struct gen_device_info *devinfo; - - uint32_t hw_ctx; - int drm_fd; - - /* The i915 perf stream we open to setup + enable the OA counters */ - int oa_stream_fd; - - /* An i915 perf stream fd gives exclusive access to the OA unit that will - * report counter snapshots for a specific counter set/profile in a - * specific layout/format so we can only start OA queries that are - * compatible with the currently open fd... - */ - int current_oa_metrics_set_id; - int current_oa_format; - - /* List of buffers containing OA reports */ - struct exec_list sample_buffers; - - /* Cached list of empty sample buffers */ - struct exec_list free_sample_buffers; - - int n_active_oa_queries; - int n_active_pipeline_stats_queries; - - /* The number of queries depending on running OA counters which - * extends beyond brw_end_perf_query() since we need to wait until - * the last MI_RPC command has parsed by the GPU. - * - * Accurate accounting is important here as emitting an - * MI_REPORT_PERF_COUNT command while the OA unit is disabled will - * effectively hang the gpu. - */ - int n_oa_users; - - /* To help catch an spurious problem with the hardware or perf - * forwarding samples, we emit each MI_REPORT_PERF_COUNT command - * with a unique ID that we can explicitly check for... - */ - int next_query_start_report_id; - - /** - * An array of queries whose results haven't yet been assembled - * based on the data in buffer objects. - * - * These may be active, or have already ended. However, the - * results have not been requested. - */ - struct gen_perf_query_object **unaccumulated; - int unaccumulated_elements; - int unaccumulated_array_size; - - /* The total number of query objects so we can relinquish - * our exclusive access to perf if the application deletes - * all of its objects. (NB: We only disable perf while - * there are no active queries) - */ - int n_query_instances; -}; - -const struct gen_perf_query_info* -gen_perf_query_info(const struct gen_perf_query_object *query) -{ - return query->queryinfo; -} - -struct gen_perf_context * -gen_perf_new_context(void *parent) -{ - struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context); - if (! ctx) - fprintf(stderr, "%s: failed to alloc context\n", __func__); - return ctx; -} - -struct gen_perf_config * -gen_perf_config(struct gen_perf_context *ctx) -{ - return ctx->perf; -} - -struct gen_perf_query_object * -gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index) -{ - const struct gen_perf_query_info *query = - &perf_ctx->perf->queries[query_index]; - struct gen_perf_query_object *obj = - calloc(1, sizeof(struct gen_perf_query_object)); - - if (!obj) - return NULL; - - obj->queryinfo = query; - - perf_ctx->n_query_instances++; - return obj; -} - -int -gen_perf_active_queries(struct gen_perf_context *perf_ctx, - const struct gen_perf_query_info *query) -{ - assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0); - - switch (query->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - return perf_ctx->n_active_oa_queries; - break; - - case GEN_PERF_QUERY_TYPE_PIPELINE: - return perf_ctx->n_active_pipeline_stats_queries; - break; - - default: - unreachable("Unknown query type"); - break; - } -} - static inline uint64_t to_user_pointer(void *ptr) { return (uintptr_t) ptr; @@ -1415,219 +1093,6 @@ register_mdapi_oa_query(const struct gen_device_info *devinfo, } } -static uint64_t -get_metric_id(struct gen_perf_config *perf, - const struct gen_perf_query_info *query) -{ - /* These queries are know not to ever change, their config ID has been - * loaded upon the first query creation. No need to look them up again. - */ - if (query->kind == GEN_PERF_QUERY_TYPE_OA) - return query->oa_metrics_set_id; - - assert(query->kind == GEN_PERF_QUERY_TYPE_RAW); - - /* Raw queries can be reprogrammed up by an external application/library. - * When a raw query is used for the first time it's id is set to a value != - * 0. When it stops being used the id returns to 0. No need to reload the - * ID when it's already loaded. - */ - if (query->oa_metrics_set_id != 0) { - DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n", - query->name, query->guid, query->oa_metrics_set_id); - return query->oa_metrics_set_id; - } - - struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query; - if (!gen_perf_load_metric_id(perf, query->guid, - &raw_query->oa_metrics_set_id)) { - DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid); - raw_query->oa_metrics_set_id = 1ULL; - } else { - DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n", - query->name, query->guid, query->oa_metrics_set_id); - } - return query->oa_metrics_set_id; -} - -static struct oa_sample_buf * -get_free_sample_buf(struct gen_perf_context *perf_ctx) -{ - struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers); - struct oa_sample_buf *buf; - - if (node) - buf = exec_node_data(struct oa_sample_buf, node, link); - else { - buf = ralloc_size(perf_ctx->perf, sizeof(*buf)); - - exec_node_init(&buf->link); - buf->refcount = 0; - } - buf->len = 0; - - return buf; -} - -static void -reap_old_sample_buffers(struct gen_perf_context *perf_ctx) -{ - struct exec_node *tail_node = - exec_list_get_tail(&perf_ctx->sample_buffers); - struct oa_sample_buf *tail_buf = - exec_node_data(struct oa_sample_buf, tail_node, link); - - /* Remove all old, unreferenced sample buffers walking forward from - * the head of the list, except always leave at least one node in - * the list so we always have a node to reference when we Begin - * a new query. - */ - foreach_list_typed_safe(struct oa_sample_buf, buf, link, - &perf_ctx->sample_buffers) - { - if (buf->refcount == 0 && buf != tail_buf) { - exec_node_remove(&buf->link); - exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link); - } else - return; - } -} - -static void -free_sample_bufs(struct gen_perf_context *perf_ctx) -{ - foreach_list_typed_safe(struct oa_sample_buf, buf, link, - &perf_ctx->free_sample_buffers) - ralloc_free(buf); - - exec_list_make_empty(&perf_ctx->free_sample_buffers); -} - -/******************************************************************************/ - -/** - * Emit MI_STORE_REGISTER_MEM commands to capture all of the - * pipeline statistics for the performance query object. - */ -static void -snapshot_statistics_registers(struct gen_perf_context *ctx, - struct gen_perf_query_object *obj, - uint32_t offset_in_bytes) -{ - struct gen_perf_config *perf = ctx->perf; - const struct gen_perf_query_info *query = obj->queryinfo; - const int n_counters = query->n_counters; - - for (int i = 0; i < n_counters; i++) { - const struct gen_perf_query_counter *counter = &query->counters[i]; - - assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64); - - perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo, - counter->pipeline_stat.reg, 8, - offset_in_bytes + i * sizeof(uint64_t)); - } -} - -static void -snapshot_freq_register(struct gen_perf_context *ctx, - struct gen_perf_query_object *query, - uint32_t bo_offset) -{ - struct gen_perf_config *perf = ctx->perf; - const struct gen_device_info *devinfo = ctx->devinfo; - - if (devinfo->gen == 8 && !devinfo->is_cherryview) - perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN7_RPSTAT1, 4, bo_offset); - else if (devinfo->gen >= 9) - perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN9_RPSTAT0, 4, bo_offset); -} - -static void -gen_perf_close(struct gen_perf_context *perfquery, - const struct gen_perf_query_info *query) -{ - if (perfquery->oa_stream_fd != -1) { - close(perfquery->oa_stream_fd); - perfquery->oa_stream_fd = -1; - } - if (query->kind == GEN_PERF_QUERY_TYPE_RAW) { - struct gen_perf_query_info *raw_query = - (struct gen_perf_query_info *) query; - raw_query->oa_metrics_set_id = 0; - } -} - -static bool -gen_perf_open(struct gen_perf_context *perf_ctx, - int metrics_set_id, - int report_format, - int period_exponent, - int drm_fd, - uint32_t ctx_id) -{ - uint64_t properties[] = { - /* Single context sampling */ - DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id, - - /* Include OA reports in samples */ - DRM_I915_PERF_PROP_SAMPLE_OA, true, - - /* OA unit configuration */ - DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id, - DRM_I915_PERF_PROP_OA_FORMAT, report_format, - DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent, - }; - struct drm_i915_perf_open_param param = { - .flags = I915_PERF_FLAG_FD_CLOEXEC | - I915_PERF_FLAG_FD_NONBLOCK | - I915_PERF_FLAG_DISABLED, - .num_properties = ARRAY_SIZE(properties) / 2, - .properties_ptr = (uintptr_t) properties, - }; - int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m); - if (fd == -1) { - DBG("Error opening gen perf OA stream: %m\n"); - return false; - } - - perf_ctx->oa_stream_fd = fd; - - perf_ctx->current_oa_metrics_set_id = metrics_set_id; - perf_ctx->current_oa_format = report_format; - - return true; -} - -static bool -inc_n_users(struct gen_perf_context *perf_ctx) -{ - if (perf_ctx->n_oa_users == 0 && - gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0) - { - return false; - } - ++perf_ctx->n_oa_users; - - return true; -} - -static void -dec_n_users(struct gen_perf_context *perf_ctx) -{ - /* Disabling the i915 perf stream will effectively disable the OA - * counters. Note it's important to be sure there are no outstanding - * MI_RPC commands at this point since they could stall the CS - * indefinitely once OACONTROL is disabled. - */ - --perf_ctx->n_oa_users; - if (perf_ctx->n_oa_users == 0 && - gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0) - { - DBG("WARNING: Error disabling gen perf stream: %m\n"); - } -} - void gen_perf_init_metrics(struct gen_perf_config *perf_cfg, const struct gen_device_info *devinfo, @@ -1638,1011 +1103,3 @@ gen_perf_init_metrics(struct gen_perf_config *perf_cfg, if (load_oa_metrics(perf_cfg, drm_fd, devinfo)) register_mdapi_oa_query(devinfo, perf_cfg); } - -void -gen_perf_init_context(struct gen_perf_context *perf_ctx, - struct gen_perf_config *perf_cfg, - void * ctx, /* driver context (eg, brw_context) */ - void * bufmgr, /* eg brw_bufmgr */ - const struct gen_device_info *devinfo, - uint32_t hw_ctx, - int drm_fd) -{ - perf_ctx->perf = perf_cfg; - perf_ctx->ctx = ctx; - perf_ctx->bufmgr = bufmgr; - perf_ctx->drm_fd = drm_fd; - perf_ctx->hw_ctx = hw_ctx; - perf_ctx->devinfo = devinfo; - - perf_ctx->unaccumulated = - ralloc_array(ctx, struct gen_perf_query_object *, 2); - perf_ctx->unaccumulated_elements = 0; - perf_ctx->unaccumulated_array_size = 2; - - exec_list_make_empty(&perf_ctx->sample_buffers); - exec_list_make_empty(&perf_ctx->free_sample_buffers); - - /* It's convenient to guarantee that this linked list of sample - * buffers is never empty so we add an empty head so when we - * Begin an OA query we can always take a reference on a buffer - * in this list. - */ - struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); - exec_list_push_head(&perf_ctx->sample_buffers, &buf->link); - - perf_ctx->oa_stream_fd = -1; - perf_ctx->next_query_start_report_id = 1000; -} - -/** - * Add a query to the global list of "unaccumulated queries." - * - * Queries are tracked here until all the associated OA reports have - * been accumulated via accumulate_oa_reports() after the end - * MI_REPORT_PERF_COUNT has landed in query->oa.bo. - */ -static void -add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *obj) -{ - if (perf_ctx->unaccumulated_elements >= - perf_ctx->unaccumulated_array_size) - { - perf_ctx->unaccumulated_array_size *= 1.5; - perf_ctx->unaccumulated = - reralloc(perf_ctx->ctx, perf_ctx->unaccumulated, - struct gen_perf_query_object *, - perf_ctx->unaccumulated_array_size); - } - - perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj; -} - -bool -gen_perf_begin_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - const struct gen_perf_query_info *queryinfo = query->queryinfo; - - /* XXX: We have to consider that the command parser unit that parses batch - * buffer commands and is used to capture begin/end counter snapshots isn't - * implicitly synchronized with what's currently running across other GPU - * units (such as the EUs running shaders) that the performance counters are - * associated with. - * - * The intention of performance queries is to measure the work associated - * with commands between the begin/end delimiters and so for that to be the - * case we need to explicitly synchronize the parsing of commands to capture - * Begin/End counter snapshots with what's running across other parts of the - * GPU. - * - * When the command parser reaches a Begin marker it effectively needs to - * drain everything currently running on the GPU until the hardware is idle - * before capturing the first snapshot of counters - otherwise the results - * would also be measuring the effects of earlier commands. - * - * When the command parser reaches an End marker it needs to stall until - * everything currently running on the GPU has finished before capturing the - * end snapshot - otherwise the results won't be a complete representation - * of the work. - * - * To achieve this, we stall the pipeline at pixel scoreboard (prevent any - * additional work to be processed by the pipeline until all pixels of the - * previous draw has be completed). - * - * N.B. The final results are based on deltas of counters between (inside) - * Begin/End markers so even though the total wall clock time of the - * workload is stretched by larger pipeline bubbles the bubbles themselves - * are generally invisible to the query results. Whether that's a good or a - * bad thing depends on the use case. For a lower real-time impact while - * capturing metrics then periodic sampling may be a better choice than - * INTEL_performance_query. - * - * - * This is our Begin synchronization point to drain current work on the - * GPU before we capture our first counter snapshot... - */ - perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); - - switch (queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: { - - /* Opening an i915 perf stream implies exclusive access to the OA unit - * which will generate counter reports for a specific counter set with a - * specific layout/format so we can't begin any OA based queries that - * require a different counter set or format unless we get an opportunity - * to close the stream and open a new one... - */ - uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo); - - if (perf_ctx->oa_stream_fd != -1 && - perf_ctx->current_oa_metrics_set_id != metric_id) { - - if (perf_ctx->n_oa_users != 0) { - DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n", - perf_ctx->current_oa_metrics_set_id, metric_id); - return false; - } else - gen_perf_close(perf_ctx, queryinfo); - } - - /* If the OA counters aren't already on, enable them. */ - if (perf_ctx->oa_stream_fd == -1) { - const struct gen_device_info *devinfo = perf_ctx->devinfo; - - /* The period_exponent gives a sampling period as follows: - * sample_period = timestamp_period * 2^(period_exponent + 1) - * - * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or - * ~83ns (GEN8/9). - * - * The counter overflow period is derived from the EuActive counter - * which reads a counter that increments by the number of clock - * cycles multiplied by the number of EUs. It can be calculated as: - * - * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2) - * - * (E.g. 40 EUs @ 1GHz = ~53ms) - * - * We select a sampling period inferior to that overflow period to - * ensure we cannot see more than 1 counter overflow, otherwise we - * could loose information. - */ - - int a_counter_in_bits = 32; - if (devinfo->gen >= 8) - a_counter_in_bits = 40; - - uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus * - /* drop 1GHz freq to have units in nanoseconds */ - 2); - - DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n", - overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus); - - int period_exponent = 0; - uint64_t prev_sample_period, next_sample_period; - for (int e = 0; e < 30; e++) { - prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency; - next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency; - - /* Take the previous sampling period, lower than the overflow - * period. - */ - if (prev_sample_period < overflow_period && - next_sample_period > overflow_period) - period_exponent = e + 1; - } - - if (period_exponent == 0) { - DBG("WARNING: enable to find a sampling exponent\n"); - return false; - } - - DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent, - prev_sample_period / 1000000ul); - - if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format, - period_exponent, perf_ctx->drm_fd, - perf_ctx->hw_ctx)) - return false; - } else { - assert(perf_ctx->current_oa_metrics_set_id == metric_id && - perf_ctx->current_oa_format == queryinfo->oa_format); - } - - if (!inc_n_users(perf_ctx)) { - DBG("WARNING: Error enabling i915 perf stream: %m\n"); - return false; - } - - if (query->oa.bo) { - perf_cfg->vtbl.bo_unreference(query->oa.bo); - query->oa.bo = NULL; - } - - query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, - "perf. query OA MI_RPC bo", - MI_RPC_BO_SIZE); -#ifdef DEBUG - /* Pre-filling the BO helps debug whether writes landed. */ - void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE); - memset(map, 0x80, MI_RPC_BO_SIZE); - perf_cfg->vtbl.bo_unmap(query->oa.bo); -#endif - - query->oa.begin_report_id = perf_ctx->next_query_start_report_id; - perf_ctx->next_query_start_report_id += 2; - - /* Take a starting OA counter snapshot. */ - perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0, - query->oa.begin_report_id); - snapshot_freq_register(perf_ctx, query, MI_FREQ_START_OFFSET_BYTES); - - ++perf_ctx->n_active_oa_queries; - - /* No already-buffered samples can possibly be associated with this query - * so create a marker within the list of sample buffers enabling us to - * easily ignore earlier samples when processing this query after - * completion. - */ - assert(!exec_list_is_empty(&perf_ctx->sample_buffers)); - query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers); - - struct oa_sample_buf *buf = - exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); - - /* This reference will ensure that future/following sample - * buffers (that may relate to this query) can't be freed until - * this drops to zero. - */ - buf->refcount++; - - gen_perf_query_result_clear(&query->oa.result); - query->oa.results_accumulated = false; - - add_to_unaccumulated_query_list(perf_ctx, query); - break; - } - - case GEN_PERF_QUERY_TYPE_PIPELINE: - if (query->pipeline_stats.bo) { - perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); - query->pipeline_stats.bo = NULL; - } - - query->pipeline_stats.bo = - perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, - "perf. query pipeline stats bo", - STATS_BO_SIZE); - - /* Take starting snapshots. */ - snapshot_statistics_registers(perf_ctx, query, 0); - - ++perf_ctx->n_active_pipeline_stats_queries; - break; - - default: - unreachable("Unknown query type"); - break; - } - - return true; -} - -void -gen_perf_end_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - - /* Ensure that the work associated with the queried commands will have - * finished before taking our query end counter readings. - * - * For more details see comment in brw_begin_perf_query for - * corresponding flush. - */ - perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); - - switch (query->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - - /* NB: It's possible that the query will have already been marked - * as 'accumulated' if an error was seen while reading samples - * from perf. In this case we mustn't try and emit a closing - * MI_RPC command in case the OA unit has already been disabled - */ - if (!query->oa.results_accumulated) { - /* Take an ending OA counter snapshot. */ - snapshot_freq_register(perf_ctx, query, MI_FREQ_END_OFFSET_BYTES); - perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, - MI_RPC_BO_END_OFFSET_BYTES, - query->oa.begin_report_id + 1); - } - - --perf_ctx->n_active_oa_queries; - - /* NB: even though the query has now ended, it can't be accumulated - * until the end MI_REPORT_PERF_COUNT snapshot has been written - * to query->oa.bo - */ - break; - - case GEN_PERF_QUERY_TYPE_PIPELINE: - snapshot_statistics_registers(perf_ctx, query, - STATS_BO_END_OFFSET_BYTES); - --perf_ctx->n_active_pipeline_stats_queries; - break; - - default: - unreachable("Unknown query type"); - break; - } -} - -enum OaReadStatus { - OA_READ_STATUS_ERROR, - OA_READ_STATUS_UNFINISHED, - OA_READ_STATUS_FINISHED, -}; - -static enum OaReadStatus -read_oa_samples_until(struct gen_perf_context *perf_ctx, - uint32_t start_timestamp, - uint32_t end_timestamp) -{ - struct exec_node *tail_node = - exec_list_get_tail(&perf_ctx->sample_buffers); - struct oa_sample_buf *tail_buf = - exec_node_data(struct oa_sample_buf, tail_node, link); - uint32_t last_timestamp = - tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp; - - while (1) { - struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); - uint32_t offset; - int len; - - while ((len = read(perf_ctx->oa_stream_fd, buf->buf, - sizeof(buf->buf))) < 0 && errno == EINTR) - ; - - if (len <= 0) { - exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link); - - if (len < 0) { - if (errno == EAGAIN) { - return ((last_timestamp - start_timestamp) < INT32_MAX && - (last_timestamp - start_timestamp) >= - (end_timestamp - start_timestamp)) ? - OA_READ_STATUS_FINISHED : - OA_READ_STATUS_UNFINISHED; - } else { - DBG("Error reading i915 perf samples: %m\n"); - } - } else - DBG("Spurious EOF reading i915 perf samples\n"); - - return OA_READ_STATUS_ERROR; - } - - buf->len = len; - exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link); - - /* Go through the reports and update the last timestamp. */ - offset = 0; - while (offset < buf->len) { - const struct drm_i915_perf_record_header *header = - (const struct drm_i915_perf_record_header *) &buf->buf[offset]; - uint32_t *report = (uint32_t *) (header + 1); - - if (header->type == DRM_I915_PERF_RECORD_SAMPLE) - last_timestamp = report[1]; - - offset += header->size; - } - - buf->last_timestamp = last_timestamp; - } - - unreachable("not reached"); - return OA_READ_STATUS_ERROR; -} - -/** - * Try to read all the reports until either the delimiting timestamp - * or an error arises. - */ -static bool -read_oa_samples_for_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - void *current_batch) -{ - uint32_t *start; - uint32_t *last; - uint32_t *end; - struct gen_perf_config *perf_cfg = perf_ctx->perf; - - /* We need the MI_REPORT_PERF_COUNT to land before we can start - * accumulate. */ - assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && - !perf_cfg->vtbl.bo_busy(query->oa.bo)); - - /* Map the BO once here and let accumulate_oa_reports() unmap - * it. */ - if (query->oa.map == NULL) - query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ); - - start = last = query->oa.map; - end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; - - if (start[0] != query->oa.begin_report_id) { - DBG("Spurious start report id=%"PRIu32"\n", start[0]); - return true; - } - if (end[0] != (query->oa.begin_report_id + 1)) { - DBG("Spurious end report id=%"PRIu32"\n", end[0]); - return true; - } - - /* Read the reports until the end timestamp. */ - switch (read_oa_samples_until(perf_ctx, start[1], end[1])) { - case OA_READ_STATUS_ERROR: - /* Fallthrough and let accumulate_oa_reports() deal with the - * error. */ - case OA_READ_STATUS_FINISHED: - return true; - case OA_READ_STATUS_UNFINISHED: - return false; - } - - unreachable("invalid read status"); - return false; -} - -void -gen_perf_wait_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - void *current_batch) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - struct brw_bo *bo = NULL; - - switch (query->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - bo = query->oa.bo; - break; - - case GEN_PERF_QUERY_TYPE_PIPELINE: - bo = query->pipeline_stats.bo; - break; - - default: - unreachable("Unknown query type"); - break; - } - - if (bo == NULL) - return; - - /* If the current batch references our results bo then we need to - * flush first... - */ - if (perf_cfg->vtbl.batch_references(current_batch, bo)) - perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__); - - perf_cfg->vtbl.bo_wait_rendering(bo); - - /* Due to a race condition between the OA unit signaling report - * availability and the report actually being written into memory, - * we need to wait for all the reports to come in before we can - * read them. - */ - if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA || - query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) { - while (!read_oa_samples_for_query(perf_ctx, query, current_batch)) - ; - } -} - -bool -gen_perf_is_query_ready(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - void *current_batch) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - - switch (query->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - return (query->oa.results_accumulated || - (query->oa.bo && - !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && - !perf_cfg->vtbl.bo_busy(query->oa.bo) && - read_oa_samples_for_query(perf_ctx, query, current_batch))); - case GEN_PERF_QUERY_TYPE_PIPELINE: - return (query->pipeline_stats.bo && - !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) && - !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo)); - - default: - unreachable("Unknown query type"); - break; - } - - return false; -} - -/** - * Remove a query from the global list of unaccumulated queries once - * after successfully accumulating the OA reports associated with the - * query in accumulate_oa_reports() or when discarding unwanted query - * results. - */ -static void -drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query) -{ - for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) { - if (perf_ctx->unaccumulated[i] == query) { - int last_elt = --perf_ctx->unaccumulated_elements; - - if (i == last_elt) - perf_ctx->unaccumulated[i] = NULL; - else { - perf_ctx->unaccumulated[i] = - perf_ctx->unaccumulated[last_elt]; - } - - break; - } - } - - /* Drop our samples_head reference so that associated periodic - * sample data buffers can potentially be reaped if they aren't - * referenced by any other queries... - */ - - struct oa_sample_buf *buf = - exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); - - assert(buf->refcount > 0); - buf->refcount--; - - query->oa.samples_head = NULL; - - reap_old_sample_buffers(perf_ctx); -} - -/* In general if we see anything spurious while accumulating results, - * we don't try and continue accumulating the current query, hoping - * for the best, we scrap anything outstanding, and then hope for the - * best with new queries. - */ -static void -discard_all_queries(struct gen_perf_context *perf_ctx) -{ - while (perf_ctx->unaccumulated_elements) { - struct gen_perf_query_object *query = perf_ctx->unaccumulated[0]; - - query->oa.results_accumulated = true; - drop_from_unaccumulated_query_list(perf_ctx, query); - - dec_n_users(perf_ctx); - } -} - -/* Looks for the validity bit of context ID (dword 2) of an OA report. */ -static bool -oa_report_ctx_id_valid(const struct gen_device_info *devinfo, - const uint32_t *report) -{ - assert(devinfo->gen >= 8); - if (devinfo->gen == 8) - return (report[0] & (1 << 25)) != 0; - return (report[0] & (1 << 16)) != 0; -} - -/** - * Accumulate raw OA counter values based on deltas between pairs of - * OA reports. - * - * Accumulation starts from the first report captured via - * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the - * last MI_RPC report requested by brw_end_perf_query(). Between these - * two reports there may also some number of periodically sampled OA - * reports collected via the i915 perf interface - depending on the - * duration of the query. - * - * These periodic snapshots help to ensure we handle counter overflow - * correctly by being frequent enough to ensure we don't miss multiple - * overflows of a counter between snapshots. For Gen8+ the i915 perf - * snapshots provide the extra context-switch reports that let us - * subtract out the progress of counters associated with other - * contexts running on the system. - */ -static void -accumulate_oa_reports(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query) -{ - const struct gen_device_info *devinfo = perf_ctx->devinfo; - uint32_t *start; - uint32_t *last; - uint32_t *end; - struct exec_node *first_samples_node; - bool last_report_ctx_match = true; - int out_duration = 0; - - assert(query->oa.map != NULL); - - start = last = query->oa.map; - end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; - - if (start[0] != query->oa.begin_report_id) { - DBG("Spurious start report id=%"PRIu32"\n", start[0]); - goto error; - } - if (end[0] != (query->oa.begin_report_id + 1)) { - DBG("Spurious end report id=%"PRIu32"\n", end[0]); - goto error; - } - - /* On Gen12+ OA reports are sourced from per context counters, so we don't - * ever have to look at the global OA buffer. Yey \o/ - */ - if (perf_ctx->devinfo->gen >= 12) { - last = start; - goto end; - } - - /* See if we have any periodic reports to accumulate too... */ - - /* N.B. The oa.samples_head was set when the query began and - * pointed to the tail of the perf_ctx->sample_buffers list at - * the time the query started. Since the buffer existed before the - * first MI_REPORT_PERF_COUNT command was emitted we therefore know - * that no data in this particular node's buffer can possibly be - * associated with the query - so skip ahead one... - */ - first_samples_node = query->oa.samples_head->next; - - foreach_list_typed_from(struct oa_sample_buf, buf, link, - &perf_ctx->sample_buffers, - first_samples_node) - { - int offset = 0; - - while (offset < buf->len) { - const struct drm_i915_perf_record_header *header = - (const struct drm_i915_perf_record_header *)(buf->buf + offset); - - assert(header->size != 0); - assert(header->size <= buf->len); - - offset += header->size; - - switch (header->type) { - case DRM_I915_PERF_RECORD_SAMPLE: { - uint32_t *report = (uint32_t *)(header + 1); - bool report_ctx_match = true; - bool add = true; - - /* Ignore reports that come before the start marker. - * (Note: takes care to allow overflow of 32bit timestamps) - */ - if (gen_device_info_timebase_scale(devinfo, - report[1] - start[1]) > 5000000000) { - continue; - } - - /* Ignore reports that come after the end marker. - * (Note: takes care to allow overflow of 32bit timestamps) - */ - if (gen_device_info_timebase_scale(devinfo, - report[1] - end[1]) <= 5000000000) { - goto end; - } - - /* For Gen8+ since the counters continue while other - * contexts are running we need to discount any unrelated - * deltas. The hardware automatically generates a report - * on context switch which gives us a new reference point - * to continuing adding deltas from. - * - * For Haswell we can rely on the HW to stop the progress - * of OA counters while any other context is acctive. - */ - if (devinfo->gen >= 8) { - /* Consider that the current report matches our context only if - * the report says the report ID is valid. - */ - report_ctx_match = oa_report_ctx_id_valid(devinfo, report) && - report[2] == start[2]; - if (report_ctx_match) - out_duration = 0; - else - out_duration++; - - /* Only add the delta between <last, report> if the last report - * was clearly identified as our context, or if we have at most - * 1 report without a matching ID. - * - * The OA unit will sometimes label reports with an invalid - * context ID when i915 rewrites the execlist submit register - * with the same context as the one currently running. This - * happens when i915 wants to notify the HW of ringbuffer tail - * register update. We have to consider this report as part of - * our context as the 3d pipeline behind the OACS unit is still - * processing the operations started at the previous execlist - * submission. - */ - add = last_report_ctx_match && out_duration < 2; - } - - if (add) { - gen_perf_query_result_accumulate(&query->oa.result, - query->queryinfo, - last, report); - } else { - /* We're not adding the delta because we've identified it's not - * for the context we filter for. We can consider that the - * query was split. - */ - query->oa.result.query_disjoint = true; - } - - last = report; - last_report_ctx_match = report_ctx_match; - - break; - } - - case DRM_I915_PERF_RECORD_OA_BUFFER_LOST: - DBG("i915 perf: OA error: all reports lost\n"); - goto error; - case DRM_I915_PERF_RECORD_OA_REPORT_LOST: - DBG("i915 perf: OA report lost\n"); - break; - } - } - } - -end: - - gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo, - last, end); - - query->oa.results_accumulated = true; - drop_from_unaccumulated_query_list(perf_ctx, query); - dec_n_users(perf_ctx); - - return; - -error: - - discard_all_queries(perf_ctx); -} - -void -gen_perf_delete_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - - /* We can assume that the frontend waits for a query to complete - * before ever calling into here, so we don't have to worry about - * deleting an in-flight query object. - */ - switch (query->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - if (query->oa.bo) { - if (!query->oa.results_accumulated) { - drop_from_unaccumulated_query_list(perf_ctx, query); - dec_n_users(perf_ctx); - } - - perf_cfg->vtbl.bo_unreference(query->oa.bo); - query->oa.bo = NULL; - } - - query->oa.results_accumulated = false; - break; - - case GEN_PERF_QUERY_TYPE_PIPELINE: - if (query->pipeline_stats.bo) { - perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); - query->pipeline_stats.bo = NULL; - } - break; - - default: - unreachable("Unknown query type"); - break; - } - - /* As an indication that the INTEL_performance_query extension is no - * longer in use, it's a good time to free our cache of sample - * buffers and close any current i915-perf stream. - */ - if (--perf_ctx->n_query_instances == 0) { - free_sample_bufs(perf_ctx); - gen_perf_close(perf_ctx, query->queryinfo); - } - - free(query); -} - -#define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT) - -static void -read_gt_frequency(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *obj) -{ - const struct gen_device_info *devinfo = perf_ctx->devinfo; - uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)), - end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES)); - - switch (devinfo->gen) { - case 7: - case 8: - obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; - obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; - break; - case 9: - case 10: - case 11: - obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; - obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; - break; - default: - unreachable("unexpected gen"); - } - - /* Put the numbers into Hz. */ - obj->oa.gt_frequency[0] *= 1000000ULL; - obj->oa.gt_frequency[1] *= 1000000ULL; -} - -static int -get_oa_counter_data(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - size_t data_size, - uint8_t *data) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - const struct gen_perf_query_info *queryinfo = query->queryinfo; - int n_counters = queryinfo->n_counters; - int written = 0; - - for (int i = 0; i < n_counters; i++) { - const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; - uint64_t *out_uint64; - float *out_float; - size_t counter_size = gen_perf_query_counter_get_size(counter); - - if (counter_size) { - switch (counter->data_type) { - case GEN_PERF_COUNTER_DATA_TYPE_UINT64: - out_uint64 = (uint64_t *)(data + counter->offset); - *out_uint64 = - counter->oa_counter_read_uint64(perf_cfg, queryinfo, - query->oa.result.accumulator); - break; - case GEN_PERF_COUNTER_DATA_TYPE_FLOAT: - out_float = (float *)(data + counter->offset); - *out_float = - counter->oa_counter_read_float(perf_cfg, queryinfo, - query->oa.result.accumulator); - break; - default: - /* So far we aren't using uint32, double or bool32... */ - unreachable("unexpected counter data type"); - } - written = counter->offset + counter_size; - } - } - - return written; -} - -static int -get_pipeline_stats_data(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - size_t data_size, - uint8_t *data) - -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - const struct gen_perf_query_info *queryinfo = query->queryinfo; - int n_counters = queryinfo->n_counters; - uint8_t *p = data; - - uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ); - uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); - - for (int i = 0; i < n_counters; i++) { - const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; - uint64_t value = end[i] - start[i]; - - if (counter->pipeline_stat.numerator != - counter->pipeline_stat.denominator) { - value *= counter->pipeline_stat.numerator; - value /= counter->pipeline_stat.denominator; - } - - *((uint64_t *)p) = value; - p += 8; - } - - perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo); - - return p - data; -} - -void -gen_perf_get_query_data(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - int data_size, - unsigned *data, - unsigned *bytes_written) -{ - struct gen_perf_config *perf_cfg = perf_ctx->perf; - int written = 0; - - switch (query->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - if (!query->oa.results_accumulated) { - read_gt_frequency(perf_ctx, query); - uint32_t *begin_report = query->oa.map; - uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; - gen_perf_query_result_read_frequencies(&query->oa.result, - perf_ctx->devinfo, - begin_report, - end_report); - accumulate_oa_reports(perf_ctx, query); - assert(query->oa.results_accumulated); - - perf_cfg->vtbl.bo_unmap(query->oa.bo); - query->oa.map = NULL; - } - if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) { - written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data); - } else { - const struct gen_device_info *devinfo = perf_ctx->devinfo; - - written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size, - devinfo, &query->oa.result, - query->oa.gt_frequency[0], - query->oa.gt_frequency[1]); - } - break; - - case GEN_PERF_QUERY_TYPE_PIPELINE: - written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data); - break; - - default: - unreachable("Unknown query type"); - break; - } - - if (bytes_written) - *bytes_written = written; -} - -void -gen_perf_dump_query_count(struct gen_perf_context *perf_ctx) -{ - DBG("Queries: (Open queries = %d, OA users = %d)\n", - perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users); -} - -void -gen_perf_dump_query(struct gen_perf_context *ctx, - struct gen_perf_query_object *obj, - void *current_batch) -{ - switch (obj->queryinfo->kind) { - case GEN_PERF_QUERY_TYPE_OA: - case GEN_PERF_QUERY_TYPE_RAW: - DBG("BO: %-4s OA data: %-10s %-15s\n", - obj->oa.bo ? "yes," : "no,", - gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,", - obj->oa.results_accumulated ? "accumulated" : "not accumulated"); - break; - case GEN_PERF_QUERY_TYPE_PIPELINE: - DBG("BO: %-4s\n", - obj->pipeline_stats.bo ? "yes" : "no"); - break; - default: - unreachable("Unknown query type"); - break; - } -} diff --git a/src/intel/perf/gen_perf.h b/src/intel/perf/gen_perf.h index b0af49ffb2c..8f6fca16aa1 100644 --- a/src/intel/perf/gen_perf.h +++ b/src/intel/perf/gen_perf.h @@ -241,9 +241,6 @@ struct gen_perf_config { } vtbl; }; -struct gen_perf_query_object; -const struct gen_perf_query_info* gen_perf_query_info(const struct gen_perf_query_object *); - void gen_perf_init_metrics(struct gen_perf_config *perf_cfg, const struct gen_device_info *devinfo, int drm_fd); @@ -283,22 +280,6 @@ void gen_perf_query_result_accumulate(struct gen_perf_query_result *result, const uint32_t *end); void gen_perf_query_result_clear(struct gen_perf_query_result *result); -struct gen_perf_context; -struct gen_perf_context *gen_perf_new_context(void *parent); - -void gen_perf_init_context(struct gen_perf_context *perf_ctx, - struct gen_perf_config *perf_cfg, - void * ctx, /* driver context (eg, brw_context) */ - void * bufmgr, /* eg brw_bufmgr */ - const struct gen_device_info *devinfo, - uint32_t hw_ctx, - int drm_fd); - -struct gen_perf_config *gen_perf_config(struct gen_perf_context *ctx); - -int gen_perf_active_queries(struct gen_perf_context *perf_ctx, - const struct gen_perf_query_info *query); - static inline size_t gen_perf_query_counter_get_size(const struct gen_perf_query_counter *counter) { @@ -325,31 +306,4 @@ gen_perf_new(void *ctx) return perf; } -struct gen_perf_query_object * -gen_perf_new_query(struct gen_perf_context *, unsigned query_index); - - -bool gen_perf_begin_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query); -void gen_perf_end_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query); -void gen_perf_wait_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - void *current_batch); -bool gen_perf_is_query_ready(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - void *current_batch); -void gen_perf_delete_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query); -void gen_perf_get_query_data(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *query, - int data_size, - unsigned *data, - unsigned *bytes_written); - -void gen_perf_dump_query_count(struct gen_perf_context *perf_ctx); -void gen_perf_dump_query(struct gen_perf_context *perf_ctx, - struct gen_perf_query_object *obj, - void *current_batch); - #endif /* GEN_PERF_H */ diff --git a/src/intel/perf/gen_perf_query.c b/src/intel/perf/gen_perf_query.c new file mode 100644 index 00000000000..1d6743d4153 --- /dev/null +++ b/src/intel/perf/gen_perf_query.c @@ -0,0 +1,1584 @@ +/* + * Copyright © 2019 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#include <unistd.h> + +#include "common/gen_gem.h" + +#include "dev/gen_debug.h" +#include "dev/gen_device_info.h" + +#include "perf/gen_perf.h" +#include "perf/gen_perf_mdapi.h" +#include "perf/gen_perf_query.h" +#include "perf/gen_perf_regs.h" + +#include "drm-uapi/i915_drm.h" + +#include "util/u_math.h" + +#define FILE_DEBUG_FLAG DEBUG_PERFMON +#define MI_RPC_BO_SIZE 4096 +#define MI_FREQ_START_OFFSET_BYTES (3072) +#define MI_RPC_BO_END_OFFSET_BYTES (MI_RPC_BO_SIZE / 2) +#define MI_FREQ_END_OFFSET_BYTES (3076) + +#define MAP_READ (1 << 0) +#define MAP_WRITE (1 << 1) + +/** + * Periodic OA samples are read() into these buffer structures via the + * i915 perf kernel interface and appended to the + * perf_ctx->sample_buffers linked list. When we process the + * results of an OA metrics query we need to consider all the periodic + * samples between the Begin and End MI_REPORT_PERF_COUNT command + * markers. + * + * 'Periodic' is a simplification as there are other automatic reports + * written by the hardware also buffered here. + * + * Considering three queries, A, B and C: + * + * Time ----> + * ________________A_________________ + * | | + * | ________B_________ _____C___________ + * | | | | | | + * + * And an illustration of sample buffers read over this time frame: + * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ] + * + * These nodes may hold samples for query A: + * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ] + * + * These nodes may hold samples for query B: + * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ] + * + * These nodes may hold samples for query C: + * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ] + * + * The illustration assumes we have an even distribution of periodic + * samples so all nodes have the same size plotted against time: + * + * Note, to simplify code, the list is never empty. + * + * With overlapping queries we can see that periodic OA reports may + * relate to multiple queries and care needs to be take to keep + * track of sample buffers until there are no queries that might + * depend on their contents. + * + * We use a node ref counting system where a reference ensures that a + * node and all following nodes can't be freed/recycled until the + * reference drops to zero. + * + * E.g. with a ref of one here: + * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] + * + * These nodes could be freed or recycled ("reaped"): + * [ 0 ][ 0 ] + * + * These must be preserved until the leading ref drops to zero: + * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ] + * + * When a query starts we take a reference on the current tail of + * the list, knowing that no already-buffered samples can possibly + * relate to the newly-started query. A pointer to this node is + * also saved in the query object's ->oa.samples_head. + * + * E.g. starting query A while there are two nodes in .sample_buffers: + * ________________A________ + * | + * + * [ 0 ][ 1 ] + * ^_______ Add a reference and store pointer to node in + * A->oa.samples_head + * + * Moving forward to when the B query starts with no new buffer nodes: + * (for reference, i915 perf reads() are only done when queries finish) + * ________________A_______ + * | ________B___ + * | | + * + * [ 0 ][ 2 ] + * ^_______ Add a reference and store pointer to + * node in B->oa.samples_head + * + * Once a query is finished, after an OA query has become 'Ready', + * once the End OA report has landed and after we we have processed + * all the intermediate periodic samples then we drop the + * ->oa.samples_head reference we took at the start. + * + * So when the B query has finished we have: + * ________________A________ + * | ______B___________ + * | | | + * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ] + * ^_______ Drop B->oa.samples_head reference + * + * We still can't free these due to the A->oa.samples_head ref: + * [ 1 ][ 0 ][ 0 ][ 0 ] + * + * When the A query finishes: (note there's a new ref for C's samples_head) + * ________________A_________________ + * | | + * | _____C_________ + * | | | + * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ] + * ^_______ Drop A->oa.samples_head reference + * + * And we can now reap these nodes up to the C->oa.samples_head: + * [ X ][ X ][ X ][ X ] + * keeping -> [ 1 ][ 0 ][ 0 ] + * + * We reap old sample buffers each time we finish processing an OA + * query by iterating the sample_buffers list from the head until we + * find a referenced node and stop. + * + * Reaped buffers move to a perfquery.free_sample_buffers list and + * when we come to read() we first look to recycle a buffer from the + * free_sample_buffers list before allocating a new buffer. + */ +struct oa_sample_buf { + struct exec_node link; + int refcount; + int len; + uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10]; + uint32_t last_timestamp; +}; + +/** + * gen representation of a performance query object. + * + * NB: We want to keep this structure relatively lean considering that + * applications may expect to allocate enough objects to be able to + * query around all draw calls in a frame. + */ +struct gen_perf_query_object +{ + const struct gen_perf_query_info *queryinfo; + + /* See query->kind to know which state below is in use... */ + union { + struct { + + /** + * BO containing OA counter snapshots at query Begin/End time. + */ + void *bo; + + /** + * Address of mapped of @bo + */ + void *map; + + /** + * The MI_REPORT_PERF_COUNT command lets us specify a unique + * ID that will be reflected in the resulting OA report + * that's written by the GPU. This is the ID we're expecting + * in the begin report and the the end report should be + * @begin_report_id + 1. + */ + int begin_report_id; + + /** + * Reference the head of the brw->perfquery.sample_buffers + * list at the time that the query started (so we only need + * to look at nodes after this point when looking for samples + * related to this query) + * + * (See struct brw_oa_sample_buf description for more details) + */ + struct exec_node *samples_head; + + /** + * false while in the unaccumulated_elements list, and set to + * true when the final, end MI_RPC snapshot has been + * accumulated. + */ + bool results_accumulated; + + /** + * Frequency of the GT at begin and end of the query. + */ + uint64_t gt_frequency[2]; + + /** + * Accumulated OA results between begin and end of the query. + */ + struct gen_perf_query_result result; + } oa; + + struct { + /** + * BO containing starting and ending snapshots for the + * statistics counters. + */ + void *bo; + } pipeline_stats; + }; +}; + +struct gen_perf_context { + struct gen_perf_config *perf; + + void * ctx; /* driver context (eg, brw_context) */ + void * bufmgr; + const struct gen_device_info *devinfo; + + uint32_t hw_ctx; + int drm_fd; + + /* The i915 perf stream we open to setup + enable the OA counters */ + int oa_stream_fd; + + /* An i915 perf stream fd gives exclusive access to the OA unit that will + * report counter snapshots for a specific counter set/profile in a + * specific layout/format so we can only start OA queries that are + * compatible with the currently open fd... + */ + int current_oa_metrics_set_id; + int current_oa_format; + + /* List of buffers containing OA reports */ + struct exec_list sample_buffers; + + /* Cached list of empty sample buffers */ + struct exec_list free_sample_buffers; + + int n_active_oa_queries; + int n_active_pipeline_stats_queries; + + /* The number of queries depending on running OA counters which + * extends beyond brw_end_perf_query() since we need to wait until + * the last MI_RPC command has parsed by the GPU. + * + * Accurate accounting is important here as emitting an + * MI_REPORT_PERF_COUNT command while the OA unit is disabled will + * effectively hang the gpu. + */ + int n_oa_users; + + /* To help catch an spurious problem with the hardware or perf + * forwarding samples, we emit each MI_REPORT_PERF_COUNT command + * with a unique ID that we can explicitly check for... + */ + int next_query_start_report_id; + + /** + * An array of queries whose results haven't yet been assembled + * based on the data in buffer objects. + * + * These may be active, or have already ended. However, the + * results have not been requested. + */ + struct gen_perf_query_object **unaccumulated; + int unaccumulated_elements; + int unaccumulated_array_size; + + /* The total number of query objects so we can relinquish + * our exclusive access to perf if the application deletes + * all of its objects. (NB: We only disable perf while + * there are no active queries) + */ + int n_query_instances; +}; + +static bool +inc_n_users(struct gen_perf_context *perf_ctx) +{ + if (perf_ctx->n_oa_users == 0 && + gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0) + { + return false; + } + ++perf_ctx->n_oa_users; + + return true; +} + +static void +dec_n_users(struct gen_perf_context *perf_ctx) +{ + /* Disabling the i915 perf stream will effectively disable the OA + * counters. Note it's important to be sure there are no outstanding + * MI_RPC commands at this point since they could stall the CS + * indefinitely once OACONTROL is disabled. + */ + --perf_ctx->n_oa_users; + if (perf_ctx->n_oa_users == 0 && + gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0) + { + DBG("WARNING: Error disabling gen perf stream: %m\n"); + } +} + +static void +gen_perf_close(struct gen_perf_context *perfquery, + const struct gen_perf_query_info *query) +{ + if (perfquery->oa_stream_fd != -1) { + close(perfquery->oa_stream_fd); + perfquery->oa_stream_fd = -1; + } + if (query->kind == GEN_PERF_QUERY_TYPE_RAW) { + struct gen_perf_query_info *raw_query = + (struct gen_perf_query_info *) query; + raw_query->oa_metrics_set_id = 0; + } +} + +static bool +gen_perf_open(struct gen_perf_context *perf_ctx, + int metrics_set_id, + int report_format, + int period_exponent, + int drm_fd, + uint32_t ctx_id) +{ + uint64_t properties[] = { + /* Single context sampling */ + DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id, + + /* Include OA reports in samples */ + DRM_I915_PERF_PROP_SAMPLE_OA, true, + + /* OA unit configuration */ + DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id, + DRM_I915_PERF_PROP_OA_FORMAT, report_format, + DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent, + }; + struct drm_i915_perf_open_param param = { + .flags = I915_PERF_FLAG_FD_CLOEXEC | + I915_PERF_FLAG_FD_NONBLOCK | + I915_PERF_FLAG_DISABLED, + .num_properties = ARRAY_SIZE(properties) / 2, + .properties_ptr = (uintptr_t) properties, + }; + int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m); + if (fd == -1) { + DBG("Error opening gen perf OA stream: %m\n"); + return false; + } + + perf_ctx->oa_stream_fd = fd; + + perf_ctx->current_oa_metrics_set_id = metrics_set_id; + perf_ctx->current_oa_format = report_format; + + return true; +} + +static uint64_t +get_metric_id(struct gen_perf_config *perf, + const struct gen_perf_query_info *query) +{ + /* These queries are know not to ever change, their config ID has been + * loaded upon the first query creation. No need to look them up again. + */ + if (query->kind == GEN_PERF_QUERY_TYPE_OA) + return query->oa_metrics_set_id; + + assert(query->kind == GEN_PERF_QUERY_TYPE_RAW); + + /* Raw queries can be reprogrammed up by an external application/library. + * When a raw query is used for the first time it's id is set to a value != + * 0. When it stops being used the id returns to 0. No need to reload the + * ID when it's already loaded. + */ + if (query->oa_metrics_set_id != 0) { + DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n", + query->name, query->guid, query->oa_metrics_set_id); + return query->oa_metrics_set_id; + } + + struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query; + if (!gen_perf_load_metric_id(perf, query->guid, + &raw_query->oa_metrics_set_id)) { + DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid); + raw_query->oa_metrics_set_id = 1ULL; + } else { + DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n", + query->name, query->guid, query->oa_metrics_set_id); + } + return query->oa_metrics_set_id; +} + +static struct oa_sample_buf * +get_free_sample_buf(struct gen_perf_context *perf_ctx) +{ + struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers); + struct oa_sample_buf *buf; + + if (node) + buf = exec_node_data(struct oa_sample_buf, node, link); + else { + buf = ralloc_size(perf_ctx->perf, sizeof(*buf)); + + exec_node_init(&buf->link); + buf->refcount = 0; + } + buf->len = 0; + + return buf; +} + +static void +reap_old_sample_buffers(struct gen_perf_context *perf_ctx) +{ + struct exec_node *tail_node = + exec_list_get_tail(&perf_ctx->sample_buffers); + struct oa_sample_buf *tail_buf = + exec_node_data(struct oa_sample_buf, tail_node, link); + + /* Remove all old, unreferenced sample buffers walking forward from + * the head of the list, except always leave at least one node in + * the list so we always have a node to reference when we Begin + * a new query. + */ + foreach_list_typed_safe(struct oa_sample_buf, buf, link, + &perf_ctx->sample_buffers) + { + if (buf->refcount == 0 && buf != tail_buf) { + exec_node_remove(&buf->link); + exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link); + } else + return; + } +} + +static void +free_sample_bufs(struct gen_perf_context *perf_ctx) +{ + foreach_list_typed_safe(struct oa_sample_buf, buf, link, + &perf_ctx->free_sample_buffers) + ralloc_free(buf); + + exec_list_make_empty(&perf_ctx->free_sample_buffers); +} + + +struct gen_perf_query_object * +gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index) +{ + const struct gen_perf_query_info *query = + &perf_ctx->perf->queries[query_index]; + struct gen_perf_query_object *obj = + calloc(1, sizeof(struct gen_perf_query_object)); + + if (!obj) + return NULL; + + obj->queryinfo = query; + + perf_ctx->n_query_instances++; + return obj; +} + +int +gen_perf_active_queries(struct gen_perf_context *perf_ctx, + const struct gen_perf_query_info *query) +{ + assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0); + + switch (query->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + return perf_ctx->n_active_oa_queries; + break; + + case GEN_PERF_QUERY_TYPE_PIPELINE: + return perf_ctx->n_active_pipeline_stats_queries; + break; + + default: + unreachable("Unknown query type"); + break; + } +} + +const struct gen_perf_query_info* +gen_perf_query_info(const struct gen_perf_query_object *query) +{ + return query->queryinfo; +} + +struct gen_perf_context * +gen_perf_new_context(void *parent) +{ + struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context); + if (! ctx) + fprintf(stderr, "%s: failed to alloc context\n", __func__); + return ctx; +} + +struct gen_perf_config * +gen_perf_config(struct gen_perf_context *ctx) +{ + return ctx->perf; +} + +void +gen_perf_init_context(struct gen_perf_context *perf_ctx, + struct gen_perf_config *perf_cfg, + void * ctx, /* driver context (eg, brw_context) */ + void * bufmgr, /* eg brw_bufmgr */ + const struct gen_device_info *devinfo, + uint32_t hw_ctx, + int drm_fd) +{ + perf_ctx->perf = perf_cfg; + perf_ctx->ctx = ctx; + perf_ctx->bufmgr = bufmgr; + perf_ctx->drm_fd = drm_fd; + perf_ctx->hw_ctx = hw_ctx; + perf_ctx->devinfo = devinfo; + + perf_ctx->unaccumulated = + ralloc_array(ctx, struct gen_perf_query_object *, 2); + perf_ctx->unaccumulated_elements = 0; + perf_ctx->unaccumulated_array_size = 2; + + exec_list_make_empty(&perf_ctx->sample_buffers); + exec_list_make_empty(&perf_ctx->free_sample_buffers); + + /* It's convenient to guarantee that this linked list of sample + * buffers is never empty so we add an empty head so when we + * Begin an OA query we can always take a reference on a buffer + * in this list. + */ + struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); + exec_list_push_head(&perf_ctx->sample_buffers, &buf->link); + + perf_ctx->oa_stream_fd = -1; + perf_ctx->next_query_start_report_id = 1000; +} + +/** + * Add a query to the global list of "unaccumulated queries." + * + * Queries are tracked here until all the associated OA reports have + * been accumulated via accumulate_oa_reports() after the end + * MI_REPORT_PERF_COUNT has landed in query->oa.bo. + */ +static void +add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *obj) +{ + if (perf_ctx->unaccumulated_elements >= + perf_ctx->unaccumulated_array_size) + { + perf_ctx->unaccumulated_array_size *= 1.5; + perf_ctx->unaccumulated = + reralloc(perf_ctx->ctx, perf_ctx->unaccumulated, + struct gen_perf_query_object *, + perf_ctx->unaccumulated_array_size); + } + + perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj; +} + +/** + * Emit MI_STORE_REGISTER_MEM commands to capture all of the + * pipeline statistics for the performance query object. + */ +static void +snapshot_statistics_registers(struct gen_perf_context *ctx, + struct gen_perf_query_object *obj, + uint32_t offset_in_bytes) +{ + struct gen_perf_config *perf = ctx->perf; + const struct gen_perf_query_info *query = obj->queryinfo; + const int n_counters = query->n_counters; + + for (int i = 0; i < n_counters; i++) { + const struct gen_perf_query_counter *counter = &query->counters[i]; + + assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64); + + perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo, + counter->pipeline_stat.reg, 8, + offset_in_bytes + i * sizeof(uint64_t)); + } +} + +static void +snapshot_freq_register(struct gen_perf_context *ctx, + struct gen_perf_query_object *query, + uint32_t bo_offset) +{ + struct gen_perf_config *perf = ctx->perf; + const struct gen_device_info *devinfo = ctx->devinfo; + + if (devinfo->gen == 8 && !devinfo->is_cherryview) + perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN7_RPSTAT1, 4, bo_offset); + else if (devinfo->gen >= 9) + perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN9_RPSTAT0, 4, bo_offset); +} + +bool +gen_perf_begin_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + const struct gen_perf_query_info *queryinfo = query->queryinfo; + + /* XXX: We have to consider that the command parser unit that parses batch + * buffer commands and is used to capture begin/end counter snapshots isn't + * implicitly synchronized with what's currently running across other GPU + * units (such as the EUs running shaders) that the performance counters are + * associated with. + * + * The intention of performance queries is to measure the work associated + * with commands between the begin/end delimiters and so for that to be the + * case we need to explicitly synchronize the parsing of commands to capture + * Begin/End counter snapshots with what's running across other parts of the + * GPU. + * + * When the command parser reaches a Begin marker it effectively needs to + * drain everything currently running on the GPU until the hardware is idle + * before capturing the first snapshot of counters - otherwise the results + * would also be measuring the effects of earlier commands. + * + * When the command parser reaches an End marker it needs to stall until + * everything currently running on the GPU has finished before capturing the + * end snapshot - otherwise the results won't be a complete representation + * of the work. + * + * To achieve this, we stall the pipeline at pixel scoreboard (prevent any + * additional work to be processed by the pipeline until all pixels of the + * previous draw has be completed). + * + * N.B. The final results are based on deltas of counters between (inside) + * Begin/End markers so even though the total wall clock time of the + * workload is stretched by larger pipeline bubbles the bubbles themselves + * are generally invisible to the query results. Whether that's a good or a + * bad thing depends on the use case. For a lower real-time impact while + * capturing metrics then periodic sampling may be a better choice than + * INTEL_performance_query. + * + * + * This is our Begin synchronization point to drain current work on the + * GPU before we capture our first counter snapshot... + */ + perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); + + switch (queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: { + + /* Opening an i915 perf stream implies exclusive access to the OA unit + * which will generate counter reports for a specific counter set with a + * specific layout/format so we can't begin any OA based queries that + * require a different counter set or format unless we get an opportunity + * to close the stream and open a new one... + */ + uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo); + + if (perf_ctx->oa_stream_fd != -1 && + perf_ctx->current_oa_metrics_set_id != metric_id) { + + if (perf_ctx->n_oa_users != 0) { + DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n", + perf_ctx->current_oa_metrics_set_id, metric_id); + return false; + } else + gen_perf_close(perf_ctx, queryinfo); + } + + /* If the OA counters aren't already on, enable them. */ + if (perf_ctx->oa_stream_fd == -1) { + const struct gen_device_info *devinfo = perf_ctx->devinfo; + + /* The period_exponent gives a sampling period as follows: + * sample_period = timestamp_period * 2^(period_exponent + 1) + * + * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or + * ~83ns (GEN8/9). + * + * The counter overflow period is derived from the EuActive counter + * which reads a counter that increments by the number of clock + * cycles multiplied by the number of EUs. It can be calculated as: + * + * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2) + * + * (E.g. 40 EUs @ 1GHz = ~53ms) + * + * We select a sampling period inferior to that overflow period to + * ensure we cannot see more than 1 counter overflow, otherwise we + * could loose information. + */ + + int a_counter_in_bits = 32; + if (devinfo->gen >= 8) + a_counter_in_bits = 40; + + uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus * + /* drop 1GHz freq to have units in nanoseconds */ + 2); + + DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n", + overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus); + + int period_exponent = 0; + uint64_t prev_sample_period, next_sample_period; + for (int e = 0; e < 30; e++) { + prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency; + next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency; + + /* Take the previous sampling period, lower than the overflow + * period. + */ + if (prev_sample_period < overflow_period && + next_sample_period > overflow_period) + period_exponent = e + 1; + } + + if (period_exponent == 0) { + DBG("WARNING: enable to find a sampling exponent\n"); + return false; + } + + DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent, + prev_sample_period / 1000000ul); + + if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format, + period_exponent, perf_ctx->drm_fd, + perf_ctx->hw_ctx)) + return false; + } else { + assert(perf_ctx->current_oa_metrics_set_id == metric_id && + perf_ctx->current_oa_format == queryinfo->oa_format); + } + + if (!inc_n_users(perf_ctx)) { + DBG("WARNING: Error enabling i915 perf stream: %m\n"); + return false; + } + + if (query->oa.bo) { + perf_cfg->vtbl.bo_unreference(query->oa.bo); + query->oa.bo = NULL; + } + + query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, + "perf. query OA MI_RPC bo", + MI_RPC_BO_SIZE); +#ifdef DEBUG + /* Pre-filling the BO helps debug whether writes landed. */ + void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE); + memset(map, 0x80, MI_RPC_BO_SIZE); + perf_cfg->vtbl.bo_unmap(query->oa.bo); +#endif + + query->oa.begin_report_id = perf_ctx->next_query_start_report_id; + perf_ctx->next_query_start_report_id += 2; + + /* Take a starting OA counter snapshot. */ + perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0, + query->oa.begin_report_id); + snapshot_freq_register(perf_ctx, query, MI_FREQ_START_OFFSET_BYTES); + + ++perf_ctx->n_active_oa_queries; + + /* No already-buffered samples can possibly be associated with this query + * so create a marker within the list of sample buffers enabling us to + * easily ignore earlier samples when processing this query after + * completion. + */ + assert(!exec_list_is_empty(&perf_ctx->sample_buffers)); + query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers); + + struct oa_sample_buf *buf = + exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); + + /* This reference will ensure that future/following sample + * buffers (that may relate to this query) can't be freed until + * this drops to zero. + */ + buf->refcount++; + + gen_perf_query_result_clear(&query->oa.result); + query->oa.results_accumulated = false; + + add_to_unaccumulated_query_list(perf_ctx, query); + break; + } + + case GEN_PERF_QUERY_TYPE_PIPELINE: + if (query->pipeline_stats.bo) { + perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); + query->pipeline_stats.bo = NULL; + } + + query->pipeline_stats.bo = + perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr, + "perf. query pipeline stats bo", + STATS_BO_SIZE); + + /* Take starting snapshots. */ + snapshot_statistics_registers(perf_ctx, query, 0); + + ++perf_ctx->n_active_pipeline_stats_queries; + break; + + default: + unreachable("Unknown query type"); + break; + } + + return true; +} + +void +gen_perf_end_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + + /* Ensure that the work associated with the queried commands will have + * finished before taking our query end counter readings. + * + * For more details see comment in brw_begin_perf_query for + * corresponding flush. + */ + perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx); + + switch (query->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + + /* NB: It's possible that the query will have already been marked + * as 'accumulated' if an error was seen while reading samples + * from perf. In this case we mustn't try and emit a closing + * MI_RPC command in case the OA unit has already been disabled + */ + if (!query->oa.results_accumulated) { + /* Take an ending OA counter snapshot. */ + snapshot_freq_register(perf_ctx, query, MI_FREQ_END_OFFSET_BYTES); + perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, + MI_RPC_BO_END_OFFSET_BYTES, + query->oa.begin_report_id + 1); + } + + --perf_ctx->n_active_oa_queries; + + /* NB: even though the query has now ended, it can't be accumulated + * until the end MI_REPORT_PERF_COUNT snapshot has been written + * to query->oa.bo + */ + break; + + case GEN_PERF_QUERY_TYPE_PIPELINE: + snapshot_statistics_registers(perf_ctx, query, + STATS_BO_END_OFFSET_BYTES); + --perf_ctx->n_active_pipeline_stats_queries; + break; + + default: + unreachable("Unknown query type"); + break; + } +} + +enum OaReadStatus { + OA_READ_STATUS_ERROR, + OA_READ_STATUS_UNFINISHED, + OA_READ_STATUS_FINISHED, +}; + +static enum OaReadStatus +read_oa_samples_until(struct gen_perf_context *perf_ctx, + uint32_t start_timestamp, + uint32_t end_timestamp) +{ + struct exec_node *tail_node = + exec_list_get_tail(&perf_ctx->sample_buffers); + struct oa_sample_buf *tail_buf = + exec_node_data(struct oa_sample_buf, tail_node, link); + uint32_t last_timestamp = + tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp; + + while (1) { + struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx); + uint32_t offset; + int len; + + while ((len = read(perf_ctx->oa_stream_fd, buf->buf, + sizeof(buf->buf))) < 0 && errno == EINTR) + ; + + if (len <= 0) { + exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link); + + if (len < 0) { + if (errno == EAGAIN) { + return ((last_timestamp - start_timestamp) < INT32_MAX && + (last_timestamp - start_timestamp) >= + (end_timestamp - start_timestamp)) ? + OA_READ_STATUS_FINISHED : + OA_READ_STATUS_UNFINISHED; + } else { + DBG("Error reading i915 perf samples: %m\n"); + } + } else + DBG("Spurious EOF reading i915 perf samples\n"); + + return OA_READ_STATUS_ERROR; + } + + buf->len = len; + exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link); + + /* Go through the reports and update the last timestamp. */ + offset = 0; + while (offset < buf->len) { + const struct drm_i915_perf_record_header *header = + (const struct drm_i915_perf_record_header *) &buf->buf[offset]; + uint32_t *report = (uint32_t *) (header + 1); + + if (header->type == DRM_I915_PERF_RECORD_SAMPLE) + last_timestamp = report[1]; + + offset += header->size; + } + + buf->last_timestamp = last_timestamp; + } + + unreachable("not reached"); + return OA_READ_STATUS_ERROR; +} + +/** + * Try to read all the reports until either the delimiting timestamp + * or an error arises. + */ +static bool +read_oa_samples_for_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + void *current_batch) +{ + uint32_t *start; + uint32_t *last; + uint32_t *end; + struct gen_perf_config *perf_cfg = perf_ctx->perf; + + /* We need the MI_REPORT_PERF_COUNT to land before we can start + * accumulate. */ + assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && + !perf_cfg->vtbl.bo_busy(query->oa.bo)); + + /* Map the BO once here and let accumulate_oa_reports() unmap + * it. */ + if (query->oa.map == NULL) + query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ); + + start = last = query->oa.map; + end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; + + if (start[0] != query->oa.begin_report_id) { + DBG("Spurious start report id=%"PRIu32"\n", start[0]); + return true; + } + if (end[0] != (query->oa.begin_report_id + 1)) { + DBG("Spurious end report id=%"PRIu32"\n", end[0]); + return true; + } + + /* Read the reports until the end timestamp. */ + switch (read_oa_samples_until(perf_ctx, start[1], end[1])) { + case OA_READ_STATUS_ERROR: + /* Fallthrough and let accumulate_oa_reports() deal with the + * error. */ + case OA_READ_STATUS_FINISHED: + return true; + case OA_READ_STATUS_UNFINISHED: + return false; + } + + unreachable("invalid read status"); + return false; +} + +void +gen_perf_wait_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + void *current_batch) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + struct brw_bo *bo = NULL; + + switch (query->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + bo = query->oa.bo; + break; + + case GEN_PERF_QUERY_TYPE_PIPELINE: + bo = query->pipeline_stats.bo; + break; + + default: + unreachable("Unknown query type"); + break; + } + + if (bo == NULL) + return; + + /* If the current batch references our results bo then we need to + * flush first... + */ + if (perf_cfg->vtbl.batch_references(current_batch, bo)) + perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__); + + perf_cfg->vtbl.bo_wait_rendering(bo); + + /* Due to a race condition between the OA unit signaling report + * availability and the report actually being written into memory, + * we need to wait for all the reports to come in before we can + * read them. + */ + if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA || + query->queryinfo->kind == GEN_PERF_QUERY_TYPE_RAW) { + while (!read_oa_samples_for_query(perf_ctx, query, current_batch)) + ; + } +} + +bool +gen_perf_is_query_ready(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + void *current_batch) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + + switch (query->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + return (query->oa.results_accumulated || + (query->oa.bo && + !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) && + !perf_cfg->vtbl.bo_busy(query->oa.bo) && + read_oa_samples_for_query(perf_ctx, query, current_batch))); + case GEN_PERF_QUERY_TYPE_PIPELINE: + return (query->pipeline_stats.bo && + !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) && + !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo)); + + default: + unreachable("Unknown query type"); + break; + } + + return false; +} + +/** + * Remove a query from the global list of unaccumulated queries once + * after successfully accumulating the OA reports associated with the + * query in accumulate_oa_reports() or when discarding unwanted query + * results. + */ +static void +drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query) +{ + for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) { + if (perf_ctx->unaccumulated[i] == query) { + int last_elt = --perf_ctx->unaccumulated_elements; + + if (i == last_elt) + perf_ctx->unaccumulated[i] = NULL; + else { + perf_ctx->unaccumulated[i] = + perf_ctx->unaccumulated[last_elt]; + } + + break; + } + } + + /* Drop our samples_head reference so that associated periodic + * sample data buffers can potentially be reaped if they aren't + * referenced by any other queries... + */ + + struct oa_sample_buf *buf = + exec_node_data(struct oa_sample_buf, query->oa.samples_head, link); + + assert(buf->refcount > 0); + buf->refcount--; + + query->oa.samples_head = NULL; + + reap_old_sample_buffers(perf_ctx); +} + +/* In general if we see anything spurious while accumulating results, + * we don't try and continue accumulating the current query, hoping + * for the best, we scrap anything outstanding, and then hope for the + * best with new queries. + */ +static void +discard_all_queries(struct gen_perf_context *perf_ctx) +{ + while (perf_ctx->unaccumulated_elements) { + struct gen_perf_query_object *query = perf_ctx->unaccumulated[0]; + + query->oa.results_accumulated = true; + drop_from_unaccumulated_query_list(perf_ctx, query); + + dec_n_users(perf_ctx); + } +} + +/* Looks for the validity bit of context ID (dword 2) of an OA report. */ +static bool +oa_report_ctx_id_valid(const struct gen_device_info *devinfo, + const uint32_t *report) +{ + assert(devinfo->gen >= 8); + if (devinfo->gen == 8) + return (report[0] & (1 << 25)) != 0; + return (report[0] & (1 << 16)) != 0; +} + +/** + * Accumulate raw OA counter values based on deltas between pairs of + * OA reports. + * + * Accumulation starts from the first report captured via + * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the + * last MI_RPC report requested by brw_end_perf_query(). Between these + * two reports there may also some number of periodically sampled OA + * reports collected via the i915 perf interface - depending on the + * duration of the query. + * + * These periodic snapshots help to ensure we handle counter overflow + * correctly by being frequent enough to ensure we don't miss multiple + * overflows of a counter between snapshots. For Gen8+ the i915 perf + * snapshots provide the extra context-switch reports that let us + * subtract out the progress of counters associated with other + * contexts running on the system. + */ +static void +accumulate_oa_reports(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query) +{ + const struct gen_device_info *devinfo = perf_ctx->devinfo; + uint32_t *start; + uint32_t *last; + uint32_t *end; + struct exec_node *first_samples_node; + bool last_report_ctx_match = true; + int out_duration = 0; + + assert(query->oa.map != NULL); + + start = last = query->oa.map; + end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; + + if (start[0] != query->oa.begin_report_id) { + DBG("Spurious start report id=%"PRIu32"\n", start[0]); + goto error; + } + if (end[0] != (query->oa.begin_report_id + 1)) { + DBG("Spurious end report id=%"PRIu32"\n", end[0]); + goto error; + } + + /* On Gen12+ OA reports are sourced from per context counters, so we don't + * ever have to look at the global OA buffer. Yey \o/ + */ + if (perf_ctx->devinfo->gen >= 12) { + last = start; + goto end; + } + + /* See if we have any periodic reports to accumulate too... */ + + /* N.B. The oa.samples_head was set when the query began and + * pointed to the tail of the perf_ctx->sample_buffers list at + * the time the query started. Since the buffer existed before the + * first MI_REPORT_PERF_COUNT command was emitted we therefore know + * that no data in this particular node's buffer can possibly be + * associated with the query - so skip ahead one... + */ + first_samples_node = query->oa.samples_head->next; + + foreach_list_typed_from(struct oa_sample_buf, buf, link, + &perf_ctx->sample_buffers, + first_samples_node) + { + int offset = 0; + + while (offset < buf->len) { + const struct drm_i915_perf_record_header *header = + (const struct drm_i915_perf_record_header *)(buf->buf + offset); + + assert(header->size != 0); + assert(header->size <= buf->len); + + offset += header->size; + + switch (header->type) { + case DRM_I915_PERF_RECORD_SAMPLE: { + uint32_t *report = (uint32_t *)(header + 1); + bool report_ctx_match = true; + bool add = true; + + /* Ignore reports that come before the start marker. + * (Note: takes care to allow overflow of 32bit timestamps) + */ + if (gen_device_info_timebase_scale(devinfo, + report[1] - start[1]) > 5000000000) { + continue; + } + + /* Ignore reports that come after the end marker. + * (Note: takes care to allow overflow of 32bit timestamps) + */ + if (gen_device_info_timebase_scale(devinfo, + report[1] - end[1]) <= 5000000000) { + goto end; + } + + /* For Gen8+ since the counters continue while other + * contexts are running we need to discount any unrelated + * deltas. The hardware automatically generates a report + * on context switch which gives us a new reference point + * to continuing adding deltas from. + * + * For Haswell we can rely on the HW to stop the progress + * of OA counters while any other context is acctive. + */ + if (devinfo->gen >= 8) { + /* Consider that the current report matches our context only if + * the report says the report ID is valid. + */ + report_ctx_match = oa_report_ctx_id_valid(devinfo, report) && + report[2] == start[2]; + if (report_ctx_match) + out_duration = 0; + else + out_duration++; + + /* Only add the delta between <last, report> if the last report + * was clearly identified as our context, or if we have at most + * 1 report without a matching ID. + * + * The OA unit will sometimes label reports with an invalid + * context ID when i915 rewrites the execlist submit register + * with the same context as the one currently running. This + * happens when i915 wants to notify the HW of ringbuffer tail + * register update. We have to consider this report as part of + * our context as the 3d pipeline behind the OACS unit is still + * processing the operations started at the previous execlist + * submission. + */ + add = last_report_ctx_match && out_duration < 2; + } + + if (add) { + gen_perf_query_result_accumulate(&query->oa.result, + query->queryinfo, + last, report); + } else { + /* We're not adding the delta because we've identified it's not + * for the context we filter for. We can consider that the + * query was split. + */ + query->oa.result.query_disjoint = true; + } + + last = report; + last_report_ctx_match = report_ctx_match; + + break; + } + + case DRM_I915_PERF_RECORD_OA_BUFFER_LOST: + DBG("i915 perf: OA error: all reports lost\n"); + goto error; + case DRM_I915_PERF_RECORD_OA_REPORT_LOST: + DBG("i915 perf: OA report lost\n"); + break; + } + } + } + +end: + + gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo, + last, end); + + query->oa.results_accumulated = true; + drop_from_unaccumulated_query_list(perf_ctx, query); + dec_n_users(perf_ctx); + + return; + +error: + + discard_all_queries(perf_ctx); +} + +void +gen_perf_delete_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + + /* We can assume that the frontend waits for a query to complete + * before ever calling into here, so we don't have to worry about + * deleting an in-flight query object. + */ + switch (query->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + if (query->oa.bo) { + if (!query->oa.results_accumulated) { + drop_from_unaccumulated_query_list(perf_ctx, query); + dec_n_users(perf_ctx); + } + + perf_cfg->vtbl.bo_unreference(query->oa.bo); + query->oa.bo = NULL; + } + + query->oa.results_accumulated = false; + break; + + case GEN_PERF_QUERY_TYPE_PIPELINE: + if (query->pipeline_stats.bo) { + perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo); + query->pipeline_stats.bo = NULL; + } + break; + + default: + unreachable("Unknown query type"); + break; + } + + /* As an indication that the INTEL_performance_query extension is no + * longer in use, it's a good time to free our cache of sample + * buffers and close any current i915-perf stream. + */ + if (--perf_ctx->n_query_instances == 0) { + free_sample_bufs(perf_ctx); + gen_perf_close(perf_ctx, query->queryinfo); + } + + free(query); +} + +#define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT) + +static void +read_gt_frequency(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *obj) +{ + const struct gen_device_info *devinfo = perf_ctx->devinfo; + uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)), + end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES)); + + switch (devinfo->gen) { + case 7: + case 8: + obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; + obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL; + break; + case 9: + case 10: + case 11: + obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; + obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL; + break; + default: + unreachable("unexpected gen"); + } + + /* Put the numbers into Hz. */ + obj->oa.gt_frequency[0] *= 1000000ULL; + obj->oa.gt_frequency[1] *= 1000000ULL; +} + +static int +get_oa_counter_data(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + size_t data_size, + uint8_t *data) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + const struct gen_perf_query_info *queryinfo = query->queryinfo; + int n_counters = queryinfo->n_counters; + int written = 0; + + for (int i = 0; i < n_counters; i++) { + const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; + uint64_t *out_uint64; + float *out_float; + size_t counter_size = gen_perf_query_counter_get_size(counter); + + if (counter_size) { + switch (counter->data_type) { + case GEN_PERF_COUNTER_DATA_TYPE_UINT64: + out_uint64 = (uint64_t *)(data + counter->offset); + *out_uint64 = + counter->oa_counter_read_uint64(perf_cfg, queryinfo, + query->oa.result.accumulator); + break; + case GEN_PERF_COUNTER_DATA_TYPE_FLOAT: + out_float = (float *)(data + counter->offset); + *out_float = + counter->oa_counter_read_float(perf_cfg, queryinfo, + query->oa.result.accumulator); + break; + default: + /* So far we aren't using uint32, double or bool32... */ + unreachable("unexpected counter data type"); + } + written = counter->offset + counter_size; + } + } + + return written; +} + +static int +get_pipeline_stats_data(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + size_t data_size, + uint8_t *data) + +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + const struct gen_perf_query_info *queryinfo = query->queryinfo; + int n_counters = queryinfo->n_counters; + uint8_t *p = data; + + uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ); + uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t)); + + for (int i = 0; i < n_counters; i++) { + const struct gen_perf_query_counter *counter = &queryinfo->counters[i]; + uint64_t value = end[i] - start[i]; + + if (counter->pipeline_stat.numerator != + counter->pipeline_stat.denominator) { + value *= counter->pipeline_stat.numerator; + value /= counter->pipeline_stat.denominator; + } + + *((uint64_t *)p) = value; + p += 8; + } + + perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo); + + return p - data; +} + +void +gen_perf_get_query_data(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + int data_size, + unsigned *data, + unsigned *bytes_written) +{ + struct gen_perf_config *perf_cfg = perf_ctx->perf; + int written = 0; + + switch (query->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + if (!query->oa.results_accumulated) { + read_gt_frequency(perf_ctx, query); + uint32_t *begin_report = query->oa.map; + uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES; + gen_perf_query_result_read_frequencies(&query->oa.result, + perf_ctx->devinfo, + begin_report, + end_report); + accumulate_oa_reports(perf_ctx, query); + assert(query->oa.results_accumulated); + + perf_cfg->vtbl.bo_unmap(query->oa.bo); + query->oa.map = NULL; + } + if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) { + written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data); + } else { + const struct gen_device_info *devinfo = perf_ctx->devinfo; + + written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size, + devinfo, &query->oa.result, + query->oa.gt_frequency[0], + query->oa.gt_frequency[1]); + } + break; + + case GEN_PERF_QUERY_TYPE_PIPELINE: + written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data); + break; + + default: + unreachable("Unknown query type"); + break; + } + + if (bytes_written) + *bytes_written = written; +} + +void +gen_perf_dump_query_count(struct gen_perf_context *perf_ctx) +{ + DBG("Queries: (Open queries = %d, OA users = %d)\n", + perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users); +} + +void +gen_perf_dump_query(struct gen_perf_context *ctx, + struct gen_perf_query_object *obj, + void *current_batch) +{ + switch (obj->queryinfo->kind) { + case GEN_PERF_QUERY_TYPE_OA: + case GEN_PERF_QUERY_TYPE_RAW: + DBG("BO: %-4s OA data: %-10s %-15s\n", + obj->oa.bo ? "yes," : "no,", + gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,", + obj->oa.results_accumulated ? "accumulated" : "not accumulated"); + break; + case GEN_PERF_QUERY_TYPE_PIPELINE: + DBG("BO: %-4s\n", + obj->pipeline_stats.bo ? "yes" : "no"); + break; + default: + unreachable("Unknown query type"); + break; + } +} diff --git a/src/intel/perf/gen_perf_query.h b/src/intel/perf/gen_perf_query.h new file mode 100644 index 00000000000..a0246501f76 --- /dev/null +++ b/src/intel/perf/gen_perf_query.h @@ -0,0 +1,88 @@ +/* + * Copyright © 2019 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + */ + +#ifndef GEN_PERF_QUERY_H +#define GEN_PERF_QUERY_H + +#include <stdint.h> + +struct gen_device_info; + +struct gen_perf_config; +struct gen_perf_context; +struct gen_perf_query_object; + +struct gen_perf_context *gen_perf_new_context(void *parent); + +void gen_perf_init_context(struct gen_perf_context *perf_ctx, + struct gen_perf_config *perf_cfg, + void * ctx, /* driver context (eg, brw_context) */ + void * bufmgr, /* eg brw_bufmgr */ + const struct gen_device_info *devinfo, + uint32_t hw_ctx, + int drm_fd); + +const struct gen_perf_query_info* gen_perf_query_info(const struct gen_perf_query_object *); + + +void gen_perf_init_context(struct gen_perf_context *perf_ctx, + struct gen_perf_config *perf_cfg, + void * ctx, /* driver context (eg, brw_context) */ + void * bufmgr, /* eg brw_bufmgr */ + const struct gen_device_info *devinfo, + uint32_t hw_ctx, + int drm_fd); + +struct gen_perf_config *gen_perf_config(struct gen_perf_context *ctx); + +int gen_perf_active_queries(struct gen_perf_context *perf_ctx, + const struct gen_perf_query_info *query); + +struct gen_perf_query_object * +gen_perf_new_query(struct gen_perf_context *, unsigned query_index); + + +bool gen_perf_begin_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query); +void gen_perf_end_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query); +void gen_perf_wait_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + void *current_batch); +bool gen_perf_is_query_ready(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + void *current_batch); +void gen_perf_delete_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query); +void gen_perf_get_query_data(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *query, + int data_size, + unsigned *data, + unsigned *bytes_written); + +void gen_perf_dump_query_count(struct gen_perf_context *perf_ctx); +void gen_perf_dump_query(struct gen_perf_context *perf_ctx, + struct gen_perf_query_object *obj, + void *current_batch); + +#endif /* GEN_PERF_QUERY_H */ diff --git a/src/intel/perf/meson.build b/src/intel/perf/meson.build index 5fae9058f83..757eec2553e 100644 --- a/src/intel/perf/meson.build +++ b/src/intel/perf/meson.build @@ -17,6 +17,7 @@ endforeach gen_perf_sources = [ 'gen_perf.c', + 'gen_perf_query.c', 'gen_perf_mdapi.c', ] diff --git a/src/mesa/drivers/dri/i965/brw_context.h b/src/mesa/drivers/dri/i965/brw_context.h index 05933af4430..36dc53cc9d5 100644 --- a/src/mesa/drivers/dri/i965/brw_context.h +++ b/src/mesa/drivers/dri/i965/brw_context.h @@ -51,6 +51,7 @@ #include "intel_screen.h" #include "intel_tex_obj.h" #include "perf/gen_perf.h" +#include "perf/gen_perf_query.h" #ifdef __cplusplus extern "C" { diff --git a/src/mesa/drivers/dri/i965/brw_performance_query.c b/src/mesa/drivers/dri/i965/brw_performance_query.c index 7e0c66f895c..11505fab9f3 100644 --- a/src/mesa/drivers/dri/i965/brw_performance_query.c +++ b/src/mesa/drivers/dri/i965/brw_performance_query.c @@ -75,6 +75,7 @@ #include "perf/gen_perf.h" #include "perf/gen_perf_regs.h" #include "perf/gen_perf_mdapi.h" +#include "perf/gen_perf_query.h" #define FILE_DEBUG_FLAG DEBUG_PERFMON |